
NAACL 2021

Computational Approaches to Linguistic Code-Switching

Proceedings of the Fifth Workshop

June 11, 2021

This workshop was sponsored by Facebook

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-45-9

ii

Message from the Program Chairs

Bienvenidos to the proceedings of the fifth edition of the workshop on computational approaches for
linguistic code-switching (CALCS-2021)! Code-switching is this very interesting phenomenon where
multilingual speakers communicate by moving back and forth between the languages they speak when
communicating with other multilingual speakers. Code-switching (CSW) is predominantly used in
speech but since it also tends to be more prevalent in casual settings, we can observe CSW in genres
like social media platforms where interactions tend to be more casual.

However interesting, our current NLP technology is lagging behind in the development of resources
and methodologies that can effectively process code-switched language. This is true for even the large
multilingual pretrained models such as mBERT and BART. At the same time, the growing adoption of
smart devices and automated assistants that rely on speech interfaces, makes it even more pressing that
our field addresses CSW language data.

This workshop series brings together experts and practitioners that are currently working on different
aspects of CSW with a special focus on motivating tighter collaborations between speech and text
researchers. We received 18 regular workshop submissions, of which we accepted 13. But this year
we also had a special submission type called “Rising Stars”. The goal of the Rising Stars is to allow
young scientists that have recently published work in the space of CSW to present this work again to a
specialized audience. These submissions are non-archival and are intended to increase visibility of CSW
research by young researchers. We received two submissions of this type and we hope to continue this
new track in future editions.

Our workshop also aims to motivate new research and energize the community to take on the challenges
posed by CSW data. With this in mind, we hosted a new shared task on machine translation in CSW
settings colocated with the workshop. This shared task provided two modalities for participation,
supervised and unsupervised. For the supervised mode we asked participants to translate English data
into Hinglish (Hindi-English). For the unsupervised setting we provided the following language pairs:
Spanish-English (Spanglish) to English, English to Spanglish, Modern Standard Arabic-Egyptian Arabic
(MSA-EA) to English and English to MSA-EA. The current leaderboard for the task shows 12 individual
public system submissions coming out of 5 different teams. The overview of the shared task and the
individual system submissions will be presented at the workshop.

The workshop program includes short talks from regular workshop submissions, rising star talks and
system description talks. We also have a stellar invited speaker program with talks by Özlem Çetinoğlu,
Manish Shrivastava and Ngoc Thang Vu. In addition, the one day program will also feature an exciting
panel discussing research challenges unique to Machine Translation in CSW environments. Panelists
include: Kalika Bali, Pushpak Bhattacharyya, Marina Fomicheva, Philipp Koehn, and Holger Schwenk.

We would like to thank the NAACL workshop organizers, Bhavana Dalvi, Mamoru Komachi and Michel
Galley for their help during the organization of the workshop. We also extend our appreciation to Priscilla
Rasmussen for her continuous help in the organization of these events. Last, but not least, we thank the
NAACL organizing team for handling the conference organization in such a smooth way, even in the
face of the current pandemic.

It would have been great to see everyone face to face in Mexico City, but alas we have another virtual
event this year. Nonetheless, we hope that you join us on Friday June 11th and that you enjoy the program
we put together.

Let’s talk code-switching in June!

The Workshop Organizers

iii

iv

Workshop Organizers:
Alan W. Black, Carnegie Mellon University (USA)

Mona Diab, Facebook (USA)
Shuguang Chen, University of Houston (USA)
Sunayana Sitaram, Microsoft Research (India)
Thamar Solorio, University of Houston (USA)

Victor Soto, Amazon Alexa AI (USA)
Anirudh Srinivasan, Microsoft Research India (India)

Emre Yilmaz, SRI International (USA)

Program Committee:
Gustavo Aguilar, University of Houston (USA)

Elena Álvarez Mellado, University of Southern California (USA)
Segun Aroyehun, Instituto Politécnico Nacional (Mexico)

Kalika Bali, Microsoft Research India (India)
Astik Biswas, Oracle (India)

Monojit Choudhury, Microsoft Research India (India)
Amitava Das, Wipro AI Lab (India)

Indranil Dutta, Jadavpur University (India)
Alexander Gelbukh, Insituto Politécnico Nacional (Mexico)

Genta Indra Winata, HKUST (Hong Kong)
Sudipta Kar, Amazon (USA)

Grandee Lee, National University of Singapore (Singapore)
Els Lefever, Ghent University (Belgium)

Constantine Lignos, University of Pennsylvania (USA)
Yang Liu, Amazon (USA)

Manuel Mager, Universität Stuttgart (Germany)
Parth Patwa, Indian Institute of Information Technology Sri City (India)

Sai Krishna Rallabandi, Carnegie Mellon University (USA)
Yihong Theis, Kansas State University (USA)

Van Tung Pham, Nanyang Technological University (Singapore)
Khyathi Raghavi Chandu, Carnegie Mellon University (USA)

Seza Doğruöz, Ghent University (Belgium)

v

Table of Contents

Political Discourse Analysis: A Case Study of Code Mixing and Code Switching in Political Speeches
Dama Sravani, Lalitha Kameswari and Radhika Mamidi . 1

Challenges and Limitations with the Metrics Measuring the Complexity of Code-Mixed Text
Vivek Srivastava and Mayank Singh . 6

Translate and Classify: Improving Sequence Level Classification for English-Hindi Code-Mixed Data
Devansh Gautam, Kshitij Gupta and Manish Shrivastava . 15

Gated Convolutional Sequence to Sequence Based Learning for English-Hingilsh Code-Switched Ma-
chine Translation.

Suman Dowlagar and Radhika Mamidi . 26

IITP-MT at CALCS2021: English to Hinglish Neural Machine Translation using Unsupervised Synthetic
Code-Mixed Parallel Corpus

Ramakrishna Appicharla, Kamal Kumar Gupta, Asif Ekbal and Pushpak Bhattacharyya 31

Exploring Text-to-Text Transformers for English to Hinglish Machine Translation with Synthetic Code-
Mixing

Ganesh Jawahar, El Moatez Billah Nagoudi, Muhammad Abdul-Mageed and Laks Lakshmanan,
V.S. 36

CoMeT: Towards Code-Mixed Translation Using Parallel Monolingual Sentences
Devansh Gautam, Prashant Kodali, Kshitij Gupta, Anmol Goel, Manish Shrivastava and Ponnu-

rangam Kumaraguru . 47

Investigating Code-Mixed Modern Standard Arabic-Egyptian to English Machine Translation
El Moatez Billah Nagoudi, AbdelRahim Elmadany and Muhammad Abdul-Mageed 56

Much Gracias: Semi-supervised Code-switch Detection for Spanish-English: How far can we get?
Dana-Maria Iliescu, Rasmus Grand, Sara Qirko and Rob van der Goot . 65

A Language-aware Approach to Code-switched Morphological Tagging
Şaziye Betül Özateş and Özlem Çetinoğlu . 72

Can You Traducir This? Machine Translation for Code-Switched Input
Jitao Xu and François Yvon. .84

On the logistical difficulties and findings of Jopara Sentiment Analysis
Marvin Agüero-Torales, David Vilares and Antonio López-Herrera . 95

Unsupervised Self-Training for Sentiment Analysis of Code-Switched Data
Akshat Gupta, Sargam Menghani, Sai Krishna Rallabandi and Alan W Black 103

CodemixedNLP: An Extensible and Open NLP Toolkit for Code-Mixing
Sai Muralidhar Jayanthi, Kavya Nerella, Khyathi Raghavi Chandu and Alan W Black 113

Normalization and Back-Transliteration for Code-Switched Data
Dwija Parikh and Thamar Solorio . 119

Abusive content detection in transliterated Bengali-English social media corpus
Salim Sazzed .125

vii

Developing ASR for Indonesian-English Bilingual Language Teaching
Zara Maxwelll-Smith and Ben Foley . 131

Transliteration for Low-Resource Code-Switching Texts: Building an Automatic Cyrillic-to-Latin Con-
verter for Tatar

Chihiro Taguchi, Yusuke Sakai and Taro Watanabe . 133

Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots
Samson Tan and Shafiq Joty . 141

Are Multilingual Models Effective in Code-Switching?
Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu, Zhaojiang Lin, Andrea Madotto and Pascale

Fung . 142

viii

Conference Program

Friday, June 11, 2021 (Mexico City Time, CDT, GMT -5)

8:00–10:30 Morning Session I

8:00–8:15 Welcome Remarks
Thamar Solorio

8:15–9:00 Invited Talk
Manish Shrivastava

9:00–9:30 Lighting Talks
Thamar Solorio

9:30–9:40 Political Discourse Analysis: A Case Study of Code Mixing and Code Switching in
Political Speeches
Dama Sravani, Lalitha Kameswari and Radhika Mamidi

9:40–9:50 Challenges and Limitations with the Metrics Measuring the Complexity of Code-
Mixed Text
Vivek Srivastava and Mayank Singh

9:50–10:00 Translate and Classify: Improving Sequence Level Classification for English-Hindi
Code-Mixed Data
Devansh Gautam, Kshitij Gupta and Manish Shrivastava

10:00–10:30 Break I

ix

Friday, June 11, 2021 (Mexico City Time, CDT, GMT -5) (continued)

10:30–13:00 Morning Session II

10:30–10:40 Shared Task Overview
Thamar Solorio

10:40–10:50 Gated Convolutional Sequence to Sequence Based Learning for English-Hingilsh
Code-Switched Machine Translation.
Suman Dowlagar and Radhika Mamidi

10:50–11:00 IITP-MT at CALCS2021: English to Hinglish Neural Machine Translation using
Unsupervised Synthetic Code-Mixed Parallel Corpus
Ramakrishna Appicharla, Kamal Kumar Gupta, Asif Ekbal and Pushpak Bhat-
tacharyya

11:00–11:10 Exploring Text-to-Text Transformers for English to Hinglish Machine Translation
with Synthetic Code-Mixing
Ganesh Jawahar, El Moatez Billah Nagoudi, Muhammad Abdul-Mageed and Laks
Lakshmanan, V.S.

11:10–11:20 CoMeT: Towards Code-Mixed Translation Using Parallel Monolingual Sentences
Devansh Gautam, Prashant Kodali, Kshitij Gupta, Anmol Goel, Manish Shrivastava
and Ponnurangam Kumaraguru

11:20–11:30 Investigating Code-Mixed Modern Standard Arabic-Egyptian to English Machine
Translation
El Moatez Billah Nagoudi, AbdelRahim Elmadany and Muhammad Abdul-Mageed

11:30–12:15 Invited Talk
Özlem Çetinoğlu

12:15–13:00 Lunch Break

x

Friday, June 11, 2021 (Mexico City Time, CDT, GMT -5) (continued)

13:00–15:30 Afternoon Session I

13:00–13:10 Much Gracias: Semi-supervised Code-switch Detection for Spanish-English: How
far can we get?
Dana-Maria Iliescu, Rasmus Grand, Sara Qirko and Rob van der Goot

13:10–13:20 A Language-aware Approach to Code-switched Morphological Tagging
Şaziye Betül Özateş and Özlem Çetinoğlu

13:20–13:30 Can You Traducir This? Machine Translation for Code-Switched Input
Jitao Xu and François Yvon

13:30–13:40 On the logistical difficulties and findings of Jopara Sentiment Analysis
Marvin Agüero-Torales, David Vilares and Antonio López-Herrera

13:40–15:00 Panel Discussion Moderated by Mona Diab
Panelists: Kalika Bali, Pushpak Bhattacharyya, Marina Fomicheva, Philipp Koehn,
Holger Schwenk

15:00–15:30 Midday Short Break

15:30–16:45 Afternoon Session II

15:30–16:15 Invited Talk
Ngoc Thang Vu

16:15–16:45 Evening Break

xi

Friday, June 11, 2021 (Mexico City Time, CDT, GMT -5) (continued)

16:45–18:15 Evening Session

16:45–16:55 Unsupervised Self-Training for Sentiment Analysis of Code-Switched Data
Akshat Gupta, Sargam Menghani, Sai Krishna Rallabandi and Alan W Black

16:55–17:05 CodemixedNLP: An Extensible and Open NLP Toolkit for Code-Mixing
Sai Muralidhar Jayanthi, Kavya Nerella, Khyathi Raghavi Chandu and Alan W
Black

17:05–17:15 Normalization and Back-Transliteration for Code-Switched Data
Dwija Parikh and Thamar Solorio

17:15–17:25 Abusive content detection in transliterated Bengali-English social media corpus
Salim Sazzed

17:25–17:35 Developing ASR for Indonesian-English Bilingual Language Teaching
Zara Maxwelll-Smith and Ben Foley

17:35–17:45 Transliteration for Low-Resource Code-Switching Texts: Building an Automatic
Cyrillic-to-Latin Converter for Tatar
Chihiro Taguchi, Yusuke Sakai and Taro Watanabe

17:45–17:55 Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots
Samson Tan and Shafiq Joty

17:55–18:05 Are Multilingual Models Effective in Code-Switching?
Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu, Zhaojiang Lin, Andrea
Madotto and Pascale Fung

18:05–18:15 Closing Remarks

xii

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 1–5
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_001

Political Discourse Analysis: A Case Study of Code Mixing and Code
Switching in Political Speeches

Dama Sravani, Lalitha Kameswari, Radhika Mamidi
Language Technologies Research Centre

International Institute of Information Technology
Hyderabad, Telangana, India

{dama.sravani, v.a.lalitha}@research.iiit.ac.in
radhika.mamidi@iiit.ac.in

Abstract

Political discourse is one of the most interest-
ing data to study power relations in the frame-
work of Critical Discourse Analysis. With
the increase in the modes of textual and spo-
ken forms of communication, politicians use
language and linguistic mechanisms that con-
tribute significantly in building their relation-
ship with people, especially in a multilingual
country like India with many political parties
with different ideologies. This paper analy-
ses code-mixing and code-switching in Telugu
political speeches to determine the factors re-
sponsible for their usage levels in various so-
cial settings and communicative contexts. We
also compile a detailed set of rules captur-
ing dialectal variations between Standard and
Telangana dialects of Telugu.

1 Introduction

Gumperz (1982) defines Code Switching (CS) as
the juxtaposition within the same speech exchange
of passages of speech belonging to two different
grammatical systems or sub-systems. On the other
hand, Code Mixing(CM) refers to the embedding
of linguistic units such as phrases, words and mor-
phemes of one language into an utterance of an-
other language (Myers-Scotton, 1997). So broadly
speaking, CS occurs across sentences/phrases and
CM within a sentence/phrases (though some re-
searchers do not distinguish the two).

Gumperz (1982) researched specific speech
events to examine the relationship between speak-
ers’ linguistic choices. They also looked for CS
instances, either between languages or between va-
rieties of the same language, to find out in what
situation and with what interlocutors, CS occurs
and CS may signal various group memberships
and identities. Gumperz (1977) found that local di-
alect carried great prestige, and as a person’s native
speech is regarded as an integral part of his family
background, a sign of his local identity. However,

when interacting with members of other communi-
ties and with tourists, the residents would use the
standard dialect.

Foster et al. (1981) states that language is not
neutral or universal in a political context. Language
is used to reflect many historical, cultural and so-
cial identities associated with the politician. In a
multilingual country like India, CM and CS are a
norm. They not only reflect a person’s association
with more than one language or a dialect, but also
conveys their social identity in a given context. In
this paper, our aim is to look at CM and CS as two
distinctive techniques used for political gain.

The matrix language we have chosen to study
these phenomena is Telugu, a South-Central Dra-
vidian language predominantly spoken in India’s
Southern parts, especially in Andhra Pradesh and
Telangana. There are many regional dialects and
sub-dialects in Telugu, but the three major di-
alects are the Coastal Andhra dialect, the Telan-
gana dialect which has a significant influence of
Urdu/Dakhni, and the Rayalaseema dialect. The
variety spoken by the educated class from the inte-
rior districts of Andhra area was modernised and
elevated to ’Standard Telugu’ status in 1969 and
since then has been widely used in textbooks, news-
papers and other formal communication. It is also
referred to as Modern Standard Telugu (MST) in
Krishnamurti et al. (1968).

Even though Telugu is one of India’s largest
spoken languages with more than 80 million speak-
ers, there is a severe dearth of resources in Telugu,
which makes it hard for NLP research. For our
purpose, we did not find any corpus for Code Mix-
ing and Switching in Telugu. Hence, we created a
corpus of political speeches in Telugu consisting
of 1134 sentences and about 10000 words. Since
our work is closely associated with a set of rules
and statistical observations corresponding to those
rules, the corpus size was sufficient to give us good
results. We will further examine the factors re-

1

https://doi.org/10.26615/978-954-452-056-4_001

sponsible for varying levels of CM and CS in these
speeches.

2 Related Work

Kameswari and Mamidi (2018) conducted a study
about various interpersonal speech choices in elec-
tion campaign speeches, including the usage pat-
terns of nouns, pronouns, kinship terms, rhetor-
ical questions, etc. There are a few more stud-
ies (Martinez Guillem (2009), Ilic and Radulovic
(2015), Kampf and Katriel (2016)) which analyse
the deeper intention behind the choice of words
and phrases using the famous Speech Act theory by
Searle et al. (1980) and the Sociocognitive model
by Van Dijk (2014).

There has been some work recently on CM and
CS involving Indian languages. But most of the
work is done in the social media domain and in-
volves Hindi-English pair because of the easier
availability of data. Bali et al. (2014) worked on
code mixed tweets in English-Hindi. They tried to
differentiate between borrowing and code-mixing
based on the frequency of co-occurrence of words
in tweets.

In Dravidian languages, there is very little work
done in this area so far. Srirangam et al. (2019)
created a corpus for Named Entity recognition
in English-Telugu code mixed tweets,Jitta et al.
(2017) created a English-Telugu code mixed con-
versational data for Dialog Act recognition.

There has been very less work on analysing the
Telangana dialect. Bhaskar wrote a book named
Telanagana Padakosam with Telangana words and
their corresponding words in Standard dialect.
Also, he has drawn few observations that are com-
mon in Telangana dialect.Chakravarthy (2016), An
Annotated Translation of Kalarekhalu A Historical
Novel by Ampasayya Naveen, describes the impor-
tant phases that lead to the Telangana state. Few
cultural words have been retained without translat-
ing into English. Sastry (1987) provided a prosodic
analysis of Telangana dialect.

To our knowledge, this work is the first of its
kind, which analyses CM and CS together in po-
litical discourse along with dialectal level code-
mixing analysis. We aim to understand these phe-
nomena as a speech choice and its effect on the
audience in politics.

3 Dataset and Annotation

3.1 Dataset collection

Even with the advent of social and print media,
in-person modes of communication such as cam-
paigns and political speeches remain the most pre-
ferred ways of communicating with the general
public for politicians. They try to ensure that the
audience feels connected to them, thereby increas-
ing their potential votes. This is done strategically
and persuasively.

We chose our speakers as Mr K Chandrasekhar
Rao (KCR), the Chief Minister of Telangana and
Mr Chandra Babu Naidu(CBN), former Chief Min-
ister of Andhra Pradesh. KCR is the founder of
the Telangana Rashtra Samiti (TRS) party and is
widely regarded as the face of the Telangana move-
ment for a separate state in 2014. CBN is the leader
of the Telugu Desam Party. They use a variety of
dialects and languages such as Telangana Telugu,
Modern Standard Telugu, Urdu, English and Hindi
in their speeches.

We chose a total of 6 speeches of both the speak-
ers in three different social settings and communica-
tive contexts to analyse the levels of code-mixing
and code-switching as follows:

1. Public Meetings in Telangana: KCR’s
speech was during the Telangana movement,
meant for the creation of a new state. He
addressed the pathetic situation of Telangana
residents and also discussed the plan and poli-
cies for the new state.CBN’s speech is during
the Telangana elections in 2018. The audience
were residents of Telangana. We will refer to
this as communicative event 1.

2. Felicitating Dr. Venkaiah Naidu when hon-
oured as Vice President: KCR and CBN’s
speeches were with MLAs and other parlia-
ment members of their respective states,viz.
They spoke about Dr Venkaiah Naidu’s great
qualities and praised him for his service to the
nation and attaining one of its highest posi-
tions. We will refer to this as communicative
event 2.

3. Capital Development: In these speeches,
both the speakers were talking about devel-
opments of capitals. In the KCR speech, the
audience were Government officials and local
politicians of Telangana. CBN addressed the

2

collectors of Andhra Pradesh. We will refer
to this one as communicative event 3.

Though the speeches were available on YouTube,
none of the existing off-the-shelf speech to text sys-
tems could serve to capture the speech effectively
along with the dialectal variations in the language.
Therefore, we manually transcribed the speeches in
the WX format (Diwakar et al., 2010) and verified
the transcription with the help of native speakers.
The duration of the speeches is 100 minutes for
each speaker, and after transcription, it consists of
1134 sentences. The total word count is around
10000.

3.2 Annotation
All speeches are annotated for the usage of CM and
CS at the word level. Each speech is annotated for
Dialectal level code-mixing(DCM), Language level
code-mixing (LCM) and Code-Switching(CS). We
will further examine how CM and CS will vary in
different social settings and communicative con-
texts for pragmatic reasons.

3.2.1 Guidelines to handle dialectal level
code-mixing

The subjects of our study use Telangana dialect and
MST more often compared.

To our knowledge, there has been no exhaus-
tive set of observations differentiating these two
varieties Telangana from MST. We took some ob-
servations from the book by Bhaskar and Sastry
(1987). Few more observations are drawn from
texts of Chakravarthy (2016). Also, we compiled
a few more observations from a TV news program
named Teenmar news which uses Telangana di-
alect. After removing duplicates, we categorised
the observations and segregated them into three
categories: Vowel rule (V), Consonant rule (C) and
the other rules which apply to syllables (S). The
rules in each of these three categories are further
classified as Addition, Deletion or Replacement,
based on the kind of operation performed.

We came up with over 50 tags for these observa-
tions capturing the pattern differences between the
Standard and Telangana dialects. If a word follows
any of these observations, then it is marked as 1
under the category DCM. Else, it is marked as 0.
In this paper, we present a few observations which
are prominent in our data. The writing convention
followed is:
[Standard dialect word] - [Telangana dialect
word]:

1. Vowel rules

• Deletion: In Telangana dialect, vowels
are dropped at the end of some words.
For example:

nenu - nen

• Replacement: Long vowels are replaced
with short vowels.

vastAru - vastaru

2. Consonant rules

• Addition: In Telangana dialect g is
added at the start for few words.

ippuDu - gippuDu

• Deletion: In some words v is dropped at
the beginning of the word. This occurs
in nouns, pronouns and verbs

vAna - Ana

• Replacement: Voiced consonants are
replaced with voiceless consonants in
some words.

pedda + kAleV- peddagAleV -
cAlu - jAlu

peTTAru - beTTAru

3. Syllable rules

• Deletion: Dropping of the syllable
which precedes the /d/ sound. In some
cases, after the dropping, the preceding
vowel is lengthened. This is mostly ob-
served in terms associated with spatial
deixis.

ikkaDa - IDa

• Replacement: For the verbs in past
tense, The second last syllable’s long
vowel gets replaced with in/i/shortening
of vowel/ina. These are further sub-
categorised based on gender, number and
person.

cesAru - jeSinru
cesAvA - jeSinavA

cesAru - jeSiru

3.2.2 Guidelines to handle language level
code-mixing

In our paper, language level code-mixing is
said to occur when two or more languages or
language varieties are used at a morphological
level. To be more precise, it occurred when
English root words were suffixed with Telugu

3

plural markers, and morphological suffixes in
one word or English/Hindi words are used.

pArtIlu - party + lu
kAlejIlo - College + lo
rejiyanga - region + ga

If a word follows these observations, then it
is marked as 1. Else, it is marked as 0 for
language level code-mixing.

3.2.3 Guidelines to handle code-switching
All the language variations at the sentence level, i.e.
if the sentence or phrase with more than one word is
in a different language, then it is considered under
code-switching. Here as our speeches are in Telugu,
sentences or phrases in languages other than Telugu
come under this category. All the words in these
sentences/phrases are marked as 1.

mIru ganaka commitement won
tIskunte, Yes sir come on let us move annAru

In the above sentence, all the words in the phrase
Yes sir come on let us move are marked as 1 under
the category code-switching.

4 Observations and Results

After annotating based on these guidelines, the re-
sults are tabulated as follows.

Speech No.of Words Dialectal level
Code-mixing

Language level
Code-mixing Code-Switching

1 2153 19.9%
E-5.4%
H-0.8%

E-0.1%
H-17.4%

2 1137 12%
E-3.1%

H-0%
E- 2.1%
H-0%

3 2654 15%
E-9.2%

H-0%
E-9.9%
H-0%

Table 1: KCR Speech Statistics (E-English, H-
Hindi/Urdu)

Speech No.of Words Dialectal level
Code-mixing

Language level
Code-mixing Code-Switching

1 1357 8.91%
E-4.64%
H-0%

E-1.76%
H-0%

2 1960 3.82%
E-4.7%

H-0%
E- 4.33%
H-0%

3 984 2.7%
E-7.01%

H-0%
E-39.63%

H-0%

Table 2: CBN Speech Statistics
In communicative event 1, as they were address-

ing Telangana residents, relatively higher levels of
Telangana dialect are observed in speeches by both
the speakers to get more connection with the au-
dience. However, KCR has used more Telangana
dialect in his speech than CBN. KCR was fight-
ing for a separate Telangana state. CBN speech
was during the Telangana elections in 2018. His

ideology doesn’t align with KCR. In addition to
connection with the audience, ideologies of the
speaker also impact the levels of code-mixing and
code-switching. KCR also uses high levels of code-
switching in Hindi for establishing a better connec-
tion with the audience as the Telangana dialect is
influenced by Hindi/Urdu.

In communicative event 2, KCN and CBN ad-
dressed MLAs and other parliament members of
Telangana and Andhra Pradesh. In CBN’s speech,
the usage of MST can be due to the absence of
Telangana residents. However, in KCR speech,
most of them are Telangana residents, yet lesser
levels of Telangana dialect are observed. So, con-
text of the speech also determines the levels of code-
mixing and code-switching. In this communicative
event, as they were addressing a national topic,
MST, lesser language level code-mixing and lower
code-switching levels are observed.

In communicative event 3, English usage is high
in both speeches than other speeches as the meeting
is about capitals and all government officials may
not be aware of the local language. In KCR speech,
local politicians are also part of the meeting, so
Telangana dialect usage is prominent. Whereas in
CBN speech, very high levels of English is used as
the meeting is only with collectors.

5 Conclusions and Future Work

In this paper, we looked at the phenomenon of
CM/CS between dialects of Telugu, MST and lan-
guages like English and Hindi/Urdu for different
communicative contexts. The audience, ideologies
of the speaker and context of the speech impacted
the speakers linguistic choices.

Our transcribed and annotated speeches1 can be
further be used to develop dialectal speech recog-
nition systems.We present a very detailed set of
observations and annotation guidelines to capture
the dialectal variations between the MST and Telan-
gana dialect of Telugu. These could be studied and
extended to handle dialectal variations in other lan-
guages, especially Dravidian languages like Tamil
and Kannada. These can also help develop Ma-
chine Translation systems equipped for several di-
alects within a given language pair. Further, we
would like to expand our data and examine other
factors responsible for code-switching and code-
mixing.

1https://github.com/damasravani19/
CodeMIxingCodeSwitchingInPoliticalSpeeches

4

6 Acknowledgements

We thank SriHarshitha Bondugula for aiding us
in transcribing political speeches in the Telangana
dialect.

References
Kalika Bali, Jatin Sharma, Monojit Choudhury, and Yo-
garshi Vyas. 2014. “i am borrowing ya mixing?" an
analysis of english-hindi code mixing in facebook. In
Proceedings of the First Workshop on Computational
Approaches to Code Switching, pages 116–126.

Nalimela Bhaskar. Bhaskar,.

I Pavan Chakravarthy. 2016. An Annotated Transla-
tion of Kalarekhalu A Historical Novel by Ampasayya
Naveen. Ph.D. thesis, The English and Foreign Lan-
guages University, Hyderabad.

Sapan Diwakar, Pulkit Goyal, and Rohit Gupta. 2010.
Transliteration among indian languages using wx nota-
tion. In Proceedings of the Conference on Natural Lan-
guage Processing 2010, CONF, pages 147–150. Saar-
land University Press.

Leslie D Foster, Dennis J Gallant, William D Drew, and
Cecil R Lohrey. 1981. Columnar patient care service
facility. US Patent App. 06/004,211.

John J. Gumperz. 1977. The sociolinguistic signifi-
cance of conversational code-switching. RELC Jour-
nal, 8(2):1–34.

John J Gumperz. 1982. Discourse strategies, volume 1.
Cambridge University Press.

Biljana Misic Ilic and Milica Radulovic. 2015. Com-
missive and expressive illocutionary acts in political
discourse. Lodz Papers in Pragmatics, 11(1):19.

D. S. Jitta, K. R. Chandu, H. Pamidipalli, and
R. Mamidi. 2017. “nee intention enti?” towards dialog
act recognition in code-mixed conversations. In 2017
International Conference on Asian Language Process-
ing (IALP), pages 243–246.

Lalitha Kameswari and Radhika Mamidi. 2018. Polit-
ical discourse analysis: A case study of 2014 andhra
pradesh state assembly election of interpersonal speech
choices. In PACLIC.

Zohar Kampf and Tamar Katriel. 2016. Political con-
demnations: Public speech acts and the moralization of
discourse. The handbook of communication in cross-
cultural perspective, 312:324.

B. Krishnamurti, P.S. Sarma, and K. Civam. 1968. A
Basic Course in Modern Telugu. sole distributors Moti-
lal Banarsidass, Delhi.

Susana Martinez Guillem. 2009. Argumentation,
metadiscourse and social cognition: organizing knowl-
edge in political communication. Discourse & Society,
20(6):727–746.

Carol Myers-Scotton. 1997. Duelling languages:
Grammatical structure in codeswitching. Oxford Uni-
versity Press.

J. Sastry. 1987. A study of telugu regional and social
dialects : a prosodic analysis.

John R Searle, Ferenc Kiefer, Manfred Bierwisch, et al.
1980. Speech act theory and pragmatics, volume 10.
Springer.

Vamshi Krishna Srirangam, Appidi Abhinav Reddy,
Vinay Singh, and Manish Shrivastava. 2019. Corpus
creation and analysis for named entity recognition in
telugu-english code-mixed social media data. In Pro-
ceedings of the 57th Annual Meeting of the Association
for Computational Linguistics: Student Research Work-
shop, pages 183–189.

Teun A Van Dijk. 2014. Discourse and knowledge: A
sociocognitive approach. Cambridge University Press.

5

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 6–14
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_002

Challenges and Limitations with the Metrics Measuring the Complexity of
Code-Mixed Text

Vivek Srivastava
TCS Research

Pune, Maharashtra, India
srivastava.vivek2@tcs.com

Mayank Singh
IIT Gandhinagar

Gandhinagar, Gujarat, India
singh.mayank@iitgn.ac.in

Abstract

Code-mixing is a frequent communication
style among multilingual speakers where they
mix words and phrases from two different lan-
guages in the same utterance of text or speech.
Identifying and filtering code-mixed text is a
challenging task due to its co-existence with
monolingual and noisy text. Over the years,
several code-mixing metrics have been ex-
tensively used to identify and validate code-
mixed text quality. This paper demonstrates
several inherent limitations of code-mixing
metrics with examples from the already exist-
ing datasets that are popularly used across var-
ious experiments.

1 Introduction

Code-mixing is the phenomenon of mixing words
and phrases from multiple languages in the same
utterance of a text or speech (Bokamba, 1989).
Multilingual societies observe a high frequency of
code-mixed communication in the informal setting
such as social media, online messaging, discussion
forums, and online gaming (Tay, 1989). Various
studies indicate the overwhelming growth in the
number of code-mixed speakers in various parts of
the world, such as India, Spain, and China (Bal-
dauf, 2004). The phenomenal increase of the code-
mixed data on various platforms such as Twitter,
Facebook, WhatsApp, Reddit, and Quora, has led
to several interesting research directions such as
token-level language identification (Shekhar et al.,
2020; Singh et al., 2018a), POS tagging (Vyas et al.,
2014; Singh et al., 2018b), machine translation
(Dhar et al., 2018; Srivastava and Singh, 2020), and
question-answering (Chandu et al., 2019; Banerjee
et al., 2016).

Despite such active participation from the com-
putational linguistic community in developing tools
and resources for the code-mixed languages, we
observe many challenges in processing the code-
mixed data. One of the most compelling problems

with the code-mixed data is the co-existence with
the noisy and monolingual data. In contrast to the
monolingual languages, we do not find any plat-
form where the code-mixed language is the only
medium of communication. The co-existing na-
ture of the code-mixed languages with the noisy
and monolingual languages posits the fundamen-
tal challenge of filtering and identifying the code-
mixed text relevant for a given study. Over the
years, various works have employed human annota-
tors for this task. However, employing humans for
identifying and filtering the code-mixed text (in ad-
dition to the task-specific annotations) is extremely
expensive on both fronts of time and cost. Also,
since code-mixed languages do not follow specific
linguistic rules and standards, it becomes increas-
ingly challenging to evaluate human annotations
and proficiency.

In order to address some of the above challenges,
several code-mixing metrics (Das and Gambäck,
2014; Gambäck and Das, 2016; Barnett et al., 2000;
Guzmán et al., 2017) have been proposed to mea-
sure the degree of code-mixing in the text. How-
ever, we observe several limitations in the met-
ric formulations. This paper outlines several such
limitations and supports our claims with examples
from multiple already existing datasets for vari-
ous tasks. For illustrations, we choose Hinglish
(code-mixing of Hindi and English language) due
to two major reasons: (i) popularity of Hinglish
and (ii) active research community. Baldauf (2004)
projected that number of Hinglish speakers might
soon outrun the number of native English speak-
ers in the world. This strengthens our belief that
even though Hinglish (and other code-mixed lan-
guages) does not enjoy the official status, we need
to build robust systems to serve the multilingual
societies. With the availability of datasets and tools
for the Hinglish language, we seek a boom in the
active participation from the computational linguis-
tic community to address various challenges.

6

https://doi.org/10.26615/978-954-452-056-4_002

Data source Task Dataset size Reported CMI
Singh et al. (2018c) Named-entity recognition 3,638 Unavailable
Swami et al. (2018) Sarcasm detection 5,520 Unavailable
Joshi et al. (2016) Sentiment analysis 3,879 Unavailable
Patwa et al. (2020) Sentiment analysis 20,000 25.32

Barman et al. (2014) Language identification 771 13
Bohra et al. (2018) Hate-speech detection 4,575 Unavailable
Dhar et al. (2018) Machine translation 6,096 30.5

Srivastava and Singh (2020) Machine translation 13,738 75.76
Vijay et al. (2018) Irony detection 3,055 Unavailable

Khanuja et al. (2020) Natural language inference 2,240 >20

Table 1: We explore 10 Hinglish code-mixed datasets to showcase the limitations of code-mixing metrics.

Outline of the paper: We formally define Hindi-
English code-mixing in Section 2. Section 3 de-
scribes several code-mixing metrics. We outline
various limitations supported with multiple exam-
ples from various datasets in Section 4. We con-
clude and present future direction in Section 5.

2 Hinglish: Mixing Hindi with English

Hinglish is a portmanteau of Hindi and the English
language. Figure 1 shows example Hinglish sen-
tences. Also, we see two example sentences in
Figure 1 that are non-code-mixed but might appear
to contain words from two languages. The pres-
ence of named entities from the Hindi language
does not make the sentence code-mixed.

Code-mixed sentences

SENTENCE 1: ye ek code mixed sentence ka example
hai
SENTENCE 2 : kal me movie dekhne ja raha hu.
How are the reviews?

Non-code-mixed sentences
SENTENCE 1: Tendulkar scored more centuries than
Kohli in Delhi.
SENTENCE 2: Bhartiya Janta Party won the 2019
general elections.

Figure 1: Example code-mixed sentences with words
from Hindi and English languages. The non-code-
mixed sentences might get confused with the code-
mixed sentence due to the presence of named entities.

In this study, we explore 10 Hinglish datasets
encompassing eight different tasks, namely named
entity recognition, sarcasm detection, sentiment
analysis, language identification, hate-speech de-
tection, machine translation, irony detection, and

natural language inference (see Table 1 for more
details). Contrasting against monolingual datasets
for similar tasks, the Hinglish datasets are signif-
icantly smaller in size. We support our claims by
providing illustrative examples from these datasets.

3 Code-Mixing Metrics

In this section, we describe several popular code-
mixing metrics that measure the complexity of
the code-mixed text. Among the following met-
rics, code-mixing index (CMI, Das and Gambäck
(2014); Gambäck and Das (2016)) is the most pop-
ular metric.

3.1 Code-mixing Index

CMI metric (Das and Gambäck, 2014) is defined
as follows:

CMI =

{
100 ∗ [1− max(wi)

n−u] n > u

0 n = u
(1)

Here, wi is the number of words of the language
i, max{wi} represents the number of words of the
most prominent language, n is the total number
of tokens, u represents the number of language-
independent tokens (such as named entities, abbre-
viations, mentions, and hashtags).

A low CMI score indicates monolingualism in
the text whereas the high CMI score is an indicator
of the high degree of code-mixing in the text. In
the later work, (Gambäck and Das, 2016) also in-
troduced number of code alternation points in the
original CMI formulation. An alternation point
(a.k.a. switch point) is defined as any token in the
text that is preceded by a token with a different
language tag. Let fp denotes ratio of number of
code alternation points P per token, fp = P

n where

7

0 ≤ P < n. Let CMIold denotes the CMI formula-
tion defined in Eq. 1. The updated CMI formulation
(CMInew) is defined as:

CMInew = a.CMIold + b.fp (2)

where a and b are weights, such that a + b =
1. Again, CMInew = 0 for monolingual text, as
CMIold = 0 and P = 0. Hereafter, throughout the
paper, we refer to CMInew as CMI metric.

3.2 M-index

Barnett et al. (2000) proposed the Multilingual In-
dex (M-index). M-index measures the inequality
of the distribution of language tags in a text com-
prising at least two languages. If pj is the total
number of words in the language j over the total
number of words in the text, and j ∈ k, where k is
total number of languages in the text, M-index is
defined as:

M − index =
1−∑

p2j
(k − 1)

∑
p2j

(3)

The index varies between 0 (monolingual utter-
ance) and 1 (a perfect code-mixed text comprising
equal contribution from each language).

3.3 I-index

The Integration-index proposed by Guzmán et al.
(2017) measures the probability of switching within
a text. I-index approximates the probability that
any given token in the corpus is a switch point.
Consider a text comprised of n tokens, I-index is
defined as:

I − index =

∑
1≤i<n−1 S(i, i+ 1)

n− 1
(4)

Here, S(i, i+1) = 1 if language tag of ith token
is different than the language tag of (i+ 1)th token,
otherwise S(i, i+ 1) = 0. I-index varies between
0 (monolingual utterance) and 1 (a perfect code-
mixed text comprising consecutive tokens with dif-
ferent language tag). Guzmán et al. (2017) also
adapted two metrics that quantify burstiness and
memory in complex systems (Goh and Barabási,
2008) to measure the complexity of code-mixed
text. Next, we introduce these complex system-
based metrics.

3.4 Burstiness
Burstiness (Goh and Barabási, 2008) measures
whether switching occurs in bursts or has a more
periodic character. Let σr denote the standard de-
viation of the language spans and mr the mean of
the language spans. Burstiness is calculated as:

Burstiness =
σr −mr

σr +mr
(5)

The burstiness metric is bounded within the in-
terval [-1, 1]. Text with periodic dispersions of
switch points yields a burstiness value closer to -1.
In contrast, text with high burstiness and contain-
ing less predictable switching patterns take values
closer to 1.

3.5 Memory
Memory (Goh and Barabási, 2008) quantifies the
extent to which the length of language spans tends
to be influenced by the length of spans preceding
them. Let nr be the number of language spans in
the utterance and τi denote a specific language span
in that utterance ordered by i. Let σ1 and µ1 be
the standard deviation and mean of all language
spans but the last, where σ2 and µ2 are the standard
deviation and mean of all language spans but the
first.

Memory =
1

nr − 1

nr−1∑

1

(τi − µ1)(τi+1 − µ2)
σ1σ2

(6)
Memory varies in an interval [-1,1]. Memory val-

ues close to -1 describe the tendency for consecu-
tive language spans to be negatively correlated, that
is, short spans follow long spans, and vice-versa.
Conversely, memory values closer to 1 describe
the tendency for consecutive language spans to be
positively correlated, meaning similar in length.

In addition to the above metrics, there exist sev-
eral other code-mixing metrics such as Language
Entropy and Span Entropy that can be derived from
the above metrics (Guzmán et al., 2017). Due to
the space constraints, we refrain from further dis-
cussing them in the paper.
Evaluating metric scores on code-mixed
datasets: To understand the effectiveness of these
metrics, we randomly sample one sentence each
from the ten datasets and calculate the score on all
the code-mixing metrics. In addition, we employ
three human annotators proficient in both the
languages (English and Hindi) to rate the sentences

8

Hinglish sentence CMI M-index I-index Burstiness Memory Human 1 Human 2 Human 3
DCM RA DCM RA DCM RA

Deepak ji, channel ko kitna fund diya
hai congress ne? 2006 me ameithi rape

case kyu nahi discuss kiya kabhi?
3.53 7.59 7.27 -0.46 -0.12 8 10 9 10 10 8

4 din me 2 accidents, kuch to jhol
hai, shayad politics ho rahi hai..

1.67 6.2 5 -0.19 -0.31 4 9 5 10 10 9

Bhai kasam se bata do ki shadi kab karr
rahe ho warna mai kuwara marr jaunga

0 0 0 -1 -0.41 0 10 1 10 9 7

@Mariam_Jamali Nice one but logo
filhal KK ki jaga Pakistan ka lagwa

do. Pic is good
4.6 9.7 4.7 -0.28 -0.37 6 6 8 8 7 9

abe .,., joke marna hai hi to aur hi kahi
maar .,.,. confession page ki bejaati maat

ker bhai .. JOKE MARA????????????
HASU? \"haha..!\"

2 6.67 4.28 -0.08 -0.18 6 5 3 8 7 5

Wale log jante hai par atankwadiyo
nafrat failane walo ke liye meri

yehi language rahegi
0.6 1.42 1.42 0.09 0 4 6 2 8 7 6

mujhe hasi aa rahi thi , while I ws
reading them . :P

5 9.32 2.5 -0.24 -0.64 10 10 9 10 6 6

laufed ... first u hav to correct ur english
baad me sochna use !!!

3.33 6.67 3.07 0.2 -0.06 10 8 8 9 6 7

The ultimate twist Dulhan dandanate huye
brings Baraat Dulha

4.44 6.9 5.55 -0.08 0.48 8 6 7 2 5 7

RAHUL jab dieting par hota hai toh
green tea peeta hai.

3.63 6.61 5.45 -0.44 0 10 10 2 10 10 9

Table 2: Measuring the complexity of various Hindi-English code-mixed text. Language independent tokens are
marked with black color. We select one sentence each from the 10 datasets (in the same order as given in Table
1). Here, DCM stands for degree of code-mixing and RA stands for readability. We scale the CMI, M-index, and
I-index metric scores in the range 0 to 10. The range for Burstiness and Memory score is -1 to 1.

on two parameters: the degree of code-mixing and
readability. We provide the following guidelines to
the annotators for this task:

• Degree of code-mixing (DCM): The score
can vary between 0 to 10. A DCM score of 0
corresponds to the monolingual sentence with
no code-mixing, whereas the DCM score of
10 suggests the high degree of code-mixing.

• Readability (RA): RA score can vary be-
tween 0 to 10. A completely unreadable sen-
tence due to large number of spelling mistakes,
no sentence structuring, or meaning, yields a
RA score of 0. A RA score of 10 suggests a
highly readable sentence with clear semantics
and easy-to-read words.

Table 2 shows the 10 example Hinglish sen-
tences with the corresponding metric scores and
the human evaluation. Some major observations
are:

• We do not observe any metric to indepen-
dently measure the readability of code-mixed
text as quantified by humans.

• We also observe contrasting scores given by
different metrics, making it difficult to choose

the best-suited metric for the given code-
mixed dataset.

• At times, we observe a high disagreement
even among the human ratings. This behav-
ior indicates the complexity of the task for
humans as well.

• We do not observe any significant relationship
between the degree of code-mixing and the
readability score as provided by humans. This
observation is critical in building high-quality
datasets for various code-mixing tasks.

4 Limitations of code-mixing metrics

This section describes various limitations of the
existing metrics that measure the complexity of the
code-mixed text. As CMI is most popular among
code-mixing metrics, it is reported in five (Patwa
et al., 2020; Barman et al., 2014; Dhar et al., 2018;
Srivastava and Singh, 2020; Khanuja et al., 2020)
out of the 10 datasets listed in Table 1. We de-
scribe major limitations of code-mixing metrics
from three different perspectives:

1. Metric formulation: Most of the code-
mixing metrics are based on the word fre-
quency from different languages in the text.

9

Data source Spelling variations Noisy/monolingual Readability/semantic

Singh et al. (2018c)

Ab boliye teen talak harram
h ya nai aapke khud ki lady’s
chate h ki aap sai dur hona.

Shame on u again...#TripleTalaq

#TripleTalaq Don’t post this

@BJP4UP @narendramodi
@AmitShah @BJPLive @bjpsamvad

@BJP4India #NoteBandi ke baad
ab poori

Swami et al. (2018)
Shareef wo hai jisay

moqa nae milta! #irony

Resigned: Sri Lanka Cricket aniyin
thodar thoalviyinaal Therivuk kuluth
Thalaivar Sanath Jayasuriya ullitta
athan uruppinarhal Raajinaamaa

Kudakudhinge dhuvasthamee?
#Maldives #Politics

Joshi et al. (2016)

Nhi ye log apny lie ayeen change
karty he ye konsa mulk k lie

sochty he har koi apny lie aur apny
families k lie politics me

he sary chor he

#Cricket News 6 Saal Team Ki
Qeyadat Karna Mare Liye Izaz

Hai Ab Kisi Our Ko Aagay
Aana Chahiye Sabiq Captain

AB De Villiers

Hiii kam chhe

Patwa et al. (2020)

@DivyanshMohit @GulBukhari
Tum apny Indian ki fikkar Karo

Pakistan ko hum khud dykh lyngy.
Mukti bahini 2 nahi ban

@BTS_army_Fin Also Stade de
France is preparing for the concert.

Looks so beautiful! See their
post on Instagram https//t.co/OwhP

Now this i too much ab
sare tweet arsal ke support

me Jab jiya ka man nhi
and wo chai nhi bana

sakti yasit ke liy

Barman et al. (2014)

@Liaqat842 tum sahi keh rhy thy
yeh zayda buri timings hain

3 wali match ki subah purany
office bhi jna hai kaam hai

@saadiaafzaal Pagl he ye Qaom Jo
misbah ka Cmprezm imraan se kr

rhe he. khuda ko maano kaha
misbah kaha imran.. shoib Akhtar

@aashikapokharel Haha okay. Office
time, aba bus ma bore hune wala

chhu. Also, Alumni ko imp
kaam chha. Viber ma aaye hune. :P

Bohra et al. (2018)
Gf khoon peene k liye hoti

hai aur apne babu ko
thana thilane k liye bas

Mere marnay ki ya hate deni ki?
ke karya karta aise hi

baithe hai.kal ye ghatna
aap or Hum

Dhar et al. (2018)

Modi ji aap jesa koi nhi
dhanywad aap desh ki kitni
sewa karte hai jese ak beta

apni ma ko poojta hai

Girna samal nai lage

Etni lambi speech sa kuch
mi hotta sirf 2 word khna or
unka suna sa frk atta h........

sekho i love you sallu??

Srivastava and Singh (2020)
unhone pehle pic ni dkhi ti
kya tmhari jo milne k baad

hi ignore kia tmhe...?
kaun hai ye zaleel insaan?

@indiantweeter Jain ration
gap ho jaega.

Vijay et al. (2018)
35 sal ma koi hospital esa

nai banaya jaha khud
ka ilaj hosakai. .. Irony

and then the irony„ sab ko jurisakyo
lahana le kahile juraucha ?

hi Vanitha Garu hai Andi this is
irony , arledy rep icharu ga

Khanuja et al. (2020) 3 kam padey they KASTURI is speaking to his son 31 minutes time hua

Table 3: Examples from the 10 datasets highlighting the various inherent limitations that could lead to misleading
code-mxing metric score. For the marked words in spelling variations, we observe multiple spellings across
datasets. We observe that the noisy sentences have low readability.

This formulation makes the metric vulnera-
ble to several limitations, such as the bag-
of-words model and assigning higher metric
scores to meaningless sentences that are diffi-
cult to read and comprehend.

2. Resource limitation: The existing code-
mixed datasets too have several shortcomings,
such as noisy and monolingual text (see Table
3). Besides, we observe the poor quality of
the token-level language identification (LID)
systems which are fundamental in calculating
the various code-mixing metric scores.

3. Human annotation: In the absence of good
quality code-mixed LID systems, various
works employ human annotators to perform
language identification. Evaluating human
proficiency is a challenging task since code-
mixed languages lacks standard syntax and
semantics. Additionally, human annotation is
a time and effort extensive process.

Next, we describe four major limitations that
combine one or more than one perspective (see Ta-
ble 4). Figure 2 shows a general flow diagram to
obtain the code-mixed data from the large-scale
noisy text. It shows the three major bottlenecks
(metric formulation, resource limitation, and hu-
man annotation) in the entire data filtering process.
The resultant code-mixed data is noisy and suffers
from several other limitations (see Table 3).

Limitation Perspective
Bag of words MF

Code-mixed LID MF, RL
Misleading score MF, RL, HA

High inference time MF, RL, HA

Table 4: Combination of perspectives for each of the
limitation to code-mixing metrics. Here, MF: Metric
Formulation, RL: Resource Limitation, HA: Human
Annotation.

1. Bag-of-words: None of the code-mixing met-
rics consider inherent ordering between the

10

Figure 2: A general flow diagram for identifying and
filtering the code-mixed data from the large scale noisy
text. We observe three major limitations: metric for-
mulation, resource limitation, and human annotation.
There is a time-quality trade-off between the two paths
to filter the code-mixed data. Employing humans takes
more time and relatively better quality code-mixed sen-
tences as compared to code-mixing metrics that takes
less time and shows poor performance.

words in the code-mixed sentence1. This lim-
itation makes these metric scores vulnerable
to multiple challenges, such as poor grammat-
ical structure. Figure 3 shows examples of
good quality code-mixed sentences and cor-
responding noisy sentences, both having the
same metric scores.

2. Code-mixed language identification: The
presence of more than one language in the
code-mixed text presents several challenges
for the various downstream NLP tasks such as
POS tagging, summarization and named entity
recognition. Identifying the token-level lan-
guage of the code-mixed text is the fundamen-
tal step in calculating the code-mixing metric
scores. Often various works have employed
human annotators to obtain the token-level
language tags. However, both human annota-
tors and the language identification systems
suffer from the poor token-level language tag-
ging. Table 5 shows the variation in the output
of five multilingual/code-mixed LID systems

1Note that, Burstiness and Memory metric only considers
span length and not the word ordering within a span.

Pair I

HINGLISH1 (Khanuja et al., 2020): FATHER ab hos-
pital mein hi rahenge.
HINGLISH2 (shuffled HINGLISH1) : hospital ab FA-
THER mein hi rahenge.
Observation: Same CMI, M-index, I-index, Bursti-
ness and Memory scores

Pair II

HINGLISH1 (Bohra et al., 2018): TAJMAHAL p jake
atka hai
HINGLISH2 (shuffled HINGLISH1) : atka p jake
TAJMAHAL hai
Observation: Same CMI, M-index, and I-index scores

Figure 3: Example to demonstrate the bag of words
assumption of code-mixing metrics. We shuffle tokens
in HINGLISH1 to get HINGLISH2. Observation shows
that metric scores remain unchanged after the shuffling
while the semantic of the original sentence is lost.

(Langdetect2, Polyglot3, CLD34, FastText5,
and iNLTK6) on the code-mixed text against
human-annotated language tags. Contrasting
human-annotated tag sequence, the same met-
ric yields significantly different scores due
to variation in the language tag sequence ob-
tained from different LID tools. We identify
three major reasons for the poor performance
of humans and the LID systems in identifying
the language of the code-mixed text:

• Spelling variations and non-
contextual LID: Spelling variation
is one of the most significant challenges
in developing code-mixed LID systems.
Due to the lack of standard grammar
and spellings in code-mixed language,
we observe multiple variations of the
same word across datasets (see Table 3).
For example, Hindi tokens ‘hn’ or ‘hay’
can also be written as ‘hun’ or ‘hai’,
respectively. As outlined in Table 5, we
observe incorrect language identification
by popular multilingual and code-mixed
LID systems. This behavior could
be highly attributed to the spelling

2https://pypi.org/project/langdetect/
3https://github.com/aboSamoor/polyglot
4https://github.com/google/cld3/
5https://fasttext.cc/blog/2017/10/02/

blog-post.html
6https://inltk.readthedocs.io/en/

latest/index.html

11

@user bus office me hn , Sat thora thanda hota hay kaam k point of view say you know :)
Langdetect et id en nl vi unk tl en en cs so so sw fi en af tl sw en unk

Polyglot en en en en da un en en en to es fy en en en en en en en un
CLD3 no la ja mi sv ja sd la ko mi es et sl de en en id en en ja

FastText en en en en en ru pt war en en es az ja en en en en en en uz
iNLTK en
Human univ en en hi hi univ en hi hi hi hi hi hi en en en hi en en univ

Table 5: Example to demonstrate the limitations of LID systems in calculating the code-mixing metric scores.
Hinglish sentence is from the dataset used in (Barman et al., 2014). The language name corresponding to the
language code can be found at the corresponding LID system’s web page.

Token @ nehantics Haan yaar neha kab karega woh post Usne na sach mein
Language O Hin Hin Hin Hin Hin Hin Hin Hin Hin Hin Hin Hin

Token photoshoot karna chahiye phir woh post karega . . . https // tco / 5RSlSbZNtt
Language Eng Hin Hin Hin Hin Hin Hin O Eng O Eng O Eng

(a) Example sentence from Patwa et al. (2020)
Token are cricket se sanyas le liya kya viru aur social service suru

Language Hin Eng Hin Hin Hin Hin Hin Hin Hin Eng Eng Hin
Token kardiya . khel hi bhul gaye . 2 innings 0 n 0

Language Hin O Hin Hin Hin Hin O O Hin O Hin O
(b) Example sentence from Swami et al. (2018)

Table 6: Example sentences to demonstrate the limitations with the language tags in the current code-mixed
datasets. We use the color coding to represent three major reasons for such behaviour: ambiguous, annotator’s
proficiency, and non-contextual. ‘O’ in the language tag represent the tag ‘Other’.

variation of words. Additionally, the
non-contextual language tag sequence
generation by LID systems and humans
leads to a similar set of challenges (see
Table 6). In both the examples in Table
6, we observe the incorrect language tag
to words like ‘tco’ and ‘n’ due to the
missing context by the human annotator.
Also, as observed in Table 6, incorrect
LID by humans could be attributed to
considering the code-mixed tokens out
of context.

• Ambiguity: Ambiguity in identify-
ing named-entities, abbreviations,
community-specific jargons, etc., leads
to incorrect language identification.
Table 6 shows the example sentences
having incorrect language tags due to
ambiguity in the code-mixed sentences.
For example, tokens like ‘nehatics’,

‘neha’, and ‘viru’ are person named-
entities, incorrectly tagged with hi
tag.

• Annotator’s proficiency: Evaluating
the human proficiency for a code-mixed
language is much more challenging as
compared to the monolingual languages
due to lack of standard, dialect variation,
and ambiguity in the text. Table 6 shows

an example of incorrect language anno-
tation by the human annotators, which
could be attributed to low human profi-
ciency/varied interpretation of the code-
mixed text. For example, English tokens
like ‘post’ and ‘innings’ are tagged as hi
tokens by human annotators.

3. Misleading score: We observe several incon-
sistencies in the interpretation of the code-
mixing metric scores. We identify three major
reasons for this inconsistent behavior:

• Coherence: Coherency in a multi-
sentence code-mixed text is one of the
fundamental properties of good quality
data. Future works in code-mixed NLP,
such as text summarization, question-
answering, and natural language in-
ference, will require highly coherent
datasets. However, the current metrics
cannot measure the coherency of the
code-mixed text. We witness a large
number of real scenarios where the code-
mixing metric scores for multi-sentence
text are high, but the coherency is very
poor. In such cases, the code-mixing
metrics in the present form will lead to
undesirable behavior. For instance, we
query a Hinglish question-answering sys-

12

tem WebShodh7 (Chandu et al., 2017)
with the question: India ka PM kaun
hai? Cricket dekhne jaana hai? The list
of eight probable answers (‘ipl’, ‘puma’,

‘kohli’, ‘sports news feb’, ‘’amazoncom’,
‘sport news nov’, ‘hotstar vip’, ‘rugged
flip phone unlocked water shock proof
att tmobile metro cricket straight talk
consumer cellular carrier cell phones’)
shows the poor performance of the sys-
tem due to low coherency in the ques-
tion text (in addition to other architec-
tural limitations) even though the ques-
tion text is highly code-mixed on various
metrics.

• Readability: The co-existence of the
code-mixed data with the monolingual
and the noisy text results in the poor read-
ability of the code-mixed text. The code-
mixing metrics do not take into account
the readability of the code-mixed text.
Low readability of the code-mixed text
will also lead to incorrect annotations
by the annotators, which will eventually
lead to incorrect metric scores for the
given data. Table 3 shows example sen-
tences from multiple datasets with low
readability.

• Semantics: The last column in Table 3
shows example sentences from multiple
datasets where it is extremely difficult to
extract the meaning of the code-mixed
sentence. Due to the current formula-
tion of the code-mixing metrics where
we consider the independent language to-
kens and the bag-of-words approach, it is
not feasible to identify such low semantic
sentences.

4. High inference time: We require an efficient
automatic NLP system that identifies and fil-
ters the code-mixed text from a large-scale
noisy text or monolingual text. Even though
theoretically, the code-mixing metrics can
help identify text with high levels of code-
mixing, but practically they fail due to inef-
ficiencies in LID systems. We showcase the
inability of LID systems to detect correct lan-
guage tags (see point 2 above). One possi-
ble remedy is to employ humans in language

7http://tts.speech.cs.cmu.edu/
webshodh/cmqa.php

identification. However, human involvement
significantly increases the time and the cost of
performing the labeling task. Also, human an-
notations are also prone to errors (see Table 6).
We might also need task-specific annotations
(e.g., POS tags, NER, etc.) which will further
increase the time and cost of the annotation
task. Due to this reason, we see majority of
the datasets (see Table 1) relatively smaller in
size (<5000 data points). Human annotation
significantly increases the inference time in
calculating the code-mixing metric scores.

5 Conclusion and Future Work

In this paper, we extensively discuss the limitations
of code-mixing metrics. We explored 10 Hinglish
datasets for presenting examples to support our
claims. Overall, we showcase the need for exten-
sive efforts in addressing these limitations. In the
future, we plan to develop a robust code-mixing
metric that measures the extent of code-mixing and
quantifies the readability and grammatical correct-
ness of the text. Also, we aim to create a large-scale
Hinglish dataset with manual token-level language
annotation.

References
Scott Baldauf. 2004. A hindi-english jumble, spoken

by 350 million. The Christian Science Monitor,
1123(1):3.

Somnath Banerjee, Sudip Kumar Naskar, Paolo Rosso,
and Sivaji Bandyopadhyay. 2016. The first cross-
script code-mixed question answering corpus. In
MultiLingMine@ ECIR, pages 56–65.

Utsab Barman, Amitava Das, Joachim Wagner, and Jen-
nifer Foster. 2014. Code mixing: A challenge for
language identification in the language of social me-
dia. In Proceedings of the First Workshop on Com-
putational Approaches to Code Switching, pages 13–
23, Doha, Qatar. Association for Computational Lin-
guistics.

Ruthanna Barnett, Eva Codó, Eva Eppler, Montse
Forcadell, Penelope Gardner-Chloros, Roeland
van Hout, Melissa Moyer, Maria Carme Torras,
Maria Teresa Turell, Mark Sebba, Marianne Starren,
and Sietse Wensing. 2000. The lides coding manual:
A document for preparing and analyzing language
interaction data version 1.1—july, 1999. Interna-
tional Journal of Bilingualism, 4(2):131–132.

Aditya Bohra, Deepanshu Vijay, Vinay Singh,
Syed Sarfaraz Akhtar, and Manish Shrivastava.
2018. A dataset of hindi-english code-mixed social

13

media text for hate speech detection. In Proceedings
of the second workshop on computational modeling
of people’s opinions, personality, and emotions in
social media, pages 36–41.

Eyamba G Bokamba. 1989. Are there syntactic
constraints on code-mixing? World Englishes,
8(3):277–292.

Khyathi Chandu, Ekaterina Loginova, Vishal Gupta,
Josef van Genabith, Günter Neumann, Manoj Chin-
nakotla, Eric Nyberg, and Alan W Black. 2019.
Code-mixed question answering challenge: Crowd-
sourcing data and techniques. In Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 29–38. Association for Computa-
tional Linguistics (ACL).

Khyathi Raghavi Chandu, Manoj Chinnakotla, Alan W
Black, and Manish Shrivastava. 2017. Webshodh:
A code mixed factoid question answering system
for web. In International Conference of the Cross-
Language Evaluation Forum for European Lan-
guages, pages 104–111. Springer.

Amitava Das and Björn Gambäck. 2014. Identifying
languages at the word level in code-mixed indian so-
cial media text. In Proceedings of the 11th Interna-
tional Conference on Natural Language Processing,
pages 378–387.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivas-
tava. 2018. Enabling code-mixed translation: Par-
allel corpus creation and mt augmentation approach.
In Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140.

Björn Gambäck and Amitava Das. 2016. Comparing
the level of code-switching in corpora. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1850–1855.

K-I Goh and A-L Barabási. 2008. Burstiness and mem-
ory in complex systems. EPL (Europhysics Letters),
81(4):48002.

Gualberto A Guzmán, Joseph Ricard, Jacqueline Seri-
gos, Barbara E Bullock, and Almeida Jacqueline
Toribio. 2017. Metrics for modeling code-switching
across corpora. In INTERSPEECH, pages 67–71.

Aditya Joshi, Ameya Prabhu, Manish Shrivastava, and
Vasudeva Varma. 2016. Towards sub-word level
compositions for sentiment analysis of hindi-english
code mixed text. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2482–2491.

Simran Khanuja, Sandipan Dandapat, Sunayana
Sitaram, and Monojit Choudhury. 2020. A new
dataset for natural language inference from code-
mixed conversations. In Proceedings of the The 4th

Workshop on Computational Approaches to Code
Switching, pages 9–16.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, PYKL Srinivas, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of sentiment
analysis of code-mixed tweets. In Proceedings of
the Fourteenth Workshop on Semantic Evaluation,
pages 774–790.

Shashi Shekhar, Dilip Kumar Sharma, and MM Su-
fyan Beg. 2020. Language identification framework
in code-mixed social media text based on quantum
lstm—the word belongs to which language? Mod-
ern Physics Letters B, 34(06):2050086.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018a. Language identification and
named entity recognition in hinglish code mixed
tweets. In Proceedings of ACL 2018, Student Re-
search Workshop, pages 52–58.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018b. A twitter corpus for hindi-english
code mixed pos tagging. In Proceedings of the Sixth
International Workshop on Natural Language Pro-
cessing for Social Media, pages 12–17.

Vinay Singh, Deepanshu Vijay, Syed Sarfaraz Akhtar,
and Manish Shrivastava. 2018c. Named entity
recognition for hindi-english code-mixed social me-
dia text. In Proceedings of the seventh named enti-
ties workshop, pages 27–35.

Vivek Srivastava and Mayank Singh. 2020. Phinc: A
parallel hinglish social media code-mixed corpus for
machine translation. In Proceedings of the Sixth
Workshop on Noisy User-generated Text (W-NUT
2020), pages 41–49.

Sahil Swami, Ankush Khandelwal, Vinay Singh,
Syed Sarfaraz Akhtar, and Manish Shrivastava. 2018.
A corpus of english-hindi code-mixed tweets for sar-
casm detection. arXiv preprint arXiv:1805.11869.

Mary WJ Tay. 1989. Code switching and code mix-
ing as a communicative strategy in multilingual dis-
course. World Englishes, 8(3):407–417.

Deepanshu Vijay, Aditya Bohra, Vinay Singh,
Syed Sarfaraz Akhtar, and Manish Shrivastava.
2018. A dataset for detecting irony in hindi-english
code-mixed social media text. EMSASW@ ESWC,
2111:38–46.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. Pos tagging of
english-hindi code-mixed social media content. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 974–979.

14

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 15–25
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_003

Translate and Classify: Improving Sequence Level Classification for
English-Hindi Code-Mixed Data

Devansh Gautam Kshitij Gupta Manish Shrivastava
International Institute of Information Technology Hyderabad

{devansh.gautam,kshitij.gupta}@research.iiit.ac.in,
m.shrivastava@iiit.ac.in

Abstract

Code-mixing is a common phenomenon in
multilingual societies around the world and
is especially common in social media texts.
Traditional NLP systems, usually trained on
monolingual corpora, do not perform well on
code-mixed texts. Training specialized mod-
els for code-switched texts is difficult due to
the lack of large-scale datasets. Translating
code-mixed data into standard languages like
English could improve performance on vari-
ous code-mixed tasks since we can use trans-
fer learning from state-of-the-art English mod-
els for processing the translated data. This
paper focuses on two sequence-level classi-
fication tasks for English-Hindi code mixed
texts, which are part of the GLUECoS bench-
mark - Natural Language Inference and Sen-
timent Analysis. We propose using various
pre-trained models that have been fine-tuned
for similar English-only tasks and have shown
state-of-the-art performance. We further fine-
tune these models on the translated code-
mixed datasets and achieve state-of-the-art per-
formance in both tasks. To translate English-
Hindi code-mixed data to English, we use
mBART, a pre-trained multilingual sequence-
to-sequence model that has shown competitive
performance on various low-resource machine
translation pairs and has also shown perfor-
mance gains in languages that were not in its
pre-training corpus.

1 Introduction

In the last decade, social media has become a sig-
nificant part of the lives of a large population in
the world. Unlike previously popular communica-
tion platforms, online messaging is very informal,
and in recent years, it has led to an increase in the
usage of emojis, slang, and even a hybrid form of
language, code-mixed language.

Code-mixed language is a mixture of multiple
languages where words belonging to different lan-
guages are interleaved with each other in the same

conversation. It is commonly used by multilin-
gual speakers. It does not follow a formally de-
fined structure and often varies from person to per-
son, although some studies (Poplack, 1980; Belazi
et al., 1994) have proposed linguistic constraints on
code-switching. Code-mixing and code-switching
are similar terms that slightly differ technically,
but they are often used interchangeably by the re-
search community. We will also be using them
interchangeably in our paper.

In this paper, we work with English-Hindi code-
mixed data. English-Hindi code-mixed language
often called Hinglish is very common in India be-
cause of a large number of bilingual speakers who
often use English in their professional lives while
using Hindi in their personal lives. An example
of an English-Hindi code-mixed sentence from a
dataset released by Dhar et al. (2018) is shown
below:

• Original Sentence: My brother always told
me ki in retrospect, badi dikkatein chhoti lagti
hain.

• Gloss: [My brother always told me] that [in
retrospect], big problems small seem are.

• Translation: My brother always told me that,
in retrospect, big problems seem to be small.

Although there is a large population globally
that communicates using code-mixed languages,
annotated datasets remain scarce even when the
monolingual constituent languages have large-scale
datasets. Recent work suggests that multilingual
models trained on several monolingual datasets
perform well with zero-shot cross-lingual trans-
fer in code-switched settings (Patwa et al., 2020;
Khanuja et al., 2020b). However, Khanuja et al.
(2020b) conclude that their model had varying per-
formance across tasks and especially struggled with
NLI and sentiment analysis tasks. Another chal-
lenge with code-mixed language research is that,

15

https://doi.org/10.26615/978-954-452-056-4_003

unlike monolingual data, there are no formal data
sources like news articles or books written in code-
mixed languages. Instead, most research uses infor-
mal sources such as social media texts or messages,
which are usually challenging to obtain. Also, most
of the data is written in the Roman script, and
Hindi words are transliterated informally without
any standard rules. Instead, individuals generally
provide a rough phonetic transcription of the in-
tended word, which can vary from individual to
individual due to any number of factors, including
regional or dialectal differences in pronunciations,
differing conventions of transcription, or simple
idiosyncrasy (Roark et al., 2020). This makes it
challenging to prepare reliable datasets to train ro-
bust deep learning models. Most of the existing
datasets focus on a few language pairs and have
been prepared by several shared task organizers.

To address these issues, we propose translating
the code-mixed data to English (a high-resource
language) and applying powerful models trained
on English data to perform sequence-level clas-
sification tasks on the translated data. To trans-
late the code-mixed data to English, we propose
using mBART (Liu et al., 2020), a pre-trained
multilingual sequence-to-sequence model. We
experiment with our pipeline on two English-
Hindi code-mixed sequence classification tasks
of the GLUECoS (Khanuja et al., 2020b) bench-
mark - Natural Language Inference and Senti-
ment Analysis. We achieve state-of-the-art per-
formance in both tasks. The code for our proposed
system is available at https://github.com/
devanshg27/cm_translatify.

The main contributions of our work are as fol-
lows:

• We explore the effectiveness of using mBART
for low resource code-mixed Hinglish-English
translation with transfer learning from Hindi-
English translation.

• We propose performing sequence-level classi-
fications on the code-mixed data by first trans-
lating it to English and then using powerful
models trained on English data to classify the
translated data.

• We achieve state-of-the-art performance on
two classification tasks of the GLUECoS
benchmark - Natural Language Inference and
Sentiment Analysis with an absolute increase
of 12.4% and 5.3%, respectively.

The rest of the paper is organized as follows.
We discuss prior work related to code-mixed lan-
guage processing and also discuss work related to
machine translation, Natural language Inference,
and Sentiment Analysis. We describe the trans-
lation system we use and show the effect of dif-
ferent training choices. We describe our pipeline
for code-mixed sequence level classification tasks
on the chosen tasks - Natural Language Inference
and Sentiment Analysis and show its performance
against past work. We conclude with a direction
for future work and highlight our main findings.

2 Related Work

Code-mixing occurs when a speaker uses words
belonging to different languages interleaved with
each other in the same conversation. With the rise
of social media and messaging platforms, there has
been a significant increase in code-mixed language
usage.

Several shared tasks have been conducted as
a part of code-switching workshops (Diab et al.,
2014, 2016; Aguilar et al., 2018b) which were held
in notable conferences. These tasks include lan-
guage identification (Solorio et al., 2014; Molina
et al., 2016), named entity recognition (Aguilar
et al., 2018a; Rao and Devi, 2016), information
retrieval (Roy et al., 2013; Choudhury et al., 2014;
Sequiera et al., 2015; Banerjee et al., 2018), Part-
of-speech tagging (Jamatia et al., 2016), sentiment
analysis (Patra et al., 2018; Patwa et al., 2020), and
question answering (Chandu et al., 2018).

Although these tasks have helped progress code-
switching language research, most tasks require
building specialized systems for the specific task
and language pair due to the limited dataset
sizes. Recently, large pre-trained multilingual
models have been used for various code-mixed
tasks (Patwa et al., 2020; Khanuja et al., 2020b).

Machine Translation refers to translating a text
from a source language to its counterpart in a target
language using machines. It has widespread ap-
plications in the real world and has been an active
area of research.

Earlier works in machine translation mostly
focused on statistical or rule-based approaches.
In contrast, neural machine translation gained
popularity in the last decade after Kalchbrenner
and Blunsom (2013) successfully proposed the
first DNN model for translation. Recent works
use transformer-based approaches (Vaswani et al.,

16

2017). Some approaches utilize multilingual pre-
training (Song et al., 2019; Conneau and Lample,
2019; Edunov et al., 2019; Liu et al., 2020); how-
ever, these works focus only on monolingual lan-
guage pairs.

Despite the significant usage of English-Hindi
code-mixing, there has been little work regarding
English-Hindi code-mixed translation (Srivastava
and Singh, 2020; Singh and Solorio, 2018; Dhar
et al., 2018), which leads to a massive gap in com-
munication as these texts can only be understood by
people who are proficient in both these languages.

Natural Language Inference is the task of de-
termining if the given “premise" supports a given
“hypothesis" and classifying the hypothesis as true
(entailment), false (contradiction), or undetermined
(neutral). It is arguably one of the most fundamen-
tal tasks in natural language understanding. Wang
et al. (2018) and Yin et al. (2019) suggest that vari-
ous NLP tasks can be reduced to Natural Language
Inference, which makes it an even more valuable
task to solve.

Natural Language Inference for English texts has
been an active area of research. It has been exten-
sively studied under different tasks such as RTE
(Recognizing Textual Entailment) (Dagan et al.,
2006), NLI (Natural Language Inference) (Bow-
man et al., 2015), FEVER (Fact Extraction and
VERification) (Thorne et al., 2018). In recent years,
large-scale pre-trained models (Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019) have dominated
these tasks and have achieved close-to-human per-
formance.

Although NLI on English data has seen many
advances, there has been little work on NLI for
code-mixed data. Khanuja et al. (2020a) release
the first NLI dataset for code-mixed languages. It
consists of conversations from Hindi movies (Bol-
lywood) as premises. Chakravarthy et al. (2020)
compare the effectiveness of various approaches
on the dataset.

Sentiment Analysis is the task of understanding
the sentiment expressed in the text and classifying
the text into positive, negative, or neutral classes. It
has several applications such as customer feedback,
marketing, and social media monitoring. There
has been extensive research on sentiment analy-
sis of English texts with various shared tasks and
datasets. Sentiment analysis for code-mixed texts
is an essential task due to the widespread usage of

Dhar et al. (2018) Srivastava and Singh (2020)

of sentences 6,096 13,738
of tokens 63,913 200,326
of Hindi tokens 37,673 103,887
of English tokens 16,182 38,511
of ‘Other’ tokens 10,094 57,928

Table 1: The statistics of the English-Hindi code-mixed
sentences in the two datasets we use. We use the lan-
guage tokens predicted by the CSNLI library for both
the datasets.

code-mixed texts on social media in multilingual
societies. There has been some work related to
code-mixed sentiment analysis with a few shared
tasks (Patra et al., 2018; Patwa et al., 2020). The
participants of the task organized by Patwa et al.
(2020) explored various approaches such as pre-
trained language models, RNN, CNN, and word
embeddings.

3 Translating Code-Mixed Text

In this section, we describe our proposed model,
which uses mBART (Liu et al., 2020) to translate
code-mixed texts to English.

3.1 mBART
We fine-tune mBART, which is a multilingual
sequence-to-sequence denoising auto-encoder. It
has been pre-trained using the BART (Lewis et al.,
2020) objective on large-scale monolingual cor-
pora of 25 languages extracted from Common
Crawl1 (Wenzek et al., 2020; Conneau et al., 2020).
Both English and Hindi are part of the pre-training
corpus with 55,608 million tokens (300.8 GB) and
1,715 million tokens (20.2 GB), respectively. It
uses a standard sequence-to-sequence Transformer
architecture (Vaswani et al., 2017), with 12 encoder
and decoder layers each and a model dimension of
1024 on 16 heads resulting in ∼680 million param-
eters.

3.2 Data Preparation
We use the datasets released by Dhar et al. (2018)
and Srivastava and Singh (2020), the statistics of
the datasets are provided in the Table 1. Since
both the datasets contain Hindi words in Roman
script, we use the CSNLI library2 (Bhat et al., 2017,
2018) as a preprocessing step. It transliterates the
Hindi words to Devanagari and also performs text
normalization. We split the datasets into an 8:1:1

1https://commoncrawl.org/
2https://github.com/irshadbhat/csnli

17

train:validation:test split. We merge the training
and validation sets of the two datasets and use the
merged datasets for all our experiments.

We also use the dataset released by Kunchukut-
tan et al. (2018) which contains parallel sentences
for English and Hindi. We use the training set,
which contains 1,609,682 sentences, for training
our systems.

3.3 Optimization
We use the implementation of mBART available
in the fairseq library3 (Ott et al., 2019). We fine-
tune on 4 Nvidia GeForce RTX 2080 Ti GPUs
with an effective batch size of 1024 tokens per
GPU. We use the Adam optimizer (ε = 10−6, β1 =
0.9, β2 = 0.98) (Kingma and Ba, 2015) with 0.2
label smoothing, 0.3 dropout, 0.1 attention dropout
and polynomial decay learning rate scheduling. We
validate the models every 8000 steps and select the
best checkpoint based on the lowest validation loss.
To train our systems efficiently, we prune mBART’s
vocabulary by removing the tokens which are not
present in any of the datasets mentioned in the
previous section.

We compare the following 3 strategies for fine-
tuning mBART:

• mBART-cm: We fine-tune mBART on the
merged dataset with parallel English-Hindi
code-mixed sentences. We fine-tune for
20,000 steps with 2,500 warm-up steps and a
learning rate of 3 ∗ 10−5.

• mBART-hien: We fine-tune mBART on the
dataset with parallel English-Hindi sentences.
We fine-tune for 80,000 steps with 2,500
warm-up steps and a learning rate of 3 ∗ 10−5.

• mBART-hien-cm: We fine-tune mBART on
the dataset with parallel English-Hindi sen-
tences for 80,000 steps with 2,500 warm-
up steps and a learning rate of 3 ∗ 10−5,
followed by further fine-tuning on on the
merged dataset with parallel English-Hindi
code-mixed sentences for 10,000 steps with
2,500 warm-up steps and a learning rate of
10−5.

3.4 Results
We use BLEU scores as the metric for comparing
our systems, the scores are computed using the

3https://github.com/pytorch/fairseq

Model Datasets

Dhar et al. (2018) Srivastava and Singh (2020)

mBART-hien 17.2 16.7
mBART-cm 30.5 31.6
mBART-hien-cm 31.7 33.0

Table 2: BLEU scores of our systems on the test sets of
the two datasets.

Fine-tuned Classification
Model

The worst was the pin ball

Translation

सबसे बकवास was pin ball

Transliteration and
Normalization

Sabse bakwaas was pin ball

Negative

Figure 1: The working of our pipeline for the task
of code-mixed Natural Language Inference is demon-
strated on an example (with minor edits) from the
dataset (the details of the dataset are discussed later).

SacreBLEU library4 (Post, 2018) after tokeniza-
tion using the TweetTokenizer available with
the NLTK library5 (Bird et al., 2009). The scores
of our systems are shown in Table 2. We find that
mBART-hien which was only fine-tuned for Hindi-
English translation, performs considerably worse
than the other models, showing that fine-tuning on
English-Hindi code-mixed data improves the per-
formance substantially. We also find that mBART-
hien-cm has the best performance among the sys-
tems we consider. It uses transfer learning from
Hindi to English translation to improve Hinglish-
English translation.

4 Code-Mixed Sequence-level
Classification

In this section, we describe our approach for code-
mixed sequence-level classification tasks using our

4https://github.com/mjpost/sacrebleu
5https://www.nltk.org/

18

Model Architecture
Dataset(Number of samples)

#ParametersSNLI MultiNLI FEVER-NLI ANLI(R1,R2,R3)
(570k) (433k) (250k) (170k)

(1) (Liu et al., 2019) RoBERTa large ∼355M
(2) (Nie et al., 2020) RoBERTa large ∼355M
(3) (Nie et al., 2020) XLNet large ∼340M
(4) (Nie et al., 2020) ALBERT xxlarge ∼223M
(5) (He et al., 2021) DeBERTa large ∼390M

Table 3: The pre-trained checkpoints we use along with their architecture, number of parameters and finetuning
datasets.

Train Set Dev Set Test Set

of sentences 1,392 400 447
of entailed sentences 696 200 224
of contradictory sentences 696 200 223
of tokens 123,366 33,932 40,072
of Hindi tokens 75,865 20,837 24,413
of English tokens 19,952 5,457 6,624
of ‘Other’ tokens 27,549 7,638 9,035

Table 4: The statistics of the Natural Language Infer-
ence dataset. We use the language tokens predicted by
the CSNLI library.

translation system. Our pipeline is shown in Fig-
ure 1. We evaluate the performance of our pipeline
on two tasks - Natural Language Inference and
Sentiment Analysis.

4.1 Natural Language Inference
4.1.1 Data Preparation
We use the dataset released by Khanuja et al.
(2020a), which is a part of the GLUECoS bench-
mark. The dataset consists of code-mixed conversa-
tions from Hindi Movies (Bollywood) as premises
that have been annotated with hypotheses that are
either entailed or contradicted by the conversational
premise. The statistics for the dataset are shown
in Table 4. Since the dataset consists of Hindi
words in Roman script, we use the CSNLI library
to transliterate the Hindi words to Devanagari and
perform text normalization. The data is then trans-
lated to English using our best-performing transla-
tion system - mBART-hien-cm. The dataset has a
split between a train set and a test set with 1792 and
447 premise-hypothesis pairs in each, respectively.
We split the train set into a validation set to create
a 3.5:1:1.25 train:validation:test split finally.

4.1.2 System Overview
Our systems use different models which have
shown competitive performance on Natural Lan-

guage Inference for English texts. We use publicly
available checkpoints for each model, which have
been fine-tuned for Natural Language Inference
on various English datasets such as SNLI (Bow-
man et al., 2015), MultiNLI (Williams et al., 2018),
FEVER-NLI (Nie et al., 2019), ANLI (R1, R2,
R3) (Nie et al., 2020). We fine-tune the check-
points further on the code-mixed data translated to
English. The details about the checkpoints we use
are shown in Table 3.

4.1.3 Optimization
For the implementation of our systems, we use the
HuggingFace Transformers library6 (Wolf et al.,
2020) and the AdamW optimizer (ε = 10−8, β1 =
0.9, β2 = 0.999,wd = 0.01) available in Py-
Torch7 (Paszke et al., 2019) with a learning rate of
10−6. All models were fine-tuned using 4 Nvidia
GeForce RTX 2080 Ti GPU with a batch size of
8. The maximum sequence length was 512 for (1)
and (2) and 256 for the other models. We fine-tune
the models for 5 epochs with validation every 100
steps and choose the model with the best perfor-
mance on the validation set. We use cross-entropy
as the loss function.

4.1.4 Results
We compare the performance of our systems
against the system with the highest test set perfor-
mance discussed in Chakravarthy et al. (2020) and
the baselines provided by Khanuja et al. (2020b).

The performance of our systems is shown in
Table 5. All our systems perform better than the
current state-of-the-art. We find that (2) performs
better than (1), which shows that transfer learning
from a larger English dataset improves the perfor-
mance on code-mixed texts. The confusion matrix
for the predictions from our best model is shown

6https://huggingface.co/transformers/
7https://pytorch.org/

19

Model Accuracy

mBERT (Khanuja et al., 2020b) 61.09
Mod. mBERT (Khanuja et al., 2020b) 63.1
mod-mBERT (Chakravarthy et al., 2020) 62.41

(1) - RoBERTa large 73.65 ±0.82
(2) - RoBERTa large 75.53 ±1.08
(3) - XLNet large 68.97 ±1.16
(4) - ALBERT xxlarge 70.74 ±1.66
(5) - DeBERTa large 73.92 ±0.61

Table 5: NLI Performance with different checkpoints:
Mean and standard deviation of the metrics from 5 in-
dependent runs.

E
173
77%

53
24%

C
51

23%

E

170
76%

C

Pr
ed

ic
te

d
C

la
ss

Target Class

Figure 2: Confusion matrix of the test set predictions
by our best model. The percentages show the ratio of
the target class, which was predicted as that class. C:
Contradictory, E: Entailed.

in Figure 2. We find that the performance of our
system on entailed and contradictory statements is
similar.

4.2 Sentiment Analysis

4.2.1 Data Preparation

We use the dataset released by Patra et al. (2018),
which is part of the GLUECoS benchmark. The
dataset was created by collecting code-mixed
tweets using common Hindi words as search key-
words. The tweets were annotated with word-level
language tags and sentiment tags (positive, neg-
ative, or neutral). A transliterated version of the
dataset is also provided where the Hindi words
are in the Devanagari script. We use the translit-
erated version and translate it to English using
mBART-hien-cm after normalizing the text with
the DevanagariNormalizer function avail-
able in the IndicNLP Library8 (Kunchukuttan,
2020). The statistics for the dataset are shown in
Table 6. We use the provided train:validation:test
split, which is in the ratio 8:1:1.

8http://anoopkunchukuttan.github.io/
indic_nlp_library/

Train Set Dev Set Test Set

of sentences 10,079 1,260 1,262
of negative sentences 2,319 283 290
of neutral sentences 4,559 578 586
of positive sentences 3,202 399 385
of tokens 159,528 20,652 18,985
of Hindi tokens 65,245 8,486 7,841
of English tokens 62,678 8,028 7,453
of ‘Other’ tokens 31,605 4,138 3,691

Table 6: The statistics of the Sentiment Analysis
dataset. We use the word-level language tags provided
along with the dataset.

4.2.2 System Overview
We use the following models which have shown
competitive performance on sentiment analysis of
English tweets:

(1) BERTweet (Nguyen et al., 2020): A large-
scale pre-trained language model for English
tweets which has been pre-trained on a large
corpus of 850M English tweets. It has the
same architecture as BERTbase with ∼110M
parameters.

(2) RoB-RT (Barbieri et al., 2020): The pre-
trained RoBERTabase model which has been
re-trained on a corpus of 58M English tweets.
It has ∼125M parameters.

We use publicly available checkpoints of the
above models, which have been fine-tuned on the
sentiment analysis dataset released for SemEval-
2017 Task 4 (Rosenthal et al., 2017) which is part
of the TweetEval (Barbieri et al., 2020) benchmark.
The dataset consists of ∼60,000 tweets. We fine-
tune the checkpoints further for sentiment analysis
of code-mixed tweets that have been translated to
English.

4.2.3 Optimization
For the implementation of our systems, we again
use the HuggingFace Transformers library and the
AdamW (ε = 10−8, β1 = 0.9, β2 = 0.999,wd =
0.01) optimizer available in PyTorch with a learn-
ing rate of 10−6. All models were fine-tuned using
4 Nvidia GeForce RTX 2080 Ti GPU with a batch
size of 16. The maximum sequence length was
128 for (1) BERTweet and 512 for (2) RoB-RT.
We fine-tune the models for 5 epochs with valida-
tion every 100 steps and choose the model with

20

-VE
152
52%

58
10%

38
10%

NEU
106
37%

404
71%

94
24%

+VE
32

11%

-VE

111
19%

NEU

267
67%

+VE

Pr
ed

ic
te

d
C

la
ss

Target Class

Figure 3: Confusion matrix of the test set predictions
by our best model. The percentages show the ratio of
the target class, which was predicted as that class. -VE:
Negative, NEU: Neutral, +VE: Positive.

Model F1-weighted

IIIT-NBP (Patra et al., 2018) 56.9
mBERT (Khanuja et al., 2020b) 58.24
Mod. mBERT (Khanuja et al., 2020b) 59.35

(1) BERTweet 64.6 ±0.3
(2) RoB-RT base 64.6 ±0.4

Table 7: Sentiment Analysis Performance with differ-
ent checkpoints: Mean and standard deviation of the
metrics from 5 independent runs.

the best performance on the validation set. We use
cross-entropy as the loss function.

4.2.4 Results
We compare the performance of our systems
against the system achieving the highest score in
the task organized by Patra et al. (2018) and the two
best-performing baselines provided by Khanuja
et al. (2020b).

The performance of our systems is shown in Ta-
ble 7. Both the systems we consider have similar
performance and perform better than the current
state-of-the-art. The confusion matrix for the pre-
dictions from our best model is shown in Figure 3.
We find that our model struggles with negative sen-
timent tweets and misclassifies them as neutral sen-
timent in 37% of cases.

5 Conclusion

In this paper, we demonstrate that mBART can be
used to translate English-Hindi code-mixed sen-
tences to English and show that transfer learning
from Hindi-English translation improves its per-
formance on code-mixed translation. We evaluate
how our translation system can be used to improve

performance in code-mixed sequence classification
tasks. We develop a pipeline that uses our transla-
tion system to translate code-mixed data to English
and then uses large-scale pre-trained English mod-
els for the downstream tasks. Our experiments
show that our pipeline achieves state-of-the-art per-
formance on two tasks of the GLUECoS bench-
mark - Natural Language Inference and Sentiment
Analysis.

The performance of our pipeline shows that im-
proving code-mixed translation can improve the
performance of several code-mixed tasks. In fu-
ture work, we would like to improve our transla-
tion system by creating a larger parallel corpus or
synthetically generating parallel sentences for data
augmentation. We would also like to extend our
system to other code-mixing language pairs.

Acknowledgments

We would like to thank the anonymous reviewers
for their time and insightful comments.

References
Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona

Diab, Julia Hirschberg, and Thamar Solorio. 2018a.
Named entity recognition on code-switched data:
Overview of the CALCS 2018 shared task. In
Proceedings of the Third Workshop on Compu-
tational Approaches to Linguistic Code-Switching,
pages 138–147, Melbourne, Australia. Association
for Computational Linguistics.

Gustavo Aguilar, Fahad AlGhamdi, Victor Soto,
Thamar Solorio, Mona Diab, and Julia Hirschberg,
editors. 2018b. Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching. Association for Computational Linguis-
tics, Melbourne, Australia.

Somnath Banerjee, Kunal Chakma, Sudip Kumar
Naskar, Amitava Das, Paolo Rosso, Sivaji Bandy-
opadhyay, and Monojit Choudhury. 2018. Overview
of the mixed script information retrieval (msir) at
fire-2016. In Text Processing, pages 39–49, Cham.
Springer International Publishing.

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetE-
val: Unified benchmark and comparative evaluation
for tweet classification. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 1644–1650, Online. Association for Computa-
tional Linguistics.

Hedi M. Belazi, Edward J. Rubin, and Almeida Jacque-
line Toribio. 1994. Code switching and x-bar theory:
The functional head constraint. Linguistic Inquiry,
25(2):221–237.

21

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2017. Joining hands: Exploiting
monolingual treebanks for parsing of code-mixing
data. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
324–330, Valencia, Spain. Association for Computa-
tional Linguistics.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2018. Universal Dependency parsing
for Hindi-English code-switching. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 987–998, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Sharanya Chakravarthy, Anjana Umapathy, and
Alan W Black. 2020. Detecting entailment in code-
mixed Hindi-English conversations. In Proceedings
of the Sixth Workshop on Noisy User-generated Text
(W-NUT 2020), pages 165–170, Online. Association
for Computational Linguistics.

Khyathi Chandu, Ekaterina Loginova, Vishal Gupta,
Josef van Genabith, Günter Neumann, Manoj Chin-
nakotla, Eric Nyberg, and Alan W. Black. 2018.
Code-mixed question answering challenge: Crowd-
sourcing data and techniques. In Proceedings of
the Third Workshop on Computational Approaches
to Linguistic Code-Switching, pages 29–38, Mel-
bourne, Australia. Association for Computational
Linguistics.

Monojit Choudhury, Gokul Chittaranjan, Parth Gupta,
and Amitava Das. 2014. Overview of fire 2014 track
on transliterated search. Proceedings of FIRE, pages
68–89.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Machine Learning Challenges. Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication, and Recognising Tectual Entailment, pages
177–190, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivastava.
2018. Enabling code-mixed translation: Parallel cor-
pus creation and MT augmentation approach. In
Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Mona Diab, Pascale Fung, Mahmoud Ghoneim, Ju-
lia Hirschberg, and Thamar Solorio, editors. 2016.
Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching. Association
for Computational Linguistics, Austin, Texas.

Mona Diab, Julia Hirschberg, Pascale Fung, and
Thamar Solorio, editors. 2014. Proceedings of the
First Workshop on Computational Approaches to
Code Switching. Association for Computational Lin-
guistics, Doha, Qatar.

Sergey Edunov, Alexei Baevski, and Michael Auli.
2019. Pre-trained language model representations
for language generation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4052–4059, Minneapolis, Minnesota.
Association for Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2016. Collecting and annotating indian social me-
dia code-mixed corpora. In International Confer-
ence on Intelligent Text Processing and Computa-
tional Linguistics, pages 406–417. Springer.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA. Association for Computational
Linguistics.

22

Simran Khanuja, Sandipan Dandapat, Sunayana
Sitaram, and Monojit Choudhury. 2020a. A new
dataset for natural language inference from code-
mixed conversations. In Proceedings of the The 4th
Workshop on Computational Approaches to Code
Switching, pages 9–16, Marseille, France. European
Language Resources Association.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020b. GLUECoS: An evaluation benchmark for
code-switched NLP. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3575–3585, Online. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Anoop Kunchukuttan. 2020. The Indic-
NLP Library. https://github.com/
anoopkunchukuttan/indic_nlp_
library/blob/master/docs/indicnlp.
pdf.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Giovanni Molina, Fahad AlGhamdi, Mahmoud
Ghoneim, Abdelati Hawwari, Nicolas Rey-
Villamizar, Mona Diab, and Thamar Solorio.
2016. Overview for the second shared task on
language identification in code-switched data. In
Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching, pages 40–49,
Austin, Texas. Association for Computational
Linguistics.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020. BERTweet: A pre-trained language model
for English tweets. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages 9–
14, Online. Association for Computational Linguis-
tics.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In The Thirty-
Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019,
pages 6859–6866. AAAI Press.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial NLI: A new benchmark for natural lan-
guage understanding. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 4885–4901, Online. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Braja Gopal Patra, Dipankar Das, and Amitava Das.
2018. Sentiment analysis of code-mixed indian lan-
guages: An overview of sail_code-mixed shared task
@icon-2017.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. SemEval-2020 task 9: Overview of senti-
ment analysis of code-mixed tweets. In Proceed-
ings of the Fourteenth Workshop on Semantic Eval-
uation, pages 774–790, Barcelona (online). Interna-
tional Committee for Computational Linguistics.

23

Shana Poplack. 1980. Sometimes i’ll start a sentence
in spanish y termino en espaÑol: toward a typology
of code-switching 1. Linguistics, 18:581–618.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Pattabhi R. K. Rao and S. Devi. 2016. Cmee-il: Code
mix entity extraction in indian languages from social
media text @ fire 2016 - an overview. In FIRE.

Brian Roark, Lawrence Wolf-Sonkin, Christo Kirov,
Sabrina J. Mielke, Cibu Johny, Isin Demirsahin, and
Keith Hall. 2020. Processing South Asian languages
written in the Latin script: the dakshina dataset.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 2413–2423, Mar-
seille, France. European Language Resources Asso-
ciation.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518, Vancouver, Canada. Association for
Computational Linguistics.

Rishiraj Saha Roy, Monojit Choudhury, Prasenjit Ma-
jumder, and Komal Agarwal. 2013. Overview of
the fire 2013 track on transliterated search. In Post-
Proceedings of the 4th and 5th Workshops of the Fo-
rum for Information Retrieval Evaluation, FIRE ’12
& ’13, New York, NY, USA. Association for Com-
puting Machinery.

Royal Sequiera, Monojit Choudhury, Parth Gupta,
Paolo Rosso, Shubham Kumar, Somnath Banerjee,
Sudip Kumar Naskar, Sivaji Bandyopadhyay, Gokul
Chittaranjan, Amitava Das, et al. 2015. Overview
of fire-2015 shared task on mixed script information
retrieval. In FIRE Workshops, volume 1587, pages
19–25.

Thoudam Doren Singh and Thamar Solorio. 2018. To-
wards translating mixed-code comments from social
media. In Computational Linguistics and Intelligent
Text Processing, pages 457–468, Cham. Springer In-
ternational Publishing.

Thamar Solorio, Elizabeth Blair, Suraj Mahar-
jan, Steven Bethard, Mona Diab, Mahmoud
Ghoneim, Abdelati Hawwari, Fahad AlGhamdi, Ju-
lia Hirschberg, Alison Chang, and Pascale Fung.
2014. Overview for the first shared task on language
identification in code-switched data. In Proceedings
of the First Workshop on Computational Approaches
to Code Switching, pages 62–72, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked sequence to se-
quence pre-training for language generation. In Pro-
ceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5926–5936. PMLR.

Vivek Srivastava and Mayank Singh. 2020. PHINC:
A parallel Hinglish social media code-mixed cor-
pus for machine translation. In Proceedings of the
Sixth Workshop on Noisy User-generated Text (W-
NUT 2020), pages 41–49, Online. Association for
Computational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
4003–4012, Marseille, France. European Language
Resources Association.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

24

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019.
Benchmarking zero-shot text classification:
Datasets, evaluation and entailment approach.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
3914–3923, Hong Kong, China. Association for
Computational Linguistics.

25

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 26–30
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_004

Gated Convolutional Sequence to Sequence Based Learning for
English-Hingilsh Code-Switched Machine Translation.

Suman Dowlagar
LTRC

IIIT-Hyderabad
suman.dowlagar

@research.iiit.ac.in

Radhika Mamidi
LTRC

IIIT-Hyderabad
radhika.mamidi
@iiit.ac.in

Abstract

Code-Switching is the embedding of linguistic
units or phrases from two or more languages
in a single sentence. This phenomenon is
practiced in all multilingual communities and
is prominent in social media. Consequently,
there is a growing need to understand code-
switched translations by translating the code-
switched text into one of the standard lan-
guages or vice versa. Neural Machine trans-
lation is a well-studied research problem in
the monolingual text. In this paper, we have
used the gated convolutional sequences to se-
quence networks for English-Hinglish transla-
tion. The convolutions in the model help to
identify the compositional structure in the se-
quences more easily. The model relies on gat-
ing and performs multiple attention steps at en-
coder and decoder layers.

1 Introduction

Language is a social phenomenon. The day-to-day
interactions are made possible via language. The
adaptive nature of languages and the flexibility to
use multiple languages in one text message might
help the speakers to communicate efficiently. This
form of language interaction/contact is considered
to be an essential phenomenon, especially in multi-
lingual societies. In bilingual or multilingual com-
munities, speakers use their native tongue and their
second language during interactions. This form
of alternation of two or more languages is called
Code-Switching (CS) (Muysken et al., 2000).

Through the advent of social media, people from
around the world can connect and exchange infor-
mation instantly. Users from a Multilingual com-
munity often express their thoughts or opinions
on social media by mixing different languages in
the same utterance (Dowlagar and Mamidi, 2021).
This mixing or alteration of two or more languages
is known as code-mixing or code-switching (Ward-
haugh, 2011).

There are no standard grammar rules that are
meant to be practiced in the code-switched text.
The code-switched data often contain variations
of spellings and grammar. The computational
processing of code-mixed or code-switched data
is challenging due to the nature of the mixing
and the presence of non-standard variations in
spellings and grammar, and transliteration (Bali
et al., 2014). Because of such linguistic complex-
ities, code-switching poses several unseen diffi-
culties in fundamental fields of natural language
processing (NLP) tasks such as language identi-
fication, part-of-speech tagging, shallow parsing,
Named entity recognition, sentiment analysis, of-
fensive language identification etc.

To encourage research on code-mixing text, the
Computational Approaches to Linguistic Code-
Switching (CALCS) community has organized sev-
eral workshops on language identification, Named
Entity Recognition (Aguilar et al., 2018). This task
focus on machine translation in the code-switched
environment in multiple language combinations
and directions 1.

This paper presents a gated convolutional se-
quence to sequence encoder and decoder models
(Gehring et al., 2017) for machine translation on
the code-mixed text. We have used the convolu-
tional model because of its sliding window concept
to deal with contextual words and the convolutions
to extract rich representations.

The paper is organized as follows. Section 2
provides related work on the code-switched text for
machine translation. Section 3 provides informa-
tion on the task and dataset. Section 4 describes
the proposed work. Section 5 presents the exper-
imental setup and the performance of the model.
Section 6 concludes our work.

1https\protect\leavevmode@ifvmode\
kern+.2222em\relax//code-switching.
github.io/2021#shared-task

26

https://doi.org/10.26615/978-954-452-056-4_004

English (source translation) Hinglish (target translation)
1 Hello! do you like comedy, adventure, and anima-

tion movies?
namaskaar! kya aapako komedee, edavenchar aur
eneemeshan philmen pasand hain?

2 It was a strange choice bahut strange choice thi ye
3 are you still there? TUM ABHEE BHI VAHAAN HO
4 Hello. Hello.

Table 1: Example translations

2 Related Work

There is relatively less research in the field of the
machine translation of the code-switched text, par-
tially due to the relative lack of structured corpora
and also potentially because it also poses signifi-
cant linguistic challenges such as ambiguity in lan-
guage identification, spelling variations, informal
style of writing, Misplaced/skipped punctuation,
etc. Nonetheless, some researchers have provided
datasets to enable research in code-mixed machine
translation, specifically in Hindi-English code-
switched scenario (Srivastava and Singh, 2020;
Dhar et al., 2018). Dhar et al. (2018) presented
a parallel corpus of the 13,738 code-mixed Hindi-
English sentences and their corresponding human
translation in English. In addition, they also pro-
vided a translation pipeline built on top of Google
Translate. The pipeline fragments the input sen-
tence into multiple chunks and identifies the lan-
guage of each word in the chunk before feeding it
to google-translate. The pipeline gives a BLEU-
1 metric of 0.153 on the given English dataset.
Dhar et al. (2018) translated the 6,096 code-mixed
English-Hindi sentences into English and presented
a translation augmentation pipeline. The pipeline
is presented as a pre-processing step and can be
plugged into any existing MT system. The pre-
processed data is then given to translation systems
like Moses, Google Neural Machine Translation
System (NMTS), and Bing Translator, where the
pre-processed data with NMTS has outperformed
all the baselines with a BLEU score of 28.4.

3 Task Description

The goal of this task is the machine translation for
code-switching settings in multiple language com-
binations and directions, such as involving English,
Hinglish, Spanish, Spanglish, Modern Standard
Arabic, and Egyptian Arabic languages. The code-
mixed dataset is obtained from comments/posts
from social media. In this paper, we have focussed
on the English-Hinglish dataset. The English-

Hinglish code-mixed dataset has 8060 train, 952
dev, and 960 test with source, and target transla-
tions. The task is to translate the given English
sentence into a code-mixed Hindi-English sentence.
The examples of the given English-Hinglish trans-
lation are given in the table 1.

In the first translation, one can see that the
Hinglish sentence has a mixture of non-standard
variations of words such as komedee(comedy),
edavenchar(adventure), eneemeshan(animation),
and the second translation exhibits the switching of
English and Hindi phrases. In the third translation,
the sentence is completely translated to Hindi (with
roman script). The fourth translation shows that no
translation is followed. The above sentences depict
the diversity of the code-mixed translations, thus
making the research and translation of the code-
mixed text a complex task.

4 The proposed work

This section presents the proposed gated convolu-
tional neural networks with encoder and decoder
models for machine translation from English to
code-mixed Hinglish text. The encoder model en-
code the source sentence into a vector and the de-
coder model takes the encoder information and
decodes the given target sentences. The encoded
vector is also known context vector. The context
vector can be visualized as an abstract represen-
tation of the entire input sentence. The vector is
decoded by a decoder model that learns to output
the target sentence. The context needs to contain
all of the information about the source sentence. It
can be done by using attention.

Our encoder and decoder attention-based mod-
els use convolutions to encode the source sentence
and to decode it into the target sentence. The con-
volutional layer uses filters. These filters have a
window size. For example, if a filter has a win-
dow size of 3, then it can process three consecutive
tokens. This window helps in determining the con-
text. The convolutional layer has many of these

27

filters, where each filter will slide across the en-
tire sequence by looking at all three consecutive
tokens at a time. These filters will help extract dif-
ferent features in the given text and aid the machine
translation model.

The description of the encoder and decoder con-
volutional models is given in the subsequent sub-
sections.

4.1 Encoder
In the encoder model, each token in the source sen-
tence is passed through an embedding layer. As the
convolutional model has no recurrent connections,
the model has no idea about the order of the tokens
within a sequence. So it is necessary to add the
positional embedding layer. In the positional em-
bedding, the position of the tokens, including the
start of the sequence and the end of the sequence,
are encoded. Next, the token and positional em-
beddings are combined by elementwise sum. The
obtained embedding vector contains the token and
also its position within the sequence.

The given embedding vector is passed through
a series of convolutional blocks. We follow the
(Gehring et al., 2017) paper to implement the gated
convolutional block architecture. It is formulated
as,

hli = v
(
Wl

[
hl−1
i−k/2, . . . , h

l−1
i+k/2

]
+ bl

w

)
+ hl−1

i

(1)
Where hli is the output of the ith sequence

in lth block. v is the gated gated linear units
(GLU) (Dauphin et al., 2016) activation function.[
hl−1
i−k/2, . . . , h

l−1
i+k/2

]
are convolutional transfor-

mations of previous layer, Wl and bl
w are learnable

parameters and hl−1
i is the residual output from the

previous layer.
Passing the embedding vector through the convo-

lutional blocks gives the convolved vector for each
token in the given source sentence. The embedding
vector is added as a residual connection is added to
the convolved vector to get a combined vector.

4.2 Decoder
The decoder is similar to the encoder, with a few
additional paddings to both the main model and the
convolutional blocks inside the model.

In the decoder, the encoder convolved and com-
bined outputs are used with attention. Finally, the
output of the decoder is passed through a feed-
forward layer to match the output target dimension
in order to get the translated sentence.

5 Experiments

Here, we demonstrate the performance of the
machine translation systems on the code-mixed
text. We experiment with the popular RNN based
encoder-decoder machine translation and vanilla
transformer models and evaluate their performance
on the given English-Hinglish machine translation
task. We use BLEU metrics to evaluate system
performance (Papineni et al., 2002).

5.1 Baseline MT models

RNN based encoder-decoder model (Bah-
danau et al., 2014) The model uses RNN blocks to
encode and decode the given sequence. The model
allows the decoder to look at the entire source sen-
tence at each decoding step by using attention.

Transformer We have implemented the Trans-
former model from the paper Vaswani et al. (2017).
The transformer model uses multi-headed attention,
layer normalizations, and feed-forward networks to
implement the transformer models. The positional
embeddings are used to remember the sequence of
the sentence.

5.2 Hyperparameters and libraries

The parameters used to train our neural machine
translation model are: the number of epochs used to
train the model is 10. The Adam optimizer is used
with cross-entropy loss with the gradient clipping
of 0.1. The embedding and hidden dimensionalities
are set as 256 and 512. The number of encoder
and decoder convolutional layers used is 10. The
default kernel window of size three is maintained.
The dropout is kept at 0.25, and the maximum
length used for the positional embeddings is 400.
The Pytorch library is used to implement the model
and is made publicly accessible 2.

5.3 Results and Error analysis

The results are guven in the table 2. From the ta-
ble, it is clear that the convolutional model has
obtained a better accuracy when compared to the
vanilla transformer and encoder-decoder models.
The use of convolutions and using the window size
helped the convolutional model understand its con-
text. We have even observed that the small length
sequences and code-switching points are detected
better by a convolutional model. As there is no

2https://github.com/suman101112/CMMT.
git

28

Model BLEU score (based on validation data)
Encoder-Decoder RNN model 1.52
Transformer model 2.51
proposed model (Conv seq2seq) 2.58

Table 2: BLEU metrics of the proposed model when compared to baselines.

Incorrect Translation
Source Sentence (English) Plus how many times are you going to leave your kid behind. I see

they added another scene. How the robbers got caught and Kevin
reuniting with his mom and family

Target Translation (Hinglish) aur kitne baar apne bete ko chod doge. maine dekha hai ki woh log
aur ek scene add kar diya. Robbers kaise pakde gaye aur kevin apni
mom aur family se mila.

Translation by our model mujhe us kahani pasand hein, jho tho yeh sach ko bahut pasand hein
jab mein kabhi kabhi ko dekhna nahi hein lekin mein kabhi kabhi ko
apney kabhi ko nahi nahi hein jab mujhe yakeen hai ki yah kuchh
daraatee hai ki mujhe kabhi ko apney kabhi ko nahi

Proper Translation
Source Sentence (English) yes, it is good
Target Translation (Hinglish) han, ye accha hai
Translation by our model han, ye good hai

Table 3: Output of our convolutional sequence to sequence model on English-Hinglish text

recurrence in the convolutions, the computations
are performed faster than the RNN’s. Compared
to recurrent networks, our convolutional approach
allows discovering compositional structure in the
sequences more easily since representations. Our
model relies on gating and performs multiple atten-
tion steps. The vanilla transformer model did not
perform well on this task because of the limited
dataset used by the model. The vanilla transformer
model is designed to be trained on larger datasets.
It might be possible that the pre-trained transformer
models can achieve better results when the dataset
is finetuned on such models. The encoder-decoder
RNN model performed worst and were very slow
when compared to the other models.

During the error analysis we have found that
there were repetitions in translations for the long
sentences that are incorrectly translated by our
model. This often lead to decrease in BLEU met-
ric. The example is given table 3. Where as the
short sentences are correctly translated by the given
model. This is due to the low dependencies exhib-
ited because of low window size and also due to
presence of more Out of vocabulary (OOV) words
because of the limited dataset. The improvement
in the size of datasets will improve the translation
accuracy of the proposed model.

6 Conclusion

This paper presents the performance of a neural ma-
chine translation model for the shared task on code-
switched English-Hinglish translation. The model
uses the convolutional sequence to sequence-based
neural network architecture to translate the given
sequence. The contextual window and the state-
of-the-art convolution model helped the model
learn better representations from the text and im-
proved the model’s performance compared to RNN
encoder-decoder and vanilla transformer models.
In the future, we wish to use the pre-trained BERT
models and their ensembles and also consider other
code-mixing factors such as pre-processing of the
code-switched text to improve the quality of the
code-switched machine translation.

References

Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona
Diab, Julia Hirschberg, and Thamar Solorio. 2018.
Named entity recognition on code-switched data:
Overview of the CALCS 2018 shared task. In
Proceedings of the Third Workshop on Compu-
tational Approaches to Linguistic Code-Switching,
pages 138–147, Melbourne, Australia. Association
for Computational Linguistics.

29

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kalika Bali, Jatin Sharma, Monojit Choudhury, and Yo-
garshi Vyas. 2014. “i am borrowing ya mixing?" an
analysis of english-hindi code mixing in facebook.
In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching, pages 116–
126.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2016. Language modeling with gated con-
volutional networks. arxiv.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivas-
tava. 2018. Enabling code-mixed translation: Par-
allel corpus creation and mt augmentation approach.
In Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140.

Suman Dowlagar and Radhika Mamidi. 2021. Graph
convolutional networks with multi-headed attention
for code-mixed sentiment analysis. In Proceedings
of the First Workshop on Speech and Language Tech-
nologies for Dravidian Languages, pages 65–72.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In International
Conference on Machine Learning, pages 1243–1252.
PMLR.

Pieter Muysken, Pieter Cornelis Muysken, et al. 2000.
Bilingual speech: A typology of code-mixing. Cam-
bridge University Press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Vivek Srivastava and Mayank Singh. 2020. Phinc:
a parallel hinglish social media code-mixed cor-
pus for machine translation. arXiv preprint
arXiv:2004.09447.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Ronald Wardhaugh. 2011. An introduction to sociolin-
guistics, volume 28. John Wiley & Sons.

30

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 31–35
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_005

IITP-MT at CALCS2021: English to Hinglish Neural Machine
Translation using Unsupervised Synthetic Code-Mixed Parallel Corpus

Ramakrishna Appicharla∗, Kamal Kumar Gupta∗, Asif Ekbal, Pushpak Bhattacharyya
Department of Computer Science and Engineering

Indian Institute of Technology Patna
Patna, Bihar, India

{appicharla_2021cs01,kamal.pcs17,asif,pb}@iitp.ac.in

Abstract

This paper describes the system submitted by
IITP-MT team to Computational Approaches
to Linguistic Code-Switching (CALCS 2021)
shared task on MT for English → Hinglish.
We submit a neural machine translation
(NMT) system which is trained on the syn-
thetic code-mixed (cm) English-Hinglish par-
allel corpus. We propose an approach to create
code-mixed parallel corpus from a clean paral-
lel corpus in an unsupervised manner. It is an
alignment based approach and we do not use
any linguistic resources for explicitly marking
any token for code-switching. We also train
NMT model on the gold corpus provided by
the workshop organizers augmented with the
generated synthetic code-mixed parallel cor-
pus. The model trained over the generated
synthetic cm data achieves 10.09 BLEU points
over the given test set.

1 Introduction

In this paper, we describe our submission to shared
task on Machine Translation (MT) for English →
Hinglish at CALCS 2021. The objective of this
shared task to generate Hinglish (Hindi-English
Code-Mixed1) data from English. In this task, we
submit an NMT system which is trained on the par-
allel code-mixed English-Hinglish synthetic corpus.
We generate synthetic corpus in unsupervised fash-
ion and the methodology followed to generate data
is independent of languages involved. Since the
target Hindi tokens are written in roman script, dur-
ing the synthetic corpus creation, we transliterate
the Hindi tokens from Devanagari script to Roman
script.

Code-Mixing (CM) is a very common phe-
nomenon in various social media contents, product
description and reviews, educational domain etc.
For better understanding and ease in writing, users

∗Equal contribution
1Hindi words are romanized

write posts, comments on social media in code-
mixed fashion. It is not consistent or convenient
always to translate all the words, especially the
named entities, quality related terms etc.

But translating in code-mixed fashion required
code-mixed parallel training data. It is possible to
generate code-mixed parallel corpus from a clean
parallel corpus. From the term ‘clean parallel cor-
pus’, we refer to a parallel corpus which consists
of the non code-mixed parallel sentences. Gener-
ally noun tokens, noun phrases and adjectives are
the major candidates to be preserved as it is (with-
out translation) in the code-mixed output. This
requires a kind of explicit token marking using
parser, tagger (part of speech, named entity etc.) to
find the eligible candidate tokens for code-mixed
replacement. Since this method is dependent on lin-
guistic resources, it is limited to the high resource
languages only.

We introduce an alignment based unsupervised
approach for generating code-mixed data from par-
allel corpus which can be used to train the NMT
model for code-mixed text translation.

The paper is organized as follows. In section 2,
we briefly mention some notable works on transla-
tion and generation of synthetic code-mixed corpus.
In section 3, we describe our approach to generate
synthetic code-mixed corpus along with the sys-
tem description. Results are described in section 4.
Finally, the work is concluded in section 5.

2 Related Works

Translation of code-mixed data has gained popu-
larity in recent times. Menacer et al. (2019) con-
ducted experiments on translating Arabic-English
CM data to pure Arabic and/or to pure English
with Statistical Machine Translation (SMT) and
Neural Machine Translation (NMT) approaches.
Dhar et al. (2018) proposed an MT augmentation
pipeline which takes CM sentence and determines
the most dominating language and translates the

31

https://doi.org/10.26615/978-954-452-056-4_005

remaining words into that language. The resulting
sentence will be in one single language and can be
translated to other language with the existing MT
systems. Yang et al. (2020) have used code-mixing
phenomenon and proposed a pre-training strategy
for NMT. Song et al. (2019) augmented the code-
mixed data with clean data while training the NMT
system and reported that this type of data augmenta-
tion improves the translation quality of constrained
words such as named entities. Singh and Solorio
(2017); Masoud et al. (2019); Mahata et al. (2019)
also explored various approaches which utilize lin-
guistic resources (such as language identification
etc.) to translate the code-mixed data.

There have been some efforts for creating code-
mixed data. Gupta et al. (2020) proposed an
Encoder-Decoder based model which takes English
sentence along with linguistic features as input
and generates synthetic code-mixed sentence. Prat-
apa et al. (2018) explored ‘Equivalence Constraint’
theory to generate the synthetic code-mixed data
which is used to improve the performance of Recur-
rent Neural Network (RNN) based language model.
While Winata et al. (2019) proposed a method to
generate code-mixed data using a pointer-generator
network, Garg et al. (2018) explored SeqGAN for
code-mixed data generation.

3 System Description

In this section, we describe the synthetic parallel
corpus creation, dataset and experimental setup of
our system.

3.1 Unsupervised Synthetic Code-Mixed
Corpus Creation

We utilize the existing parallel corpus to create syn-
thetic code-mixed data. First we learn word-level
alignments between source and target sentences
of a given parallel corpus of a specific language
pair. We use the implementation2 of fast_align al-
gorithm (Dyer et al., 2013) to obtain the alignment
matrix. Let X = {x1, x2, ..., xm} be the source
sentence and Y = {y1, y2, ..., yn} be the target
sentence. We consider only those alignment pairs
{xj , yk} [for j = (1,,m) and k = (1,, n)]
which are having one-to-one mapping, as candi-
date tokens. By ‘One-to-one mapping’, we mean
that neither {xj} nor {yk} should be aligned to
more than one token from their respective counter

2https://github.com/clab/fast_align/

sides except {yk} and {xj} respectively. The ob-
tained candidate token set is further pruned by re-
moving the pairs where xj is a stopword. Based
on the resulting candidate set, the source token
xj is replaced with aligned target token yk. The
generated code-mixed sentence is in the form:
CM = {x1, x2, ..., yk, yl, ..., xm}. Figure 1 shows
an example of English-Hindi code-mixed sentence
generated through this method.

3.2 Romanization of the Hindi text

The task is to generate Hinglish data in which Hindi
words are written in Roman script. But in the gen-
erated synthetic code-mixed corpus, Hindi words
are written in Devanagari script. In order to convert
the Devanagari script to Roman script, we utilize
Python based transliteration tool.3 This convert the
Devanagari script to Roman script.

We also create another version of the synthetic
code-mixed corpus by replacing the two consecu-
tive vowels with single vowel (Belinkov and Bisk,
2018). We call this version of code-mixed corpus
as synthetic code-mixed corpus with user patterns.
The main reason to create noisy version of the cor-
pus is to simulate the user writing patterns when
writing romanized code-mixed sentences in real-
life. An example of such scenario would be, user
may write ‘Paani’ (water) as ‘Pani’ (water). We
tried to capture these scenarios by replacing the
consecutive vowels with single vowel. These vowel
replacement is done at target side (Hinglish) of the
synthetic code-mixed corpus only and source (En-
glish) is kept as it is. The gold corpus provided by
organizers is not modified in any way and also kept
as it is.

3.3 Dataset

We consider English-Hindi IIT Bombay
(Kunchukuttan et al., 2018) parallel corpus.
We tokenize and true-case English using Moses
tokenizer (Koehn et al., 2007) and truecaser 4

scripts and Indic-nlp-library 5 to tokenize Hindi.
We remove the sentences having length greater
that 150 tokens and created synthetic code-mixed
corpus on the resulting corpus as described earlier.
The statistics of data used in the experiments are
shown in Table 1.

3https://github.com/libindic/Transliteration
43https://github.com/mosessmt/mosesdecoder/blob

/RELEASE-3.0/scripts/tokenizer/tokenizer.perl
5https://github.com/anoopkunchukuttan/indic_nlp

_library

32

Figure 1: An example of alignment between parallel sentence pair and generated CM sentence. In the CM sentence,
the source words that are replaced are shown with red border.

Corpus Train Dev
Synthetic CM 1,549,115 -

Synthetic CM + User Patterns 1,549,115 -
Gold 8,060 942
Total 3,106,290 942

Table 1: Data statistics used in the experiment. Syn-
thetic CM: Size of synthetic code-mixed data. Syn-
thetic CM + User Patterns: Size of synthetic code-
mixed data with addition of user writing patterns. Gold:
Size of gold standard parallel corpus provided by orga-
nizers. Train, Dev denotes Training and Development
set statistics respectively. In the experiments we use
only gold standard corpus as development set.

3.4 Experimental Setup

We conduct the experiments on Transformer based
Encoder-Decoder NMT architecture (Vaswani
et al., 2017). We use 6 layered Encoder-Decoder
stacks with 8 attention heads. Embedding size
and hidden sizes are set to 512, dropout rate is set
to 0.1. Feed-forward layer consists of 2048 cells.
Adam optimizer (Kingma and Ba, 2015) is used
for training with 8,000 warmup steps with initial
learning rate of 2. We use Sentencepiece (Kudo
and Richardson, 2018) with joint vocabulary size
of 50K. Models are trained with OpenNMT toolkit
6 (Klein et al., 2017) with batch size of 2048 to-
kens till convergence and checkpoints are created
after every 10,000 steps. All the checkpoints that
are created during the training are averaged and
considered as the best parameters for each model.
During inference, beam size is set to 5.

4 Results

We train two models. Baseline model which is
trained on the Gold standard corpus. Second model
on the synthetic code-mixed data. We upload our
model predictions on the test set provided by orga-
nizers to shared task leaderboard7. The test set con-

6https://opennmt.net/
7https://ritual.uh.edu/lince/leaderboard

tains 960 sentences. Our model achieved BLEU
(Papineni et al., 2002) score of 10.09. Table 2
shows the BLEU scores obtained from the trained
models on Development and Test sets. Table 3
shows some sample translations.

Model Dev Test
Baseline 2.55 2.45

Synthetic CM 11.52 10.09

Table 2: BLEU scores of the Baseline model and Syn-
thetic Code-Mixed model on Development and Test
sets.

Source Who is your favorite member from
the first avengers?

Reference Tumhara favorite member kaun hai
first avengers mein se?

Output first avengers se aapka favorite
member kon hai?

Source I think it was a robotic shark, but
am not sure.

Reference me sochta hoon voh robotic shark
thi, but me sure nahi hoon.

Output mujhe lagata hai ki yah ek robotik
shark hai ,lekin sure nahi hai.

Source Do you like action movies?
Reference aap ko action movies pasand hein

kya?
Output Kya tumhe action movies pasand

hai?

Table 3: Sample translations generated by trained
model

5 Conclusion

In this paper, we described our submission to
shared task on MT for English → Hinglish at
CALCS 2021. We submitted a system which is
trained on synthetic code-mixed corpus generated
in unsupervised way. We trained an NMT model

33

on the synthetic code-mixed corpus and gold stan-
dard data provided by organizers. On the test set,
the model trained over the gold data provided by
the workshop achieves 2.45 BLEU points while the
model trained over our generated synthetic cm data
yields BLEU score of 10.09. We believe that the
proposed method to generate synthetic code-mixed
data can be very useful for training MT systems
in code-mixed settings as the proposed method
does not require any linguistic resources to gen-
erate code-mixed data.

References
Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic

and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivastava.
2018. Enabling code-mixed translation: Parallel cor-
pus creation and MT augmentation approach. In
Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Saurabh Garg, Tanmay Parekh, and Preethi Jyothi.
2018. Code-switched language models using dual
RNNs and same-source pretraining. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3078–3083,
Brussels, Belgium. Association for Computational
Linguistics.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2267–
2280, Online. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,

pages 67–72, Vancouver, Canada. Association for
Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Sainik Kumar Mahata, Soumil Mandal, Dipankar Das,
and Sivaji Bandyopadhyay. 2019. Code-mixed to
monolingual translation framework. In Proceedings
of the 11th Forum for Information Retrieval Evalua-
tion, pages 30–35.

Maraim Masoud, Daniel Torregrosa, Paul Buitelaar,
and Mihael Arčan. 2019. Back-translation approach
for code-switching machine translation: A case
study. In 27th AIAI Irish Conference on Artificial
Intelligence and Cognitive Science. AICS2019.

Mohamed Amine Menacer, David Langlois, Denis
Jouvet, Dominique Fohr, Odile Mella, and Kamel
Smaïli. 2019. Machine translation on a parallel
code-switched corpus. In Canadian Conference on
Artificial Intelligence, pages 426–432. Springer.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553, Melbourne, Aus-
tralia. Association for Computational Linguistics.

34

Thoudam Doren Singh and Thamar Solorio. 2017. To-
wards translating mixed-code comments from social
media. In International Conference on Computa-
tional Linguistics and Intelligent Text Processing,
pages 457–468. Springer.

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and Min Zhang. 2019. Code-switching for
enhancing NMT with pre-specified translation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 449–459,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280, Hong Kong, China.
Association for Computational Linguistics.

Zhen Yang, Bojie Hu, Ambyera Han, Shen Huang, and
Qi Ju. 2020. CSP:code-switching pre-training for
neural machine translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2624–2636,
Online. Association for Computational Linguistics.

35

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 36–46
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_006

Exploring Text-to-Text Transformers for English to Hinglish Machine
Translation with Synthetic Code-Mixing
Ganesh Jawahar1,2 El Moatez Billah Nagoudi1

Muhammad Abdul-Mageed1,2 Laks V.S. Lakshmanan2

Natural Language Processing Lab1

Department of Computer Science2

The University of British Columbia
ganeshjwhr@gmail.com, {moatez.nagoudi, muhammad.mageed}@ubc.ca, laks@cs.ubc.ca

Abstract

We describe models focused at the understud-
ied problem of translating between monolin-
gual and code-mixed language pairs. More
specifically, we offer a wide range of mod-
els that convert monolingual English text
into Hinglish (code-mixed Hindi and English).
Given the recent success of pretrained lan-
guage models, we also test the utility of two re-
cent Transformer-based encoder-decoder mod-
els (i.e., mT5 and mBART) on the task find-
ing both to work well. Given the paucity of
training data for code-mixing, we also pro-
pose a dependency-free method for generating
code-mixed texts from bilingual distributed
representations that we exploit for improving
language model performance. In particular,
armed with this additional data, we adopt a
curriculum learning approach where we first
finetune the language models on synthetic data
then on gold code-mixed data. We find that,
although simple, our synthetic code-mixing
method is competitive with (and in some cases
is even superior to) several standard methods
(backtranslation, method based on equivalence
constraint theory) under a diverse set of condi-
tions. Our work shows that the mT5 model,
finetuned following the curriculum learning
procedure, achieves best translation perfor-
mance (12.67 BLEU). Our models place first
in the overall ranking of the English-Hinglish
official shared task.

1 Introduction

Code-mixing is a phenomenon of mixing two
or more languages in speech and text (Gumperz,
1982). Code-mixing is prevalent in multilingual
societies, where the speakers typically have sim-
ilar fluency in two or more languages (Sitaram
et al., 2019). For example, Hindi, Tamil and Telugu
speakers from India frequently code-mix with En-
glish. Code-mixing can happen between dialects,
for example, Modern Standard Arabic is frequently
code-mixed with Arabic dialects (Abdul-Mageed

et al., 2020). Building NLP systems that can handle
code-mixing is challenging as the space of valid
grammatical and lexical configurations can be large
due to presence of syntactic structures from more
than one linguistic system (Pratapa et al., 2018).

In this work, we focus on building a machine
translation (MT) system that converts a mono-
lingual sequence of words into a code-mixed se-
quence. More specifically, we focus on translat-
ing from English to Hindi code-mixed with En-
glish (i.e., Hinglish). In the literature, work has
been done on translating from Hinglish into En-
glish (Dhar et al., 2018; Srivastava and Singh,
2020). To illustrate both directions, we provide
Figure 1. The Figure presents sample translation
pairs for Hinglish to English as well as English
to Hinglish. The challenges for solving this task
include: (i) lack of Hindi data in roman script
(words highlighted in cyan color), (ii) non-standard
spellings (e.g., ‘isme’ vs ‘is me’), (iii) token-level
ambiguity across the two languages (e.g., Hindi
‘main’ vs. English ‘main’), (iv) non-standard cas-
ing (e.g., ROTTEN TOMATOES), (v) informal
writing style, and (vi) paucity of English-Hinglish
parallel data. Compared with Hinglish to English
translation, the English to Hinglish translation di-
rection is a less studied research problem.

English-Hinglish translation can have several
practical applications. For example, it can be used
to create engaging conversational agents that mimic
the code-mixing norm of a human user who uses
code-mixing. Another use of resulting Hinglish
data would be to create training data for some
downstream applications such as token-level lan-
guage identification.

Our proposed machine translation system ex-
ploits a multilingual text-to-text Transformer model
along with synthetically generated code-mixed data.
More specifically, our system utilizes the state-of-
the-art pre-trained multilingual generative model,
mT5 (a multilingual variant of “Text-to-Text Trans-

36

https://doi.org/10.26615/978-954-452-056-4_006

Hinglish to English translation (Dhar et al. (2018), Srivastava and Singh (2020))
Hinglish: Hi there! Chat ke liye ready ho? → English: Hi there! Ready to chat?
Hinglish: isme kids keliye ache message

hein, jo respectful hein sabhi keliye

→ English: It does show a really good message for
kids, to be respectful of everybody

English to Hinglish translation (our task)
English: Maybe it’s to teach kids to challenge
themselves

→ Hinglish: maybe kida ko teach karna unka
challenge ho saktha hein

English: It’s seem to do OK on rotten tomatoes
I got a 79%

→ Hinglish: ROTTEN TOMATOES KA SCORE
79% DIYA HEIN JO OK HEIN KYA

Table 1: Sample translation pairs for Hinglish to English and English to Hinglish machine translation task. Words
highlighted in cyan color are in Hindi language in roman script, while non-highlighted words are in English lan-
guage.

fer Transformer" model (Raffel et al., 2020)) as a
backbone. The mT5 model is pretrained on large
amounts of monolingual text from 107 languages,
making it a good starting point for multilingual
applications such as question answering and MT.
It is not clear, however, how mT5’s representation
fares in a code-mixed context such as ours. This is
the question we explore, empirically, in this paper,
on our data. We also introduce a simple approach
for generating code-mixed data and show that by
explicitly finetuning the model on this code-mixed
data we are able to acquire sizeable improvements.
For this finetuning, we adopt a curriculum learn-
ing method, wherein the model is finetuned on the
synthetically generated code-mixed data and then
finetuned on the gold code-mixed data.

To synthetically generate code-mixed data, we
propose a novel lexical substitution method that
exploits bilingual word embeddings trained on
shuffled context obtained from English-Hindi bi-
text. The method works by replacing select n-
grams in English sentences with their Hindi coun-
terparts obtained from the bilingual word embed-
ding space. For meaningful comparisons, we also
experiment with five different methods to create
code-mixed training data: (i) romanization of mono-
lingual Hindi from English-Hindi parallel data,
(ii) paraphrasing of monolingual English from
English-Hinglish parallel data, (iii) backtransla-
tion of output from the mT5 model trained on
English-Hinglish parallel data, (iv) adapting social
media data containing parallel English-Hinglish
sentences by removing emoticons, hashtags, men-
tions, URLs (Srivastava and Singh, 2020), and (v)
code-mixed data generated based on equivalence
constraint theory (Pratapa et al., 2018). We study

the impact of different settings (e.g., size of train-
ing data, number of paraphrases per input) appli-
cable for most methods on the translation perfor-
mance. We observe that the mT5 model finetuned
on the code-mixed data generated by our proposed
method based on bilingual word embeddings fol-
lowed by finetuning on gold data achieves a BLEU
score of 12.67 and places us first in the overall
ranking for the shared task. Overall, our major
contributions are as follows:

1. We propose a simple, yet effective and
dependency-free, method to generate English-
Hinglish parallel data by leveraging bilingual
word embeddings trained on shuffled context
obtained via English-Hindi bitext.

2. We study the effect of several data augmen-
tation methods (based on romanization, para-
phrasing, backtranslation, etc.) on the transla-
tion performance.

3. Exploiting our code-mixing generation
method in the context of curriculum learning,
we obtain state-of-the-art performance on
the English-Hinglish shared task data with a
BLEU score of 12.67.

2 Related Work

Our work involves code-mixed data generation, ma-
chine translation involving code-mixed language,
and multilingual pretrained generative models.

2.1 Code-Mixed Data Generation

Due to the paucity of code-mixed data, researchers
have developed various methods to automatically
generate code-mixed data. An ideal method for

37

code-mixed data generation should aim to gen-
erate syntactically valid (i.e., fluent), semanti-
cally correct words (i.e., adequate), diverse code-
mixed data of varying lengths. To create gram-
matically valid code-mixed sentences, Pratapa
et al. (2018) leverages a linguistically motivated
technique based on equivalence constraint the-
ory (Poplack, 1980). They observe that the default
distribution of synthetic code-mixed sentences cre-
ated by their method can be quite different from
the distribution of real code-mixed sentences in
terms of code-mixing measures. This distribution
gap can be largely bridged by post-processing the
generated code-mixed sentences by binning them
into switch point fraction bins and appropriately
sampling from these bins. However, the method
depends on availability of a word alignment model,
which can be erroneous for distant languages (e.g.,
Hindi and Chinese) (Gupta et al., 2020). Winata
et al. (2019) show that a Seq2Seq model with a
copy mechanism can be trained to consume paral-
lel monolingual data (concatenated) as input and
produce code-mixed data as output, that is distri-
butionally similar to real code-mixed data. Their
method needs an external NMT system to obtain
monolingual fragment from code-switched text and
is expensive to scale to more language pairs. Garg
et al. (2018) introduces a novel RNN unit for an
RNN based language model that includes separate
components to focus on each language in code-
switched text. They utilize training data gener-
ated from SeqGAN along with syntactic features
(e.g., Part-of-Speech tags, Brown word clusters,
language ID feature) to train their RNN based lan-
guage model. Their method involves added cost
to train SeqGAN model and expensive to scale to
more language pairs.

Samanta et al. (2019) propose a two-level hierar-
chical variational autoencoder that models syntac-
tic signals in the lower layer and language switch-
ing signals in the upper layer. Their model can
leverage modest real code-switched text and large
monolingual text to generate large amounts of code-
switched text along with its language at token level.
The code-mixed data generated by their model
seems syntactically valid, yet distributionally dif-
ferent from real code-mixed data and their model is
harder to scale for large training data. Gupta et al.
(2020) proposes a two-phase approach: (i) creation
of synthetic code-mixed sentences from monolin-
gual bitexts (English being one of the languages) by

replacing aligned named entities and noun phrases
from English; and (ii) training a Seq2Seq model
to take English sentence as input and produce the
code-mixed sentences created in the first phase.
Their approach depends on the availability of a
word alignment tool, a part-of-speech tagger, and
knowledge of what constituents to replace in order
to create a code-mixed sentence. By contrast, our
proposed method based on bilingual word embed-
dings to generate code-mixed data does not require
external software such as a word alignment tool,
part-of-speech tagger, or constituency parser. Rizvi
et al. (2021) develops the toolkit for code-mixed
data generation for a given language pair using two
linguistic theories: equivalence constraint (code-
mixing following the grammatical structure of both
the languages) and matrix language theory (Mc-
Clure, 1995) (code-mixing by fixing a language
that lends grammatical structure while other lan-
guage lends its vocabulary). For comparison, we
use this tool to implement the code-mixed data
generation method based on equivalence constraint
theory.

2.2 Code-Mixed MT

Building MT systems involving code-mixed lan-
guage is a less researched area. Existing MT sys-
tems trained on monolingual data fail to translate
code-mixed language such as from Hinglish to
English (Dhar et al., 2018; Srivastava and Singh,
2020). Given that neural MT systems require large
training data, Dhar et al. (2018) collects a parallel
corpus of 6, 096 Hinglish-English bitexts. They
propose a machine translation pipeline where they
first identify the languages involved in the code-
mixed sentence, determine the matrix language,
translate the longest word sequence belonging to
the embedded language to the matrix language, and
then translate the resulting sentence into the target
language. The last two steps are performed by
monolingual translation systems trained to trans-
late embedded language to matrix language and
matrix language to target language respectively.
Their proposed pipeline improves the performance
of Google and Bing translation systems. Srivastava
and Singh (2020) collect a large parallel corpus
(called PHINC) of 13, 738 Hinglish-English bitexts
that they claim is topically diverse and has better an-
notation quality than the corpus collected by Dhar
et al. (2018). They propose a translation pipeline
where they perform token level language identifica-

38

tion and translate select phrases involving mostly
Hindi to English using a monolingual translation
system, while keeping the rest of phrases intact.
This proposed pipeline outperforms Google and
Bing systems on the PHINC dataset. For our work,
we make use of the PHINC dataset by adapting
the text by removing mentions, hashtags, emojis,
emoticons as well as non-meaning bearing con-
stituents such as URLs.

2.3 Multilingual Pretrained Models

Neural models pretrained on monolingual data us-
ing a self-supervised objective such as BERT (De-
vlin et al., 2019), BART (Lewis et al., 2020), and
T5 (Raffel et al., 2020) have become integral to
NLP systems as they serve as a good starting point
for building SOTA models for diverse monolingual
tasks. Recently, there is increasing attention to pre-
training neural models on multilingual data, result-
ing in models such as mBERT (Devlin et al., 2019),
XLM (Conneau et al., 2019), mBART (Liu et al.,
2020) and mT5 (Xue et al., 2021). Especially, gen-
erative multilingual models such as mBART (Liu
et al., 2020) and mT5 (Xue et al., 2021) can be
utilized directly without additional neural network
components to solve summarization, MT, and other
natural language generation tasks. These gener-
ative models are trained using a self-supervised
pretraining objective based on span-corruption ob-
jective (mBART and mT5) and sentence shuffling
objective (mBART). Training data for these models
are prepared by concatenating monolingual texts
from multiple languages (e.g., 25 for mBART, 107
for mT5). It is not clear how much code-mixed data
these models have seen during pretraining, making
it an important question to investigate how they fare
in processing text in varieties such as Hinglish. In
this work, we target this question by exploring the
challenges of applying one of these models (mT5)
for the English to Hinglish translation task.

3 Shared Task

The goal of the shared task is to encourage MT
involving code-mixing. We focus on translating
English to Hinglish. A sentence in Hinglish may
contain English tokens and roman Hindi tokens, as
shown in Figure 1. The organizers provide 8, 060,
942 and 960 examples for training, validation, and
test respectively.

4 Our Approach

Our approach to the English-Hinglish MT task is
simple. We first identify the best text-to-text Trans-
former model on the validation set and follow a cur-
riculum learning procedure to finetune the model
for the downstream task. The curriculum learn-
ing procedure works such that we first finetune
the model using synthetic code-mixed data from
our generation method, then further finetune on the
gold code-mixed data. This training recipe has been
explored previously by Choudhury et al. (2017) and
Pratapa et al. (2018) to build code-mixed language
models. Curriculum learning itself has been ex-
plored previously for different NLP tasks such as
parsing (Spitkovsky et al., 2010) and language mod-
eling (Graves et al., 2017). We now present our
proposed method to generate synthetic code-mixed
text for a given language pair.

For our method, we assume having ac-
cess to large amounts of bitext from a given
pair of languages (LG1 and LG2) for which
we need to generate code-mixed data. Let
Bi = {xi, yi} denote the bitext data, where
xi and yi correspond to sentences in LG1 and
LG2, respectively. Let ngrams(n, xi, yi) de-
note the set of unique n-grams in xi and
yi. Let cumulative-ngrams(n, xi, yi) =
∪j=n
j=1ngrams(j, xi, yi) denote the cumulative set

of unique n-grams in the set of pairs xi and yi.
We shuffle the n-grams in the cumulative set and
create a “shuffled” code-mixed sentence by con-
catenating the shuffled set with n-grams separated
by a space. For example, let LG1 denote En-
glish and LG2 denote Hindi (assuming Roman
script for illustration). A sample bitext instance
Bi can be “I’ve never seen it” (xi) and “maine
ye kabhi nah dekhi” (yi). Set of unique 1-grams
will be {“I’ve”, “never”, “seen”, “it”, “maine”,
“ye”, “kabhi”, “nah”, “dekhi”} (ngrams(1, xi, yi),
assuming a whitespace tokenizer for simplic-
ity). Then, cumulative-ngrams(2, xi, yi) cor-
respond to {“I’ve”, “never”, “seen”, “it”, “maine”,
“ye”, “kabhi”, “nah”, “dekhi”, “I’ve never”, “never
seen”, “seen it”, “maine ye”, “ye kabhi”, “kabhi
nah”, “nah dekhi”}. A shuffled code-mixed sen-
tence can be, “I’ve ye_kabhi never seen_it seen
never_seen it kabhi_nah I’ve_never maine_ye ye
kabhi nah dekhi maine nah_dekhi”. We create one
shuffled code-mixed sentence per bitext instance,
thereby creating a shuffled code-mixed corpus. We
train a word2vec model on this shuffled code-mixed

39

corpus to learn embeddings for n-grams in both
languages. The resulting word embeddings seem
cross-lingually aligned (based on manual inspec-
tion), thereby allowing us to do n-gram translation
from one language to another language. For exam-
ple, nearest English neighbor of a Hindi 1-gram
“nah” can be “never”.

Once the word embeddings are learned, we can
create a code-mixed sentence for the given lan-
guages: LG1 and LG2. We first find the n-grams
in xi ∈ LG1 and then sort all the n-grams by co-
sine similarity of the n-gram with its most simi-
lar n-gram in LG2. Let num-substitutions
denote the number of substitutions performed to
convert xi to a code-mixed sentence. We pick one
n-gram at a time from the sorted list and replace
all occurrences of that n-gram with its top n-gram
belonging to language LG2 based on word embed-
dings. We continue this substitution process until
we exhaust the num-substitutions.

For our machine translation task, we assume
LG1 and LG2 to be English and Hindi (native)
respectively. 1 We feed the OPUS corpus 2 con-
taining 17.2M English-Hindi bitexts (Hindi in na-
tive script) as input to the algorithm that outputs
English-Hinglish code-mixed parallel data.

5 Experiments

In this section, we first discuss how we choose a
text-to-text Transformer model from available mod-
els and then introduce our five baseline methods.

5.1 Choosing a Text-to-Text Transformer

Multilingual encoder-decoder models such as
mT5 (Xue et al., 2021)3 and mBART (Liu et al.,
2020)4 are suited to the MT task, and already cover
both English and Hindi. It is not clear, however,
how these models will perform on a task involving
code-mixing at the target side such as ours (where
we need to output Hinglish). For this reason, we
first explore the potential of these two models on
the code-mixed translation task to select the best
model among these two. Once we identify the best
model, we use it as the basis for further experiments
as we will explain in Section 5.3. For both mT5

1We can assume LG1 and LG2 to be Hindi and English
respectively, but we leave this exploration for future.

2https://opus.nlpl.eu/
3https://github.com/google-research/

multilingual-t5
4https://github.com/pytorch/fairseq/

tree/master/examples/mbart

cs method (hyper.) Valid Test
Romanization
IIT-B (100K) 14.27 12.95
IIT-B (250K) 14.74 12.75
IIT-B (500K) 14.12 12.46
OPUS (100K) 14.67 12.62
OPUS (250K) 14.57 12.71
Paraphrasing
Para (1) 14.39 12.72
Para (2) 14.4 12.62
Para (3) 15.07 12.63
Backtranslation
Forward model 14.07 12.16
Backward model 14.51 13.03
Social media
PHINC 14.71 12.68
CMDR (ours)
CMDR-unigram 14.6 12.69
CMDR-bigram 14.58 12.4

Table 2: Performance in BLEU of mT5 model fine-
tuned using curriculum learning — finetuning on one
of the different code-mixed data generation method
followed by finetuning on gold data. CMDR: Code-
Mixing from Distributed Representations refers to our
proposed method. Note that we did not study the
method based on equivalence constraint theory in this
experiment. For CMDR, we perform n-gram transla-
tion of Hindi from native to roman script.

and mBART, we use the implementation provided
by the HuggingFace library (Wolf et al., 2020) with
the default settings for all hyperparameters except
the maximum number of training epochs, which
we choose based on the validation set.

0 20 40 60 80 100
epoch

0

2

4

6

8

10

12

14

BLE
U

mBART
mT5

Figure 1: Validation BLEU of mBART and mT5 model
on 541 randomly picked examples from the official
training set after deduplication, while the rest of the
7000 examples are used for training.

Data Splits. For this set of experiments, we
use “custom” splits using the official shared task
training data after deduplication5 and shuffling, as
follows: 7, 000 examples for training set and 541
examples for validation set. For testing test, we
use the official validation data (n=942 examples).
We finetune both mT5 and mBART on the custom

5Deduplication is done based on exact overlap of source
and target text.

40

split, and show results in Figure 1. We observe that
mBART converges quickly within 5 epochs, while
mT5 model takes ∼ 46 epochs for convergence.
Importantly, the best validation performance of
13.95 BLEU is obtained by the mT5 model, which
helped us choose mT5 as the backbone model to
build our final MT system. For subsequent experi-
ments, we choose 50 as the maximum number of
epochs to finetune the mT5 model. We now in-
troduce our baseline code-mixing data generation
methods.

5.2 Baseline Code-Mixing Generation
Methods

We experiment with five different baseline meth-
ods to generate English-Hinglish bitexts that can
be used in the first stage of finetuning. We now
describe each of these methods.

5.2.1 Monolingual Target Romanization
In this method, we focus on creating monolingual
bitexts by taking the Hindi sentence from paral-
lel English-Hindi data and changing the script of
Hindi from native script (Devanagari) to Roman
script while keeping the English sentence intact.
Although the resulting Hindi sentence is monolin-
gual, the generated bitexts can help mT5 model to
learn the semantics of Romanized Hindi language
(mT5 model might be pretrained on native Hindi),
along with the relationships between English and
romanized Hindi language. To this end, we exploit
two large parallel data sources for English-Hindi
pairs (Hindi in native script) — IIT Bombay Par-
allel corpus (Kunchukuttan et al., 2018) (1.49M
bitexts) and OPUS corpus (17.2M bitexts). We uti-
lize the Aksharamukha tool to convert native Hindi
to romanized Hindi.6

5.2.2 Monolingual Source Paraphrasing
Here, we paraphrase each English source sentence
in the gold data to create a new training exam-
ple, while keeping the target Hinglish sentence
intact. Since good paraphrases can typically re-
tain the meaning of the original sentence although
the form can be different, we hypothesize the re-
sulting bitext can improve the robustness of our
translation system. To generate paraphrases, we
use the T5BASE (Raffel et al., 2020) model fine-
tuned on paraphrases from diverse English sources.
For our experiments, we use n paraphrases of each
source sentence, with n chosen from the set {1,2,3}.

6https://aksharamukha.appspot.com

Details about our paraphrasing model are in Ap-
pendix A.1.

5.2.3 Backtranslation
We also use the traditional backtranslation pipeline
to generate more data for our task. Specifically, we
create two models: forward model that is obtained
by finetuning the mT5 model on English as source
and Hinglish as target, backward model that is ob-
tained by finetuning mT5 on Hinglish as source
and English as target, on the gold training data in
both cases. For each gold bitext, the process in-
volves two steps: forward model inference, where
the gold English sentence is fed to the forward
model that generates the intermediate Hinglish sen-
tence; backward model inference, where the inter-
mediate Hinglish sentence is fed to the backward
model that generates the final English sentence.
The new bitext is obtained by pairing up the final
English sentence with the gold Hinglish sentence
(which is parallel to the English fed to the forward
model as source). This method can be treated as
an alternative method to creating paraphrases of an
English sentence.

5.2.4 Social Media Adaptation
We adapt a publicly available English-Hinglish so-
cial media dataset, PHINC (Srivastava and Singh,
2020), to our task. PHINC consists of 13, 738 man-
ually annotated English-Hinglish code-mixed sen-
tences, mainly sourced from social media platforms
such as Twitter and Facebook. It covers a wide
range of topics (such as sports and politics) and has
high quality text (e.g., it handles spelling variations
and filters abusive and ambiguous sentences). We
perform post-processing on PHINC by removing
tokens particular to the social media context such as
hashtags, mentions, emojis, emoticons and URLs.
We use the resulting, adapted, dataset to finetune
mT5 for the first stage (as explained in Section 4).

5.2.5 Equivalence Constraint Theory
This method generates code-mixed data based on
equivalence constraint theory (EC), as originally
proposed by Pratapa et al. (2018). The method
works by producing parse trees for English-Hindi
sentence pair and replaces common nodes between
the two trees based on the EC theory. We use the
implementation provided by the GCM tool (Rizvi
et al., 2021). We feed the English-Hindi bitexts
(Hindi in native script) from the OPUS corpus to
generate English-Hinglish (Hindi in native script)

41

parallel data. We now describe our results with
mT5 on our custom splits.

5.3 Performance With mT5

As briefly introduced earlier, we finetune the mT5
model using curriculum learning where we have
two stages. In stage one, we finetune one of the
code-mixed data generation methods. We follow
that by stage two where we finetune on the gold
code-mixed data (official shared task training data).
Also, for stage one, to cap GPU hours with the
large synthetic code-mixed data, we experiment
with a maximum of 5 epochs. For the stage two,
where we have smaller amount of gold data, we
experiment with 50 as the maximum number of
epochs choosing the best epoch on the validation
set.

Table 2 displays the validation and the test per-
formance of mT5 finetuned using curriculum learn-
ing. 7 For romanization of monolingual target
method, as the Table shows, more data does not
strictly improve validation (nor test) performance.
That is, there seems to be a ‘sweet spot’ after which
quality deteriorates with noise. The behavior is sim-
ilar for the models exploiting paraphrases of the
source monolingual English data: Adding more
paraphrases for a single gold instance can lead to
overfitting of the model, as noticed by consistent
degradation in test performance. For backtransla-
tion, we experiment with two variants: forward
model where predictions (Hinglish) from the for-
ward model is paired up with English sentence
from the gold, backward model which corresponds
to the traditional backtranslation bitext. Perfor-
mance of the backward model is consistently bet-
ter on both the validation and the test set. For
the social media adaptation method, mT5 achieves
validation performance that is better than any of
the methods based on romanization or backtrans-
lation. For our proposed method based on code-
mixing from bilingual distributed representations
(CMDR), we experiment with different values of
num-substitutions and change the script of
replaced Hindi words from native to roman script
using the Aksharamukha tool. Manual inspection
of the data reveals that script conversion at word
level is noisy due to lack of sentential context. This
might lead to decline in the performance as our
method makes more substitutions. Nevertheless,

7The best epoch for each stage in the pipeline is displayed
in Appendix B.

English (Gold): And they grow apart. She is the protector of
the Moors forest.
Hinglish (Prediction): Aur wo apart grow karte hai. Wo
Moors forest ka (ki) protector hai.
English (Gold): I watched it at least twice.. it was that good.
I love female superheros
Hinglish (Prediction): Maine ise kam se kam ek (do)
baar dekha hai. Ye itni achi thi. Mujhe female superheros
pasand hai.
English (Gold): I loved the story & how true they made it
in how teen girls act but I honestly don’t know why I didn’t
rate it highly as all the right ingredients were there. I cannot
believe it was 2004 it was released though, 14 years ago!
Hinglish (Prediction): mujhe story bahut pasand aaya aur
teen girls ka act kaise hota lekin main honestly nahi janta
kyon ki main ise highly rate nahi kar raha tha kyunki sahi
ingredients wahan they. mujhe yakin nahi hota ki 2004 mein
release huyi thi, 14 saal pehle!

Table 3: Translations of our proposed system that uses
native script and 3 as num-substitutions. Errors
in translations are highligthed in red color, with their
the right translation in paranthesis and highlighted in
green color.

our proposed method, simple as it is, leads to re-
sults competitive with any of the other methods.

5.4 Qualitative Analysis

We manually inspect translations from our pro-
posed system that uses native script and 3 as
num-substitutions on 25 randomly picked
examples from the official test set. 64% of the
translations are correct, while 24% and 12% of
the translations have grammatical error (e.g., in-
correct gender) and semantic errors (e.g., factual
inconsistency) respectively. 12% of the translations
exactly match with the source. Few of these trans-
lations are shown in Table 3. The first translation
has grammatical gender error, as it contains male
posessive noun, ‘ka’ (instead of female possessive
noun, ‘ki’). The second translation has semantic
error, where the number of times that the movie has
been watched is incorrectly translated as one time
(‘ek’) when the source mentions it as two (‘do’)
times. The third example is long (43 words), which
our system translates without errors.

6 Official Results

In this section, we describe the official test per-
formance obtained by our models. First, we ex-
periment with mT5 model finetuned using promis-
ing code-mixing methods identified in our previ-
ous experiments (see Section 5.3). The best per-
forming baseline method is based on equivalence
constraint theory for 100K examples and yields a

42

cs method BLEU
baseline (mBART model) 11.00
LinCE leaderboard (only best results)
LTRC Team 12.22
IITP-MT Team 10.09
CMMTOne Team 2.58
Romanization
OPUS 12.38
Paraphrasing
Para 12.1
Backtranslation
Backward model 11.47
Social media
PHINC 11.9
Equivalence constraint theory
ECT (100K) 12.45
CMDR (ours)
CMDR-unigram (roman) 12.25
CMDR-bigram (native) 12.63
CMDR-bigram (roman) 12.08
CMDR-trigram (native) 12.67
CMDR-trigram (roman) 12.05
Method Combinations
CMDR-unigram (roman) + PHINC 11.58
ECT (100K) + CMDR-trigram (native) 12.27

Table 4: Official test performance of mT5 model fine-
tuned using curriculum learning — finetuning on one of
the different code-mixed data generation method (max.
epochs is 5) followed by finetuning on concatenation of
gold training data and gold validation data (leaving out
200 examples for validation) (max. epochs is 50)

BLEU score of 12.45. For the proposed CMDR
method, we experiment not only with the value for
num-substitutions, but also the script type.
Surprisingly, the best combination for our proposed
method is based on maximum substitutions of 3,
sticking to the original native script, and yields the
highest BLEU score of 12.67. The variants of our
proposed method that romanizes the replacement n-
gram consistently perform poorly, which confirms
our observation that n-gram level romanization is
deprived of sentential context and is prone to errors.

7 Discussion

The lessons learned in this shared task can be sum-
marized as follows.
Similar Text-to-Text Models. Off-the-shelf mT5
and mBART models perform similarly, with mT5 be-
ing slightly better in our experiments (for English-
Hinglish MT). A down side of mT5 is that it takes
many more epochs than mBART to converge. In
the future, it will be interesting to explore recent ex-
tensions of mBART8, which are already finetuned

8These are mbart-large-50-many-to-many-mmt,
mbart-large-50-one-to-many-mmt, and
mbart-large-50-many-to-one-mmt.

for multilingual translation. These extensions in-
volve training on English-Hindi (native) bitexts,
and so can act as an interesting zero-shot transla-
tion baseline without further finetuning. They may
also serve as a better baseline when finetuned using
the curriculum learning approach adopted in our
work.
Code-Mixing from Distributed Representa-
tions is Useful. Our proposed code-mixed data
generation method based on bilingual word embed-
dings can be exploited by mT5 model to achieve
the state-of-the-art translation performance, espe-
cially when the number of substitutions is high
and the script remains in native form. It will be
interesting to see the sweet spot for the number of
substitutions, as too low value can result in very
less code-mixing while too high value can result in
more code-mixing along with more noise (possibly
grammatically incorrect and unnatural to bilingual
speaker).
Combinations of Code-Mixed Data not Ideal.
Combining code-mixed generations from two meth-
ods likely introduces more noise and does not im-
prove the performance of the mT5 model compared
to performance obtained using generations from
individual method, as seen in the ‘Misc.’ section of
Table 4. It might be interesting to explore more than
two stages of curriculum learning, where the mT5
model is successively finetuned on code-mixed data
generated using different methods.

8 Conclusion

We proposed an MT pipeline for translating
between English and Hinglish. We test the utility
of existing pretrained language models on the task
and propose a simple, dependency-free, method
for generating synthetic code-mixed text from
bilingual distributed representations of words
and phrases. Comparing our proposed method to
five baseline methods, we show that our method
achieves competitively. The method results in
best translation performance on the shared task
blind test data, placing us first in the official
competition. In the future, we plan to (i) scale up
the size of code-mixed data, (ii) experiment with
different domains of English-Hindi bitexts such as
Twitter, (iii) experiment with recent extensions of
mBART, and (iv) assess the generalizability of our
proposed code-mixing method to other NLP tasks
such as question answering and dialogue modeling.

43

Acknowledgements

We gratefully acknowledges support from the
Natural Sciences and Engineering Research
Council of Canada, the Social Sciences and Hu-
manities Research Council of Canada, Canadian
Foundation for Innovation, Compute Canada
(www.computecanada.ca), and UBC ARC-
Sockeye (https://doi.org/10.14288/
SOCKEYE).

References
Muhammad Abdul-Mageed, Chiyu Zhang, Ab-

delRahim Elmadany, and Lyle Ungar. 2020.
Micro-dialect identification in diaglossic and code-
switched environments. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5855–5876.

Monojit Choudhury, Kalika Bali, Sunayana Sitaram,
and Ashutosh Baheti. 2017. Curriculum design for
code-switching: Experiments with language iden-
tification and language modeling with deep neu-
ral networks. In Proceedings of the 14th Interna-
tional Conference on Natural Language Processing
(ICON-2017), pages 65–74, Kolkata, India. NLP As-
sociation of India.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Mathias Creutz. 2018. Open subtitles paraphrase
corpus for six languages. arXiv preprint
arXiv:1809.06142.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivastava.
2018. Enabling code-mixed translation: Parallel cor-
pus creation and MT augmentation approach. In
Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Saurabh Garg, Tanmay Parekh, and Preethi Jyothi.
2018. Code-switched language models using dual
RNNs and same-source pretraining. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3078–3083,

Brussels, Belgium. Association for Computational
Linguistics.

Alex Graves, Marc G. Bellemare, Jacob Menick, Remi
Munos, and Koray Kavukcuoglu. 2017. Automated
curriculum learning for neural networks.

John J. Gumperz. 1982. Discourse Strategies. Studies
in Interactional Sociolinguistics. Cambridge Univer-
sity Press.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2267–
2280, Online. Association for Computational Lin-
guistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The Curious Case of Neural
Text Degeneration. In International Conference on
Learning Representations.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1224–1234, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual Denoising
Pre-training for Neural Machine Translation.

Erica McClure. 1995. Duelling languages: Grammat-
ical structure in codeswitching. Studies in Second
Language Acquisition, 17(1):117–118.

Shana Poplack. 1980. Sometimes i’ll start a sentence
in spanish y termino en espaÑol: toward a typology
of code-switching. 18(7-8):581–618.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In

44

Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja
Ganu, Monojit Choudhury, and Sunayana Sitaram.
2021. GCM: A toolkit for generating synthetic
code-mixed text. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: System Demonstra-
tions, pages 205–211, Online. Association for Com-
putational Linguistics.

Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti. 2019.
A deep generative model for code-switched text.
CoRR, abs/1906.08972.

Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
ishna Rallabandi, and Alan W. Black. 2019. A sur-
vey of code-switched speech and language process-
ing. CoRR, abs/1904.00784.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010. From baby steps to leapfrog: How
“less is more” in unsupervised dependency parsing.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 751–759, Los Angeles, California. Associa-
tion for Computational Linguistics.

Vivek Srivastava and Mayank Singh. 2020. PHINC:
A parallel Hinglish social media code-mixed cor-
pus for machine translation. In Proceedings of the
Sixth Workshop on Noisy User-generated Text (W-
NUT 2020), pages 41–49, Online. Association for
Computational Linguistics.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280, Hong Kong, China.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:

System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Wei Xu, Chris Callison-Burch, and Bill Dolan. 2015.
SemEval-2015 task 1: Paraphrase and semantic sim-
ilarity in Twitter (PIT). In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval 2015), pages 1–11, Denver, Colorado. Asso-
ciation for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mt5: A massively
multilingual pre-trained text-to-text transformer.

Appendix

A Baseline Code-Mixing Generation
Methods

A.1 Monolingual Source Paraphrasing
To generate paraphrases, we use the T5BASE (Raffel
et al., 2020) model finetuned on paraphrases from
diverse English sources: paraphrase and semantic
similarity in Twitter shared task (PIT-2015) (Xu
et al., 2015), LanguageNet (tweet) (Lan et al.,
2017), Opusparcus (Creutz, 2018) (video subti-
tle), and Quora question pairs (Q&A website). 9

For all datasets excluding Quora question pairs,
we keep sentence pairs with a semantic similarity
score ≥ 70%. We merge all the datasets, split the
resulting data into training, validation, and testing
(80%, 10%, and 10%). The T5 model is finetuned
on the training split for 20 epochs with constant
learning rate of 3e−4. Given an English sentence
to paraphrase, the finetuned model uses top-p sam-
pling (Holtzman et al., 2020) during inference to
generate 10 diverse paraphrases. We pick relevant
paraphrases for a given sentence by ranking all
the generated paraphrases based on the semantic
similarity score with the original English sentence
and discarding those paraphrases whose semantic
similarity score ≥ 95%.

B Performance With mT5 On Custom
Splits

Table 5 presents the performance of our proposed
system on custom splits, along with best epoch for
each stage in the pipeline.

9https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

45

cs method (hyper.) S1 epoch S2 epoch Valid Test
Romanization
IIT-B (100K) 3 50 14.27 12.95
IIT-B (250K) 5 47 14.74 12.75
IIT-B (500K) 3 46 14.12 12.46
OPUS (100K) 3 43 14.67 12.62
OPUS (250K) 3 50 14.57 12.71
Paraphrasing
Para (1) 5 43 14.39 12.72
Para (2) 5 43 14.4 12.62
Para (3) 5 44 15.07 12.63
Backtranslation
Forward model 3 37 14.07 12.16
Backward model 3 36 14.51 13.03
Social media
PHINC 5 29 14.71 12.68
CMDR (ours)
CMDR-unigram 3 48 14.6 12.69
CMDR-bigram 5 42 14.58 12.4

Table 5: Performance in BLEU of mT5 model finetuned using curriculum learning — finetuning on one of the
different code-mixed data generation method (max. epochs is 5) followed by finetuning on gold data (max. epochs
is 50). CMDR: Code-Mixing from Distributed Representations refers to our proposed method. Validation per-
formance is calculated on 541 randomly picked examples from the official training set after deduplication, while
the rest of the 7, 000 examples are used for training. Test performance is calculated on the official validation set.
Note that we did not study the method based on equivalence constraint theory in this experiment. For CMDR, we
perform n-gram translation of Hindi from native to Roman script.

46

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 47–55
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_007

CoMeT: Towards Code-Mixed Translation Using Parallel Monolingual
Sentences

Devansh Gautam† Prashant Kodali† Kshitij Gupta† Anmol Goel††
Manish Shrivastava† Ponnurangam Kumaraguru‡
†International Institute of Information Technology Hyderabad
‡Indraprastha Institute of Information Technology Delhi
††Guru Gobind Singh Indraprastha University, Delhi

{devansh.gautam,prashant.kodali,kshitij.gupta}@research.iiit.ac.in,
agoel00@gmail.com, m.shrivastava@iiit.ac.in, pk@iiitd.ac.in

Abstract
Code-mixed languages are very popular in
multilingual societies around the world, yet
the resources lag behind to enable robust sys-
tems on such languages. A major contribut-
ing factor is the informal nature of these lan-
guages which makes it difficult to collect code-
mixed data. In this paper, we propose our
system for Task 1 of CACLS 20211 to gener-
ate a machine translation system for English
to Hinglish in a supervised setting. Trans-
lating in the given direction can help expand
the set of resources for several tasks by trans-
lating valuable datasets from high resource
languages. We propose to use mBART, a
pre-trained multilingual sequence-to-sequence
model, and fully utilize the pre-training of
the model by transliterating the roman Hindi
words in the code-mixed sentences to Devana-
gri script. We evaluate how expanding the in-
put by concatenating Hindi translations of the
English sentences improves mBART’s perfor-
mance. Our system gives a BLEU score of
12.22 on test set. Further, we perform a de-
tailed error analysis of our proposed systems
and explore the limitations of the provided
dataset and metrics.

1 Introduction

Code-mixing2 is the mixing of two or more lan-
guages where words from different languages are
interleaved with each other in the same conversa-
tion. It is a common phenomenon in multilingual
societies across the globe. In the last decade, due to
the increase in the popularity of social media and
various online messaging platforms, there has been
an increase in various forms of informal writing,
such as emojis, slang, and the usage of code-mixed
languages.

1https://code-switching.github.io/2021
2Code-switching is another term that slightly differs in its

meaning but is often used interchangeably with code-mixing
in the research community. We will also be following the
same convention and use both the terms interchangeably in
our paper.

Due to the informal nature of code-mixing, code-
mixed languages do not follow a prescriptively de-
fined structure, and the structure often varies with
the speaker. Nevertheless, some linguistic con-
straints (Poplack, 1980; Belazi et al., 1994) have
been proposed that attempt to determine how lan-
guages mix with each other.

Given the increasing use of code-mixed lan-
guages by people around the globe, there is a grow-
ing need for research related to code-mixed lan-
guages. A significant challenge to research is that
there are no formal sources like books or news arti-
cles in code-mixed languages, and studies have to
rely on sources like Twitter or messaging platforms.
Another challenge with Hinglish, in particular, is
that there is no standard system of transliteration
for Hindi words, and individuals provide a rough
phonetic transcription of the intended word, which
often varies with individuals.

In this paper, we describe our systems for Task 1
of CALCS 2021, which focuses on translating En-
glish sentences to English-Hindi code-mixed sen-
tences. The code-mixed language is often called
Hinglish. It is commonly used in India because
many bilingual speakers use both Hindi and En-
glish frequently in their personal and professional
lives. The translation systems could be used to aug-
ment datasets for various Hinglish tasks by trans-
lating datasets from English to Hinglish. An ex-
ample of a Hinglish sentence from the provided
dataset (with small modifications) is shown below:

• Hinglish Sentence: Bahut strange choice thi
ye.

• Gloss of Hinglish Sentence: Very [strange
choice] was this.

• English Sentence: This was a very strange
choice.

We propose to fine-tune mBART for the given
task by first transliterating the Hindi words in the

47

https://doi.org/10.26615/978-954-452-056-4_007

target sentences from Roman script to Devanagri
script to utilize its pre-training. We further trans-
late the English input to Hindi using pre-existing
models and show improvements in the translation
using parallel sentences as input to the mBART
model. The code for our systems, along with error
analysis, is public3.

The main contributions of our work are as fol-
lows:

• We explore the effectiveness of fine-tuning
mBART to translate to code-mixed sentences
by utilizing the Hindi pre-training of the
model in Devanagri script. We further explore
the effectiveness of using parallel sentences
as input.

• We propose a normalized BLEU score metric
to better account for the spelling variations in
the code-mixed sentences.

• Along with BLEU scores, we analyze the
code-mixing quality of the reference trans-
lations along with the generated outputs and
propose that for assessing code-mixed transla-
tions, measures of code-mixing should be part
of evaluation and analysis.

The rest of the paper is organized as follows. We
discuss prior work related to code-mixed language
processing, machine translation, and synthetic gen-
eration of code-mixed data. We describe our trans-
lation systems and compare the performances of
our approaches. We discuss the amount of code-
mixing in the translations predicted by our systems
and discuss some issues present in the provided
dataset. We conclude with a direction for future
work and highlight our main findings.

2 Background

Code-mixing occurs when a speaker switches
between two or more languages in the context of
the same conversation. It has become popular in
multilingual societies with the rise of social media
applications and messaging platforms.

In attempts to progress the field of code-mixed
data, several code-switching workshops (Diab et al.,
2014, 2016; Aguilar et al., 2018b) have been orga-
nized in notable conferences. Most of the work-
shops include shared tasks on various of the lan-

3https://github.com/devanshg27/cm_
translation

guage understanding tasks like language identifi-
cation (Solorio et al., 2014; Molina et al., 2016),
NER (Aguilar et al., 2018a; Rao and Devi, 2016),
IR (Roy et al., 2013; Banerjee et al., 2018), PoS tag-
ging (Jamatia et al., 2016), sentiment analysis (Pa-
tra et al., 2018; Patwa et al., 2020), and question
answering (Chandu et al., 2018).

Although these workshops have gained traction,
the field lacks standard datasets to build robust
systems. The small size of the datasets is a major
factor that limits the scope of code-mixed systems.

Machine Translation refers to the use of soft-
ware to translate text from one language to another.
In the current state of globalization, translation
systems have widespread applications and are con-
sequently an active area of research.

Neural machine translation has gained popularity
only in the last decade, while earlier works focused
on statistical or rule-based approaches. Kalchbren-
ner and Blunsom (2013) first proposed a DNN
model for translation, following which transformer-
based approaches (Vaswani et al., 2017) have taken
the stage. Some approaches utilize multilingual
pre-training (Song et al., 2019; Conneau and Lam-
ple, 2019; Edunov et al., 2019; Liu et al., 2020);
however, these works focus only on monolingual
language pairs.

Although a large number of multilingual speak-
ers in a highly populous country like India use
English-Hindi code-mixed language, only a few
studies (Srivastava and Singh, 2020; Singh and
Solorio, 2018; Dhar et al., 2018) have attempted
the problem. Enabling translation systems in the
following pair can bridge the communication gap
between several people and further improve the
state of globalization in the world.

Synthetic code-mixed data generation is a plau-
sible option to build resources for code-mixed lan-
guage research and is a very similar task to trans-
lation. While translation focuses on retaining the
meaning of the source sentence, generation is a
simpler task requiring focus only on the quality of
the synthetic data generated.

Pratapa et al. (2018) started by exploring linguis-
tic theories to generate code-mixed data. Later
works attempt the problem using several ap-
proaches including Generative Adversarial Net-
works (Chang et al., 2019), an encoder-decoder
framework (Gupta et al., 2020), pointer-generator
networks (Winata et al., 2019), and a two-level

48

Train Valid Test

of sentences 8,060 942 960
of tokens in source sentences 98,080 12,275 12,557
of tokens in target sentences 101,752 12,611 -
of Hindi tokens in target sentences 68,054 8,310 -
of English tokens in target sentences 21,502 2,767 -
of ‘Other’ tokens in target sentences 12,196 1,534 -

Table 1: The statistics of the dataset. We use the lan-
guage tags predicted by the CSNLI library4. Since the
target sentences of the test set are not public, we do not
provide its statistics.

variational autoencoder (Samanta et al., 2019). Re-
cently, Rizvi et al. (2021) released a tool to generate
code-mixed data using parallel sentences as input.

3 System Overview

In this section, we describe our proposed systems
for the task, which use mBART (Liu et al., 2020)
to translate English to Hinglish.

3.1 Data Preparation

We use the dataset provided by the task organizers
for our systems, the statistics of the datasets are
provided in Table 1. Since the target sentences in
the dataset contain Hindi words in Roman script,
we use the CSNLI library4 (Bhat et al., 2017, 2018)
as a preprocessing step. It transliterates the Hindi
words to Devanagari and also performs text normal-
ization. We use the provided train:validation:test
split, which is in the ratio 8:1:1.

3.2 Model

We fine-tune mBART, which is a multilingual
sequence-to-sequence denoising auto-encoder pre-
trained using the BART (Lewis et al., 2020) ob-
jective on large-scale monolingual corpora of 25
languages including English and Hindi. It uses a
standard sequence-to-sequence Transformer archi-
tecture (Vaswani et al., 2017), with 12 encoder and
decoder layers each and a model dimension of 1024
on 16 heads resulting in ∼680 million parameters.
To train our systems efficiently, we prune mBART’s
vocabulary by removing the tokens which are not
present in the provided dataset or the dataset re-
leased by Kunchukuttan et al. (2018) which con-
tains 1,612,709 parallel sentences for English and
Hindi.

We compare the following two strategies for fine-
tuning mBART:

4https://github.com/irshadbhat/csnli

• mBART-en: We fine-tune mBART on the
train set, feeding the English sentences to the
encoder and decoding Hinglish sentences. We
use beam search with a beam size of 5 for
decoding.

• mBART-hien: We fine-tune mBART on the
train set, feeding the English sentences along
with their parallel Hindi translations to the en-
coder and decoding Hinglish sentences. For
feeding the data to the encoder, we concate-
nate the Hindi translations, followed by a sep-
arator token ‘##’, followed by the English sen-
tence. We use the Google NMT system5 (Wu
et al., 2016) to translate the English source
sentences to Hindi. We again use beam search
with a beam size of 5 for decoding.

3.3 Post-Processing
We transliterate the Hindi words in our predicted
translations from Devanagari to Roman. We use the
following methods to transliterate a given Devana-
gari token (we use the first method which provides
us with the transliteration):

1. When we transliterate the Hindi words in
the target sentences from Roman to Devana-
gari (as discussed in Section 3.1), we store
the most frequent Roman transliteration for
each Hindi word in the train set. If the current
Devanagari token’s transliteration is available,
we use it directly.

2. We use the publicly available Dakshina
Dataset (Roark et al., 2020) which has 25,000
Hindi words in Devanagari script along with
their attested romanizations. If the current
Devanagari token is available in the dataset,
we use the transliteration with the maximum
number of attestations from the dataset.

3. We use the indic-trans library6 (Bhat
et al., 2015) to transliterate the token from
Devanagari to Roman.

4 Experimental Setup

4.1 Implementation
We use the implementation of mBART available
in the fairseq library7 (Ott et al., 2019). We fine-
tune on 4 Nvidia GeForce RTX 2080 Ti GPUs

5https://cloud.google.com/translate
6https://github.com/libindic/

indic-trans
7https://github.com/pytorch/fairseq

49

Model
Validation Set Test Set

BLEU BLEUnormalized BLEU BLEUnormalized

mBART-en 15.3 18.9 12.22 −
mBART-hien 14.6 20.2 11.86 −

Table 2: Performance of our systems on the validation
set and test set of the dataset. Since the target sentences
of the test set are not public, we do not calculate the
scores ourselves. We report the BLEU scores of our
systems on the test set from the official leader board.

with an effective batch size of 1024 tokens per
GPU. We use the Adam optimizer (ε = 10−6, β1 =
0.9, β2 = 0.98) (Kingma and Ba, 2015) with 0.3
dropout, 0.1 attention dropout, 0.2 label smoothing
and polynomial decay learning rate scheduling. We
fine-tune the model for 10,000 steps with 2,500
warm-up steps and a learning rate of 3 ∗ 10−5. We
validate the models for every epoch and select the
best checkpoint based on the best BLEU score on
the validation set. To train our systems efficiently,
we prune mBART’s vocabulary by removing the
tokens which are not present in any of the datasets
mentioned in the previous section.

4.2 Evaluation Metrics

We use the following two evaluation metrics for
comparing our systems:

1. BLEU: The BLEU score (Papineni et al.,
2002) is the official metric used in the
leader board. We calculate the score us-
ing the SacreBLEU library8 (Post, 2018)
after lowercasing and tokenization using
the TweetTokenizer available with the
NLTK library9 (Bird et al., 2009).

2. BLEUnormalized: Instead of calculating the
BLEU scores on the texts where the Hindi
words are transliterated to Roman, we cal-
culate the score on texts where Hindi words
are in Devanagari and English words in Ro-
man. We transliterate the target sentences us-
ing the CSNLI library and we use the out-
puts of our system before performing the
post-processing (Section 3.3). We again use
the SacreBLEU library after lowercasing and
tokenization using the TweetTokenizer
available with the NLTK library.

8https://github.com/mjpost/sacrebleu
9https://www.nltk.org/

Figure 1: Multiple roman spellings for the same Hindi
Word. These spelling variations can cause the BLEU
score to be low, even if the correct Hindi word is pre-
dicted.

5 Results

Table 2 shows the BLEU scores of the outputs gen-
erated by our models described in Section 3.2. In
Hinglish sentences, Hindi tokens are often translit-
erated to roman script, and that results in spelling
variation. Since BLEU score compares token/n-
gram overlap between source and target, lack of
canonical spelling for transliterated words, reduces
BLEU score and can mischaracterize the quality
of translation. To estimate the variety in roman
spellings for a Hindi word, we perform normaliza-
tion by back transliterating the Hindi words in a
code-mixed sentence to Devanagari and aggregated
the number of different spellings for a single De-
vanagari token. Figure 1 shows the extent of this
phenomena in the dataset released as part of this
shared task, and it is evident that there are Hindi
words that have multiple roman spellings. Thus,
even if the model is generating the correct Devana-
gari token, the BLEU scores will be understated
due to the spelling variation in the transliterated
reference sentence. By back-transliterating Hindi
tokens to Devanagari, BLEUnormalized score thus
provides a better representation of translation qual-
ity.

5.1 Error Analysis of Translations of Test set

Since BLEU score primarily look at n-gram over-
laps, it does not provide any insight into the qual-
ity of generated output or the errors therein. To

50

mBART-en mBART-hien

Mistranslated/Partially Translated 28 23
MWE/NER mistranslation 7 4
Morphology/Case Marking/Agreement/Syntax Issues 13 2
No Error 52 71

Table 3: Error Analysis of 100 randomly sampled trans-
lations from test set for both mBART-en and mBART-
hien model

Figure 2: Code Mixing Index(CMI) for the generated
translation of dev and test set .

analyse the quality of translations on the test set,
we randomly sampled 100 sentences (> 10% of
test set) from the outputs generated by the two
models: mBART-en and mBART-hien, and buck-
eted them into various categories. Table 3 shows
the categories of errors and their corresponding
frequency. Mistranslated/partially translated cate-
gory indicates that the generated translation has
no or very less semantic resemblance with the
source sentence. Sentences, where Multi-Word Ex-
pressions/Named Entities are wrongly translated,
is the second category. Morphology/Case Mark-
ing/Agreement/Syntax Issues category indicates
sentences where most of the semantic content is
faithfully captured in the generated output. How-
ever, the errors on a grammatical level render the
output less fluent. mBART-hien makes fewer er-
rors when compared to mBART-en, but that can
possibly be attributed to the fact that this model
generates a higher number of Hindi tokens while
being low in code-mixing quality, and makes lesser
grammatical errors. A more extensive and fine-
grained analysis of these errors will undoubtedly
help improve the models’ characterization, and we
leave it for future improvements.

Avg CMI Score % of Sents.with
CMI = 0

Train Gold 19.4 26.1%
Dev Gold 21.6 19.3%
mBART-en Dev 21.8 19.4%
mBART-hien Dev 16.9 30.0%
mBART-en Test 21.8 20.0%
mBART-hien Test 16.7 31.4%

Table 4: Avg. CMI scores, Percentage of sentences
with CMI = 0. Train Gold and Dev Gold are calculated
on the target sentences given in the dataset. Rest are
calculated on the outputs generated by our models.

Validation Set Test Set

mBART-en

of English tokens 3,282 (25.5%) 3,571 (27.6%)
of Hindi tokens 8,155 (63.4%) 8,062 (62.3%)
of ‘Other’ tokens 1,435 (11.1%) 1,302 (10.1%)

mBART-hien

of English tokens 2,462 (18.5%) 2,519 (18.8%)
of Hindi tokens 9,471 (71.3%) 9,616 (72.0%)
of ‘Other’ tokens 1,356 (10.2%) 1,233 (9.2%)

Table 5: The number of tokens of each language in our
predicted translations. The language tags are based on
the script of the token.

5.2 Code Mixing Quality of generated
translations

In the code-mixed machine translation setting, it is
essential to observe the quality of the code-mixing
in the generated translations. While BLEU scores
indicate how close we are to the target translation
in terms of n-gram overlap, a measure like Code-
Mixing Index (CMI) (Gambäck and Das, 2016)
provides us means to assess if the generated out-
put is a mix of two languages or not. Relying on
just the BLEU score for assessing translations can
misrepresent the quality of translations, as models
could generate monolingual outputs and still have
a basic BLEU score due to n-gram overlap. If a
measure of code mixing intensity, like CMI, is also
part of the evaluation regime, we would be able to
assess the code mixing quality of generated outputs
as well. Figure 2 shows us that the distribution of
CMI for outputs generated by our various models
(mBART-en and mBART-hien) for both validation
and test set.

Figure 2 and Table 4 show that the code mix-
ing quality of the two models is is more or less
similar across the validation and test set. The high

51

Num of Pairs

Meaning of target similar to source 759
Meaning of target distored compared to source 141
Total 900

Table 6: Statistics of the errors in randomly sampled
subset of train + dev.

percentages of sentences having a 0 CMI score
shows that in a lot of sentences, the model does not
actually perform code-mixing. We also find that
even though the outputs generated by the mBART-
hien model have a higher BLEUnormalized score,
the average CMI is lower and the percentage of
sentences with a 0 CMI score is higher. This sug-
gests that mBART-hien produces sentences with
a lower amount of code-mixing. This observation,
we believe, can be attributed to the mBART-hien
model’s propensity to generate a higher percentage
of Hindi words, as shown in Table 5. We also find
that in the train set, more than 20% of the sentences
have a CMI score of 0. Replacing such samples
with sentence pairs with have a higher degree of
code mixing will help train the model to generate
better code mixed outputs. Further analysis us-
ing different measures of code-mixing can provide
deeper insights. We leave this for future work.

5.3 Erroneous Reference Translations in the
dataset

We randomly sampled ∼10% (900 sentence pairs)
of the parallel sentences from the train and valida-
tion set and annotated them for translation errors.
For annotation, we classified the sentence pairs into
one of two classes : 1) Error - semantic content in
the target is distorted as compared to source; 2)
No Error - semantic content of source and target
are similar and the target might have minor errors.
Minor errors in translations that are attributable to
agreement issues, case markers issues, pronoun er-
rors etc were classified into the No Error bucket.
Out of the 900 samples that were manually an-
noatated, 141 samples, i.e 15% of annotated pairs,
had targets whose meaning was distorted as com-
pared to source sentence. One such example is
shown below:

• English Sentence: I think I know the football
player it was based on.

• Hinglish Sentence: Muje lagtha ki yeh foot-
ball player ke baare mein hein.

• Translation of Hinglish Sentence: I thought
that this is about football player.

Table 6 shows the analysis of these annotated
subset. The annotated file with all 900 examples
can be found in our code repository. Filtering such
erroneous examples from training and validation
datasets, and augmenting the dataset with better
quality translations will certainly help in improving
the translation quality.

6 Discussion

In this paper, we presented our approaches for En-
glish to Hinglish translation using mBART. We
analyse our model’s outputs and show that the
translation quality can be improved by including
parallel Hindi translations, along with the English
sentences, while translating English sentences to
Hinglish. We also discuss the limitations of using
BLEU scores for evaluating code-mixed outputs
and propose using BLEUnormalized - a slightly mod-
ified version of BLEU. To understand the code-
mixing quality of the generated translations, we
propose that a code-mixing measure, like CMI,
should also be part of the evaluation process. Along
with the working models, we have analysed the
model’s shortcomings by doing error analysis on
the outputs generated by the models. Further,
we have also presented an analysis on the shared
dataset : percentage of sentences in the dataset
which are not code-mixed, the erroneous reference
translations. Removing such pairs and replacing
them with better samples will help improve the
translation quality of the models.

As part of future work, we would like to improve
our translation quality by augmenting the current
dataset with parallel sentences with a higher degree
of code-mixing and good reference translations.
We would also like to further analyse the nature of
code-mixing in the generated outputs, and study the
possibility of constraining the models to generated
translations with a certain degree of code-mixing.

References
Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona

Diab, Julia Hirschberg, and Thamar Solorio. 2018a.
Named entity recognition on code-switched data:
Overview of the CALCS 2018 shared task. In
Proceedings of the Third Workshop on Compu-
tational Approaches to Linguistic Code-Switching,
pages 138–147, Melbourne, Australia. Association
for Computational Linguistics.

52

Gustavo Aguilar, Fahad AlGhamdi, Victor Soto,
Thamar Solorio, Mona Diab, and Julia Hirschberg,
editors. 2018b. Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching. Association for Computational Linguis-
tics, Melbourne, Australia.

Somnath Banerjee, Kunal Chakma, Sudip Kumar
Naskar, Amitava Das, Paolo Rosso, Sivaji Bandy-
opadhyay, and Monojit Choudhury. 2018. Overview
of the mixed script information retrieval (msir) at
fire-2016. In Text Processing, pages 39–49, Cham.
Springer International Publishing.

Hedi M. Belazi, Edward J. Rubin, and Almeida Jacque-
line Toribio. 1994. Code switching and x-bar theory:
The functional head constraint. Linguistic Inquiry,
25(2):221–237.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2017. Joining hands: Exploiting
monolingual treebanks for parsing of code-mixing
data. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
324–330, Valencia, Spain. Association for Computa-
tional Linguistics.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2018. Universal Dependency parsing
for Hindi-English code-switching. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 987–998, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Irshad Ahmad Bhat, Vandan Mujadia, Aniruddha Tam-
mewar, Riyaz Ahmad Bhat, and Manish Shrivastava.
2015. Iiit-h system submission for fire2014 shared
task on transliterated search. In Proceedings of the
Forum for Information Retrieval Evaluation, FIRE
’14, pages 48–53, New York, NY, USA. ACM.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Khyathi Chandu, Ekaterina Loginova, Vishal Gupta,
Josef van Genabith, Günter Neumann, Manoj Chin-
nakotla, Eric Nyberg, and Alan W. Black. 2018.
Code-mixed question answering challenge: Crowd-
sourcing data and techniques. In Proceedings of
the Third Workshop on Computational Approaches
to Linguistic Code-Switching, pages 29–38, Mel-
bourne, Australia. Association for Computational
Linguistics.

Ching-Ting Chang, Shun-Po Chuang, and Hung-Yi
Lee. 2019. Code-Switching Sentence Generation
by Generative Adversarial Networks and its Appli-
cation to Data Augmentation. In Proc. Interspeech
2019, pages 554–558.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivastava.
2018. Enabling code-mixed translation: Parallel cor-
pus creation and MT augmentation approach. In
Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Mona Diab, Pascale Fung, Mahmoud Ghoneim, Ju-
lia Hirschberg, and Thamar Solorio, editors. 2016.
Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching. Association
for Computational Linguistics, Austin, Texas.

Mona Diab, Julia Hirschberg, Pascale Fung, and
Thamar Solorio, editors. 2014. Proceedings of the
First Workshop on Computational Approaches to
Code Switching. Association for Computational Lin-
guistics, Doha, Qatar.

Sergey Edunov, Alexei Baevski, and Michael Auli.
2019. Pre-trained language model representations
for language generation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4052–4059, Minneapolis, Minnesota.
Association for Computational Linguistics.

Björn Gambäck and Amitava Das. 2016. Comparing
the level of code-switching in corpora. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1850–1855, Portorož, Slovenia. European Language
Resources Association (ELRA).

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2267–
2280, Online. Association for Computational Lin-
guistics.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2016. Collecting and annotating indian social me-
dia code-mixed corpora. In International Confer-
ence on Intelligent Text Processing and Computa-
tional Linguistics, pages 406–417. Springer.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,

53

ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation.

Giovanni Molina, Fahad AlGhamdi, Mahmoud
Ghoneim, Abdelati Hawwari, Nicolas Rey-
Villamizar, Mona Diab, and Thamar Solorio.
2016. Overview for the second shared task on
language identification in code-switched data. In
Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching, pages 40–49,
Austin, Texas. Association for Computational
Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Braja Gopal Patra, Dipankar Das, and Amitava Das.
2018. Sentiment analysis of code-mixed indian lan-
guages: An overview of sail_code-mixed shared task
@icon-2017.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. SemEval-2020 task 9: Overview of senti-
ment analysis of code-mixed tweets. In Proceed-
ings of the Fourteenth Workshop on Semantic Eval-
uation, pages 774–790, Barcelona (online). Interna-
tional Committee for Computational Linguistics.

Shana Poplack. 1980. Sometimes i’ll start a sentence
in spanish y termino en espaÑol: toward a typology
of code-switching 1. Linguistics, 18:581–618.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Pattabhi R. K. Rao and S. Devi. 2016. Cmee-il: Code
mix entity extraction in indian languages from social
media text @ fire 2016 - an overview. In FIRE.

Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja
Ganu, Monojit Choudhury, and Sunayana Sitaram.
2021. GCM: A toolkit for generating synthetic
code-mixed text. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: System Demonstra-
tions, pages 205–211, Online. Association for Com-
putational Linguistics.

Brian Roark, Lawrence Wolf-Sonkin, Christo Kirov,
Sabrina J. Mielke, Cibu Johny, Isin Demirsahin, and
Keith Hall. 2020. Processing South Asian languages
written in the Latin script: the dakshina dataset.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 2413–2423, Mar-
seille, France. European Language Resources Asso-
ciation.

Rishiraj Saha Roy, Monojit Choudhury, Prasenjit Ma-
jumder, and Komal Agarwal. 2013. Overview of
the fire 2013 track on transliterated search. In Post-
Proceedings of the 4th and 5th Workshops of the Fo-
rum for Information Retrieval Evaluation, FIRE ’12
& ’13, New York, NY, USA. Association for Com-
puting Machinery.

Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti. 2019.
A deep generative model for code switched text.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-
19, pages 5175–5181. International Joint Confer-
ences on Artificial Intelligence Organization.

Thoudam Doren Singh and Thamar Solorio. 2018. To-
wards translating mixed-code comments from social
media. In Computational Linguistics and Intelligent
Text Processing, pages 457–468, Cham. Springer In-
ternational Publishing.

Thamar Solorio, Elizabeth Blair, Suraj Mahar-
jan, Steven Bethard, Mona Diab, Mahmoud

54

Ghoneim, Abdelati Hawwari, Fahad AlGhamdi, Ju-
lia Hirschberg, Alison Chang, and Pascale Fung.
2014. Overview for the first shared task on language
identification in code-switched data. In Proceedings
of the First Workshop on Computational Approaches
to Code Switching, pages 62–72, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked sequence to se-
quence pre-training for language generation. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5926–5936. PMLR.

Vivek Srivastava and Mayank Singh. 2020. PHINC:
A parallel Hinglish social media code-mixed cor-
pus for machine translation. In Proceedings of the
Sixth Workshop on Noisy User-generated Text (W-
NUT 2020), pages 41–49, Online. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280, Hong Kong, China.
Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

55

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 56–64
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_008

Investigating Code-Mixed Modern Standard Arabic-Egyptian to English
Machine Translation

El Moatez Billah Nagoudi AbdelRahim Elmadany Muhammad Abdul-Mageed
Natural Language Processing Lab

The University of British Columbia
{moatez.nagoudi,a.elmadany,muhammad.mageed}@ubc.ca

Abstract

Recent progress in neural machine translation
(NMT) has made it possible to translate
successfully between monolingual language
pairs where large parallel data exist, with
pre-trained models improving performance
even further. Although there exists work on
translating in code-mixed settings (where
one of the pairs includes text from two or
more languages), it is still unclear what recent
success in NMT and language modeling
exactly means for translating code-mixed
text. We investigate one such context, namely
MT from code-mixed Modern Standard
Arabic and Egyptian Arabic (MSAEA) into
English. We develop models under different
conditions, employing both (i) standard
end-to-end sequence-to-sequence (S2S)
Transformers trained from scratch and (ii)
pre-trained S2S language models (LMs). We
are able to acquire reasonable performance
using only MSA-EN parallel data with S2S
models trained from scratch. We also find
LMs fine-tuned on data from various Arabic
dialects to help the MSAEA-EN task. Our
work is in the context of the Shared Task on
Machine Translation in Code-Switching. Our
best model achieves 25.72 BLEU, placing us
first on the official shared task evaluation for
MSAEA-EN.

1 Introduction

Recent year have witnessed fast progress in var-
ious areas of natural language processing (NLP),
including machine translation (MT) where neural
approaches have helped boost performance when
translating between pairs with especially large
amounts of parallel data. However, tasks involving
a need to process data from different languages
mixed together remain challenging for all NLP
tasks. This phenomenon of using two or more
languages simultaneously in speech or text is re-
ferred to as code-mixing (Gumperz, 1982) and is

(1) MSAEA . 	àA«Yg. AK
 YÓAg. É 	ª �� 	QK
A« A 	K

@

E
ng

lis
h

Human I want hard work, guys.

GMT I want a rigid job, Jadaan.

S2ST I want a solid job, jadan.

(2) MSAEA .ú	GA�K ùªJ
J.£ ú
æ
��Òë ��Ó ú	G @ ñËA�̄ �èQ�KA¿YË@

E
ng

lis
h

Human
The doctors said I can’t walk

normally again.

GMT
The doctors said that I was not a

normal marginal again.

S2ST
Doctors said I wasn’t a natural

marginality again.

Table 1: Code-mixed Modern Standard Arabic-
Egyptian Arabic (MSAEA) sentences with their En-
glish human translation, Google machine translation
(GMT)1, and translation by a sequence-to-sequence
Transformer model (S2ST) trained from scratch on
55M MSA-English parallel sentences. Green refers
to good translations. Red refers to erroneous transla-
tion.

prevalent in multilingual societies (Sitaram et al.,
2019). Code-mixing is challenging since the space
of possibilities when processing mixed data is vast,
but also because there is not usually sufficient code-
mixed resources to train models on. Nor is it clear
how much code-mixing existing language models
may have seen during pre-training, and so ability
of these language models to transfer knowledge
to downstream code-mixing tasks remain largely
unexplored.

In this work, we investigate translation under a
code-mixing scenario where sequences at source
side are a combination of two varieties of the col-
lection of languages referred to as Arabic. More

1We use Google Translate API https://cloud.
google.com/translate.

56

https://doi.org/10.26615/978-954-452-056-4_008

specifically, we take as our objective translating
between Modern Standard Arabic (MSA) mixed
with Egyptian Arabic (EA) (source; collectively
abbreviated here as MSAEA) into English (target).
Table1 shows two examples of MSAEA sentences
and their human and machine translations. We
highlight problematic translations caused by nix-
ing of Egyptian Arabic with MSA. Through work
related to the shared task, we target the following
three main research questions:

1. How do models trained from scratch on purely
MSA data fare on the code-mixed MSAEA
data (i.e., the zero-shot EA setting)?

2. How do existing language models perform un-
der the code-mixed condition (i.e., MSAEA)?

3. What impact, if any, does exploiting dialec-
tal Arabic (DA) data (i.e., from a range of
dialects) have on the MSAEA code-mixed MT
context?

Our main contributions in this work lie primarily in
answering these three questions. We also develop
powerful models for translating from MSAEA to
English.

The rest of the paper is organized as follows:
Section 2 discusses related work. The shared task
is described in Section 3. Section 4 describes ex-
ternal parallel data we exploit to build our models.
Section 5 presents the proposed MT models. Sec-
tion 6 presents our experiments, and our different
settings. We provide evaluation on Dev data in Sec-
tion 7 and official results in Section 8. We conclude
in Section 9.

2 Related Work

A thread of research on code-mixed MT focuses
on automatically generating synthetic code-mixed
data to improve the downstream task. This includes
attempts to generate linguistically-motivated se-
quences (Pratapa et al., 2018). Some work
leverages sequence-to-sequence (S2S) models
(Winata et al., 2019) to generate code-mixing
exploiting an external neural MT system, while
others (Garg et al., 2018) use a recurrent neural
network along with data generated by a sequence
generative adversarial network (SeqGAN) and
grammatical information such as from a part of
speech tagger to generate code-mixed sequences.
These methods have dependencies and can be

costly to scale beyond one language pair.

Arabic MT. For Arabic, some work has focused
on translating between MSA and Arabic dialects.
For instance, Zbib et al. (2012) studied the
impact of combined dialectal and MSA data on
dialect/MSA to English MT performance. Sajjad
et al. (2013) uses MSA as a pivot language for
translating Arabic dialects into English. Salloum
et al. (2014) investigate the effect of sentence-level
dialect identification and several linguistic features
for MSA/dialect-English translation. Guellil et al.
(2017) propose an neural machine translation
(NMT) system for Arabic dialects using a vanilla
recurrent neural networks (RNN) encoder-decoder
model for translating Algerian Arabic written
in a mixture of Arabizi and Arabic characters
into MSA. Baniata et al. (2018) present an
NMT system to translate Levantine (Jordanian,
Syrian, and Palestinian) and Maghrebi (Algerian,
Moroccan, Tunisia) to MSA, and MSA to English.
Farhan et al. (2020), propose unsupervised
dialectal NMT, where the source dialect is not
represented in training data. This last problem
is referred to as zero-shot MT (Lample et al., 2018).

DA Arabic MT Resources. There are also
efforts to develop dialectal Arabic MT resources.
For example, Meftouh et al. (2015) present
the Parallel Arabic Dialect Corpus (PADIC),2

which is a multi-dialect corpus including MSA,
Algerian, Tunisian, Palestinian, and Syrian.
Recently, Sajjad et al. (2020a) also introduced
AraBench, an evaluation suite for dialectal Arabic
to English MT. AraBench consists of five publicly
available datasets: Arabic-Dialect/English Parallel
Text (APT) (Zbib et al., 2012), Multi-dialectal
Parallel Corpus of Arabic (MDC) (Bouamor et al.,
2014), MADAR Corpus (Bouamor et al., 2018),
Qatari-English speech corpus (Elmahdy et al.,
2014), and the English Bible translated into MSA.3

3 Code-Switching Shared Task

The goal of the shared tasks on machine translation
in code-switching settings4 is to encourage building
MT systems that translate a source sentence into a
target sentence while one of the directions contains

2https://sites.google.com/site/
torjmanepnr/6-corpus

3The United Bible Societies https://www.bible.com
4https://code-switching.github.io/

2021.

2
57

an alternation between two languages (i.e., code-
switching). We note that, in the current paper, we
employ the wider term code-mixing. The shared
task involves two subtasks:

1. Supervised MT. For supervised MT, gold
data are provided to participants for training
and evaluating models that take English as
input and generate Hinglish sequences.

2. Unsupervised MT. In this subtask, the goal
is to develop systems that can generate high
quality translations for multiple language
combinations. These combinations include
Spanish-English to English or Spanish, En-
glish to Spanish-English, Modern Standard
Arabic-Egyptian Arabic (MSAEA) to English
and vice versa. For each pair, only test data
are provided to participants, with no reference
translations.

In the current work, we focus on the unsupervised
MT subtask only. More specifically, we build mod-
els exclusively for MSAEA to English. Our ap-
proach exploits external data to train a variety of
models. We now describe these external datasets.

4 Parallel Datasets

4.1 MSA-English Data
In order to develop Arabic MT models that can
translate efficiently across different text domains,
we make use of a large collection of parallel sen-
tences extracted from the Open Parallel Corpus
(OPUS) (Tiedemann, 2012). OPUS contains more
than 2.7 billion parallel sentences in 90 languages.
To train our models, we extract more than ∼ 61M
sentences MSA-English parallel sentences from
the whole collection. Since OPUS can have noise
and duplicate data, we clean this collection and
remove duplicates before we use it. We now de-
scribe our quality assurance method for cleaning
and deduplication of the data.
Data Quality Assurance. To keep only high qual-
ity parallel sentences, we follow two steps:

1. We run a cross-lingual semantic similarity
model (Yang et al., 2019) on each pair of sen-
tences, keeping only sentences with a bilin-
gual similarity score between 0.30 and 0.99.
This allows us to filter out sentence pairs
whose source and target are identical (i.e.,
similarity score = 1) and those that are not
good translations of one another (i.e., those

Data #Sentences

Bible 62.2K
EUbookshop 1.7K
GlobalVoices 52.6K
Gnome 150

Infopankki 50.8K
KDE4 116.2K
MultiUN 9.8M
News Commentary 90.1K
OpenSubtitles 29.8M
QED 500.9K
Tanzil 187K
Tatoeba 27.3K
TED2013 152.8K
Ubuntu 6K
UN 74.1K
UNPC 20M
Wikipedia 151.1K

Total 61M
Similarity ∈ [0.3 - 0.99] 5.7M
N-gram deduplication (>0.75) 55.2M

Table 2: Parallel datasets extracted from OPUS (Tiede-
mann, 2012). We remove duplicate and identical pairs,
keeping only high quality translations.

with a cross-lingual semantic similarity score
< 0.3).

2. Observing some English sentences in the
source data, we perform an analysis based
on sub-string matching between source and
target, using the word trigram sliding win-
dow method proposed by Barrón-Cedeño and
Rosso (2009) and used in Abdul-Mageed et al.
(2021) to de-duplicate the data splits. In
other words, we compare each sentence in the
source side (i.e., MSA) to the target sentence
(i.e., English). We then inspect all pairs of sen-
tences that match higher than a given thresh-
old, considering thresholds between 90% and
30%. We find that a threshold of > 75%
safely guarantees completely distinct source
and target pairs.

More details about the MSA-English OPUS dataset
before and after our quality assurance, including
deduplication, are provided in Table 2.

3
58

Dataset Egyptian Levantine Gulf

Bouamor et al. (2018) 18K 22K 26K

Elmahdy et al. (2014) − − 14.7K

Zbib et al. (2012) 38K 138K −

Total 56K 160K 40.7K

Table 3: Our parallel DA-English datasets. Gulf com-
prises data from Bouamor et al. (2018), Elmahdy et al.
(2014) , and Zbib et al. (2012).

4.2 Dialectal Arabic-English Data
Several recent works show that MT models trained
on one dialect can be used to improve models tar-
geting other dialects (Farhan et al., 2020; Sajjad
et al., 2020b). For this reason, we exploit several
parallel dialectal Arabic (DA)-English datasets in
order to enhance the MSAEA to English transla-
tion.
DA-English Parallel Corpus. Zbib et al. (2012)
provide 38k Egyptian Arabic (EA)-English and
138k Levantine-English sentences (∼ 3.5 million
tokens of Arabic dialects), collected from online
user groups and dialectal Arabic weblogs. The
authors use crowdsourcing to translate this dataset
into English.
MADAR Corpus. MADAR Bouamor et al.
(2018) is a commissioned dataset where 26 Arabic
native speakers were tasked to translate 2k English
sentences each into their own native dialect. In
addition, Bouamor et al. (2018) translate 10k more
sentences for five selected cities: Beirut, Cairo,
Doha, Cairo, Tunis, and Rabat. The MADAR
dataset also has region-level categorization (i.e.,
Gulf, Levantine, Nile, and Maghrebi). In our work,
we use only the Gulf, Levantine, and Nile (Egyp-
tian) dialects, and exclude Maghrebi.5

Qatari-English Speech Corpus. This parallel cor-
pus comprises 14.7k Qatari-English sentences col-
lected by Elmahdy et al. (2014) from talk-show
programs and Qatari TV series.
More details about all our parallel dialectal-English
datasets are in Table 3.

4.3 Data Splits and Pre-Processing
Data Splits. For our experiments, we split the
MSA and DA data as follows:

5We do not make use of the Maghrebi data due to the
considerable linguistic differences between Maghrebi and the
the Egyptian dialect we target in this work.

MSA. We randomly pick 10k sentences for vali-
dation (MSA-Dev) from MSA parallel data (see
Section 4.1) after cleaning, and we use the rest of
this data (∼ 55.14M) for training (MSA-Train).
DA. For validation (DA-Dev), we randomly pick
6k sentences from the 38k Egyptian-English data
provided by Zbib et al. (2012). We then use the rest
of the data (i.e., ∼ 250.7k) for training (DA-Train).
Pre-Processing. Pre-processing is an important
step for building any MT model as it can sig-
nificantly affect end results (Oudah et al., 2019).
For all our models, we only perform light pre-
processing in order to retain a faithful represen-
tation of the original (naturally occurring) text. We
remove diacritics and replace URLs, user mentions,
and hashtags with the generic string tokens URL,
USER, and HASHTAG respectively. Our second
step for pre-processing is specific to each type of
models we train as we will explain in the respective
sections.

5 MT Models

5.1 From-Scratch Seq2Seq Models

We train our models on the MSA-English parallel
data described in section 4.1 on MSA-Train with
a Transformer (Vaswani et al., 2017) model as im-
plemented in Fairseq (Ott et al., 2019). For that,
we follow Ott et al. (2018) in using 6 blocks for
each of the encoder and decoder parts. We use a
learning rate of 0.25, a dropout of 0.3, and a batch
size 4, 000 tokens. For the optimizer, we use Adam
(Kingma and Ba, 2014) with beta coefficients of 0.9
and 0.99 which control an exponential decay rate
of running averages, with a weight decay of 10−4.
We also apply an inverse square-root learning rate
scheduler with a value of 5e−4 and 4, 000 warm-
up updates. For the loss function, we use label
smoothed cross entropy with a smoothing strength
of 0.1. We run the Moses tokenizer (Koehn et al.,
2007) on our input before passing data to the model.
For vocabulary, we use a joint Byte-Pair Encoding
(BPE) (Sennrich et al., 2015) vocabulary with 64K
split operations for subword segmentation.

5.2 Pre-Trained Seq2Seq Language Models

We also fine-tune two state-of-the-art pre-trained
multlingual generative models, mT5 (Xue et al.,
2020) and mBART (Liu et al., 2020) on DA-Train
for 100 epochs. We use early stopping during fine-
tuning and identify the best model on DA-Dev. We
use the HuggingFace (Wolf et al., 2020) implemen-

4
59

Source: . 	á�
 	̄ �HA 	JJ. Ë @ 	á�
 	̄PA« ��Ó ð Y»

A�J 	K 	á�
 	̄PA« ��Ó

S2ST we don’t know for sure and the girls don’t know finn .

mT5 we can’t make sure and we don’t know where the girls are

mBART we don’t know where to make sure and we don’t know where the girls are

Source:
��
KQË @ ÑêªJ. �K ��Ó ÈðX �éJ
j. ¢ÊJ. Ë @ ñËð ú
«

Q�. Ë @ XAm.�
	' ð ø
 QK
QmÌ'AK. ��Qj�JË @ 	áÓ ù
 ÖÞ�QË @ 	à@ñ 	kB@ 	�̄ñÓ 	¬Q«@ 	QK
A« A 	K @

. é�J¢Ê� ÉÒª�J��

S2ST
i want to know the brothers’ official position on harassment of liberals and nejad al-barai, even the thugs,

countries that are not followed by the president are using his authority and ordering their immediate arrest.

mT5
i want to know the situation of the official brothers from harassment of the silky and najad albarea and

if these pants are not their president the president uses his power and order to arrest them immediately

mBART
i want to know the position of the official brothers from harassment in the army and najad al-bara’y,

even if these are not theirs , the president should use his authority and order to arrest them immediately

Source: “ user : �éËñ 	®�®Ó Ñî�EA 	Kñ 	®J
Ê�K YJ
Ëðð ú
jJ.� 	àA«Yg. AK
 Õæ��®Ë @ A 	K AªÓ hðQK
 ú
×Am× 	áK
 	PðA«.”

S2ST user: there is a need for a lawyer to help the section, jadan sobhi and walid televonas closed .

mT5 user: we want a lawyer to go with us to the section , guys , sobhe and waleed their telephones are closed

mBART « user : we want a lawyer to go with us to the section, oh good morning, and their telephones are closed. »

Source
@ñj. J
K
 AÖÏ 	á�
Òî �DÖÏ @ 	àA ��« , l�'
Qå��� Q�
 	« 	áÓ @ñÊ 	gYK
 é<Ë @ ��Ê 	g ��ª 	® 	JK
 AÓ ð , Õ» Am× ��Ó 	á» AÓ

@ ú

	̄ �HA�Êm.Ì'@ @ðY�®ªJ
K.
! ! ú
G. AJ

	« @ñÒºm�'
 ð Ñëñª	JÖß

S2ST
they hold hearings in places where there are no courts, and what thrives on god’s creation will enter without

permission, because the accused will not prevent them and judge my absence!

mT5
they have sessions in places that are not courts, and god doesn’t allow people to enter without a permit, so that

when they come and prevent them and rule me absence

mBART
they hold meetings in places where there is no courts, and god doesn’t allow people to enter without a permit,

so that when the accused come they stop them and rule them

Table 4: MSA-EA sentences with their English translations using our Models. S2ST: Sequence-to-sequence Trans-
former model trained from scratch. Data samples are extracted from the shared task Test data. Green refers to
good translation. Red refers to problematic translation.

tation of each of these models, with the default
settings for all hyper-parameters.

6 Experiments and Settings

In this section, we describe the different ways we
fine-tune and evaluate our models.

6.1 Zero-Shot Setting

First, we use S2ST model trained on MSA-English
data exclusively to evaluate MSAEA code-mixed
data . While we can refer to this setting as zero-shot,
we note that it is not truly zero-shot in the strict
sense of the word due to the code-mixed nature
of the data (i.e., the data has a mixture of MSA

and EA). Hence, we will refer to this setting as
zero-shot EA.

6.2 Fine-Tuning Setting

Second, we further fine-tune the three models (i.e.,
S2ST, mT5, and mBART) on the DA data described
in Section 4.2. While the downstream shared task
data only involves EA mixed with MSA, we fol-
low Farhan et al. (2020) and Sajjad et al. (2020b)
in fine-tuning on different dialects when targeting
a single downstream dialect (EA in our case). We
will simply refer to this second setting as Fine-
Tuned DA.

5
60

Model Setting Blue

S2ST

Zero Shot EA 8.54

Fine-tuned DA 9.33

Zero Shot EA (true-cased) 11.59

Fine-tuned DA (true-cased) 12.57

mT5
Fine-tuned DA 24.70

Fine-tuned DA (true-cased) 26.35

mBART
Fine-tuned DA 23.80

Fine-tuned DA (true-cased) 26.07

Table 5: Results of models on DA-Dev data. S2ST:
Sequence-to-sequence Transformer model trained from
scratch. We note that in the zero-shot EA setting the
S2ST model is trained on 55M bitext sentences.

7 Evaluation on Dev Data

We report results of all our models under different
settings in BLEU scores (Papineni et al., 2002).
In addition to evaluation on uncased data, we run
a language modeling based truecaser (Lita et al.,
2003) on the outputs of our different models.6 Re-
sults presented in Table 5 show that S2ST achieves
relatively low scores (between 8.54 and 12.57) on
all settings. In comparison, both mBART and
mT5 fine-tuned on DA-Train are able to translate
MSAEA to English with BLEU scores of 23.80
and 24.70 respectively. We note that truecasing
the output results in improving the results with an
average of +2.55 BLEU points.

8 Official Shared Task (Test) Results

Table 7 shows results of all our MT models with
different settings on the official shared task Test set.
We observe that the Transformer model in the zero
shot EA setting (a model that does not see Egyptian
Arabic data) was able to translate MSAEA to En-
glish with 21.34 BLEU. As expected, fine-tuning
all the models on DA-Train improves results across
all models and leads to the best BLEU score of
25.72% with the S2ST model.

Comparing performance of the S2ST model on
Dev and Test data, we observe that Test data results
are better. This suggests that Test data comprises
more MSA than EA sequences. To test this hypoth-
esis, we run a binary MSA-DA classifier Abdul-
Mageed et al. (2020) on both the Dev and Test
data to acquire MSA and DA distributions on each

6We were not been able to report results based on truecas-
ing in this paper, but we note that we will provide these results
in the camera ready version of this paper.

Dataset #Size MSA DA

DA-Dev 6, 164 18.36% 81.64%
Official Test 6, 500 72.31% 27.69%

Table 6: The data distribution (MSA Vs DA) in the DA-
Dev and the official Test set.

dataset. Results of this analysis, shown in Table 6,
confirm our hypothesis about Test data involving
significantly more MSA (i.e., 72.31%) compared
to Dev data.

Model Setting Blue

S2ST

Zero Shot EA 21.34

Fine-tuned DA 22.51

Zero Shot EA (true-cased) 23.68

Fine-tuned DA (true-cased) 25.72

mT5
Fine-tuned DA 16.41

Fine-tuned DA (true-cased) 18.80

mBART
Fine-tuned DA 17.17

Fine-tuned DA (true-cased) 19.79

Table 7: Results of our models on official Test data.
Again, in the zero-shot EA setting the S2ST model is
trained on 55M bitext sentences,

Discussion. We inspect output translations from
our models on Test data. We observe that even
though S2ST performs better than the two language
models on Test data, both of these models are es-
pecially able to translate Egyptian Arabic tokens
such as 	á�
 	̄ in example (1) in Table 4 well. Again,
Test data contain more MSA than DA as we ex-
plained earlier and hence the S2ST model (which
is trained on 55M sentence pairs) outperforms each
of the two language models. This analysis sug-
gests that fine-tuning the language models on more
MSA-ENG should result in better performance.

Returning to our three main research questions,
we can reach a number of conclusions. For RQ1,
we observe that models trained from scratch on
purely MSA data fare reasonably well on the code-
mixed MSAEA data (i.e., zero-shot EA setting).
This is due to lexical overlap between MSA and
EA. For RQ2, we also note that language models
such as mT5 and mBART do well under the code-
mixed condition, more so than models trained from
scratch when inference data involve more EA. This
is the case even though these language models in
our experiments are fine-tuned with significantly

6
61

less data (i.e., ∼ 250K pairs) than the from-scratch
S2ST models (which are trained on 55M MSA +
250K DA pairs). For RQ3, our results show that
training on data from various Arabic dialects helps
translation in the MSAEA code-mixed condition.
This is in line with previous research (Farhan et al.,
2020) showing that exploiting data from various di-
alects can help downstream translation on a single
dialect dialect in the zero-shot setting.

9 Conclusion

We described our contribution to the shared tasks
on MT in code-switching.7 Our models target the
MSAEA to English task under the unsupervised
condition. Our experiments show that training
models on MSA data is useful for the MSAEA-
to-English task in the zero-shot EA setting. We
also show the utility of pre-trained language mod-
els such as mT5 and mBART on the code-mixing
task. Our models place first in the official shared
task evaluation. In the future, we intend to apply
our methods on other dialects of Arabic and inves-
tigate other methods such as backtranslation for
improving overall performance.

Acknowledgements

We gratefully acknowledges support from the
Natural Sciences and Engineering Research
Council of Canada, the Social Sciences and Hu-
manities Research Council of Canada, Canadian
Foundation for Innovation, Compute Canada
(www.computecanada.ca) and UBC ARC-
Sockeye (https://doi.org/10.14288/
SOCKEYE) and Penguin Computing POD™
(pod.penguincomputing.com).

References
Muhammad Abdul-Mageed, AbdelRahim Elmadany,

and El Moatez Billah Nagoudi. 2020. ARBERT
& MARBERT: Deep Bidirectional Transformers for
Arabic. arXiv preprint arXiv:2101.01785.

Muhammad Abdul-Mageed, AbdelRahim Elmadany,
Dinesh Pabbi, Kunal Verma, Rannie Lin, et al.
2021. Mega-cov: A billion-scale dataset of 100+
languages for covid-19. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 3402–3420.

7https://code-switching.github.io/2021

Laith H Baniata, Seyoung Park, and Seong-Bae Park.
2018. A neural machine translation model for arabic
dialects that utilizes multitask learning (mtl). Com-
putational intelligence and neuroscience, 2018.

Alberto Barrón-Cedeño and Paolo Rosso. 2009. On au-
tomatic plagiarism detection based on n-grams com-
parison. In European conference on information re-
trieval, pages 696–700. Springer.

Houda Bouamor, Nizar Habash, and Kemal Oflazer.
2014. A multidialectal parallel corpus of arabic. In
LREC, pages 1240–1245.

Houda Bouamor, Nizar Habash, Mohammad Salameh,
Wajdi Zaghouani, Owen Rambow, Dana Abdul-
rahim, Ossama Obeid, Salam Khalifa, Fadhl Eryani,
Alexander Erdmann, and Kemal Oflazer. 2018. The
MADAR Arabic dialect corpus and lexicon. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Mohamed Elmahdy, Mark Hasegawa-Johnson, and
Eiman Mustafawi. 2014. Development of a tv broad-
casts speech recognition system for qatari arabic. In
LREC, pages 3057–3061.

Wael Farhan, Bashar Talafha, Analle Abuammar,
Ruba Jaikat, Mahmoud Al-Ayyoub, Ahmad Bisher
Tarakji, and Anas Toma. 2020. Unsupervised dialec-
tal neural machine translation. Information Process-
ing & Management, 57(3):102181.

Saurabh Garg, Tanmay Parekh, and Preethi Jyothi.
2018. Code-switched language models using dual
RNNs and same-source pretraining. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3078–3083,
Brussels, Belgium. Association for Computational
Linguistics.

Imane Guellil, Faical Azouaou, and Mourad Abbas.
2017. Neural vs statistical translation of algerian
arabic dialect written with arabizi and arabic letter.
In The 31st Pacific Asia Conference on Language,
Information and Computation PACLIC, volume 31,
page 2017.

John J. Gumperz. 1982. Discourse Strategies. Studies
in Interactional Sociolinguistics. Cambridge Univer-
sity Press.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn, Marcello Federico, Wade Shen,
Nicola Bertoldi, Ondrej Bojar, Chris Callison-Burch,
Brooke Cowan, Chris Dyer, Hieu Hoang, Richard
Zens, et al. 2007. Open source toolkit for statisti-
cal machine translation: Factored translation models
and confusion network decoding. In Final Report of
the Johns Hopkins 2006 Summer Workshop.

7
62

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based & neural unsupervised machine trans-
lation. arXiv preprint arXiv:1804.07755.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. Truecasing. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 152–159.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Karima Meftouh, Salima Harrat, Salma Jamoussi,
Mourad Abbas, and Kamel Smaili. 2015. Machine
translation experiments on PADIC: A parallel Ara-
bic DIalect corpus. In Proceedings of the 29th Pa-
cific Asia Conference on Language, Information and
Computation, pages 26–34, Shanghai, China.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensi-
ble toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. arXiv preprint arXiv:1806.00187.

Mai Oudah, Amjad Almahairi, and Nizar Habash. 2019.
The impact of preprocessing on arabic-english statis-
tical and neural machine translation. arXiv preprint
arXiv:1906.11751.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Hassan Sajjad, Ahmed Abdelali, Nadir Durrani, and
Fahim Dalvi. 2020a. Arabench: Benchmarking di-
alectal arabic-english machine translation. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 5094–5107.

Hassan Sajjad, Ahmed Abdelali, Nadir Durrani, and
Fahim Dalvi. 2020b. AraBench: Benchmarking
dialectal Arabic-English machine translation. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 5094–5107,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Hassan Sajjad, Kareem Darwish, and Yonatan Be-
linkov. 2013. Translating dialectal arabic to english.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–6.

Wael Salloum, Heba Elfardy, Linda Alamir-Salloum,
Nizar Habash, and Mona Diab. 2014. Sentence level
dialect identification for machine translation system
selection. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 772–778.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
ishna Rallabandi, and Alan W. Black. 2019. A sur-
vey of code-switched speech and language process-
ing. CoRR, abs/1904.00784.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. 2012:2214–2218.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280, Hong Kong, China.
Association for Computational Linguistics.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mT5: A massively
multilingual pre-trained text-to-text transformer.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy
Guo, Jax Law, Noah Constant, Gustavo Hernan-
dez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan
Sung, et al. 2019. Multilingual universal sen-
tence encoder for semantic retrieval. arXiv preprint
arXiv:1907.04307.

Rabih Zbib, Erika Malchiodi, Jacob Devlin, David Stal-
lard, Spyros Matsoukas, Richard Schwartz, John
Makhoul, Omar Zaidan, and Chris Callison-Burch.

8
63

2012. Machine translation of arabic dialects. In Pro-
ceedings of the 2012 conference of the north ameri-
can chapter of the association for computational lin-
guistics: Human language technologies, pages 49–
59.

9
64

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 65–71
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_009

Much Gracias: Semi-supervised Code-switch Detection for
Spanish-English: How far can we get?

Dana-Maria Iliescu∗, Rasmus Grand∗, Sara Qirko∗, Rob van der Goot
IT-University of Copenhagen

dail@itu.dk, gran@itu.dk, saqi@itu.dk, robv@itu.dk

Abstract
Because of globalization, it is becoming
more and more common to use multiple lan-
guages in a single utterance, also called code-
switching. This results in special linguistic
structures and, therefore, poses many chal-
lenges for Natural Language Processing. Ex-
isting models for language identification in
code-switched data are all supervised, requir-
ing annotated training data which is only avail-
able for a limited number of language pairs.
In this paper, we explore semi-supervised ap-
proaches, that exploit out-of-domain mono-
lingual training data. We experiment with
word uni-grams, word n-grams, character n-
grams, Viterbi Decoding, Latent Dirichlet Al-
location, Support Vector Machine and Lo-
gistic Regression. The Viterbi model was
the best semi-supervised model, scoring a
weighted F1 score of 92.23%, whereas a fully
supervised state-of-the-art BERT-based model
scored 98.43%.1

1 Introduction

Social platforms have been the cradle of the inter-
net, driving vast amounts of communication among
people from all over the world. As a consequence,
the way people communicate in written text has
changed, as now it is common to use, for example,
abbreviations of words, emoticons, references to
other users and use multiple languages within the
same utterance. An annotated example sentence of
this is the following tweet:

Word El online exercise de hoy :
Label es en en es es other

This phenomenon has caught particular interest in
both sociolinguistics and Natural Language Pro-
cessing (NLP) (Aguilar et al., 2020; Khanuja et al.,
2020).

∗ Equal contributions
1https://github.com/RalleGr/

msc-code-switching

Classifying the language labels on the word
level (i.e. code-switch detection) has shown to
be beneficial to improve performance on down-
stream NLP tasks, like dependency parsing (Bhat
et al., 2018) or lexical normalization (Barik et al.,
2019). Previous work has shown that high per-
formances can be achieved for this task for many
language pairs (Molina et al., 2016; Banerjee et al.,
2016). However, to the best of our knowledge,
most previous work focused on supervised settings,
restraining their usefulness to language pairs for
which annotated datasets exist. Recent efforts to
unify existing datasets have collected annotation
for 4 (Aguilar et al., 2020) and 2 (Khanuja et al.,
2020) language pairs, which confirms that anno-
tated data is not available for most language pairs.

In supervised settings, recent transformer mod-
els (Vaswani et al., 2017; Devlin et al., 2019) have
reached a new state-of-the-art (Aguilar et al., 2020;
Khanuja et al., 2020), outperforming Bi-LSTMS
and traditional machine learning methods used ear-
lier (Molina et al., 2016; Banerjee et al., 2016). Yir-
mibeşoğlu and Eryiğit (2018) tackled this task
in a semi-supervised setup as well, where they
used character n-gram language models trained on
monolingual data to predict perplexity on the target
word for classification. They show that this obtains
a micro-average F1 score of 92.9%, compared to
95.6% with a supervised CRF-model.

To overcome this limitation, we focus on ex-
ploiting only mono-lingual datasets for per-
forming word-level language identification in
code-switched data. We refer to this setup as
semi-supervised, since we have no data anno-
tated for the task at hand (code-switch detec-
tion). This enables the possibility to easily train
models for new language pairs, and leads to the
research question: How do semi-supervised models
compare and perform in the task of language iden-
tification in English-Spanish code-switched data?
(RQ1).

65

https://doi.org/10.26615/978-954-452-056-4_009

Since supervised methods have the advantage of
learning from annotated data, the second research
question is: How much can we reduce the gap
in performance between the aforementioned semi-
supervised models and a supervised state-of-the-art
model? (RQ2).

Previous work in similar setups have automat-
ically generated code-switched data from mono-
lingual datasets (Santy et al., 2021). We consider
this approach to be orthogonal to ours, and Santy
et al. (2021) exploit mono-lingual in-domain data,
syntactic parsers and parallel sentences.

2 Datasets

In this section, we will first describe the manu-
ally annotated code-switched data that we use for
evaluating our models, then we describe the mono-
lingual data that we will use as “training” data. It
should be noted that this is not real training data,
as it is not annotated for the task at hand (thus the
setting is semi-supervised).

2.1 Test data

To evaluate and compare our models, we use
the Spanish-English (SPA-EN) part of the LinCE
benchmark (a total of 32,651 posts equivalent to
390,953 tokens) (Aguilar et al., 2020). We chose
this language pair because it has the challenge of in-
creased similarity between the languages (Tristram,
1999). In the original data, 8 labels are used, from
which we only focus on the 3 labels necessary for
the language identification task: lang1, lang2
and other, for English, Spanish and punctuation,
numbers, symbols and emoticons, respectively. We
use the default development and test splits for our
experiments.

2.2 Monolingual data

In order to perform semi-supervised code-
switching detection, we use Wikipedia data, be-
cause it is available in many languages and easy
to obtain. We extracted dumps from September
1st 2020 with Wikiextractor2. Without punctuation
and numbers, the English dataset contains 420K
distinct words and the Spanish dataset contains
610K distinct words.

It should be noted that there is a domain dif-
ference between the training and the dev/test data.
However, collecting monolingual data from Twitter

2https://github.com/attardi/
wikiextractor

is non-trivial.3 Furthermore, it should be noted that
the Wikipedia datasets are not 100% monolingual,
so there will be some Spanish data in the English
dump and vice-versa. Both of these artefacts might
have a negative effect on performance.

2.3 Automated annotation for monolingual
tokens

Tokenization of the raw datasets is done using the
English and Spanish SpaCy tokenization models4,
as it matches the tokenization of the development
and test sets. Punctuation and non-word tokens
(the other class) are identified with manually
designed rules using regular expressions, and the
python emoji package. Tokens that are not identi-
fied as other, are labeled with the corresponding
label based on the language of the wikipedia.

3 Methods

3.1 Word uni-grams

We first clean the mono-lingual Wikipedia data by
removing XML/HTML tags from the articles and
special tokens that belong to the other class. We
calculate the word probability based on the result-
ing data (word frequency/total number of words)
using Laplace smoothing with a smoothing factor
of 1.

3.2 Word n-grams

We also experiment with taking a larger context
into account through bi-grams and tri-grams. Here,
we divide the frequency of the n-gram containing
the word with the frequency of the leading (n− 1)-
gram. The probability is computed this way for a
given word in each language, and then the label
with the highest probability is assigned to the word.
Laplace smoothing with a factor of 1 is used. In
our initial experiments, tri-grams showed very low
performance, so we use bi-grams in the remainder
of this paper.

3.3 Character n-grams

For this model, we calculate the joint log probabil-
ity of words based on the monolingual training data,
and assign the most probable label. We vary the
n-gram size from 1 to 6 and use Laplace smoothing
with a factor of 1.

3Twitter blog: Evaluating language identification perfor-
mance

4https://spacy.io/

66

3.4 Viterbi decoding

The problem of code-switching can be represented
as a Hidden Markov Model (HMM) problem, since
a sentence can be seen as a Markov chain with
hidden states that are the two different languages.

We use the Viterbi decoding algorithm (Forney,
1973) to find the most probable sequence of states
given the observations - namely, to assign a lan-
guage label (state) to each word (observation). We
used eginhard’s implementation5 of the Viterbi al-
gorithm and modified the starting and transition
probabilities to the values specified below, which
were found to be optimal using grid search on the
development set using the range of initial probabil-
ities for English from 0.1 to 0.9 with step size 0.1,
transition probabilities for English from 0.05 to
0.95 with step size 0.05. The final hyperparameters
are as follows:

• states: lang1 and lang2, other tokens
are identified based on heuristics (see Sec-
tion 2.3);

• initial probabilities: 0.6 for English and 0.4
for Spanish;

• transition probabilities: 0.15 for transitioning
to a different language and 0.85 for transition-
ing to the same language;

• emission probabilities: these are estimated
through a relative probability model, the prob-
ability of the word being emitted from English,
for example, is:

P (w) =
P (w|EN)

P (w|EN) + P (w|SPA)
, (1)

where P (w|EN) and P (w|SPA) are proba-
bilities given by the dictionaries described in
section 3.1. In case this is 0 (i.e. the word
does not occur in our monolingual data), the
emission probability is calculated by a relative
character bi-gram probability.

3.5 Latent Dirichlet Allocation

Generally, Latent Dirichlet Allocation (LDA) aims
to find the topics a document belongs to using the
words in the document as features. In our case,
the documents are the words, the features are char-
acter n-grams (with n 1 to 5) and the topics are

5https://github.com/eginhard/
word-level-language-id/

English and Spanish. The LDA algorithm does not
output labels for the resulting clusters, so we select
the top 10 words based on weight that represent
best each cluster, and assign them a language us-
ing the word uni-gram method (Section 3.1). We
use the Scikit Learn6 implementation of LDA with
the TfidfVectorizer and use only the first
100,000 words from each monolingual dataset, in
order to reduce training time.

3.6 Support Vector Machine

For our Support Vector Machine (SVM) model,
we consider the monolingual data (Section 2.2) to
be the gold training data, without tokens from the
other class. Using TfidfVectorizer, we
extract character n-gram features from each word,
with n 1 to 5. We use the Scikit Learn implementa-
tion with all default parameters and select the first
100,000 words from each dataset.

3.7 Logistic regression

We use Logistic Regression in a weakly-supervised
manner, the same as with SVM, where we con-
sider the first 100,000 words from each Wikipedia
dataset to be the gold training data. Again, we use
TfidfVectorizer to extract character n-gram
features, with n 1 to 5, and rely on the default Scikit
Learn implementation.

3.8 Ensemble model

We also experiment with ensembling the previous
methods, where we use a simple majority voting.
We compare using all models, to using the best 3
and the best 5 models, as well as an oracle.

4 Results

To evaluate the performance of our models, we use
weighted F1 score7. As found in Table 1, Viterbi
has the overall best performance scoring 95.76% on
validation data and 92.23% on the test data. Word
uni-grams, character n-grams, SVM and Logistic
Regression models achieve results with a range
of weighted F1 score from 90.34% to 92.19% on
validation data and a range from 87.80% to 88.95%
on test data.

We compare our performance to a supervised
BERT-based classifier as implemented by the
MaChAmp toolkit 0.2 (van der Goot et al., 2021).

6https://scikit-learn.org/
7over only the classes of interests; as mentioned in Sec-

tion 2.1, we only focus on 3/8 labels of the LinCE data

67

Model Dev Test
Word uni-grams 91.32% 88.25%
Word n-grams 50.50% 49.04%
Character n-grams 92.19% 88.95%
Viterbi 95.99% 92.23%
LDA 64.40% 62.84%
Support Vector Machine 91.39% 88.74%
Logistic regression 90.34% 87.80%
Ensemble Model
All models 92.15% 88.99%
Models 3, 4 and 6 93.72% 90.27%
Models 1, 3, 4, 5 and 6 92.96% 89.64%
Oracle∗ 98.47% -
Supervised
MaChAmp 99.24% 98.43%

Table 1: Models evaluated using weighted F1 score on
validation and test data. ∗ Made use of gold labels

We use multilingual BERT and all default settings.
Results in Table 1 show that there is still a per-
formance gap between the semi-supervised ap-
proaches and this state-of-the-art supervised model.
When comparing common confusions of our best
semi-supervised model (Viterbi) to the output of
MaChAmp, we found that there was more confu-
sion in the Viterbi model about other, where 213
words were classified as lang1 and 60 as lang2
instead, compared to just 3 and 1 in MaChAmp.
Full confusion matrices can be found in the ap-
pendix.

The majority voting ensembling models do not
lead to improved performance. However, the oracle
ensemble, which always picks the correct label if
it is available from one of the models, shows that
there is potential in improving the selection method
for ensembling.

5 Discussion

When inspecting the performances of the models
per class (see also Table 2 in the appendix), we
found that, for the development dataset, all models
have a better F1 score for English than for Spanish
and, for the test dataset, the other way around. This
might be due to a discrepancy between the label
distribution of the two datasets and is a significant
aspect to be investigated in future work.

Regarding the LDA model, its low performance
can be explained by the results of (Zhang et al.,
2014), which show that for the task of language
filtering, the performance of LDA decreases when

the dominating language decreases under 70% of
the whole text. This is also the case in our experi-
ments, where the test data had a 54% English and
46% Spanish ratio. Furthermore, the amount of
evidence per sample is rather low compared to the
normal use of LDA (it is commonly used on the
document level).

For character n-grams, we observed that the
more we increased the value of n, the better results
we got, up until n = 6. The higher order n-grams
performed better with around 12% difference in
validation weighted F1 score, as we can capture
groups of letters that are representative for a lan-
guage, e.g. ‘tion’ in English and ‘cion’ in Spanish.
This model achieves good results also because it
addresses the problem of misspelled words. For
word n-grams, using tri-grams resulted in worse
predictions than using bi-grams with around 11%
difference in validation weighted F1 score.

For LDA, SVM and Logistic Regression models
we tried to vectorize data with CountVector-
izer from Scikit Learn, which gives the term-
frequency for each n-gram in a word. However,
TfidfVectorizer performed approximately
1% better in LDA and Logistic Regression and
4% for SVM in validation data. This was then
the preferred vectorizer in all models, as it helps
decreasing the impact of very frequent character
n-grams that are not expressing much value and
gives more importance to less frequent character
n-grams.

The fact that the oracle model has a 3% higher
weighted F1 score than the best model (in valida-
tion data), suggests that there is room for improve-
ment for the ensemble model with other methods
than majority voting. Improvements on the single
models could be achieved by using bigger mono-
lingual datasets of the same size or selecting a
corpus that is more similar to the test set (social
media-like posts), which is not as easy to query as
Wikipedia articles. The overall performance of the
models can also be slightly improved by a more
complex method for the other class (the exist-
ing rule-based method scored an F1 of 96.76, see
Table 2 in the appendix).

The training efficiency of the Viterbi model and
the supervised model were measured in a Windows
Sub-system for Linux environment on an i7-7700K
processor with 16GB ram. We ran the MaChAmp
model in this environment and it completed in
53,990 seconds. In comparison, the Viterbi training

68

completed in 1,805 seconds, which is an improve-
ment of almost 30 times faster than the MaChAmp
model.

6 Conclusion

In this study we evaluated different types of mod-
els, namely word uni-grams, word n-grams, char-
acter n-grams, Viterbi Decoding, Latent Dirich-
let Allocation, Support Vector Machine and Lo-
gistic Regression, for the task of semi-supervised
language identification in English-Spanish code-
switched data. We found that most of the models
achieved promising results, however, the Viterbi
model performed the best with a weighted F1 score
of 95.76% on validation data and 92.23% on test
data (RQ1). Using this model, one can potentially
train CS-detection for many more language pairs
as previously possible. Furthermore, since the ma-
jority voting did not lead to improvements, we ex-
perimented with an Oracle model, which showed
that by combining results form our models, the
best score we could achieve is 98.47% on valida-
tion data. Even though the results were good, our
models still underperformed compared to the su-
pervised MaChAmp model, that scored 99.24%
weighted F1 score on validation data and 98.43%
on test data (RQ2). There is also a clear take away
that, by using simpler, faster approaches like ours
and when top performance is not crucial, one can
avoid the extensive process of human-annotation
and long training time that are needed by finetuning
these large transformer models on supervised data.

References
Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.

2020. LinCE: A centralized benchmark for linguis-
tic code-switching evaluation. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 1803–1813, Marseille, France. Euro-
pean Language Resources Association.

Somnath Banerjee, Kunal Chakma, Sudip Kumar
Naskar, Amitava Das, Paolo Rosso, Sivaji Bandy-
opadhyay, and Monojit Choudhury. 2016. Overview
of the mixed script information retrieval (MSIR) at
FIRE-2016. In Forum for Information Retrieval
Evaluation, pages 39–49. Springer.

Anab Maulana Barik, Rahmad Mahendra, and Mirna
Adriani. 2019. Normalization of Indonesian-
English code-mixed Twitter data. In Proceedings
of the 5th Workshop on Noisy User-generated Text
(W-NUT 2019), pages 417–424, Hong Kong, China.
Association for Computational Linguistics.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2018. Universal Dependency parsing
for Hindi-English code-switching. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 987–998, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

G. D. Forney. 1973. The Viterbi algorithm. In The
viterbi algorithm, 3, pages 268–278.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. GLUECoS : An evaluation benchmark for
code-switched nlp. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, page 3575–3585.

Giovanni Molina, Fahad AlGhamdi, Mahmoud
Ghoneim, Abdelati Hawwari, Nicolas Rey-
Villamizar, Mona Diab, and Thamar Solorio.
2016. Overview for the second shared task on
language identification in code-switched data. In
Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching, pages 40–49,
Austin, Texas. Association for Computational
Linguistics.

Sebastin Santy, Anirudh Srinivasan, and Monojit
Choudhury. 2021. BERTologiCoMix: How does
code-mixing interact with multilingual BERT? In
Proceedings of the Second Workshop on Domain
Adaptation for NLP, pages 111–121, Kyiv, Ukraine.
Association for Computational Linguistics.

Hildegard L. C. Tristram. 1999. How Celtic is Stan-
dard English? Nauka.

Rob van der Goot, Ahmet Üstün, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021. Mas-
sive choice, ample tasks (MaChAmp): A toolkit
for multi-task learning in NLP. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 176–197, Online. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

69

Zeynep Yirmibeşoğlu and Gülşen Eryiğit. 2018. De-
tecting code-switching between Turkish-English lan-
guage pair. In Proceedings of the 2018 EMNLP
Workshop W-NUT: The 4th Workshop on Noisy User-
generated Text, pages 110–115, Brussels, Belgium.
Association for Computational Linguistics.

Wei Zhang, Robert AJ Clark, and Yongyuan Wang.
2014. Unsupervised language filtering using the la-
tent dirichlet allocation. In Fifteenth Annual Con-
ference of the International Speech Communication
Association.

70

A Appendix

Validation F1 score Test F1 score
Model English Spanish Other English Spanish Other
1. Word uni-grams 91.05% 88.77% 96.76% 87.42% 89.94% 95.84%
2. Word n-grams 45.41% 31.98% 96.76% 40.61% 35.73% 95.84%
3. Character n-grams 91.84% 90.19% 96.76% 88.56% 90.68% 95.84%
4. Viterbi 96.09% 95.48% 96.76% 93.13% 94.71% 95.84%
5. Latent Dirichlet Allocation 59.37% 53.09% 96.76% 53.15% 57.74% 95.84%
6. Support Vector Machine 90.84% 89.21% 96.76% 88.07% 90.55% 95.84%
7. Logistic regression 89.65% 87.74% 96.76% 86.74% 89.41% 95.84%
Ensemble Model English Spanish Other English Spanish Other
All models 91.92% 90.00% 96.76% 88.36% 90.91% 95.84%
Models 3, 4 and 6 93.55% 92.31% 96.76% 90.35% 92.34% 95.84%
Models 1, 3, 4, 5 and 6 92.79% 91.17% 96.76% 89.31% 91.69% 95.84%
Oracle∗ 98.96% 98.81% 96.76% - - -
Supervised
MaChAmp 99.14% 99.08% 99.78% 98.42% 99.00% 99.84%

Table 2: Models evaluated using F1 score per class for validation and test data

Figure 1: Confusion matrix of Viterbi predictions
on test data

Figure 2: Confusion matrix of MaChAmp predic-
tions on test data

Figure 1 and 2 show the confusion matrices of the Viterbi and MaChAmp model. It can be noted
that the confusion matrix for MaChAmp model has more than the three labels we used, because it was
trained on part of the original training set presented in Section 2.1. This set contained 8 classes, and, thus,
occasionally, the model mistakenly predicted some of these classes. It can be seen that there was more
confusion in Viterbi model about other, where 213 words were classified as lang1 and 60 as lang2
instead, compared to just 3 and 1 in MaChAmp, which also had 7 other misclassifications.

71

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 72–83
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_010

A Language-aware Approach to Code-switched Morphological Tagging

Şaziye Betül Özateş and Özlem Çetinoğlu
Institute for Natural Language Processing, University of Stuttgart, Stuttgart, Germany

{saziye.oezates,ozlem.cetinoglu}@ims.uni-stuttgart.de

Abstract

Morphological tagging of code-switching (CS)
data becomes more challenging especially
when language pairs composing the CS data
have different morphological representations.
In this paper, we explore a number of ways
of implementing a language-aware morpholog-
ical tagging method and present our approach
for integrating language IDs into a transformer-
based framework for CS morphological tag-
ging. We perform our set of experiments on
the Turkish-German SAGT Treebank. Exper-
imental results show that including language
IDs to the learning model significantly im-
proves accuracy over other approaches.

1 Introduction

Morphological tagging is a well known sequence la-
belling task in Natural Language Processing (NLP).
It is the task of finding the correct morphological
analysis for a given word form. The analysis is
usually represented with a set of morphological
features. Tagging these features is beneficial in
solving most NLP tasks since having knowledge
about the morphological analysis of natural lan-
guage words gives clues about their syntactic na-
ture and their roles in context (Müller and Schütze,
2015). Morphological tagging becomes more im-
portant when the language in question is a mor-
phologically rich one and the part-of-speech (POS)
information about word forms is not sufficient to
syntactically classify them (Tsarfaty et al., 2013).

Morphological tagging is challenging in itself1

and it becomes more challenging when the pro-
cessed language is code-switched, a phenomenon
that occurs when bilingual speakers frequently
switch between languages and produce utterances

1For instance, in the CoNLL 2018 Shared Task of Multilin-
gual Parsing from Raw Text to Universal Dependencies, mor-
phological tagging has the lowest range of scores among sen-
tence segmentation, word segmentation, tokenisation, lemma-
tisation, and POS tagging. universaldependencies.
org/conll18/results.html

Form POS Morphological features

(a) In German:

in ADP _

Autos NOUN Case=Dat | Gender=Neut | Number=Plur

(b) In Turkish:

arabalarda NOUN Case=Loc | Number=Plur

Figure 1: The morphological analyses of German (a)
and Turkish (b) translations of the phrase in cars.

that include word forms and phrases from both lan-
guages. The challenge amplifies as the linguistic
difference between the composing languages in-
creases. This is because unlike POS annotation
that can be made common across languages (e.g.
Universal Dependencies (Nivre et al., 2016)), mor-
phological annotation is more language-specific.
The example in Figure 1 shows this difference ex-
plicitly. Even though both Autos in German and
arabalarda in Turkish share the same POS tag as
NOUN, they have different morphological analyses.
This difference stems from inherent properties of
these languages. German employs grammatical
gender while Turkish does not. Additionally in the
example, the Turkish locative case corresponds to
German dative. Such structural differences, com-
bined with the rich morphology of individual lan-
guages taking part in CS data, make CS morpho-
logical tagging even more challenging with respect
to CS POS tagging, a task that is a more common
and more studied NLP task (cf. Section 2). In
fact, there has not been any research focused on CS
morphological tagging before.

We hypothesise that the language-dependent na-
ture of morphological tagging can be solved more
successfully for the case of CS data when the learn-
ing model has the knowledge of which language a
word form belongs to. Starting from this hypoth-
esis, we search ways of including the language
ID (LID) information to tagging and present a
language-aware approach. The proposed approach

72

https://doi.org/10.26615/978-954-452-056-4_010

integrates LIDs to the dense representation of in-
put tokens in a transformer-based learning model.
We conducted experiments on the only CS dataset
with complete morphological annotation (Turkish-
German SAGT Treebank (Çetinoğlu and Çöltekin,
2019)).2 Results show that the proposed approach
outperforms all of the baselines significantly and
the use of LIDs is beneficial in tagging morphol-
ogy for CS data. Our contributions are twofold:
We present the first study on CS morphological
tagging, and our data-driven method of integrating
LIDs is applicable to any CS dataset and task that
can exploit language IDs.

2 Related Work

Although there does not exist any prior study on
CS morphological tagging, utilising language IDs
in other CS tasks has been quite common. We
divide how LID is utilised into three methods: as
part of a pipeline, as part of joint processing, and
as Machine Learning (ML) features. While one or
more of these techniques have been applied to many
CS tasks, e.g. parsing (Bhat et al., 2017), sentiment
analysis (Vilares et al., 2016), and normalisation
(van der Goot and Çetinoğlu, 2021), we focus here
mainly on POS tagging, as it is a sequence labelling
task and the closest one to morphological tagging.

One of the most commonly used pipeline ap-
proach is processing the data as monolingual frag-
ments (Vyas et al., 2014; Jamatia et al., 2015; Bar-
man et al., 2016; Bhat et al., 2017; AlGhamdi et al.,
2016). For each language in the mixed data, a
monolingual model is trained. During prediction,
the input is split into fragments according to their
language IDs and each fragment is processed by
the respective monolingual model. The output is
then merged into its original form. The advantage
of this approach is to eliminate the need of CS data
for training. However, context information is lost.

The other common pipeline approach is using
LIDs in decision-making after getting predictions
from monolingual models. In this setup the mixed
input is given to both monolingual models. The
predicted LID is then used to select the model
output of the corresponding language. Solorio
and Liu (2008) is the first to use this approach
on English-Spanish POS tagging. Later Barman

2There is also the NArabizi Treebank (Seddah et al., 2020)
which includes partial morphological annotation where the to-
tal number of unique annotations is 46 in contrast to the SAGT
Treebank which has 795 unique morphological annotations.
Hence, we did not use this treebank in our study.

et al. (2016) and AlGhamdi et al. (2016) used this
setup for English-Bengali-Hindi, and for English-
Spanish and Modern Standard Arabic-Egyptian
Arabic, as well as the first pipeline technique.
While in Barman et al.’s (2016) case using the sec-
ond pipeline method slightly outperforms the first
one, AlGhamdi et al. (2016) show the first pipeline
outperforms by a large margin. Thus we opted for
the first architecture as one of our baselines.

Another model of Barman et al.’s (2016) was
jointly trained LID and POS taggers that achieve a
quite large improvement over their pipeline models.
Soto and Hirschberg (2018) also trained LID and
POS taggers together in their BiLSTM architecture.
AlGhamdi and Diab (2019) choose joint LID and
POS tagging as one of their architectures and show
that distant language pairs Spanish-English and
Hindi-English benefit from multi-task learning.

In many work from pre-neural era, LIDs are
given as one of the features to ML models. While
Solorio and Liu (2008) did not observe any signifi-
cant improvement in doing so, Jamatia et al. (2015)
shows that adding the LID of a token improves
its POS tagging for English-Hindi. Sequiera et al.
(2015) and Bhat et al. (2017) also inserted LID as
a feature into their ML models. As a neural ap-
proach, Soto and Hirschberg (2018) represented
the six LID labels existing in their data as boolean
features and concatenated them with word vectors
in a BiLSTM along with other features they used.

Different from the previous approaches, Aguilar
and Solorio (2020) use language identification to
create a code-switching ELMo from English ELMo
(Peters et al., 2018). Later they show the effective-
ness of their CS-ELMo by achieving state-of-the-
art POS tagging results on a Hindi-English dataset
(Singh et al., 2018). They also employ multi-task
learning where their auxiliary task is language iden-
tification with a simplified LID tag set for LID,
POS, and NER tagging.

3 Methodology

For morphological tagging of CS data, we chose
to use STEPS3 (Grünewald et al., 2020) as our
framework. STEPS is an NLP tool for tagging
and syntactic parsing in Universal Dependencies
(UD) style (Nivre et al., 2016). Our motivation be-
hind deciding on STEPS as our framework is based
on two reasons. First, for token representation it
utilises transformer-based language models, which

3github.com/boschresearch/steps-parser

73

have recently become famous for their outstand-
ing success in various NLP tasks (Kondratyuk and
Straka, 2019; Hoang et al., 2019). Second, STEPS
is an open-source system with a minimum use of
black-box modules that make the modification of
the source codes very challenging, if not impossi-
ble. Moreover, STEPS is a current state-of-the-art
NLP tool that outperformed other state-of-the-art
tools Udify (Kondratyuk and Straka, 2019) and UD-
Pipe 2.0 (Straka et al., 2019) in tagging and parsing
of several languages (Grünewald et al., 2020).

Section 3.1 gives a brief description about
STEPS. Sections 3.2 and 3.3 describe the baseline
methods and our proposed approach for integrating
LIDs to CS morphological tagging, respectively.

3.1 Framework

STEPS is mainly developed as a multilingual sys-
tem for parsing. It also performs sequence labelling
tasks such as POS and morphological tagging in a
multi-task learning (MTL) setup. For our purposes,
we adapted STEPS to solely perform sequence la-
belling. When this adapted version is used stan-
dalone, it becomes a baseline for our task. We men-
tion this version as the Standalone approach
throughout the paper.

The STEPS architecture follows Kondratyuk and
Straka (2019) for computing token embeddings
from the transformer-based language model and
performing tagging and parsing. Token embed-
dings are calculated as a weighted sum of all in-
termediate outputs of the transformer layers. Co-
efficients of this weighted sum are learned during
training. For sequence labelling, STEPS utilises
a single-layer feed-forward neural network on top
of token representations to extract the logit vectors
for respective label vocabularies. More detailed
information about the STEPS architecture can be
found in (Grünewald et al., 2020).

3.2 Baselines for Language ID Integration

In a given dataset, the language-dependent mor-
phological annotation of words that share the same
POS tag gives us the intuition that feeding a model
with token-wise LID information can help improve
its accuracy for CS morphological tagging. Start-
ing from this hypothesis, we designed and experi-
mented with three ways of using token-level LID
information in the model.

3.2.1 Data Split (DSplit)
One of the first methods that come to mind when
dealing with CS data is splitting the data from CS
points and treating the split parts as monolingual
data as in the first pipeline method mentioned in
Section 2. For our case, this method consists of
three steps. First, input data is split to sub-parts
containing monolingual data only. Second, mono-
lingual models for each sub-part are trained. Each
trained model processes its corresponding sub-part
separately. In the last step, the output of models are
joined to reach the processed version of the data.

To achieve the split of CS data into monolin-
gual parts, we created a simple algorithm. Starting
from the first token in a sentence, the algorithm
creates sentence fragments whenever it encoun-
ters a switch between tokens with LIDs denoting
one of the main languages in the CS data. Tokens
with other LIDs (e.g., punctuation or mixed tokens
where intra-word CS occurs) stay in the fragment
created at that moment. Figure 2 depicts this pro-
cess on a Turkish-German sentence.

3.2.2 Multi-Task Learning (MTL)
Another frequently applied method is the multi-task
learning approach when two or more related tasks
have the potential of benefitting each other through
the domain information they contain. The main
idea of this approach is improving the learning of
a model for a task with the help of the knowledge
contained by another task (Zhang and Yang, 2017).
MTL has been shown effective in various areas
in NLP (Collobert and Weston, 2008; Fang et al.,
2019), especially in low-resource scenarios, usu-
ally as a way of transferring knowledge from a
high-resource auxiliary task to a low-resource tar-
get task as in Lin et al. (2018). Our case is also a
low-resource scenario where we have two related
tasks, morphological tagging as the target and LID
tagging as a simpler auxiliary task. In our setup,
these two tasks are trained together with the same
model and the loss is computed by summing losses
of each task. The loss for LID tagging is scaled
down 5% in training, as it was done for simpler
tasks in (Grünewald et al., 2020). This loss scaling
is for preventing the validation accuracy for LID
tagging to go up too quickly and cause an underfit-
ting for morphological tagging.

3.3 Proposal: LID Vectors (LIDVec)
Our proposal to integrate LIDs to the model is via
creating LID embeddings and concatenating them

74

1 Abendgymnasiumdan MIXED
2 sonra TR
3 da TR
4 Evangelische DE
5 Hochschule’de MIXED
6 zaten TR
7 Soziale DE
8 Arbeit DE
9 okudum TR
10 . OTHER

CS sentence
1 Abendgymnasiumdan MIXED
2 sonra TR
3 da TR
6 zaten TR
9 okudum TR
10 . OTHER

TR fragments

4 Evangelische DE
5 Hochschule’de MIXED
7 Soziale DE
8 Arbeit DE

DE fragments

Figure 2: Splitting an example code-switching sentence to Turkish (TR) and German (DE) fragments. German
tokens and token parts are shown in bold. (Sentence translation: After the night school, I studied Social Work in
the Protestant University.)

to the embeddings of input tokens. The motivation
behind this approach is to directly encode the LID
information to each token inside the learning model
and by this way to lessen the model’s confusion
caused by the tokens with different LIDs having dif-
ferent morphological annotations. Moreover, this
way we can represent each LID label in contrast to
DSplit that uses only main LID labels.

There are more than one method to represent
LIDs as vectors inside the model. One-hot encod-
ing of each LID is one of them.4 Another method
would be starting from a random embedding for
each LID and training these embeddings with the
rest of the model. Instead of random initialisation,
LID embeddings can also be initialised with the
average vectors of token embeddings in the training
set, calculated for each LID label. Our motivation
behind this clustering method is to see whether
starting the training of the LID vectors from a more
reasonable point will improve accuracy. We ex-
perimented with all of these models and chose to
continue with the randomly initialised LID embed-
dings method based on our observation that this
method works best among others. The comparison
of these methods is discussed in Section 5.

In LIDVec, each LID label is assigned a 100-
dimensional embedding vector at the beginning
of training. The embedding of each input token
is then concatenated with its corresponding LID
embedding. These concatenated vectors are then
given to the model for training. The loss at each
epoch is backpropagated to both the token embed-
dings and the LID embeddings. We apply batch
normalisation to token embeddings right after the
concatenation.

4Soto and Hirschberg (2018) use a similar way. They rep-
resent LIDs as boolean features concatenated to word vectors
in a BiLSTM architecture.

4 Experiments

4.1 Data
We evaluate our approaches on the Turkish-German
SAGT Treebank (Çetinoğlu and Çöltekin, 2019)
UD version 2.7.1.5 It is based on a Turkish-German
code-switching corpus created from conversation
recordings of bilinguals. Although the treebank
consists of spoken sentences, the transcriptions are
normalised and hence the orthography does not
pose a challenge in terms of morphological tagging.
The SAGT Treebank includes five LID labels: TR
for Turkish, DE for German, LANG3 for tokens
that belong to a third language other than Turkish
and German, OTHER for punctuation, and MIXED
for tokens with intra-word code-switching. Exam-
ple (1) shows the structure of a mixed word from
Figure 2.

(1) Abendgymnasiumdan
night school.from
‘from the night school’

Here the first part (Abendgymnasium) is a Ger-
man noun and the second part (-dan) is a Turkish
suffix. Although they are from different languages,
the token Abendgymnasiumdan has a single lan-
guage ID since the two parts of the token are written
orthographically together.

We use the original training, development, and
test splits in experiments, only further splitting a
small part from the development set as the fine-
tuning set.6 Sentence counts and LID distribution
is given in Table 1. The average sentence length is
15.35 and the average code switches per sentence is

5github.com/UniversalDependencies/UD_
Turkish_German-SAGT/tree/dev

6The fine-tuning set is created by randomly extracting
equal amount of sentences from each document in the devel-
opment set.

75

Sent Token Count
Count TR DE MIXED LANG3 OTHER Total

Tra 578 3,727 5,149 105 69 1,034 10,084
37% 51% 1% 0.7% 10.3%

FT 101 721 864 21 16 158 1,780
41% 49% 1.2% 0.9% 8.9%

Dev 700 4,389 5,589 122 48 1,128 11,276
39% 49.6% 1% 0.4% 10%

Test 805 5,341 7,139 183 46 1,384 14,093
38% 50,6% 1.3% 0.3% 9.8%

Total 2,184 14,178 18,741 431 179 3,704 37,233
38% 50.3% 1.2% 0.5% 10%

Table 1: Sentence and token counts of the Turkish-
German SAGT Treebank used in the experiments (Tra:
training, FT: fine-tuning, Dev: development).

TR DE MIXED LANG3 OTHER
Tags 526 293 53 5 1
Features 61 37 22 5 1

Table 2: The number of unique morphological tags and
the number of unique morphological features for each
language category in the SAGT Treebank.

2.19 on the whole treebank. The counts of unique
morphological tags and morphological features that
constitute the tags are depicted in Table 2.

Note that previous studies that follow a similar
approach to DSplit use monolingual data that are
usually available in large amounts in training (Vyas
et al., 2014; Jamatia et al., 2015; Barman et al.,
2016; Bhat et al., 2017; AlGhamdi et al., 2016).
However we do not utilise monolingual Turkish
and German data in the current setting of DSplit
experiments. We experimented with using morpho-
logical features of two Turkish treebanks – IMST
(Sulubacak et al., 2016) and BOUN (Türk et al.,
2020) and two German treebanks – GSD (McDon-
ald et al., 2013) and HDT (Borges Völker et al.,
2019) as additional monolingual data but this re-
sulted in a decrease in DSplit’s accuracy possi-
bly due to conflicting morphological annotations of
these treebanks. So, we only use the corresponding
parts of the SAGT Treebank in training and evalu-
ation of DSplit. We also experimented with the
second pipeline approach mentioned in Section 2.
In line with our expectations, it gives worse per-
formance. So, we stick to our current DSplit
method (cf. Table 8 in Appendix A for a compari-
son of two approaches).

4.2 Model Configuration

STEPS can be used with both BERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020). We
chose to use multilingual XLM-R observing it out-
performs multilingual BERT in our preliminary

experiments, which is in line with previous find-
ings (Liang et al., 2020; Conneau et al., 2020). We
use XLM-RBase with 12 layers and 768 hidden
states in all the experiments. We stick to the default
configuration of STEPS (Grünewald et al., 2020)
for all the models except LIDVec. For LIDVec,
token embedding size was changed from 768 to
868 since embeddings are expanded with the con-
catenation of 100-dimensional LID embeddings.

4.3 Predicted Language IDs

DSplit and LIDVec need LIDs; the former dur-
ing splitting the dataset into languages, the latter
during the concatenation of a token embedding
with its corresponding LID vector. We evaluate
these models with both gold and predicted LIDs.
Predicted labels are obtained by training the STEPS
Standalone model for LID tagging.

4.4 Metrics

We use accuracy as the evaluation metric. We count
a morphological tag prediction of a token correct
only when it is an exact match with the gold one.
In addition to reporting the overall accuracy, we
also provide accuracy on each LID label separately.
This enables us to easily observe the parts each
model has the most difficulty with. The signifi-
cance between the performance of the models is
measured using the randomisation test (van der
Voet, 1994). When we mention a performance dif-
ference being significant, it means the difference is
found statistically significant with p < 0.05.

4.5 Results

Table 3 shows experimental results for each model
on the development and test sets.7 It also demon-
strates the evaluation of another baseline – Udify,
a well-known, state-of-the-art transformer-based
multi-task tool, which uses multilingual BERT as
its language model (Kondratyuk and Straka, 2019).

We see that all three models that utilise
LIDs outperform Standalone as well as Ud-
ify on both development and test sets. Although
Standalone and Udify have similar architec-
tures, the performance of the former surpasses that
of the latter in terms of accuracy. Besides some de-
sign decisions, the main difference between these
two models is the choice of the pretrained lan-

7The scores on the development set are the average of three
separate runs while the scores on the test set are obtained by
using the run that gives the best result in the development set.

76

Model Accuracy on the Development Set
TR DE MIXED LANG3 OTHER ALL

Udify (mBERT) 74.64 82.18 44.26 52.08 99.91 80.48
STEPS - Standalone 79.37 81.18 66.39 43.75 99.91 82.03
STEPS - MTL 79.94 82.05 71.04 43.75 99.91 82.74
STEPS - DSplit (w. gold LIDs) 81.17 83.03 69.67 52.78 99.91 83.72
STEPS - LIDVec (w. gold LIDs) 81.87 83.54 73.22 50.00 99.17 84.20

Accuracy on the Test Set
TR DE MIXED LANG3 OTHER ALL

Udify (mBERT) 71.95 79.21 39.34 34.78 99.86 77.83
STEPS - Standalone 76.15 77.15 61.75 47.83 99.93 78.71
STEPS - MTL 76.47 79.04 68.31 45.65 99.93 79.87
STEPS - DSplit (w. gold LIDs) 78.04 80.12 65.03 50.00 99.93 80.98
STEPS - LIDVec (w. gold LIDs) 79.20 80.77 78.69 34.78 98.77 81.76

Table 3: Morphological tagging accuracy of the models on the Turkish-German SAGT Treebank.

Model Accuracy on the Development Set
TR DE MIXED LANG3 OTHER ALL

STEPS - DSplit (w. pred. LIDs) 80.66 82.95 70.43 41.50 100.0 83.43
STEPS - LIDVec (w. pred. LIDs) 81.85 83.53 73.22 49.31 99.17 84.18

Accuracy on the Test Set
TR DE MIXED LANG3 OTHER ALL

STEPS - DSplit (w. pred. LIDs) 77.65 80.01 65.59 48.78 100.0 80.78
STEPS - LIDVec (w. pred. LIDs) 79.22 80.73 78.69 34.78 98.77 81.75

Table 4: Morphological tagging accuracy of DSplit and LIDVec when predicted LID labels were used.

Accuracy
Development set Test set

TR 99.09 99.42
DE 98.43 98.80
MIXED 90.16 92.90
LANG3 52.08 67.39
OTHER 99.91 99.86
ALL 98.55 98.96

Table 5: LID prediction accuracy of STEPS on the de-
velopment and test sets of the SAGT Treebank.

guage model. While Udify uses multilingual BERT,
Standalone utilises XLM-R.

The best performing model is LIDVec as we
expected. It outperforms Standalone more
than 2 and 3 points on the development and test
sets, respectively. The two baselines for LID in-
tegration, DSplit and MTL, perform better than
Standalone although they are less successful
than LIDVec. We observe that integrating LIDs to
the system improves the accuracy in morphological
tagging in all three scenarios, although the amount
of the improvement differs across the models.

To see how LID prediction affects DSplit and
LIDVec, we repeated the same experiments with
predicted LIDs. The results are given in Table
4. As introduced in Section 4.3, Standalone
is used for LID tagging. Its performance on the
development and test sets is shown in Table 5.

In Table 4, we see that LID accuracy has a

stronger influence on DSplit while LIDVec
stays almost unaffected. This might stem from
LIDs playing a key role in DSplit by splitting
the data into monolingual parts that are then used
to train two separate models. So, the errors in LIDs
are more explicitly propagated to the two models
that learn to predict the morphological features
of monolingual data only. However, LIDs have
a more implicit effect in LIDVec. The errors in
LIDs cause the wrong LID vector to be concate-
nated to the embeddings of some tokens but this
error can later be compensated through the train-
ing of the whole model where both token and LID
embeddings being updated at each step. Consider-
ing the high overall accuracy in LID prediction in
Table 5, LIDVec seems to compensate the small
error rate in predicted LIDs. Although LANG3
prediction accuracy is low, this does not cause a
substantial effect in the overall accuracy of LID
prediction since this label is rare in the treebank.

5 Analysis on LID Integration

LID representation and initialisation In Sec-
tion 3.3, we mention two more ways in addition
to our preferred approach for the representation
of LIDs as vectors. The first way is representing
LIDs as one-hot vectors. We define each LID la-
bel as a one-hot vector and concatenate these vec-
tors with token embeddings provided by the lan-

77

guage model as in LIDVec. We experimented
with this approach on the development set. How-
ever, this method showed poorer performance than
Standalone which does not utilise LIDs in any
way. We believe that one-hot vector representation
might be too rigid to be used together with token
embeddings due to the fact that the range of the
values in these two representations greatly vary.

The second method for the LID vector represen-
tation includes the initialisation of LID embeddings
by averaging the embeddings of same-LID tokens
in the training set. In the initial experiments we
see that when we use the average initialisation in-
stead of a random initialisation, the training phase
progresses faster and the learning stops early when
the training accuracy is around 85%, in contrast
to the random initialisation in which the training
phase ends after a higher number of epochs and
with a higher training accuracy. So, we extended
the training time by changing the early stop crite-
ria from 15 epochs to 50 epochs to give the aver-
age initialisation an opportunity to show its true
capacity. Figure 3 compares the performance of
these two initialisation methods for two different
early stop criteria on the development set. We see
that the underfitting in the average initialisation
method is eliminated as the number of epochs in-
creases. Overall, the performance of both initiali-
sation methods is the same when they are trained
sufficiently. We conclude that random initialisation
can be preferred if there are time restrictions.

80 82 84 86 88

avg, 50
rand, 50

avg, 15
rand, 15

Accuracy %

Figure 3: Comparison of random vs. average initialisa-
tion in the LIDVec model when the early stop criteria
is 15 epochs vs. 50 epochs.

The impact of LID prediction We proposed
three different approaches for LID integration. In
terms of resources needed, MTL does not need an
external LID prediction by definition, since it pre-
dicts LIDs and morphology jointly. However, it is
also the worst performing one among the three ap-
proaches. DSplit and LIDVec both outperform
MTL, but require predicted LIDs to function.

To test how sensitive these models to the LID

prediction accuracy, we evaluated DSplit and
LIDVec with MarMoT, a CRF-based sequence
tagger (Müller et al., 2013) which has ~96% ac-
curacy in LID prediction instead of the STEPS
LID model with ~99% accuracy (cf. Table 9
in Appendix B for complete results). Although
LIDVec’s performance stays almost unaffected by
the accuracy drop in LID prediction, DSplit ac-
curacy drops approximately 1 point and more than
2 points in development and test sets, respectively.
We conclude that DSplit is more vulnerable to
LID accuracy whereas LIDVec can be paired with
a faster and computationally less costly LID model
if needed be. Another disadvantage of DSplit is
the need to train multiple monolingual models to
deal with different languages in CS data, in con-
trast to the single model architecture of LIDVec.
DSplit also requires pre- and post-processing of
the input and output, respectively. Considering its
superior performance, and the robustness and com-
pactness of its architecture, we suggest LIDVec
as the best approach to CS morphological tagging
among the models discussed in this paper.

The impact of LIDs on POS tagging We also
performed experiments for POS tagging, the other
possible sequence labelling task we can employ
LID integration. Table 6 shows the overall accu-
racies for each model on the development and test
sets of the SAGT Treebank. We do not observe any
significant difference between the accuracies of the
models, which is in line with our expectations. This
is because universal POS tags used in the SAGT
treebank are common to all languages in contrast
to morphological tags that include many language-
specific features. Hence, identifying the language
a token belongs to does not add extra benefits in
POS prediction.

Model Accuracy
Dev Test

STEPS - Standalone 93.72 92.27
STEPS - MTL 93.74 92.10
STEPS - DSplit (w. gold LIDs) 93.53 92.07
STEPS - LIDVec (w. gold LIDs) 93.94 92.24

Table 6: The POS tagging accuracy scores of the mod-
els on the development and test sets of the Turkish-
German SAGT Treebank.

6 Qualitative Analysis

Most Common Improvements We observe that
integrating language IDs contributes to a 10% in-

78

crease in predicting the presence of possessive
markers in Turkish nouns, which are not a fea-
ture of German nouns. This is something expected
since providing LIDs enables the model to differ-
entiate between the different sets of morphological
features of two languages better. Similarly, the
LID knowledge makes a 4% enhancement in pre-
dicting the existence of the Gender feature that
is present in German nouns but absent in Turkish
ones (cf. Figure 1). To understand this better, we
compared LIDVec and Standalone in terms of
their feature-based success. In this feature-based
performance measurement, partial matches are also
given scores in contrast to the evaluation metric we
adopted, which counts a predicted morphological
tag as correct only if it is an exact match – i.e., all
the features that constitute the morphological tag
are predicted correctly. We measure the feature-
based performance of the models by dividing each
morphological tag into features and counting each
feature match as a point. Table 7 compares feature-
based results of LIDVec and Standalone. We
observe that LIDVec improves both Precision and
Recall by more than 2%. These results suggest
that LIDVec facilitates predicting the full set of
features.

Model Precision Recall F1 Acc
Standalone 87.72 87.19 87.24 82.03
LIDVec 89.96 89.41 89.50 84.20

Table 7: Feature-based partial scores of Standalone
and LIDVec models on the development set of the
Turkish-German SAGT Treebank.

When we look at what categories benefit most
from including LIDs, we see that for Turkish they
are verbs and nouns with an improvement of 11%
and 10%, respectively. For German they are pro-
nouns and nouns with 9% improvement. The suc-
cess of morphology prediction for German verbs
is already high for all models. Hence, there is not
much improvement in German verbs. We observe
that all the nouns and pronouns in both languages
and also the verbal nouns in Turkish which are
derived from verbs have the Case feature in their
morphological analyses.

Confusion in Case feature values Although all
models easily predicted the existence of the Case
feature, they had the most trouble in deciding the
value of it. Hence, we created confusion matri-
ces of Standalone and LIDVec for different
values of the Case feature on the development set

as given in Figure 4. There are only four case
markers in German: nominative, accusative, dative,
and genitive. In Turkish, there are three additional
case markers, namely ablative, instrumental, and
locative. Albeit having a German lemma, MIXED
tokens in the SAGT Treebank are annotated accord-
ing to Turkish morphological annotation style due
to the presence of Turkish suffixes in them. We
observe that the most confusion occurs between
nominative and accusative cases for all three token
types. This confusion in TR and MIXED tokens re-
sults from the fact that the accusative suffix which
makes the case of a word accusative and the pos-
sessive suffix in nominative nouns sometimes cor-
respond to the same form in Turkish. In DE tokens,
the situation is similar in the sense that nominative
and accusative forms of German articles are differ-
ent only for masculine, whereas they have the same
form when their gender is feminine or neutral, or
when they are in plural. LIDVec consistently re-
duces this confusion and predicts correct cases that
plays an important role in its overall performance.

Improvement on MIXED tokens When observ-
ing the results in Tables 3 and 4, the notable suc-
cess of LIDVec on predicting morphological anal-
yses of MIXED tokens caught our attention. Even
when predicted LIDs are used, LIDVec outper-
forms Standalone by a large margin in the de-
velopment and test sets. We observe that MIXED
tokens in the SAGT Treebank are mostly nouns.
Therefore MIXED tokens get their share from over-
all Case improvements. When proportioned to the
total number of cases in each category, the success
of LIDVec is most visible in MIXED tokens.

Performance of LIDVec on LANG3 and OTHER
tokens We observe a pattern in the results that
seems like a trade-off between the success on TR,
DE, and MIXED and the success on LANG3 and
OTHER. This is most visible in LIDVec. We
do not see the consistent improvement trend over
Standalone in LANG3 and OTHER accuracies
as in TR, DE, and MIXED accuracies. To in-
spect this case, we compare confusion matrices
of Standalone and LIDVec in Figure 5 for
LANG3 and OTHER types. Both models confused
LANG3 mostly with DE. We believe this situation
stems from the fact that LANG3 tokens in the tree-
bank are mostly English proper nouns and some
of them are also common in German. Nonethe-
less, the low success rates in this token type by all

79

Figure 4: Confusion matrices of Standalone and
LIDVec for different Case values.

models demonstrate once again how important the
amount of training data is for data-driven models.

On the contrary, all models perform very well in
predicting the absence of morphology in OTHER
tokens. However, LIDVec makes a few more false
predictions than Standalone. We believe this
might stem from a slight overfitting of LIDVec
towards TR tokens. Yet, accuracy of all models are
above 98% for this type and we need more data to
justify that there is a difference between the models
for morphology prediction of OTHER tokens.

7 Conclusion

In this paper, we tackle the morphological tag-
ging problem for CS data. We present some chal-
lenging aspects of the task and suggest the use
of token-wise LID information. We experience
with different ways of using LIDs on a transformer-
based model and propose the LID Vectors ap-
proach. Our proposed model outperforms all the
baselines significantly and proves to be a robust
and compact way of LID integration. Being first
on focusing morphological tagging on CS data,

Figure 5: Confusion matrices for the tokens with
LANG3 and OTHER LID labels on the development set.

our study shows that utilising LIDs is an effec-
tive method in this task. We also give the first
results on LID, POS, and morphological tagging
on the Turkish-German SAGT dataset. An imple-
mentation of our model is available at https:
//github.com/sb-b/steps-parser.

Acknowledgements

We thank Stefan Grünewald for his valuable help
in using the STEPS tool. This work is funded by
DFG via project CE 326/1-1 “Computational Struc-
tural Analysis of German-Turkish Code-Switching”
(SAGT).

References
Gustavo Aguilar and Thamar Solorio. 2020. From

English to code-switching: Transfer learning with
strong morphological clues. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8033–8044, Online. As-
sociation for Computational Linguistics.

Fahad AlGhamdi and Mona Diab. 2019. Leveraging
pretrained word embeddings for part-of-speech tag-
ging of code switching data. In Proceedings of the
Sixth Workshop on NLP for Similar Languages, Vari-
eties and Dialects, pages 99–109, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Fahad AlGhamdi, Giovanni Molina, Mona Diab,
Thamar Solorio, Abdelati Hawwari, Victor Soto, and
Julia Hirschberg. 2016. Part of speech tagging for
code switched data. In Proceedings of the Second
Workshop on Computational Approaches to Code
Switching, pages 98–107, Austin, Texas. Associa-
tion for Computational Linguistics.

Utsab Barman, Joachim Wagner, and Jennifer Foster.
2016. Part-of-speech tagging of code-mixed social
media content: Pipeline, stacking and joint mod-
elling. In Proceedings of the Second Workshop
on Computational Approaches to Code Switching,
pages 30–39, Austin, Texas. Association for Com-
putational Linguistics.

80

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2017. Joining hands: Exploiting
monolingual treebanks for parsing of code-mixing
data. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
324–330, Valencia, Spain. Association for Computa-
tional Linguistics.

Emanuel Borges Völker, Maximilian Wendt, Felix Hen-
nig, and Arne Köhn. 2019. HDT-UD: A very large
Universal Dependencies treebank for German. In
Proceedings of the Third Workshop on Universal De-
pendencies (UDW, SyntaxFest 2019), pages 46–57,
Paris, France. Association for Computational Lin-
guistics.

Özlem Çetinoğlu and Çağrı Çöltekin. 2019. Chal-
lenges of annotating a code-switching treebank. In
Proceedings of the 18th International Workshop on
Treebanks and Linguistic Theories (TLT, SyntaxFest
2019), pages 82–90, Paris, France. Association for
Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, page 160–167, New
York, NY, USA. Association for Computing Machin-
ery.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Wei Fang, Moin Nadeem, Mitra Mohtarami, and James
Glass. 2019. Neural multi-task learning for stance
prediction. In Proceedings of the Second Work-
shop on Fact Extraction and VERification (FEVER),
pages 13–19, Hong Kong, China. Association for
Computational Linguistics.

Stefan Grünewald, Annemarie Friedrich, and Jonas
Kuhn. 2020. Graph-based universal dependency
parsing in the age of the transformer: What works,
and what doesn’t. arXiv preprint arXiv:2010.12699.

Mickel Hoang, Oskar Alija Bihorac, and Jacobo
Rouces. 2019. Aspect-based sentiment analysis us-
ing BERT. In Proceedings of the 22nd Nordic Con-
ference on Computational Linguistics, pages 187–
196, Turku, Finland. Linköping University Elec-
tronic Press.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2015. Part-of-speech tagging for code-mixed
English-Hindi Twitter and Facebook chat messages.
In Proceedings of the International Conference Re-
cent Advances in Natural Language Processing,
pages 239–248, Hissar, Bulgaria. INCOMA Ltd.
Shoumen, BULGARIA.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing Universal Dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fen-
fei Guo, Weizhen Qi, Ming Gong, Linjun Shou,
Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei
Zhang, Rahul Agrawal, Edward Cui, Sining Wei,
Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Win-
nie Wu, Shuguang Liu, Fan Yang, Daniel Campos,
Rangan Majumder, and Ming Zhou. 2020. XGLUE:
A new benchmark dataset for cross-lingual pre-
training, understanding and generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6008–6018, Online. Association for Computational
Linguistics.

Ying Lin, Shengqi Yang, Veselin Stoyanov, and Heng
Ji. 2018. A multi-lingual multi-task architecture
for low-resource sequence labeling. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 799–809, Melbourne, Australia. Association
for Computational Linguistics.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal Dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92–97, Sofia, Bulgaria.
Association for Computational Linguistics.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morphologi-
cal tagging. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, pages 322–332, Seattle, Washington, USA. As-
sociation for Computational Linguistics.

81

Thomas Müller and Hinrich Schütze. 2015. Robust
morphological tagging with word representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 526–536, Denver, Colorado. Association for
Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Djamé Seddah, Farah Essaidi, Amal Fethi, Matthieu
Futeral, Benjamin Muller, Pedro Javier Ortiz Suárez,
Benoît Sagot, and Abhishek Srivastava. 2020. Build-
ing a user-generated content North-African Arabizi
treebank: Tackling hell. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1139–1150, Online. Asso-
ciation for Computational Linguistics.

Royal Sequiera, Monojit Choudhury, and Kalika Bali.
2015. POS tagging of Hindi-English code mixed
text from social media: Some machine learning ex-
periments. In Proceedings of the 12th International
Conference on Natural Language Processing, pages
237–246, Trivandrum, India. NLP Association of In-
dia.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018. A Twitter corpus for Hindi-English
code mixed POS tagging. In Proceedings of the
Sixth International Workshop on Natural Language
Processing for Social Media, pages 12–17, Mel-
bourne, Australia. Association for Computational
Linguistics.

Thamar Solorio and Yang Liu. 2008. Part-of-speech
tagging for English-Spanish code-switched text. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages
1051–1060, Honolulu, Hawaii. Association for Com-
putational Linguistics.

Victor Soto and Julia Hirschberg. 2018. Joint part-of-
speech and language ID tagging for code-switched
data. In Proceedings of the Third Workshop

on Computational Approaches to Linguistic Code-
Switching, pages 1–10, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Milan Straka, Jana Straková, and Jan Hajič. 2019. Eval-
uating contextualized embeddings on 54 languages
in POS tagging, lemmatization and dependency pars-
ing. arXiv preprint arXiv:1908.07448.

Umut Sulubacak, Memduh Gökırmak, Francis Tyers,
Çağrı Çöltekin, Joakim Nivre, and Gülşen Eryiğit.
2016. Universal Dependencies for Turkish. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 3444–3454, Osaka, Japan. The
COLING 2016 Organizing Committee.

Reut Tsarfaty, Djamé Seddah, Sandra Kübler, and
Joakim Nivre. 2013. Parsing morphologically rich
languages: Introduction to the special issue. Com-
putational Linguistics, 39(1):15–22.

Utku Türk, Furkan Atmaca, Şaziye Betül Özateş,
Gözde Berk, Seyyit Talha Bedir, Abdullatif Kök-
sal, Balkız Öztürk Başaran, Tunga Güngör, and
Arzucan Özgür. 2020. Resources for Turkish de-
pendency parsing: Introducing the BOUN treebank
and the BoAT annotation tool. arXiv preprint
arXiv:2002.10416.

Rob van der Goot and Özlem Çetinoğlu. 2021. Lexical
normalization for code-switched data and its effect
on POS tagging. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers.
Association for Computational Linguistics.

Hilko van der Voet. 1994. Comparing the predictive ac-
curacy of models using a simple randomization test.
Chemometrics and Intelligent Laboratory Systems,
25(2):313–323.

David Vilares, Miguel A. Alonso, and Carlos Gómez-
Rodríguez. 2016. EN-ES-CS: An English-Spanish
code-switching twitter corpus for multilingual sen-
timent analysis. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 4149–4153, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. POS tagging
of English-Hindi code-mixed social media content.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 974–979, Doha, Qatar. Association for Com-
putational Linguistics.

Yu Zhang and Qiang Yang. 2017. A survey on multi-
task learning. arXiv preprint arXiv:1707.08114.

82

A Comparison of Two Approaches for
the Data Split Method

Model Accuracy on the Development Set
TR DE MIXED LANG3 OTHER ALL

first 81.17 83.03 69.67 52.78 99.91 83.72
second 81.05 82.78 60.93 57.64 99.88 83.48

Accuracy on the Test Set
TR DE MIXED LANG3 OTHER ALL

first 78.04 80.12 65.03 50.00 99.93 80.98
second 77.44 79.59 60.11 50.00 99.86 80.42

Model Accuracy on the Development Set
TR DE MIXED LANG3 OTHER ALL

first 80.66 82.95 70.43 41.50 100.0 83.43
second 80.50 82.81 63.44 41.50 99.97 83.23

Accuracy on the Test Set
TR DE MIXED LANG3 OTHER ALL

first 77.65 80.01 65.59 48.78 100.0 80.78
second 77.05 79.54 60.75 48.78 100.0 80.26

Table 8: Morphological tagging accuracy of the two
pipeline approaches for the DSplit method. The first
part shows the scores in the existence of gold LIDs and
the second part demonstrates the results when predicted
LIDs are used instead of gold ones.

B Comparison of MarMoT and STEPS
for LID Prediction

Accuracy
Development set Test set

MarMoT STEPS MarMoT STEPS
TR 96.40 99.09 97.38 99.42
DE 97.84 98.43 97.88 98.80
MIXED 23.77 90.16 27.32 92.90
LANG3 41.67 52.08 0.0 67.39
OTHER 98.23 99.91 99.06 99.86
ALL 96.12 98.55 96.57 98.96

Table 9: Comparsion of MarMoT and STEPS tools for
LID prediction on the development and test sets of the
SAGT Treebank.

83

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 84–94
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_011

Can You Traducir This? Machine Translation for Code-Switched Input

Jitao Xu
Univ. Paris-Saclay,

& CNRS, LISN
Orsay, France

jitao.xu@limsi.fr

François Yvon
Univ. Paris-Saclay,

& CNRS, LISN
Orsay, France

francois.yvon@limsi.fr

Abstract

Code-Switching (CSW) is a common phe-
nomenon that occurs in multilingual geo-
graphic or social contexts, which raises chal-
lenging problems for natural language process-
ing tools. We focus here on Machine Trans-
lation (MT) of CSW texts, where we aim to
simultaneously disentangle and translate the
two mixed languages. Due to the lack of ac-
tual translated CSW data, we generate artifi-
cial training data from regular parallel texts.
Experiments show this training strategy yields
MT systems that surpass multilingual systems
for code-switched texts. These results are con-
firmed in an alternative task aimed at provid-
ing contextual translations for a L2 writing as-
sistant.

1 Introduction

Code-Switching (CSW) denotes the alternation of
two languages within a single utterance (Poplack,
1980; Sitaram et al., 2019). It is a common com-
municative phenomenon that occurs in multilin-
gual communities during spoken and written in-
teractions. CSW is a well studied phenomenon
in linguistic circles and has given rise to a num-
ber of theories regarding the structure of mixed
language fragments (Poplack, 1978; Pfaff, 1979;
Poplack, 1980; Belazi et al., 1994; Myers-Scotton,
1997). The Matrix Language Frame (MLF) the-
ory (Myers-Scotton, 1997) defines the concept of
matrix and embedded languages where the matrix
language is the main language that the sentence
structure should conform to and notably provides
the syntactic morphemes, while the influence of the
embedded language is lesser and is mostly mani-
fested in the insertion of content morphemes.

The rise of social media and user-generated con-
tent has made written instances of code-switched
language more visible. It is estimated that as much
as 17% of Indian Facebook posts (Bali et al., 2014)
and 3.5% of all tweets (Rijhwani et al., 2017) are

code-switched. This phenomenon is also becoming
more pervasive in short text messages, chats, blogs,
and the like (Samih et al., 2016). Code-switching
however remains understudied in natural language
processing (NLP) (Aguilar and Solorio, 2020), and
most work to date has focused on token-level lan-
guage identification (LID) (Samih et al., 2016) and
on language models for Automatic Speech Recog-
nition (Winata et al., 2019). More tasks are being
considered lately, such as Named Entity Recogni-
tion (Aguilar et al., 2018), Part-of-Speech tagging
(Ball and Garrette, 2018) or Sentiment Analysis
(Patwa et al., 2020).

We focus here on another task for CSW texts:
Machine Translation (MT). The advent of Neural
Machine Translation (NMT) technologies (Bah-
danau et al., 2015; Vaswani et al., 2017) has made
it possible to design multilingual models capable
of translating from multiple source languages into
multiple target languages (Firat et al., 2016; John-
son et al., 2017), where however both the input and
output are monolingual. We study here the ability
of such architectures to translate fragments freely
mixing a “matrix” and an “embedded” language
into monolingual utterances.

Our main contribution is to show that for the two
pairs of languages considered (French-English and
Spanish-English): (a) translation of CSW texts is
almost as good as the translation of monolingual
texts – a performance that bilingual systems are un-
able to match; (b) such results can be obtained by
training solely with artificial data; (c) CSW trans-
lation systems achieve a near deterministic ability
to recopy in the output target words found in the
input, suggesting that they are endowed with some
language identification abilities. Using these mod-
els, we are also able to obtain competitive results
on the SemEval 2014 Task 5: L2 Writing Assistant,
which we see as one potential application area of
CSW translation.

84

https://doi.org/10.26615/978-954-452-056-4_011

2 Building translation systems for
code-switched data

2.1 Code-switched data generation

Parallel corpora with natural CSW data are very
scarce (Menacer et al., 2019) and, similar to Song
et al. (2019a), we generate artificial CSW parallel
sentences from regular translation data.

We first compute word alignments between par-
allel sentences using fast align1 (Dyer et al.,
2013). We then extract so-called minimal align-
ment units following the approach of Crego et al.
(2005): these correspond to small bilingual phrase
pairs (e, f) extracted from (symmetrized) word
alignments such that all alignment links outgoing
from words in e reach a word in f , and vice-versa.

For each pair of parallel sentence, we first ran-
domly select the matrix language;2 then the number
of replacements r to appear in a derived CSW sen-
tence with an exponential distribution as:

P (r = k) =
1

2k+1
∀k = 1, . . . , rep (1)

where rep is a predefined maximum number of
replacements. We also make sure that the number
of replacements does not exceed half of either the
original source or target sentences length, adjusting
the actual number of replacements as:

n = min(
S

2
,
T

2
, r) (2)

where S and T are respectively the length of the
source and target sentences. We finally choose
uniformly at random r alignment units and replace
these fragments in the matrix language by their
counterpart in the embedded language. Figure 1
displays examples of generated CSW sentences.

2.2 Machine translation for CSW data

2.2.1 Data preparation
We use WMT data for CSW data generation and
for training MT systems. We discard sentences

1https://github.com/clab/fast_align
2Note that we abuse here the terms “matrix” and “embed-

ded” language, as we do not attempt to generate linguistically
realistic CSW data matching the constraints of the MLF the-
ory. We use these terms in a much looser sense where the
sentence in the “matrix” language is the one that receives arbi-
trary insertions from the “embedded” language. This means
that our artificial CSW sentences will contain insertions of
unconstrained fragments containing both content and function
words, which the theory would generally consider ungrammat-
ical.

which do not possess the correct language by us-
ing the fasttext LID model3 (Bojanowski et al.,
2017). We use Moses tools (Koehn et al., 2007) to
normalize punctuations, remove non-printing char-
acters and discard sentence pairs with a source /
target ratio higher than 1.5, with a maximum sen-
tence length of 250. We tokenize all WMT data us-
ing Moses tokenizer.4 Our procedure for artificial
CSW data generation uses WMT13 En-Es parallel
data with 14.5M sentences. For En-Fr, we use all
WMT14 parallel data, for a grand total of 33.9M
sentences. Our development sets are respectively
newstest2011 and newstest2012 for En-
Es, and newstest2012 and newstest2013
as development sets for En-Fr; the correspond-
ing test sets are newstest2013 (En-Es) and
newstest2014 (En-Fr).

2.2.2 Machine Translation systems
We use the fairseq5 (Ott et al., 2019) implemen-
tation of Transformer base (Vaswani et al., 2017)
for our models with a hidden size of 512 and a feed-
forward size of 2048. We optimize with Adam, set
up with an initial learning rate of 0.0007 and an in-
verse square root weight decay schedule, as well as
4000 warmup steps. All models were trained with
mixed precision and a batch size of 8192 tokens
for 300k iterations on 4 V100 GPUs. For each lan-
guage pair, we use a shared source-target inventory
built with Byte Pair Encoding (BPE) of 32K merge
operations, using the implementation published by
Sennrich et al. (2016).6 Note that we do not share
the embedding matrices. Our experiments with
sharing the decoder’s input and output embeddings
or sharing all encoder+decoder embeddings did not
yield further gains.

We compare three settings for Code-Switch
models:

• the base-csw setting, where we train two
separate systems, one translating CSW into
English, and the other translating CSW into
Spanish or French.

• the multi-csw setting, where we train one
model able to generate either pure matrix or
embedded language in the output. To this

3https://dl.fbaipublicfiles.com/
fasttext/supervised-models/lid.176.bin

4https://github.com/moses-smt/
mosesdecoder

5https://github.com/pytorch/fairseq
6https://github.com/rsennrich/

subword-nmt.

85

Matrix In Oregon , planners are experimenting with giving drivers different choices .
r = 1 Dans Oregon , planners are experimenting with giving drivers different choices .
r = 2 Dans Oregon , les planificateurs are experimenting with giving drivers different choices .
r = 3 Dans Oregon , les planificateurs are experimenting en offrant aux drivers different choices .

Embedded Dans l’Orégon, les planificateurs tentent l’expérience en offrant aux automobilistes différents choix.

Figure 1: Examples of generated CSW sentences when taking English as the matrix language and varying the
number r of replacements of embedded French segments (in boldface).

end, similar to a multilingual NMT model
(Johnson et al., 2017), we add a tag at the
beginning of each CSW sentence to specify
the desired target language. Taking En-Fr as
an example, we add a <EN> tag for CSW-
En and a <FR> tag for CSW-Fr. We use the
combination of CSW-En and CSW-Fr data for
training, which implies that each source side
(CSW sentence) is duplicated in the training
data, once for each possible output.

• the joint-csw setting, which extends
multi-csw by using one encoder and two
separate decoders and training the two output
languages simultaneously with a combined
loss function: for each training (CSW) in-
stance, the loss function sums the two pre-
diction terms for the embedded and the matrix
language. The training data remains the same.

Note that all our Code-Switch systems also
have the ability to translate monolingual source
data, in either direction.

For comparison purposes, we also use our par-
allel data to train two baselines: (a) regular NMT
systems for the considered language pairs (base),
similar to base-csw; (b) bilingual NMT systems,
capable of translating from and into both two lan-
guages (bilingual). The selection of the de-
sired target language relies on the same tagging
mechanism as multi-csw, which means that
both types of models see exactly the same exam-
ples. All resulting baseline Transformer models
have the exact same hyperparameters and use the
same training scheme as Code-Switch. Perfor-
mance is computed with SacreBLEU (Post, 2018)
and METEOR (Denkowski and Lavie, 2014).

3 Machine translation experiments

3.1 Results

We run tests using artificial CSW datasets, as men-
tioned in Section 2.2, as well as on the original
test sets, in order to evaluate our models’ ability

to translate both CSW and monolingual sentences.
Results are in Table 1 where we also separately
report scores for the ‘Matrix’ and ‘Embedded’ part
of the test sets. As is obvious on the copy line,
the ‘Embedded’ part contains mostly source lan-
guage, and corresponds to an actual translation task
whereas the ‘Matrix’ part mostly contains target
words on the source side, and is much easier to
translate.

On the left part of this table, we see that the base-
line systems, either with two (base) or one single
(bilingual) model(s), do better on monolingual
test sets than their counterparts trained on CSW
data (respectively base-csw and multi-csw).
For both language pairs, the observed differences
are in the range of 1-1.5 BLEU points. Conversely,
when translating CSW sentences, *-csw models
perform significantly better than the corresponding
baselines models, which have never seen CSW in
the source.

Moreover, we note the marked differences be-
tween BLEU scores obtained by these models when
the matrix language for the CSW source is the tar-
get and when the embedded language is the target.
In the former case, translation is near perfect; in
the latter case they nonetheless use the little infor-
mation available to improve over the monolingual
scores (about 1-1.5 BLEU points), nearly matching
the performance of the baseline systems. This is
illustrated for Fr-En, for which joint-csw im-
proved from 33.7 to 35.0; in the same condition, the
bilingual system only improves by 0.1 point.

Among the three Code-Switch models,
multi-csw is the weakest, while the other two
achieve comparable performance. Interestingly,
with joint training (joint-csw), we can recover
with one single system the performance of the two
separate systems used in the base-csw condi-
tion. On the monolingual tests, this system also
matches the performance of the multilingual base-
line (bilingual), which makes it overall our
best contender of the lot.

86

Testset newstest2013 csw-newstest2013
Direction En-Es Es-En CSW-Es CSW-En
Metrics B M B M B M B M
copy - - - - 50.3 57.8 46.8 31.7

2.9 93.5 3.0 93.3

base 33.2 58.3 33.8 36.4 38.9 59.1 57.3 44.4
33.1 - 34.0 - 32.5 43.4 34.6 78.7

bilingual 31.9 57.3 32.6 35.9 23.3 42.0 44.2 37.5
31.9 - 32.9 - 32.3 14.5 33.3 54.5

base-csw 32.0 57.4 32.7 36.0 66.8 79.8 66.5 49.4
31.8 - 33.0 - 33.1 97.1 34.5 97.5

multi-csw 31.1 56.7 31.5 35.4 66.5 79.5 64.7 48.6
30.9 - 31.9 - 32.2 97.2 33.1 95.1

joint-csw 31.9 57.3 32.6 36.0 66.9 79.7 66.4 49.4
32.0 - 32.8 - 33.2 97.2 34.2 97.5

Testset newstest2014 csw-newstest2014
Direction En-Fr Fr-En CSW-Fr CSW-En
Metrics B M B M B M B M
copy - - - - 50.0 55.7 46.5 33.1

2.9 93.8 2.9 93.4

base 37.9 60.9 35.4 37.9 45.1 64.4 61.3 47.3
37.7 - 35.3 - 37.8 52.0 36.0 84.6

bilingual 36.3 59.6 34.5 37.6 54.8 71.3 56.5 45.8
36.4 - 34.6 - 36.8 71.7 34.7 76.6

base-csw 36.7 59.9 34.3 37.5 67.5 79.9 67.9 50.5
36.7 - 34.2 - 37.8 95.2 35.6 97.4

multi-csw 35.2 58.7 32.9 36.8 66.7 79.5 65.8 49.4
35.3 - 32.6 - 36.3 95.1 33.7 94.6

joint-csw 36.2 59.5 34.0 37.3 67.4 79.8 67.7 50.3
36.2 - 33.7 - 37.3 95.4 35.0 97.4

Table 1: Translating monolingual newstest data and artificial csw-newstest data for two language pairs where
performance is measured via the BLEU (B) and METEOR (M) scores. We also report a trivial baseline that just
recopies the source text. Small numbers contain BLEU scores computed separately when the target language is the
embedded language (left) and the matrix language (right). For the monolingual tests (left part), these correspond
to scores computed on the same sentences that are also included in the CSW tests.

3.2 Analysis

3.2.1 Code-Switching effect
In order to better study the effect of mixing lan-
guages, we modify the synthetic data generation
method to keep one language as the matrix lan-
guage, in which segments are incrementally re-
placed by translations of the embedded language.
We relax the constraint on the maximum number
of replacements and generate new test sets with an
increasing number of replacements, ranging from
1 to 20, resulting in 207 versions of the CSW test
sets (in each direction). In Figure 2, we plot the
BLEU scores of both source CSW sentences and
their translations for En-Fr language pair, using
each language as the matrix language, to visualize
the impact of progressively introducing more target
fragments into the source.

7For sentences that could not accommodate 20 replace-
ments, we performed as many replacements as possible.

The same behavior is observed for both language
pairs and directions: on average, inserting random
target fragments boosts the translation performance,
with a larger payoff for the first few target segments.
There exists an important gap for the output BLEU
scores when CSW source sentences with different
matrix languages reach the same (input) BLEU
scores. Even though we generate a large number
of replacements, the basic grammar structure of
the matrix language is still maintained. Therefore,
taking the target language as matrix gives the model
a pre-translated sentence structure that is much
easier to reproduce.

3.2.2 Implicit LID in translation

A second question concerns the ability of the trans-
lation system to identify target fragments in the
source and to copy them in the target, even though
these fragments are indistinguishable from gen-
uine source segments. We use labels computed

87

(a) (b)

Figure 2: Evolution of the BLEU score of source CSW data and their target translation for En-Fr. (a) Direction
CSW-En. The solid curve takes Fr as the matrix language, where we progressively inject more En segments; for the
dash dot curve, En is the matrix language, with a growing number of Fr segments. (b) Direction CSW-Fr. Note that
the target BLEU is always much higher than the source BLEU, with about a 20 points difference. The gap between
the dash dot and solid curves is due to the basic sentence structure of the matrix language (see Section 3.2.1).
As dash dot curves represent insertion in the reference target sentence, the corresponding BLEU score is always
higher than the solid curve and actually reaches 100 (in the absence of any embedded language).

during the CSW generation procedure to sort out
pre-translated (target) segments from actual source
segments to be translated. For instance, when trans-
lating into French, only tokens with a label eng,
denoting English, are expected to be translated.
All other tokens correspond to French words are
expected to be copied. As reported in Table 2,
our translation models are able to copy almost all
pre-translated tokens for both language pairs and
directions.

Refining the analysis, we also study whether the
relative order of target words changes, or is pre-
served, during the translation. Table 3 reports the
percentage of exact and switched-order copies. We
observe again large differences with respect to the
position of the matrix language. When the matrix
language is the target language, the model always
preserves the observed token order since it indi-
cates a correct sentence structure for the hypothesis.
When translating into the embedded language, we
observe a larger number of word order changes:
in this case, inserted target segments may not ap-
pear in their correct order in the CSW sentence,
an issue that the model tries to fix. An example
of this is in Figure 3, where we observe a swap
between the input (“différent choix”) and output
(“choix différent”) word orders.

Conversely, it is also interesting to look at the
proportion of mixed language generated on the tar-

Testset csw-newstest2014 csw-newstest2013
Direction CSW-En CSW-Fr CSW-En CSW-Es
to copy 42148 47337 37653 41053
copied 41567 46229 37421 40638
copy rate (%) 98.6 97.7 99.4 99.0
CSW rate (%) 0.13 0.30 0.16 0.23

Table 2: Analyzing the recopy of tokens
on csw-newstest2014 for En-Fr and
csw-newstest2013 for En-Es. We report the
number of (pre-translated) tokens that should be
copied, and the corresponding ratios.

En-Fr En-Es
Direction Copy Copy+Swap Copy Copy+Swap
CSW-En 87.1 4.5 90.7 5.2

Mat En 97.6 0.1 98.2 0.2
Mat For 61.4 15.2 72.6 17.3

CSW-For 77.4 5.5 88.5 3.7
Mat For 84.9 0.1 97.1 0.2
Mat En 59.4 18.5 65. 6 13.2

Table 3: Percentage of sentences for which all target
words have been exactly copied without and with or-
der changes, for csw-newstest2014 (En-Fr) and
csw-newstest2013 (En-Es). We separately re-
port numbers for the case where the foreign language
(French or Spanish) is the embedded (Mat En) or ma-
trix (Mat For) language.

get side. Recall that in our training, the source is
mixed-language, while the target is always mono-
lingual. We use an in-house token-level language

88

identification (LID) model to identify the language
of output tokens and to detect the CSW rate on
the target side. As indicated in Table 2, our mod-
els generate almost pure monolingual translations,
with a very low rate of CSW text. CSW-translation
models thus seem to perform some language iden-
tification, as they almost perfectly sort out target
language tokens (which are almost always copied)
from the source language tokens (which are always
translated).

A last issue concerns morphological errors:
when inserting foreign words into a matrix source,
one cannot expect to always also introduce the right
inflection marks, some of which can only be de-
termined once the target context is known. An-
other interesting phenomenon, that we do not sim-
ulate here, is when the embedded (target) lemma
is adapted bears a morphological mark that only
exist in the matrix language, which means that two
linguistic systems are mixed within the same word,
thereby posing more extreme difficulties for MT
(Manandise and Gdaniec, 2011).

To illustrate the ability to correct grammar errors
in input fragments, we manually noise a CSW sen-
tence and display its translation in Figure 3. Where
the input just contains the lemma of the French
word “tenter” (to try), the model inserts a modal
“doivent” to fix the context. Another illustration is
for the adjective “différent” which is moved into
post-nominal position, and for which an article
(“un”) is inserted. This indicates that the model not
only copies what already exists but also tends to
adjust translations whenever necessary.

4 Computing translations in context

In this section, we evaluate CSW translation for the
SemEval 2014 Task 5: L2 Writing Assistant (van
Gompel et al., 2014), which can be handled as an
MT task from mixed data.

4.1 Method
This task consists in translating L1 fragments in
an L2 context, where the test set design is such
that there is exactly one L1 insert in each utterance.
We evaluated on two L1-L2 pairs: English-Spanish
and French-English, and list below example test
segments provided by the organizers for these pairs
of languages (the insert and reference segments are
in boldface):

• Input (L1=English,L2=Spanish): “Todo ello,
in accordance con los principios que siempre-

hemos apoyado.”
Output: “Todo ello, de conformidad con los
principios que siempre hemos apoy-ado.”

• Input (L1=French,L2=English): “I rentre à
la maison because I am tired.”
Output: “I return home because I am tired.”

The official metric for the SemEval evaluation
is a word-based accuracy of the translations of the
L1 fragment, which means that the L2 context of
each sentence is not taken into account in scoring.
Since our systems are full-fledged NMT systems,
their output may not contain the reference L2 prefix
and suffix. Therefore, two options are explored to
compute these scores. The first is to post-process
the output HYP and align it with the L2 reference
context in REF. This alignment allows us to only
score the relevant fragment in HYP. We refer to this
option as free-dec.

The second option is to ensure that the L2 con-
text will be present in the output translation. To this
end, we use the force decoding mode of fairseq,
implementing the methods of Post and Vilar (2018);
Hu et al. (2019). We explored two different ways
to express the L2 context as decoding constraints.
The first turns every token in the L2 context as a
separate constraint (token-cst). Continuing the
previous example, “I, because, I, am, tired.” yield
5 constraints. The second uses the prefix and suffix
of the L2 context as two multi-word constraints
(presuf-cst). In this case, “I” and “because I
am tired.” yield just 2 constraints. In both cases,
constraints are required to be present in the pre-
scribed order in the output.

4.2 Results

Scores are computed with the SemEval evaluation
tool,8 which enables a comparison with other sub-
missions for this task. Results are in Table 4 and
5. For En-Es, our CSW translator outperforms the
best system in the official evaluation (van Gompel
et al., 2014). Note that this model is not specifically
designed nor tuned in any way for the SemEval task.
For Fr-En, our system achieves better performance
than the forth best participating system, with a clear
gap with respect to the top results. In both cases,
constraint decoding hurts performance: given that
the automatic copy of target segments is already
nearly perfect, introducing more constraints during

8https://github.com/proycon/
semeval2014task5

89

En In Oregon , planners are experimenting with giving drivers different choices.
Fr Dans l’Orégon, les planificateurs tentent l’expérience en offrant aux automobilistes différents choix.

CSW In l’Oregon , planners tentent l’ expérience with giving automobilistes différents choix.
Hyp Dans l’Orégon , les planificateurs tentent l’expérience de donner aux automobilistes différents choix.

Noisy CSW In l’ Oregon , planners tenter l’expérience with giving automobilist différent choix.
Hyp Dans l’Orégon , les planificateurs doivent tenter l’expérience de donner à l’ automobiliste un choix différent.

Figure 3: A noisy Code-Switched sentence with French as both the matrix and target language.

the search has here a clear detrimental effect for
this task.

Accuracy Word Accuracy Recall
UEdin-run2 0.755 0.827 1.0
UEdin-run1 0.753 0.827 1.0
UEdin-run3 0.745 0.820 1.0
multi-csw
free-dec 0.755 0.827 1.0
token-cst 0.749 0.824 1.0
presuf-cst 0.751 0.827 1.0
joint-csw
free-dec 0.773 0.842 1.0

Table 4: Results of SemEval 2014 Task 5 for En-Es.

Accuracy Word Accuracy Recall
UEdin-run1 0.733 0.824 1.0
UEdin-run2 0.731 0.821 1.0
UEdin-run3 0.723 0.816 1.0
CNRC-run1 0.556 0.694 1.0
multi-csw
free-dec 0.554 0.685 0.996
token-cst 0.531 0.665 0.990
presuf-cst 0.519 0.658 0.982
joint-csw
free-dec 0.626 0.744 0.994

Table 5: Results of SemEval 2014 Task 5 for Fr-En.

To better study the performance gap between
these language pairs, we additionally score the de-
velopment and test data with BLEU and METEOR.
Results in Table 6 show that for these metrics, we
achieve performance that are in that same ballpark
for the two language pairs, suggesting that the ob-
served difference in the SemEval metric is likely
due to a mismatch between references and system
outputs. The official metric is a word accuracy
which may exclude acceptable translations by ex-
act token match.

5 Related work

Research in the area of NLP for CSW has mostly
focused on CSW Language Modeling, especially
for Automatic Speech Recognition (Pratapa et al.,
2018; Garg et al., 2018; Gonen and Goldberg, 2019;

multi-csw joint-csw
Dataset B M B M
Fr-En dev 97.3 75.6 97.6 76.4
Fr-En test 90.1 64.1 91.0 66.1
En-Es dev 97.4 98.8 97.6 99.0
En-Es test 89.9 95.3 90.4 95.5

Table 6: Results of other metrics on SemEval data.
METEOR scores for the Fr-En SemEval test are much
worse than for En-Es. This is mostly due to the high
“fragmentation penalty” computed by METEOR for
English; the corresponding average Fmean is about
0.99, showing that translations are mostly correct.

Winata et al., 2019; Lee and Li, 2020). Evalua-
tion tasks, benchmarks have also been prepared
for LID in user generated CSW content (Zubiaga
et al., 2016; Molina et al., 2016), Named Entity
Recognition (Aguilar et al., 2018), Part-of-Speech
tagging (Ball and Garrette, 2018; Aguilar et al.,
2020; Khanuja et al., 2020) and Sentiment Anal-
ysis (Patwa et al., 2020). CSW was also found
useful in foreign language teaching: Renduchin-
tala et al. (2019a,b) showed that replacing words
by their counterparts in foreign language helps to
learn foreign language vocabulary.

Regarding MT, most past work has focused on
using artificial CSW data to help conventional trans-
lation systems. Huang and Yates (2014) used CSW
corpus to improve word alignment and statistical
MT. Dinu et al. (2019) experienced replacing and
concatenating source terminology constraints by
the corresponding translation(s) to boost the ac-
curacy of term translations. Song et al. (2019a)
shared the same idea by replacing phrases with pre-
specified translation to perform “soft” constraint
decoding. A different line of research is in (Bulte
and Tezcan, 2019; Xu et al., 2020; Pham et al.,
2020), who explore ways to combine a source
sentence with similar translations extracted from
translation memories. Yang et al. (2020) also pre-
trained translation models by predicting original
source segments from generated CSW sentences
and claimed better results compared to other pre-

90

training methods (Conneau and Lample, 2019;
Song et al., 2019b). Nevertheless, there barely
exists work aimed at translating CSW sentences.
Johnson et al. (2017) mentioned using a multilin-
gual NMT system to translate CSW sentence to
a third target language by showing only one ex-
ample. To the best of our knowledge, only one
parallel Arabic-English CSW corpus was specifi-
cally released for MT applications (Menacer et al.,
2019). This CSW data was extracted from the UN
data with Arabic as the matrix language: while
translations into English were readily available, the
purely Arabic side of the corpus was obtained using
Google Translate to fill the missing Arabic bits.

6 Conclusion and outlook

In this study, we present a data augmentation
method to generate artificial CSW data. We have
shown that artificial data generated could be used
to train NMT systems to translate both monolin-
gual and CSW sentences (in one or even two dif-
ferent languages). With joint training of the two
languages, we were able to build systems that were
as good as a baseline bilingual system on mono-
lingual texts, and much better for CSW texts. Our
system does not need any explicit language identifi-
cation and almost perfectly sorts out source tokens
from target tokens in a CSW utterance. Another
interesting feature of our system is that it always
output monolingual translations. We finally report
state-of-the-art results for the SemEval L2 Writing
Assistant task for Es-En, while the related results
for Fr-En are still somewhat lagging behind the
best scores.

In the future, we would like to generate more
realistic CSW data from monolingual sentences us-
ing a translation model. We also plan to explore
ways to translate CSW texts simultaneously into
both languages, so that the two decoding processes
can mutually influence one another: in a first step
in that direction, we have shown that training with a
joint loss was actually beneficial for the translation
into the two languages. Another line of research
would be to continue experimenting with realistic
language data, also containing other phenomena
such as morphological binding. Finally, we also in-
tend to study the somewhat more realistic condition
where a mixture of languages A and B is translated
into language C; we believe that the artificial CSW
generation methods developed in our work would
also be effective for this task.

7 Acknowledgements

This work was granted access to the HPC re-
sources of IDRIS under the allocation 2021-
[AD011011580R1] made by GENCI. The authors
wish to thank Josep Crego for his comments of an
earlier version of this work. We also would like to
thank the anonymous reviewers for their valuable
suggestions. The first author is partly funded by
Systran and by a grant from Région Ile-de-France.

References
Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona

Diab, Julia Hirschberg, and Thamar Solorio. 2018.
Named entity recognition on code-switched data:
Overview of the CALCS 2018 shared task. In
Proceedings of the Third Workshop on Compu-
tational Approaches to Linguistic Code-Switching,
pages 138–147, Melbourne, Australia. Association
for Computational Linguistics.

Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.
2020. LinCE: A Centralized Benchmark for Lin-
guistic Code-switching Evaluation. In Proceedings
of The 12th Language Resources and Evaluation
Conference, pages 1803–1813, Marseille, France.
European Language Resources Association.

Gustavo Aguilar and Thamar Solorio. 2020. From
English to code-switching: Transfer learning with
strong morphological clues. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8033–8044, Online. As-
sociation for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Kalika Bali, Jatin Sharma, Monojit Choudhury, and Yo-
garshi Vyas. 2014. “I am borrowing ya mixing ?” an
analysis of English-Hindi code mixing in Facebook.
In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching, pages 116–
126, Doha, Qatar. Association for Computational
Linguistics.

Kelsey Ball and Dan Garrette. 2018. Part-of-speech
tagging for code-switched, transliterated texts with-
out explicit language identification. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3084–3089,
Brussels, Belgium. Association for Computational
Linguistics.

Hedi M Belazi, Edward J Rubin, and Almeida Jacque-
line Toribio. 1994. Code switching and x-bar theory:
The functional head constraint. Linguistic inquiry,
pages 221–237.

91

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Bram Bulte and Arda Tezcan. 2019. Neural fuzzy re-
pair: Integrating fuzzy matches into neural machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1800–1809, Florence, Italy. Association for
Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32,
pages 7059–7069. Curran Associates, Inc.

Josep M. Crego, José B. Mariño, and Adrià De Gis-
pert. 2005. Reordered search, and tuple unfolding
for Ngram-based SMT. In In Proceedings of the MT
Summit X, pages 283–289.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3063–3068, Florence, Italy. Association for Compu-
tational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine trans-
lation with a shared attention mechanism. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
866–875. Association for Computational Linguis-
tics.

Saurabh Garg, Tanmay Parekh, and Preethi Jyothi.
2018. Code-switched language models using dual
RNNs and same-source pretraining. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3078–3083,
Brussels, Belgium. Association for Computational
Linguistics.

Hila Gonen and Yoav Goldberg. 2019. Language mod-
eling for code-switching: Evaluation, integration of

monolingual data, and discriminative training. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4175–
4185, Hong Kong, China. Association for Computa-
tional Linguistics.

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick
Xia, Tongfei Chen, Matt Post, and Benjamin
Van Durme. 2019. Improved lexically constrained
decoding for translation and monolingual rewriting.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 839–850,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Fei Huang and Alexander Yates. 2014. Improving
word alignment using linguistic code switching data.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 1–9, Gothenburg, Sweden. Asso-
ciation for Computational Linguistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. GLUECoS: An evaluation benchmark for
code-switched NLP. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3575–3585, Online. Association
for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Grandee Lee and Haizhou Li. 2020. Modeling code-
switch languages using bilingual parallel corpus. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 860–
870, Online. Association for Computational Linguis-
tics.

Esmé Manandise and Claudia Gdaniec. 2011. Mor-
phology to the rescue redux: Resolving borrow-
ings and code-mixing in machine translation. In

92

Systems and Frameworks for Computational Mor-
phology, pages 86–97, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Mohamed Menacer, David Langlois, Denis Jouvet, Do-
minique Fohr, Odile Mella, and Kamel Smaı̈li. 2019.
Machine Translation on a parallel Code-Switched
Corpus. In Canadian AI 2019 - 32nd Conference
on Canadian Artificial Intelligence, Lecture Notes
in Artificial Intelligence, Ontario, Canada.

Giovanni Molina, Fahad AlGhamdi, Mahmoud
Ghoneim, Abdelati Hawwari, Nicolas Rey-
Villamizar, Mona Diab, and Thamar Solorio.
2016. Overview for the second shared task on
language identification in code-switched data. In
Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching, pages 40–49,
Austin, Texas. Association for Computational
Linguistics.

Carol Myers-Scotton. 1997. Duelling languages:
Grammatical structure in codeswitching. Oxford
University Press.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. SemEval-2020 task 9: Overview of senti-
ment analysis of code-mixed tweets. In Proceed-
ings of the Fourteenth Workshop on Semantic Eval-
uation, pages 774–790, Barcelona (online). Interna-
tional Committee for Computational Linguistics.

Carol W Pfaff. 1979. Constraints on language mix-
ing: Intrasentential code-switching and borrowing in
Spanish/English. Language, pages 291–318.

Minh Quang Pham, Jitao Xu, Josep Crego, François
Yvon, and Jean Senellart. 2020. Priming neural ma-
chine translation. In Proceedings of the Fifth Confer-
ence on Machine Translation, pages 462–473, On-
line. Association for Computational Linguistics.

Shana Poplack. 1978. Syntactic structure and social
function of code-switching, volume 2. Centro de
Estudios Puertorriqueños, City University of New
York].

Shana Poplack. 1980. Sometimes i’ll start a sentence
in spanish y termino en espaÑol: toward a typology
of code-switching 1. Linguistics, 18:581–618.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Adithya Renduchintala, Philipp Koehn, and Jason Eis-
ner. 2019a. Simple construction of mixed-language
texts for vocabulary learning. In Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 369–379,
Florence, Italy. Association for Computational Lin-
guistics.

Adithya Renduchintala, Philipp Koehn, and Jason Eis-
ner. 2019b. Spelling-aware construction of maca-
ronic texts for teaching foreign-language vocabulary.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6438–
6443, Hong Kong, China. Association for Computa-
tional Linguistics.

Shruti Rijhwani, Royal Sequiera, Monojit Choud-
hury, Kalika Bali, and Chandra Shekhar Maddila.
2017. Estimating code-switching on Twitter with
a novel generalized word-level language detection
technique. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1971–1982, Van-
couver, Canada. Association for Computational Lin-
guistics.

Younes Samih, Suraj Maharjan, Mohammed Attia,
Laura Kallmeyer, and Thamar Solorio. 2016. Multi-
lingual code-switching identification via LSTM re-
current neural networks. In Proceedings of the
Second Workshop on Computational Approaches to
Code Switching, pages 50–59, Austin, Texas. Asso-
ciation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
ishna Rallabandi, and Alan W. Black. 2019. A sur-
vey of code-switched speech and language process-
ing. CoRR, abs/1904.00784.

93

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and Min Zhang. 2019a. Code-switching for
enhancing NMT with pre-specified translation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 449–459,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019b. Mass: Masked sequence to se-
quence pre-training for language generation. In
ICML, volume 97 of Proceedings of Machine Learn-
ing Research, pages 5926–5936. PMLR.

Maarten van Gompel, Iris Hendrickx, Antal van den
Bosch, Els Lefever, and Véronique Hoste. 2014. Se-
mEval 2014 task 5 - L2 writing assistant. In Pro-
ceedings of the 8th International Workshop on Se-
mantic Evaluation (SemEval 2014), pages 36–44,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280, Hong Kong, China.
Association for Computational Linguistics.

Jitao Xu, Josep Crego, and Jean Senellart. 2020. Boost-
ing neural machine translation with similar trans-
lations. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1580–1590, Online. Association for Computa-
tional Linguistics.

Zhen Yang, Bojie Hu, Ambyera Han, Shen Huang, and
Qi Ju. 2020. CSP: Code-switching pre-training for
neural machine translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2624–2636,
Online. Association for Computational Linguistics.

Arkaitz Zubiaga, Iñaki San Vicente, Pablo Gamallo,
José Ramom Pichel, Iñaki Alegria, Nora Aranberri,
Aitzol Ezeiza, and Vı́ctor Fresno. 2016. TweetLID:
a benchmark for tweet language identification. Lan-
guage Resources and Evaluation, 50(4):729–766.

94

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 95–102
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_012

On the logistical difficulties and findings of Jopara Sentiment Analysis
Marvin M. Agüero-Torales

DECSAI, University of Granada
Granada, Spain

maguero@correo.ugr.es

David Vilares
Universidade da Coruña, CITIC

A Coruña, Spain
david.vilares@udc.es

Antonio G. López-Herrera
DECSAI, University of Granada

Granada, Spain
lopez-herrera@decsai.ugr.es

Abstract

This paper addresses the problem of sentiment
analysis for Jopara, a code-switching language
between Guarani and Spanish. We first collect
a corpus of Guarani-dominant tweets and dis-
cuss on the difficulties of finding quality data
for even relatively easy-to-annotate tasks, such
as sentiment analysis. Then, we train a set of
neural models, including pre-trained language
models, and explore whether they perform bet-
ter than traditional machine learning ones in
this low-resource setup. Transformer architec-
tures obtain the best results, despite not con-
sidering Guarani during pre-training, but tradi-
tional machine learning models perform close
due to the low-resource nature of the problem.

1 Introduction

Indigenous languages have been often marginal-
ized, an issue that is reflected when it comes to
design natural language processing (NLP) applica-
tions, where they have been barely studied (Mager
et al., 2018). One of the places where this is greatly
noticed is Latin America, where the dominant lan-
guages (Spanish and Portuguese) coexist together
with hundreds of indigenous languages such as
Guarani, Quechua, Nahuatl or Aymara.

In this context, the Guarani language plays a par-
ticular role. It is an official language in Paraguay
and Bolivia. Besides, it is spoken in other re-
gions, e.g. Corrientes (Argentina) or Mato Grosso
do Sul (Brazil), alongside with their official lan-
guages. Overall, it has about 8M speakers. Its
coexistence with other languages, mostly Spanish,
has contributed to its use in code-switching setups
(Muysken, 1995; Gafaranga and Torras, 2002; Ma-
tras, 2020) and led to Jopara, a code-switching
between Guarani and Spanish, with flavours of Por-
tuguese and English (Estigarribia, 2015).

Despite its official status, there is still few NLP
resources developed for Guarani and Jopara. Ab-

delali et al. (2006) developed a parallel Spanish-
English-Guarani corpus for machine translation.
Similarly, Chiruzzo et al. (2020) developed
a Guarani-Spanish parallel corpus aligned at
sentence-level. There are also a few online dic-
tionaries and translators from Guarani to Spanish
and other languages.1 Beyond machine transla-
tion, Maldonado et al. (2016) released a corpus for
Guarani speech recognition that was collected from
the web; and Rudnick (2018) presented a system
for cross-lingual word sense disambiguation from
Spanish to Guarani and Quechua languages. There
also are a few resources for PoS-tagging and mor-
phological analysis of Guarani, such as the work
by Hämäläinen (2019) and Apertium;2 and also for
parsing, more specifically for the Mbyá Guarani
variety (Dooley, 2006; Thomas, 2019), under the
Universal Dependencies framework.

In the context of sentiment analysis (SA; Pang
et al., 2002; Liu, 2012), and more particularly clas-
sifying the polarity of a text as positive, negative
or neutral, we are not aware of any previous work;
with the exception of (Ríos et al., 2014). They
presented a sentiment corpus for the Paraguayan
Spanish dialect, which also includes words in En-
glish and Portuguese. However, there were few,
albeit relevant, words of Guarani (70) and Jopara3

(10), in comparison to the amount of the ones
in Spanish (3, 802) (Ríos et al., 2014, p. 40, Ta-
ble II). Overall, SA has focused on rich-resource
languages for which data is easy to find, even
when it comes to code-switching setups (Vilares

1https://gn.wiktionary.org/, https://es.
duolingo.com/dictionary/Guarani/, https:
//www.paraguay.gov.py/traductor-guarani,
https://www.iguarani.com/, https://glosbe.
com/gn, and Mainumby (Gasser, 2018).

2https://github.com/apertium/
apertium-grn

3Tokens that mix n-grams of characters from Guarani
and Spanish, e.g.: ‘I understand’ would be ‘entiendo’ (es),
‘ahechakuaa’ (gn) and ‘aentende’ (jopara).

95

https://doi.org/10.26615/978-954-452-056-4_012

et al., 2016), maybe with a few exceptions such
as English code-switched with languages found
in India (Sitaram et al., 2015; Patra et al., 2018;
Chakravarthi et al., 2020). In this context, although
some previous work has developed multilingual
lexicons and methods (Chen and Skiena, 2014; Vi-
lares et al., 2017); for languages such as Guarani
and other low-resource cases (where web text is
scarce), it is hard to develop NLP corpora and sys-
tems.

Contribution Our contribution is twofold. First,
we collect a corpus for polarity classification of
Jopara tweets, which mixes Guarani and Spanish
languages, being the former the dominating lan-
guage in the corpus. We also discuss on the dif-
ficulties that we had to face when creating such
resource, such as finding enough Twitter data that
shows sentiment and contains a significant amount
of Guarani terms. Second, we train a set of neu-
ral encoders and also traditional machine learning
models, in order to have a better understand of how
old versus new models perform in this low-resource
setup, where the amount of data matters.

2 JOSA: The Jopara Sentiment Analysis
dataset

In what follows, we describe our attempts to collect
Jopara tweets. Note that ideally we are interested
in tweets that are as Guarani as possible. How-
ever, Guarani is intertwined with Spanish, and thus
we have focused on Jopara, aiming for Guarani-
dominant tweets, in contrast to Ríos et al. (2014).
We found interesting to report failed attempts to col-
lect such data, since the proposed methods would
most likely work to collect data in rich resource
languages. We hope this can be helpful for other
researchers interested in developing datasets for
low-resource languages in web environments.

In this line, Twitter does not allow to automati-
cally crawl Guarani tweets, since it is not included
in its language identification tool. To overcome this,
we considered two alternatives: (i) using a set of
Guarani keywords (§2.1), and (ii) scrapping Twitter
accounts that mostly tweet in Guarani (§2.2).

2.1 Downloading tweets using Guarani
keywords - An unsuccessful attempt.

As the Twitter real-time streamer can deal with a
limited number of keywords, we consider 50 dif-
ferent keywords which are renewed every 3 hours,

and used them to sample tweets. To select such
keywords, we considered two options:

1. Dictionary-based keywords: We used 5.1K
Guarani terms from a Spanish-Guarani word-
level translator.4 We then downloaded 2.1M
tweets and performed language identifica-
tion with three tools: (i) polyglot,5 (ii)
fastText(Joulin et al., 2016) and (iii)
textcat.6 We assume that the text was
Guarani if at least one of them classified the
text as Guarani. After this, we got 5.3K tweets.
Next, a human annotator was in charge of clas-
sifying such subset, obtaining that only 150
tweets, over the initial set of 2.1M samples,
were prone to be Guarani-dominant.

2. Corpus-based keywords: We first merged two
Guarani datasets7 (Scannell, 2007), that were
generated from web sources and included
biblical passages, wiki entries, blog posts or
tweets, among other sources. From there, we
selected 550 terms, including word uni-grams
and bi-grams with 100 occurrences or more.
Again, we downloaded tweets using the key-
words and collected 7M of tweets, but after
repeating the language identification phase
of step 1, we obtained a marginal amount of
tweets that were Guarani-dominant.

Limitations This approach suffered from a low
recall when it came to collect Guarani-dominant
tweets, while similar approaches have worked
when collecting data for rich-resource languages,
where a few keywords were enough to succesfully
download tweets in the target language (Zampieri
et al., 2020). In this context, even if tweets con-
tained a few Guarani terms, there were other issues:
(i) words that have the same form in Spanish and
Guarani such as ‘mano’ (‘hand’ and ’to die’), (ii)
loanwords,8 such as ‘pororo’ (‘popcorn’) or ‘chipa’
(traditional Paraguayan food, non-translatable);
(iii) or simply tweets where the majority of the
content was written in Spanish. Overall, this has
been a problem experienced in other low-resource
setups (Hong et al., 2011; Kreutz and Daelemans,

4https://github.com/SENATICS/
traductor-espanhol-guarani

5https://polyglot.readthedocs.io/en/
latest/Detection.html

6https://www.nltk.org/_modules/nltk/
classify/textcat.html

7BCP-47 gn and gug codes.
8Frequent in Paraguay and border countries (Pinta, 2013).

96

2020), so we decided instead to look for alterna-
tives to find Guarani-dominant tweets.

2.2 Downloading tweets from Guarani
accounts - A successful attempt.

In this case, we crawled Twitter accounts that usu-
ally tweet in Guarani.9 We scrapped them, and
obtained more than 23K Guarani and Jopara tweets
from a few popular users (see Appendix A.1). Us-
ing the same Guarani language identification ap-
proach as in 1, we obtained 8, 716 tweets. To elim-
inate very similar tweets that could contaminate
the dataset, we removed tweets with a similarity
greater than 60%, according to the Levenshtein dis-
tance. After applying this second cleaning step, we
obtained a total of 3,948 tweets.

The dataset was then annotated by two native
speakers of Guarani and Spanish. They were asked
to: (i) determine whether the tweet was strictly
written in Guarani, Jopara or other language (i.e., if
the tweet did not have any words in Guarani); and
determine whether the tweet was positive, neutral
or negative. For sentiment annotations consolida-
tion, we proceeded similarly to the SemEval-2017
Task 4 guidelines (Rosenthal et al., 2017, § 3.3).10

We then filtered the corpus by language, including
only those labeled as Guarani or Jopara, to ensure
the samples are Guarani-dominant. This resulted
into 3, 491 tweets.

Limitations Although this second approach is
successful when it comes to collect a reasonable
amount of Guarani-dominant tweets, it also suffers
from a few limitations. For instance, the first part of
Table 1 shows that due to the nature of the crawled
Twitter accounts (who tweet about events, news,
announcements, greetings, ephemeris, tweets to
encourage the use of Guarani, etc.), there is a ten-
dency to neutral tweets. Also, as the number of
selected accounts was small, the number of dis-
cussed topics might be limited too. We comment
on this a bit further in the Appendix A.1.

Balanced and unbalanced versions As we are
interested in identifying sentiment in Jopara tweets,
we also created a balanced version of JOSA. Note
that unbalanced settings are also interesting and
might reflect real-world setups. Thus, we will re-

9We followed http://indigenoustweets.com/
gn/. We did not use an external human annotator as in 1,
since the crawled accounts tend to tweet in Guarani.

10We obtained a slight agreement following Cohen’s kappa
metric (Artstein and Poesio, 2008).

port results both on the unbalanced and balanced
setups. More particularly, we split each corpus into
training (50%), development (10%), and test (40%).
We show the statistics in Table 1.

For completeness, in Table 2 we show for the bal-
anced corpus the top five most frequent terms (we
only consider content tokens) for Guarani, Span-
ish and some language-independent tokens, such
emoticons. This was done based on a manual an-
notation of a Guarani-Spanish native speaker.

Version Total Positive Neutral Negative
Unbalanced 3, 491

349
2, 728 414Balanced 1, 526 763

Version Train Development Test
Unbalanced 3, 491 1, 745 349 1, 397
Balanced 1, 526 763 152 611

Table 1: JOSA statistics and splits for the unbal-
anced/balanced versions.

Category #Terms Most frequent
Guarani 4, 336 guaranime, ñe’ẽ, mba’e, guarani,

avei
Spanish 1, 738 paraguay, guaraní, no, es, día
Other∗ 1, 440 alcaraz, su, rt, juan, francisco
Mixing 368 guaraníme, departamento-pe,

castellano-pe, castellanope, twitter-
pe

Emojis 112 xD :)
∗We include reserved words, proper nouns, acronyms, etc.

Table 2: Frequent terms for the balanced JOSA.

3 Models

Due to the low-resource setup, we run neural mod-
els and pre-trained language models, but also other
machine learning models, such as complement
naïve Bayes (CNB) and Support Vector Machines
(SVMs) (Hearst et al., 1998), since they are less
data hungry, and could help shed some light about
the real effectiveness of neural models on Jopara
texts. In all cases, the selection of the hyperparam-
eters was done over a small grid search based on
the dev set. We report the details in the Appendix
A.2.

Naïve Bayes and SVMs We tokenized the
tweets11 and represented them as a 1-hot vector
of unigrams with a TF-IDF weighting scheme. We
used Pedregosa et al. (2011) for training.

Neural networks for text classification We
took into account neural networks that process in-

11We used the TweetTokenizer from the NLTK library.

97

put tweets as a sequence of token vector represen-
tations. More particularly, we consider both long
short-term memory networks (LSTM) (Hochreiter
and Schmidhuber, 1997) and convolutional neu-
ral networks (CNN) (LeCun et al., 1995), as im-
plemented in NCRF++ (Yang and Zhang, 2018).
Although the former are usually more common in
many NLP tasks, the latter have also showed tradi-
tionally a good performance on sentiment analysis
(Kalchbrenner et al., 2014).

For the input word embeddings, we tested:
(i) randomly initialized word vectors, following
an uniform distribution, (ii) and pre-trained non-
contextualized representations and more particu-
larly, FastText’s word vectors (Bojanowski et al.,
2017) and BPEmb’s subword vectors (including
the multilingual version, which supports Guarani)
(Heinzerling and Strube, 2018). In both cases, we
also concatenate a second word embedding, com-
puted through a char-LSTM (or CNN).

Pre-trained language models We also fine-
tuned recent contextualized language models on
the JOSA training set. We tested BERT (Devlin
et al., 2019) including: (i) beto-base-uncased (a
Spanish BERT) (Cañete et al., 2020), and (ii)
multilingual bert-base-uncased (mBERT-base-
uncased, pre-trained on 102 languages). We also
tried more recent variants of multilingual BERT,
in particular XLM (Lample and Conneau, 2019).
Note that BERT models use a wordpiece tokenizer
(Wu et al., 2016) to generate a vocabulary of the
most common subword pieces, rather than the full
tokens, and that in the case of the multilingual
models, none of the language models used
considered Guarani during pre-training.

4 Experiments

Reproducibility The baselines and tweet IDs12

are available at https://github.com/
mmaguero/josa-corpus.

We run experiments for the unbalanced and bal-
anced versions of JOSA, evaluating the macro-
accuracy (to mitigate the impact of the neutral class
in the unbalanced setup). Table 3 shows the com-
parison. Note that all models, even the non-deep-
learning models, only use raw word inputs and do
not consider any additional information or hand-

12Contact the authors for more details.

crafted features,13 yet they obtained results that are
in line with those of more recent approaches.

Corpus
Model Unbalanced Balanced
CNB 0.50 0.55
SVM 0.55 0.54
CCNN-W BiLSTM 0.45 0.57
CBiLSTM-W CNN 0.49 0.53
BPEmb,gn

CCNN-W BiLSTM 0.46 0.53
BPEmb,gn

CBiLSTM-W CNN 0.42 0.50
BPEmb,es

CCNN-W BiLSTM 0.45 0.52
BPEmb,es

CBiLSTM-W CNN 0.45 0.50
BPEmb,m

CCNN-W BiLSTM 0.47 0.52
BPEmb,m

CBiLSTM-W CNN 0.43 0.48
FastText,gn

CCNN-W BiLSTM 0.46 0.53
FastText,gn

CBiLSTM-W CNN 0.42 0.51
FastText,es

CCNN-W BiLSTM 0.46 0.52
FastText,es

CBiLSTM-W CNN 0.46 0.46
BETObase,uncased 0.64 0.64
mBERTbase,uncased 0.55 0.58
XLM-MLM-TLM-XNLI-15 0.46 0.49
CEncodes character sequence. W Encodes word sequence.
Pre-trained embeddings are represented with a prefix together with their
language ISO 639-1 code (except for m: multilingual).

Table 3: Experimental results on JOSA, both on the
balanced and unbalanced setups.

With respect to the experiments with CNNs and
BiLSTMs encoders, we tested different combina-
tions using character representations, which output
is first concatenated to a second external word vec-
tor (as explained in §3), and then fed to the encoder.
Among those, the model that used a character-level
CNN and a word-level BiLSTM encoder obtained
the best results. Still, the difference with respect to
traditional machine learning models is small. We
hypothesize this might be due to the low-resource
nature of the task. Finally, the pre-trained language
models that use transformers architectures, in par-
ticular BETO, obtain overall the best results, de-
spite not being pre-trained on Guarani. We believe
this is partly due to the presence of Spanish words
in the corpora and also to the cross-lingual abilities
that BERT model might explode, independently of
the amount of word overlap (Wang et al., 2019).

Error analysis on the balanced version of JOSA
Figure 1 shows the confusion matrices for a rep-
resentative model of each machine learning fam-
ily (based on the accuracy): (i) CNB, (ii) the best
BiLSTM-based model (CNN-BiLSTM), and (iii)
Spanish BERT (BETO). There seems to be dif-
ferent tendencies in the miss-classifications that
different models make. For instance, CNB tends to
over-classify tweets as negative, while both deep

13In order to keep an homogeneous evaluation setup.

98

learning models show a more controlled behaviour
when predicting this class. Although for the three
models neutral tweets seem to be the easiest to iden-
tify, both deep learning models are clearly better
at it. Finally, when it comes to identify positive
tweets, BETO seems to show the overall best per-
formance. These different tendencies indicate that
an ensemble method could be beneficial for low-
resource setups such as the ones that JOSA repre-
sent, since the models seem to be complementary
to certain extent. In this context, we would like to
explore this line of work in the future, following
previous studies such as Jhanwar and Das (2018),
which showed the benefits of combining different
machine learning models for Hindi-English code-
switching SA.

Negative Neutral Positive
Predicted label

Negative

Neutral

Positive

Tr
ue

 la
be

l

108 15 15

103 128 74

60 28 80

CNB

Negative Neutral Positive
Predicted label

Negative

Neutral

Positive

Tr
ue

 la
be

l

97 22 19

53 203 49

59 49 60

cCNN-wBiLSTM

Negative Neutral Positive
Predicted label

Negative

Neutral

Positive

Tr
ue

 la
be

l

72 38 28

31 218 56

11 40 117

BETO

20

40

60

80

100

120

50

100

150

200

50

100

150

200

Figure 1: Confusion matrix for the balanced version
of JOSA and the predictions of a representative mem-
ber of each machine learning family: CNB, a BiLSTM-
based model and Spanish BERT (BETO).

5 Conclusion

This paper explored sentiment analysis on Jopara,
a code-switching language that mixes Guarani and
Spanish. We collected the first Guarani-dominant
dataset for sentiment analysis, and described some
of the challenges that we had to face to create a
collection where there is a significant number of
Guarani terms. We then built several machine learn-
ing (naïve Bayes, SVMs) and deep learning mod-
els (BiLSTMs, CNNs and BERT-based models) to
shed light about how they perform on this particular
low-resource setup. Overall, transformers models
obtain the best results, even if they did not consider
Guarani during pre-training. This poses interesting
questions for future work such as how cross-lingual
BERT abilities (Wang et al., 2019) can be exploited
for this kind of setups, but also how to improve
language-specific techniques that can help process
low-resource languages efficiently.

Acknowledgements

We thank the annotators that labelled JOSA. We
also thank ExplosionAI for giving us access to the
Prodigy annotation tool14 with the Research Li-
cense. DV is supported by a 2020 Leonardo Grant
for Researchers and Cultural Creators from the FB-
BVA.15 DV also receives funding from MINECO
(ANSWER-ASAP, TIN2017-85160-C2-1-R), from
Xunta de Galicia (ED431C 2020/11), from Cen-
tro de Investigación de Galicia ‘CITIC’, funded by
Xunta de Galicia and the European Union (Euro-
pean Regional Development Fund- Galicia 2014-
2020 Program) by grant ED431G 2019/01.

References
Ahmed Abdelali, James Cowie, Steve Helmreich,

Wanying Jin, Maria Pilar Milagros, Bill Ogden,
Hamid Mansouri Rad, and Ron Zacharski. 2006.
Guarani: a case study in resource development for
quick ramp-up mt. In Proceedings of the 7th Con-
ference of the Association for Machine Translation
in the Americas,“Visions for the Future of Machine
Translation, pages 1–9.

Ron Artstein and Massimo Poesio. 2008. Inter-coder
agreement for computational linguistics. Computa-
tional Linguistics, 34(4):555–596.

14https://prodi.gy/
15The BBVA Foundation accepts no responsibility for the

opinions, statements and contents included in the project
and/or the results thereof, which are entirely the responsibility
of the authors.

99

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-
ish pre-trained bert model and evaluation data. In
PML4DC at ICLR 2020.

Bharathi Raja Chakravarthi, Vigneshwaran Murali-
daran, Ruba Priyadharshini, and John P McCrae.
2020. Corpus creation for sentiment analysis
in code-mixed tamil-english text. arXiv preprint
arXiv:2006.00206.

Yanqing Chen and Steven Skiena. 2014. Building sen-
timent lexicons for all major languages. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 383–389, Baltimore, Maryland. Associ-
ation for Computational Linguistics.

Luis Chiruzzo, Pedro Amarilla, Adolfo Ríos, and Gus-
tavo Giménez Lugo. 2020. Development of a
Guarani - Spanish parallel corpus. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 2629–2633, Marseille, France. Euro-
pean Language Resources Association.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Robert A Dooley. 2006. Léxico guarani, dialeto
mbyá, com informações úteis para o ensino médio, a
aprendizagem e a pesquisa lingüística. e referências.
Cuiabá: Summer Institute of Linguistics.

Bruno Estigarribia. 2015. Guarani-spanish jopara mix-
ing in a paraguayan novel: Does it reflect a third
language, a language variety, or true codeswitching?
Journal of Language Contact, 8(2):183–222.

Joseph Gafaranga and Maria-Carme Torras. 2002. In-
teractional otherness: Towards a redefinition of
codeswitching. International Journal of Bilingual-
ism, 6(1):1–22.

Michael Gasser. 2018. Mainumby: un ayudante para
la traducción castellano-guaraní. arXiv preprint
arXiv:1810.08603.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John
Platt, and Bernhard Scholkopf. 1998. Support vec-
tor machines. IEEE Intelligent Systems and their ap-
plications, 13(4):18–28.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Lichan Hong, Gregorio Convertino, and Ed Chi. 2011.
Language matters in twitter: A large scale study. In
Proceedings of the International AAAI Conference
on Web and Social Media, volume 5.

Mika Hämäläinen. 2019. UralicNLP: An NLP library
for Uralic languages. Journal of Open Source Soft-
ware, 4(37):1345.

Madan Gopal Jhanwar and Arpita Das. 2018. An
ensemble model for sentiment analysis of hindi-
english code-mixed data. CoRR, abs/1806.04450.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 655–665.

Tim Kreutz and Walter Daelemans. 2020. Stream-
ing language-specific Twitter data with optimal key-
words. In Proceedings of the 12th Web as Corpus
Workshop, pages 57–64, Marseille, France. Euro-
pean Language Resources Association.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Yann LeCun, Yoshua Bengio, et al. 1995. Convolu-
tional networks for images, speech, and time series.
The handbook of brain theory and neural networks,
3361(10):1995.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language technolo-
gies, 5(1):1–167.

Manuel Mager, Ximena Gutierrez-Vasques, Gerardo
Sierra, and Ivan Meza-Ruiz. 2018. Challenges of
language technologies for the indigenous languages
of the americas. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 55–69.

Diego Manuel Maldonado, Rodrigo Villalba Barrien-
tos, and Diego P Pinto-Roa. 2016. Eñe’ẽ: Sis-
tema de reconocimiento automático del habla en
guaraní. In Simposio Argentino de Inteligencia Arti-
ficial (ASAI 2016)-JAIIO 45 (Tres de Febrero, 2016).

100

Yaron Matras. 2020. Language contact. Cambridge
University Press.

Pieter Muysken. 1995. Code-switching and grammati-
cal theory. The bilingualism reader, pages 280–297.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using
machine learning techniques. In Proceedings of the
2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2002), pages 79–86.
Association for Computational Linguistics.

Braja Gopal Patra, Dipankar Das, and Amitava Das.
2018. Sentiment analysis of code-mixed indian
languages: an overview of sail_code-mixed shared
task@ icon-2017. arXiv preprint arXiv:1803.06745.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Justin Pinta. 2013. Lexical strata in loanword phonol-
ogy: Spanish loans in guaraní. Master’s thesis, The
University of North Carolina at Chapel Hill.

Jason D Rennie, Lawrence Shih, Jaime Teevan, and
David R Karger. 2003. Tackling the poor assump-
tions of naive bayes text classifiers. In Proceed-
ings of the 20th international conference on machine
learning (ICML-03), pages 616–623.

Adolfo A Ríos, Pedro J Amarilla, and Gustavo
A Giménez Lugo. 2014. Sentiment categorization
on a creole language with lexicon-based and ma-
chine learning techniques. In 2014 Brazilian Con-
ference on Intelligent Systems, pages 37–43. IEEE.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of the 11th international workshop
on semantic evaluation (SemEval-2017), pages 502–
518.

Alexander James Rudnick. 2018. Cross-Lingual Word
Sense Disambiguation for Low-Resource Hybrid
Machine Translation. Ph.D. thesis, Indiana Univer-
sity.

Kevin P Scannell. 2007. The crúbadán project: Corpus
building for under-resourced languages. In Building
and Exploring Web Corpora: Proceedings of the 3rd
Web as Corpus Workshop, volume 4, pages 5–15.

Dinkar Sitaram, Savitha Murthy, Debraj Ray, Devansh
Sharma, and Kashyap Dhar. 2015. Sentiment analy-
sis of mixed language employing hindi-english code
switching. In 2015 International Conference on Ma-
chine Learning and Cybernetics (ICMLC), volume 1,
pages 271–276. IEEE.

Guillaume Thomas. 2019. Universal Dependencies for
Mbyá Guaraní. In Proceedings of the Third Work-
shop on Universal Dependencies (UDW, SyntaxFest
2019), pages 70–77, Paris, France. Association for
Computational Linguistics.

David Vilares, Miguel A Alonso, and Carlos Gómez-
Rodríguez. 2016. En-es-cs: An english-spanish
code-switching twitter corpus for multilingual sen-
timent analysis. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 4149–4153.

David Vilares, Carlos Gómez-Rodríguez, and
Miguel A Alonso. 2017. Universal, unsuper-
vised (rule-based), uncovered sentiment analysis.
Knowledge-Based Systems, 118:45–55.

Zihan Wang, Stephen Mayhew, Dan Roth, et al. 2019.
Cross-lingual ability of multilingual bert: An empir-
ical study. arXiv preprint arXiv:1912.07840.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. arXiv
preprint arXiv:1806.05626.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa
Atanasova, Georgi Karadzhov, Hamdy Mubarak,
Leon Derczynski, Zeses Pitenis, and Çağrı Çöltekin.
2020. SemEval-2020 task 12: Multilingual offen-
sive language identification in social media (Offen-
sEval 2020). In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pages 1425–
1447, Barcelona (online). International Committee
for Computational Linguistics.

101

A Appendix

A.1 Twitter user accounts
We scraped the following Twitter user accounts
and mentions: @ndishpy, @chereraugo, @Pon-
tifex_grn, @lenguaguarani, @enga_paraguayo,
@SPL_Paraguay, @rubencarlosoje1, as well
as some keywords: ‘guaranime’, ‘avañe’ẽme’,
‘remiandu’, ‘#marandu’, ‘reikuaavéta’, ‘hesegua’,
‘reheguápe’, ‘rejuhúta’.

Note that accounts such as @Pontifex_grn,
@SPL_Paraguay and @lenguaguarani belong to
influential people and organizations. For instance,
the first belongs to Pope Franscico, the second to
the Secretariat of Linguistic Policy of Paraguay,
and the third is the account of the General Director
of the ‘Athenaeum of the Guarani Language and
Culture’. On the other hand, the terms ‘marandu’
(news) and ‘remiandu’ (feeling, sense) are related
to news, where the first term means ‘news’ or ‘to
report’ and the second is the name of a Paraguayan
newspaper section16 that publishes in Guarani.

A.2 Hyperparameters search and
implementation details

To set the machine learning baselines, two standard
classifiers were chosen: a variant of Naïve Bayes,
Complement Naïve Bayes (CNB) (Rennie et al.,
2003) to correct the ‘severe assumptions’ made
by the standard Multinomial NB classifier; and
Support Vector Machine (SVM) using weighted
classes, to mitigate the effect of unbalanced classes.
For the CNB, we set α = 0.1 and considered only
unigrams, except for the balanced version, where
the combined use of unigrams and bigrams showed
more robust results. To train the SVMs, we tested
different values for the kernels: the sigmoid ker-
nel obtained the best results for the unbalanced
version of JOSA, and the poly kernel obtained
the best results for the balanced version.

We used the NCRF++ Neural Sequence Label-
ing Toolkit (Yang and Zhang, 2018) to train our
deep learning models and the Hugging face pack-
age (Wolf et al., 2020) for the transformer-based
models. Table 4 shows the hyper-parameters used
to train these models, both for the unbalanced and
balanced corpus. The pre-trained embeddings used
for Spanish, Guarani (and also the multilingual
ones) have 300 dimensions. Finally, we trained the
CNN and BiLSTM models for 20 epochs with a

16https://www.abc.com.py/especiales/
remiandu/

batch size of 10, and the transformer-based models
were trained for up to 40 epochs relying on early
stopping (set to 3). To train the models we used a
NVIDIA Tesla T4 GPU with 16GB.

Parameter Options
Sklearn

TF-IDF-Lowercase [True, False]
TF-IDF-n-grams [(1,1) - (3,3)]
SVM-Kernel [poly, sigmoid, linear, rbf]
CNB-alpha [1.0, 0.1]

NCRF++
Optimizer [Adam, AdaGrad, SGD]
Avg. batch loss [True, False]
Learning rate [5e-5 - 0.2]
Char hidden dim. [100, 200, 400, 800]
Word hidden dim. [50, 100, 200]
Momentum [0.0, 0.9, 0.95, 0.99]
LSTM Layers [1, 2]

Hugging Face
Eval. steps [200]
Eval. strategy [steps]
Disable tqdm [False]
Eval. batch size [16, 32]
Train batch size [16, 32]
Learning rate [2e-5 - 3e-5∗]
Dropout [0.1 - 0.6]
Epoch [30 - 40]
Weight decay [0.0 - 0.3]
∗Except for the multilingual models, where 5e-5 was necessary to con-
verge.

Table 4: Hyperparameters for the training of the mod-
els, both for the unbalanced and balanced corpus.

102

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 103–112
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_013

Unsupervised Self-Training for Sentiment Analysis of Code-Switched Data

Akshat Gupta1, Sargam Menghani1, Sai Krishna Rallabandi2, Alan W Black2

1Department of Electrical and Computer Engineering, Carnegie Mellon University
2Language Technologies, Institute, Carnegie Mellon University

{akshatgu, smenghan}@andrew.cmu.edu, {srallaba, awb}@cs.cmu.edu

Abstract

Sentiment analysis is an important task in un-
derstanding social media content like customer
reviews, Twitter and Facebook feeds etc. In
multilingual communities around the world,
a large amount of social media text is char-
acterized by the presence of code-switching.
Thus, it has become important to build mod-
els that can handle code-switched data. How-
ever, annotated code-switched data is scarce
and there is a need for unsupervised mod-
els and algorithms. We propose a general
framework called Unsupervised Self-Training
and show its applications for the specific use
case of sentiment analysis of code-switched
data. We use the power of pre-trained BERT
models for initialization and fine-tune them in
an unsupervised manner, only using pseudo
labels produced by zero-shot transfer. We
test our algorithm on multiple code-switched
languages and provide a detailed analysis of
the learning dynamics of the algorithm with
the aim of answering the question - ‘Does
our unsupervised model understand the Code-
Switched languages or does it just learn its rep-
resentations?’. Our unsupervised models com-
pete well with their supervised counterparts,
with their performance reaching within 1-7%
(weighted F1 scores) when compared to super-
vised models trained for a two class problem.

1 Introduction

Sentiment analysis, sometimes also known as opin-
ion mining, aims to understand and classify the
opinion, attitude and emotions of a user based on
a text query. Sentiment analysis has many appli-
cations including understanding product reviews,
social media monitoring, brand monitoring, reputa-
tion management etc. Code switching is referred to
as the phenomenon of alternation between multiple
languages, usually two, within a single utterance.
Code switching is very common in many bilin-
gual and multilingual societies around the world
including India (Hinglish, Tanglish etc.), Singapore

(Chinglish) and various Spanish speaking areas of
North America (Spanglish). A large amount of
social media text in these regions is code-mixed,
which is why it is essential to build systems that
are able to handle code switching.

Various datasets have been released to aid ad-
vancements in Sentiment Analysis of code-mixed
data. These datasets are usually much smaller and
more noisy when compared to their high-resource-
language-counterparts and are available for very
few languages. Thus, there is a need to come up
with both unsupervised and semi-supervised algo-
rithms to deal with code-mixed data. In our work,
we present a general framework called Unsuper-
vised Self-Training Algorithm for doing sentiment
analysis of code-mixed data in an unsupervised
manner. We present results for four code-mixed
languages - Hinglish (Hindi-English), Spanglish
(Spanish-English), Tanglish (Tamil-English) and
Malayalam-English.

In this paper, we propose the Unsupervised Self-
Training framework and apply it to the problem
of sentiment classification. Our proposed frame-
work performs two tasks simultaneously - firstly,
it gives sentiment labels to sentences of a code-
mixed dataset in an unsupervised manner, and sec-
ondly, it trains a sentiment classification model in
a purely unsupervised manner. The framework can
be extended to incorporate active learning almost
seamlessly. We present a rigorous analysis of the
learning dynamics of our unsupervised model and
try to answer the question - ’Does the unsupervised
model understand the code-switched languages or
does it just recognize its representations?’. We also
show methods for optimizing performance of the
Unsupervised Self-Training algorithm.

2 Related Work

In this paper, we propose a framework called Unsu-
pervised Self-Training, which is an extension to the
semi-supervised machine learning algorithm called

103

https://doi.org/10.26615/978-954-452-056-4_013

Self-Training (Zhu, 2005). Self-training has pre-
viously been used in natural language processing
for pre-training (Du et al., 2020a) and for tasks like
word sense disambiguation (Yarowsky, 1995). It
has been shown to be very effective for natural lan-
guage processing tasks (Du et al., 2020b) and better
than pre training in low resource scenarios both the-
oretically (Wei et al., 2020) and emperically(Zoph
et al., 2020a). Zoph et al. 2020b show that self-
training can be a more useful than pre-training in
high resourced scenarios for the task of object de-
tection, and a combination of pre-training and self-
training can improve performance when only 20%
of the available dataset was used. However, our
proposed framework differs from self-training such
that we only use the zero-shot predictions made
by our initialization model to train our models and
never use actual labels.

Sentiment analysis is a popular task in industry
as well as within the research community, used
in analysing the markets (Nanli et al., 2012), elec-
tion campaigns (Haselmayer and Jenny, 2017) etc.
A large amount of social media text in most bilin-
gual communities is code-mixed and many labelled
datasets have been released to perform sentiment
analysis. We will be working with four code-mixed
datasets for sentiment analysis, Malayalam-English
and Tamil-English (Chakravarthi et al., 2020a,b,c)
and Spanglish and Hinglish (Patwa et al., 2020).

Previous work has shown BERT based models
to achieve state of the art performance for code-
switched languages in tasks like offensive language
identification (Jayanthi and Gupta, 2021) and senti-
ment analysis (Gupta et al., 2021). We will build
unsupervised models on top of BERT. BERT (De-
vlin et al., 2018) based models have achieved state
of the art performance in many downstream tasks
due to their superior contextualized representations
of language, providing true bidirectional context
to word embeddings. We will use the sentiment
analysis model from (Barbieri et al., 2020), trained
on a large corpus of English Tweets (60 million
Tweets) for initializing our algorithm. We will re-
fer to the sentiment analysis model from (Barbieri
et al., 2020) as the TweetEval model in the remain-
der of the paper. The TweetEval model is built
on top of an English RoBERTa (Liu et al., 2019)
model.

3 Proposed Approach: Unsupervised
Self-Training

Our proposed algorithm is centred around the idea
of creating an unsupervised learning algorithm that
is able to harness the power of cross-lingual trans-
fer in the most efficient way possible, with the aim
of producing unsupervised sentiment labels. In
its most fundamental form, our proposed Unsuper-
vised Self-Training algorithm1 is shown in Figure
1 is shown in Figure 1.

We begin by producing zero-shot results for sen-
timent classification using a selected pre-trained
model trained for the same task. From the pre-
dictions made, we select the top-N most confident
predictions made by the model. The confidence
level is judged by the softmax scores. Making the
zero-shot predictions and selecting sentences make
up the Initialization block as shown in Figure 1.
We then use the pseduo-labels predicted by the
zero-shot model to fine tune our model. After that,
predictions are made on the remaining dataset with
the fine-tuned model. We again select sentences
based on their softmax scores for fine-tuning the
model in the next iteration. These steps are re-
peated until we’ve gone through the entire dataset
or until a stopping condition. At all fine-tuning
steps, we only use the predicted pseduo-labels as
ground truth to train the model, which makes the
algorithm completely unsupervised.

As the first set of predicted pseudo-labels are
produced by a zero-shot model, our framework
is very sensitive to initialization. Care must be
taken to initialize the algorithm with a compatible
model. For example, for the task of sentiment clas-
sification of Hinglish Twitter data, an example of a
compatible initial model would be a sentiment clas-
sification model trained on either English or Hindi
sentiment data. It would be even more compatible
if the model was trained on Twitter sentiment data,
the data thus being from the same domain.

3.1 Optimizing Performance

The most important blocks in the Unsupervised
Self-Training framework with respect to maximiz-
ing performance are the Initialization Block and the
Selection Block (Figure 1). To improve initializa-
tion, we must choose the most compatible model
for the chosen task. Additionally, to improve per-
formance, we can use several training strategies

1The code for the framework can be found here:
https://github.com/akshat57/Unsupervised-Self-Training

104

Figure 1: A visual representation of our proposed Unsupervised Self-Training framework.

in the Selection Block. In this section we discuss
several variants of the Selection Block.

As an example, instead of selecting a fixed num-
ber of samples N from the dataset in the selection
block, we could be selecting a different but fixed
number Ni from each class i in the dataset. This
would need an understanding of the class distribu-
tion of the dataset. We discuss this in later sections.
Another variable number of sentences in each it-
eration, rather than a fixed number. This would
give us a selection schedule for the algorithm. We
explore some of these techniques in later sections.

Other factors can be incorporated in the Selec-
tion Block. Selection need not be based on just
the most confident predictions. We can have addi-
tional selection criteria, for example, incorporating
the Token Ratio (defined in section 8) of a partic-
ular language in the predicted sentences. Taking
the example of a Hinglish dataset, one way to do
this would be to select sentences that have a larger
amount of Hindi and are within selection thresh-
old. In our experiments, we find that knowing an
optimal selection strategy is vital to achieving the
maximum performance.

4 Datasets

We test our proposed framework on four different
languages - Hinglish (Patwa et al., 2020), Spanglish
(Patwa et al., 2020), Tanglish (Chakravarthi et al.,
2020b) and Malayalam-English (Chakravarthi
et al., 2020a). The statistics of the training sets
are given in Table 1. We also use the test sets of
the above datasets, which have similar distribution
as their respective training sets. The statistics of
the test sets are not shown for brevity. We ask the
reader to refer to the respective papers for more
details.

The choice of datasets, apart from covering three

language families, incorporate several other impor-
tant features. We can see from Table 1 that the
four datasets have different sizes, the Malayalam-
English dataset being the smallest. Apart from the
Hinglish dataset, the other three datasets are highly
imbalanced. This is an important distinction as we
cannot expect an unknown set of sentences to have
a balanced class distributions. We will later see
that having a biased underlying distribution affects
the performance of our algorithm and how better
training strategies can alleviate this problem.

The chosen datasets are also from two differ-
ent domains - the Hinglish and Spanglish datasets
are a collection of Tweets whereas Tanglish and
Malaylam-English are a collection of Youtube
Comments. The TweetEval model, which is used
for initialization is trained on a corpus of English
Tweets. Thus the Hinglish and Spangish datasets
are in-domain datasets for our initialization model
(Barbieri et al., 2020), whereas the Dravidian lan-
guage (Tamil and Malayalam) datasets are out of
domain.

The datasets also differ in the amount of class-
wise code-mixing. Figure 3 shows that for the
Hinglish dataset, a negative Tweet is more likely
to contain large amounts of Hindi. This is not
the same for the other datasets. For Spanglish,
both positive and negative sentiment Tweets have
a tendency to use a larger amount of Spanish than
English.

An important thing to note here is that each of
the four code-mixed datasets selected are written
in the latin script. Thus our choice of datasets does
not take into account mixing of different scripts.

5 Models

Models built on top of BERT (Devlin et al., 2018)
and its multilingual version like mBERT, XLM-

105

Language Domain Total Positive Negative Neutral
Hinglish Tweets 14000 4634 4102 5264
Spanglish Tweets 12002 6005 2023 3974
Tanglish Youtube Comments 9684 7627 1448 609

Malayalam-English Youtube Comments 3915 2022 549 1344

Table 1: Training dataset statistics for chosen datasets.

RoBERTa (Conneau et al., 2019) have recently
produced state-of-the-art results in many natural
language processing tasks. Various shared tasks
(Patwa et al., 2020) (Chakravarthi et al., 2020c) in
the domain of code-switched sentiment analysis
have also seen their best performing systems build
on top of these BERT models.

English is a common language among all the
four code-mixed datasets being considered. This is
why we use a RoBERTa based sentiment classifica-
tion model trained on a large corpus of 60 million
English Tweets (Barbieri et al., 2020) for initializa-
tion. We refer to this sentiment classification model
as the TweetEval model for the rest of this paper.
We use the Hugging Face implementation of the
TweetEval sentiment classification model 2. The
models are fine-tuned with a batch size of 16 and
a learning rate of 2e-5. The TweetEval model pre-
processes sentiment data to not include any URL’s.
We have done the same for for all the four datasets.

We compare our unsupervised model with a
set of supervised models trained on each of the
four datasets. We train supervised models by fine
tuning the TweetEval model on each of the four
datasets. Our experiments have shown that the
TweetEval model performs the better in compari-
son to mBERT and XLM-RoBERTa based models
for code-switched data.

6 Evaluation

We evaluate our results based on weighted aver-
age F1 and accuracy scores. When calculating the
weighted average, the F1 scores are calculated for
each class and a weighted average is taken based on
the number of samples in each class. This metric is
chosen because three out of four datasets we work
with are highly imbalanced. We use the sklearn
implementation for calculating weighted average
F1 scores3.

2https://huggingface.co/cardiffnlp/twitter-roberta-base-
sentiment

3https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
classification_report.html

Language F1 Accuracy
Hinglish 0.32 0.36
Spanglish 0.31 0.32
Tanglish 0.15 0.16

Malayalam-English 0.17 0.14

Table 2: Zero-shot prediction performance for the
TweetEval model for each of the four datasets, for a
two-class classification problem (positive and negative
classes). The F1 scores represent the weighted aver-
age F1. These zero-shot predictions are for the training
datasets in each of the four languages.

There are two ways to evaluate the performance
of our proposed method, corresponding to two dif-
ferent perspectives with which we look at the out-
come. One of the ways to evaluate the proposed
method is to answer the question - ‘How good is the
model when trained in the proposed, unsupervised
manner?’. We call this perspective of evaluation,
having a model perspective. Here we’re evaluating
the strength of the unsupervised model. To evaluate
the method from a model perspective, we compare
the performance of best unsupervised model with
the performance of the supervised model on the
test set.

The second way to evaluate the proposed method
is by looking at it from what we call an algorithmic
perspective. The aim of proposing an unsupervised
algorithm is to be able to select sentences belong-
ing to a particular sentiment class from an unkown
dataset. Hence, to evaluate from an algorithmic per-
spective, we must look at the training set and check
how accurate the algorithm is in its annotations
for each class. To do this, we show performance
(F1-scores) as a function of the number of selected
sentences from the training set.

7 Experiments

For our experiments, we restrict the dataset to
consist of two sentiment classes - positive and
negative sentiments. In this section, we evaluate
our proposed unsupervised self-training framework

106

Train Language
Vanilla Ratio Supervised

F1 Accuracy F1 Accuracy F1 Accuracy
Hinglish 0.84 0.84 0.84 0.84 0.91 0.91
Spanglish 0.77 0.76 0.77 0.77 0.78 0.79
Tamil 0.68 0.63 0.79 0.80 0.83 0.85

Malayalam 0.73 0.71 0.83 0.85 0.90 0.90

Table 3: Performance of best Unsupervised Self-Training models for Vanilla and Ratio selection strategies when
compared to performance of supervised models. The F1 scores represent the weighted average F1.

for four different code-swithced languages span-
ning across three language families, with different
dataset sizes and different extents of imbalance and
code-mixing, and across two different domains. We
also present a comparison between supervised and
unsupervised models.

We present two training strategies for our pro-
posed Unsupervised Self-Training Algorithm. The
first is a vanilla strategy where the same number
of sentences are selected in the selection block for
each class. The second strategy uses a selection
ratio - where we select sentences for fine tuning
in a particular ratio from each class. We evaluate
the algorithm based on the two evaluation criterion
described in section 6.

In the Fine-Tune Block in Figure 1, we fine-tune
the TweetEval model on the selected sentences for
only 1 epoch. We do this because we do not want
our model to overfit on the small amount of selected
sentences. This means that when we go through
the entire training dataset, the model has seen every
sentence in the train set exactly once. We see that
if we fine-tune the model for multiple epochs, the
model overfits and its performance and capacity to
learn reduces with every iteration.

7.1 Zero-Shot Results

Table 2 shows the zero-shot results for the Tweet-
Eval model. We see that the zero-shot F1 scores
are much higher for the Hinglish and Spanglish
datasets when compared to the results for the Dra-
vidian languages. Part of the disparity in zero-shot
performance can be attributed to the differences in
domains. This means that the TweetEval model is
not as compatible to the Tanglish and Malayalam-
English dataset than it is to the Spanglish and
Hinglish datasets. Improved training strategies help
increase performance.

The zero-shot results in Table 2 use the TweetE-
val model, which is a 3-class classification model.
Due to this, we get a prediction accuracy of less

than 50% for a binary classification problem.

7.2 Vanilla Selection

In the Vanilla Selection strategy, we select the same
number of sentences for each class. We saw no im-
provement when selecting less than 5% sentences
of the total dataset size in every iteration, equally
split into the two classes. Table 3 shows the perfor-
mance of the best unsupervised model trained in
comparison with a supervised model. For each of
these results, N = 0.05 * (dataset size), where N/2 is
the number of sentences selected from each class at
every iteration step. The best unsupervised model
is achieved almost halfway through the dataset for
all languages.

The unsupervised model performs surprisingly
well for Spanglish when compared to the su-
pervised counterpart. The performance for the
Hinglish model is also comparable to the super-
vised model. This can be attributed to the fact
that both datasets are in-domain for the TweetEval
model and their zero-shot performances are bet-
ter than for the Dravidian languages, as shown in
Table 2. Also, the fact that the Hinglish dataset
is balanced helps improve performance. We ex-
pect the performance of the unsupervised models
to increase with better training strategies.

For a balanced dataset like Hinglish, selecting
N > 5% at every iteration provided similar perfor-
mance whereas the performance deteriorates for
the three imbalanced datasets if a larger number
of sentences were selected. This behaviour was
somewhat expected as when the dataset is imbal-
anced, the model is likely to make more errors in
generating pseduo-labels for one class more than
the other. Thus it helps to reduce the number of
selections as that also reduces the number of errors.

7.3 Selection Ratio

In this selection strategy, we select unequal num-
ber of samples from each class, deciding on a ratio

107

of positive samples to negative samples. The aim
of selecting sentences with a particular ratio is to
incorporate the underlying class distribution of the
dataset for selection. When the underlying distribu-
tion is biased, selecting equal number of sentences
would leave the algorithm to have lower accuracy
in the produced pseudo-labels for the smaller class,
and this error is propagated with every iteration
step.

The only way to truly estimate the correct selec-
tion ratio is to sample from the given dataset. In an
unsupervised scenario, we would need to annotate a
selected sample of sentences to determine the selec-
tion ratio empirically. We found that on sampling
around 50 sentences from the dataset, we were ac-
curately able to predict the distribution of the class
labels with a standard deviation of approximately
4-6%, depending on the dataset. The performance
is not sensitive to estimation inaccuracies of that
amount.

Finding the selection ratio serves a second pur-
pose - it also gives us an estimated stopping condi-
tion. By knowing an approximate ratio of the class
labels and the size of the dataset, we now have an
approximation for the total number of samples in
each class. As soon as the total selections for a class
across all iteration reaches the predicted number
of samples of that class, according to the sampled
selection ratio, we should stop the algorithm.

The results for using the selection ratio are
shown in Table 3. We see significant improve-
ments in performance for the Dravidian languages,
with the performance reaching very close to the
supervised performance. The improvement in per-
formance for the Hinglish and Spanglish datasets
are minimal. This hints that a selection ratio strat-
egy was able to overcome the difference in domains
and the affects of poor initialization as pointed out
in Table 2.

The selection ratio strategy was also able to over-
come the problem of data imbalance. This can be
seen in Figure 2 when we evaluate the framework
from an algorithmic perspective. Figure 2 plots the
classification F1 scores of the unsupervised algo-
rithm as a function of the selected sentences. We
find that using the selection ratio strategy improves
the performance on the training set significantly.
We see improvements for the Dravidian languages,
which were also reflected in Table 3.

This improvement is also seen for the Spanglish
dataset, which is not reflected in Table 3. This

means that for Spanglish, the improvement in the
unsupervised model when trained with selection
ratio strategy does not generalize to a test set, but
the improvement is enough to select sentences in
the next iterations more accurately. This means
that we’re able to give better labels to our training
set in an unsupervised manner, which was one of
the aims of developing an unsupervised algorithm.
(Note : The evaluation from a model perspective is
done on the test set, whereas from an algorithmic
perspective is done on the training set.)

This evaluation perspective also shows that if
the aim of the unsupervised endevour is to create
labels for an unlabelled set of sentences, one does
not have to process the entire dataset. For exam-
ple, if we are content with pseudo-labels or noisy
labels for 4000 Hinglish Tweets, the accuracy of
the produced labels would be close to 90%.

Figure 2: Performance of the Unsupervised Self-
Training algorithm as a function of selected sentences
from the training set.

8 Analysis

In this section we aim to understand the in-
formation learnt by a model trained under the
Unsupervised Self-Training. We take the example
of the Hinglish dataset. To do so, we define
a quantity called Token Ratio to quantify the
amount of code-mixing in a sentence. Since
our initialization model is trained on an English
dataset, the language of interest is Hindi and we
would like to understand how well our model
handles sentences with a large amount of Hindi.
Hence, for the Hinglish dataset, we define the
Hindi Token Ratio as:

Hindi Token Ratio =
Number of Hindi Tokens
Total Number of Words

108

(Patwa et al., 2020) provide three language la-
bels for each token in the dataset - HIN, ENG, 0,
where 0 usually corresponds to a symbol or other
special characters in a Tweet. To quantify amount
of code-mixing, we only use the tokens that have
ENG or HIN as labels. Words are defined as tokens
that have either the label HIN or ENG. We define
the Token Ratio quantity with respect to Hindi, but
our analysis can be generalized to any code-mixed
language. The distribution of the Hindi Token Ra-
tio (HTR) in the Hinglish dataset is shown in Figure
3. The figure clearly shows that the dataset is dom-
inated by tweets that have a larger amount Hindi
words than English words. This is also true for the
other three datasets.

Figure 3: Distributions of Hindi Token Ratio for the
Hinglish Dataset.

8.1 Learning Dynamics of the Unsupervised
Model

To study if the unsupervised model understands
Hinglish, we look at the performance of the model
as a function of the Hindi Token Ratio. In Figure 4
, the sentences in the Hinglish dataset are grouped
into buckets of Hindi Token Ratio. A bucket is of
size 0.1 and contains all the sentences that fall in
its range. For example, when the x-axis says 0.1,
this means the bucket contains all sentences that
have a Hindi Token ratio between 0.1 and 0.2.

Figure 4 shows that the zero shot model performs
the best for sentences that have very low amount
of Hindi code-mixed with English. As the amount
of Hindi in a sentence increases, the performance
of the zero-shot predictions decreases drastically.
On training the model with our proposed Unsuper-
vised Self-Training framework, we see a significant
rise in the performance for sentences with higher
HTR (or sentences with a larger amount of Hindi
than English) as well as the overall performance
of the model. This rise is gradual and the model
improves at classifying sentences with higher HTR
with every iteration.

Next, we refer back to Figure 3. Figure 3 shows

Figure 4: Model Performance for different Hindi Token
Ratio buckets. For example, a bucket labelled as 0.3
contains all sentences that have a Hindi Token ration
between 0.3 and o.4.

the distribution of the Hindi Token Ratio for each of
the two sentiment classes. For the Hinglish dataset,
we see that tweets with negative sentiments are
more likely to contain more Hindi words than En-
glish. The distribution for the Hindi Token Ratio
for positive sentiment is almost uniform, thus show-
ing no preference for English or Hindi words when
expressing a positive sentiment. If we look at the
distribution of the predictions made by the zero-
shot unsupervised model, shown in Figure 5, we
see that majority of the sentences are predicted as
belonging to the positive sentiment class. There
seems to be no resemblance with the original dis-
tribution (Figure 3). As the model trains under
our Unsupervised Self-Training framework, we see
that the predicted distribution becomes very similar
to the original distribution.

Figure 5: Comparison made between predictions made
by the zero-shot and the best unsupervised model.

8.2 Error Analysis
In this section, we look at the errors made by the
unsupervised model. Table 4 shows the compar-
ison between the class-wise performance of the
supervised and the best unsupervised model. The
unsupervised model is better at making correct pre-
dictions for the negative sentiment class when com-
pared to the supervised model. Figure 6 shows the
classwise performance for the zero-shot and best
unsupervised model for the different HTR buck-
ets. We see that the zero-shot models performs
poorly for both the positive and negative classes.
As the unsupervised model improves with itera-

109

Model
Type

Positive
Accuracy

Negative
Accuracy

Unsupervised 0.73 0.94
Supervised 0.93 0.83

Table 4: Comparison between class-wise performance
for supervised and unsupervised models.

tions through the dataset, we see the performance
for each class increase.

Figure 6: Class-wise performance of the zero-shot and
the best unsupervised models for different Hindi Token
Ratio buckets.

8.3 Does the Unsupervised Model
‘Understand’ Hinglish?

The learning dynamics in section 8.1 show that
as the TweetEval model is fine-tuned under our
proposed Unsupervised Training Framework, the
performance of the model increases for sentences
that have higher amounts of Hindi. In fact, the per-
formance increase is seen across the board for all
Hindi Token Ratio buckets. We saw the distribu-
tion of the predictions made by the zero-shot model,
which preferred to classify almost all sentences as
positive. But as the model was fine-tuned, the pre-
dicted distribution was able to replicate the original
data distribution. These experiments show that the
model originally trained on an English dataset is
beginning to atleast recognize Hindi when trained
with our proposed framework, if not understand it.

We also see a bias in the Hinglish dataset where
the negative sentiments are more likely to contain
a larger number Hindi Tokens, which are unknown
tokens from the perspective of the initial TweetE-
val model. Thus the classification task would be
aided by learning the difference in the underlying
distributions of the two classes. Note that we do
expect a supervised model to use this divide in the
distributions as well. Figure 6 shows a larger in-
crease in performance for the negative sentiment
class than the positive sentiment class, although the
performance is increased across the board for all
Hindi Token Ratio buckets. (This difference in per-

formance can be remedied by selecting sentences
with high Hindi Token Ratio in the selection block.)
Thus, it does seem like that the model is able to
understand Hindi and this understanding is aided
by the differences in the class-wise distribution of
the two sentiments.

9 Conclusion

We propose the Unsupervised Self-Training frame-
work and show results for unsupervised sentiment
classification of code-switched data. The algo-
rithm is comprehensively tested for four very dif-
ferent code-mixed languages - Hinglish, Spanglish,
Tanglish and Malayalam-English, covering many
variations including differences in language fami-
lies, domains, dataset sizes and dataset imbalances.
The unsupervised models performed competitively
when compared to supervised models. We also
present training strategies to optimize the perfor-
mance of our proposed framework.

An extensive analysis is provided describing the
learning dynamics of the algorithm. The algorithm
is initialized with a model trained on an English
dataset and has poor zero-shot performance on sen-
tence with large amounts of code-mixing. We show
that with every iteration, the performance on fine-
tuned model increases for sentences with a larger
amounts of code-mixing. Eventually, the model
begins to understand the code-mixed data.

10 Future Work

The proposed Unsupervised Self-Training algo-
rithm was tested with only two sentiment classes -
positive and negative. An unsupervised sentiment
classification algorithm is to be able to generate
annotations for an unlabelled code-mixed dataset
without going through the expensive annotation
process. This can be done by including the neutral
class in the dataset, which is going to be a part of
our future work.

In our work, we only used one initialization
model trained on English Tweets for all four code-
mixed datasets, as all of them were code-mixed
with English. Future work can include testing
the framework with different and more compatible
models for initialization. Further work can be done
on optimization strategies, including incorporating
the Token Ratio while selecting pseudo-labels, and
active learning.

110

References
Francesco Barbieri, Jose Camacho-Collados, Leonardo

Neves, and Luis Espinosa-Anke. 2020. Tweet-
eval: Unified benchmark and comparative eval-
uation for tweet classification. arXiv preprint
arXiv:2010.12421.

Bharathi Raja Chakravarthi, Navya Jose, Shardul
Suryawanshi, Elizabeth Sherly, and John P Mc-
Crae. 2020a. A sentiment analysis dataset for
code-mixed malayalam-english. arXiv preprint
arXiv:2006.00210.

Bharathi Raja Chakravarthi, Vigneshwaran Murali-
daran, Ruba Priyadharshini, and John P McCrae.
2020b. Corpus creation for sentiment analysis
in code-mixed tamil-english text. arXiv preprint
arXiv:2006.00206.

BR Chakravarthi, R Priyadharshini, V Muralidaran,
S Suryawanshi, N Jose, E Sherly, and JP McCrae.
2020c. Overview of the track on sentiment analysis
for dravidian languages in code-mixed text. In Work-
ing Notes of the Forum for Information Retrieval
Evaluation (FIRE 2020). CEUR Workshop Proceed-
ings. In: CEUR-WS. org, Hyderabad, India.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav
Chaudhary, Onur Celebi, Michael Auli, Ves Stoy-
anov, and Alexis Conneau. 2020a. Self-training im-
proves pre-training for natural language understand-
ing. arXiv preprint arXiv:2010.02194.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav
Chaudhary, Onur Celebi, Michael Auli, Ves Stoy-
anov, and Alexis Conneau. 2020b. Self-training im-
proves pre-training for natural language understand-
ing. arXiv preprint arXiv:2010.02194.

Akshat Gupta, Sai Krishna Rallabandi, and Alan Black.
2021. Task-specific pre-training and cross lingual
transfer for code-switched data. arXiv preprint
arXiv:2102.12407.

Martin Haselmayer and Marcelo Jenny. 2017. Senti-
ment analysis of political communication: combin-
ing a dictionary approach with crowdcoding. Qual-
ity & quantity, 51(6):2623–2646.

Sai Muralidhar Jayanthi and Akshat Gupta. 2021.
Sj_aj@ dravidianlangtech-eacl2021: Task-adaptive
pre-training of multilingual bert models for of-
fensive language identification. arXiv preprint
arXiv:2102.01051.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhu Nanli, Zou Ping, Li Weiguo, and Cheng Meng.
2012. Sentiment analysis: A literature review. In
2012 International Symposium on Management of
Technology (ISMOT), pages 572–576. IEEE.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of sentiment
analysis of code-mixed tweets. arXiv e-prints, pages
arXiv–2008.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu
Ma. 2020. Theoretical analysis of self-training with
deep networks on unlabeled data. arXiv preprint
arXiv:2010.03622.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational
linguistics, pages 189–196.

Xiaojin Jerry Zhu. 2005. Semi-supervised learning lit-
erature survey.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin D Cubuk, and Quoc V Le. 2020a.
Rethinking pre-training and self-training. arXiv
preprint arXiv:2006.06882.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin D Cubuk, and Quoc V Le. 2020b.
Rethinking pre-training and self-training. arXiv
preprint arXiv:2006.06882.

111

A Implementation Details

We use the RoBERTa-base based model pre-trained
on a large English Twitter corpus for initialization,
which has about 125M paramters. The model was
fine-tuned using the NVIDIA GeForce GTX 1070
GPU using python3.6. The Tanglish dataset was
the biggest dataset which required approximately 3
minutes per iteration. One pass through the entire
dataset required 20 iterations for the Vanilla selec-
tion strategy and about 30 iterations for the Ratio
selection strategy. The time required per iteration
was lower for the the other three datasets, with
about 100 seconds per iteration for the Malaylam-
English datasets.

112

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 113–118
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_014

CodemixedNLP: An Extensible and Open NLP Toolkit for Code-Mixing

Sai Muralidhar Jayanthi, Kavya Nerella, Khyathi Raghavi Chandu, Alan W Black
Language Technologies Institute

Carnegie Mellon University
{sjayanth, knerella, kchandu, awb}@cs.cmu.edu

Abstract
The NLP community has witnessed steep
progress in a variety of tasks across the realms
of monolingual and multilingual language
processing recently. These successes, in
conjunction with the proliferating mixed
language interactions on social media have
boosted interest in modeling code-mixed texts.
In this work, we present CODEMIXEDNLP, an
open-source library with the goals of bringing
together the advances in code-mixed NLP and
opening it up to a wider machine learning
community. The library consists of tools
to develop and benchmark versatile model
architectures that are tailored for mixed texts,
methods to expand training sets, techniques
to quantify mixing styles, and fine-tuned
state-of-the-art models for 7 tasks in Hinglish1.
We believe this work has a potential to foster
a distributed yet collaborative and sustainable
ecosystem in an otherwise dispersed space of
code-mixing research. The toolkit is designed
to be simple, easily extensible, and resourceful
to both researchers as well as practitioners2.

1 Introduction

Code-mixing refers to fluid alteration between two
or more languages in a given utterance. This
phenomenon is ubiquitous and more natural in
multilingual communities, and is highly prevalent
in social media platforms. Developing tools that
can comprehend mixed texts can have a multitude
of advantages, ranging from socially responsible
NLP applications such as moderating abusive
content in social media to improve naturalness
of ubiquitous technologies such as conversational
AI assistants and further to develop socio-cultural
studies around human cognition, such as why and
when people code-mix.

NLP tools for monolingual and multilingual
language processing have rapidly progressed in

1Demo is available at: https://bit.ly/3rzOcWb
2The library and pretrained models are available at

github.com/murali1996/CodemixedNLP.

the past few years; thanks to the transformer-based
models such as Multilingual BERT (Devlin et al.,
2019) & XLM-RoBERTa (Conneau et al., 2020),
and their pretraining techniques. On various mixed
datasets, recent studies have shown that adopting
multilingual pretrained models can perform better
than their previous deep learning counterparts
(Pires et al., 2019; Khanuja et al., 2020; Aguilar
et al., 2020; Chakravarthy et al., 2020; Jayanthi
and Gupta, 2021). While this looks promising
for multilingual, the same is not translated to
code-mixing. Hence, a critical investigation is
required to understand generalizable modeling
strategies to enhance performance on mixed texts
(Winata et al., 2021; Aguilar and Solorio, 2020;
Sitaram et al., 2020).

At the same time, practitioners who require
an off-the-shelf tool into their downstream
mixed text application (eg. sentiment or
language identification), currently have to resort
to monolingual toolkits such as NLTK, Flair,
IndicNLP and iNLTK. On the other hand, while
there have been several episodic works on mixed
text processing, such as proposing novel datasets
or shared-tasks or training strategies, there haven’t
been many initiatives to collate these resources
into a common setting; doing so can benefit both
researchers and practitioners, thereby accelerating
NLP for mixed texts.

In this work, we address some of these
shortcomings by creating an extensible and
open-source toolkit for a variety of semantic and
syntactic NLP applications in mixed languages.
Our toolkit offers-

• simple plug-and-play command line
interfaces with fine grained control over
inputs, models and tasks for developing,
quantifying, benchmarking, and re-using
versatile model architectures tailored for
mixed texts (§ 2.1, § 2.2, § 2.3)

• easy to use single stop interfacing for a variety

113

https://doi.org/10.26615/978-954-452-056-4_014

of data augmentation techniques including
transliteration, spelling variations, expansion
with monolingual corpora etc., by leveraging
a collation of publicly available tools

• a toolkit library to import fine-tuned and
ready-to-use models for 7 different tasks in
Hinglish, along with an easy-to-setup web
interface wrapper based on flask server (§ 4)

We believe the fine grained plug and play
interfacing of the toolkit can serve a multitude
of purposes in both academia and industry. Such
fine control over the individual components of the
model can enable accelerated experimentation
in training different model architectures, such
as multi-tasking, representation-fusion, and
language-informed modeling. This in-turn
helps our understanding of utilizing pretrained
transformer-models for mixed datasets. In addition,
our toolkit also offers computation of metrics to
quantify code-mixing such as Code-Mixing Index,
Language Entropy, etc., which can be utilized to
find peculiarities of low-performing subsets.

Like a curse in disguise, though code-mixing is
widely prevalent and available on social media,
it is accompanied with non-standard spellings,
mixed scripts and ill-formed sentences are common
in code-mixing. To combat this, our toolkit
offers techniques to augment the training sets with
multiple views of each input corresponding to the
above problems.

Among many potential applications, we first
demonstrate our toolkit’s utility in benchmarking
(§ 3). In addition, we publish state-of-the-art
models for different NLP tasks in Hinglish and
wrap them into a command line / deployable web
interface (§ 4). Our toolkit is easily extensible–
practitioners can incorporate new pretrained as well
as fine-tuned models, include text processors such
as tokenizers, transliterators and translators, and
add wrappers on existing methods for downstream
NLP applications.

2 Toolkit

Our toolkit is organized into components as
depicted in Figure 1. In a nutshell, an
end-to-end model architecture consists of one
or more encoder components, a component
for combining encodings, and one or more
adaptor plus task components.

Figure 1: Customizable components in our toolkit. Marked
in dashed box is an optional component.

2.1 Input Embeddings

Multi-view Integration: Tokens in mixed texts
are often manifested in cross-script and mixed
forms, that we refer to as views. This infusion
motivates integration of text representations in
varied forms, such as transliterated, translated,
script-normalized, and tokens belonging to one
of the participating languages. Especially in
the context of pretrained multilingual models,
this technique means extracting a holistic
representation of a mixed text. To this end, the
toolkit facilitates combining representations from
different views of an input.
Text Tokenization: Motivated by some recent
related works on using different word-level and
sub-word-level embeddings (Winata et al., 2019;
Aguilar and Solorio, 2020), our toolkit offers
different tokenization methods for encoding text.
Among the encoders available in our toolkit
(§ 2.2), pretrained transformer-based encoders
can either be tokenized using their default
tokenization technique (i.e. subwords) or by
using a character-CNN architecture (Boukkouri
et al., 2020). LSTM-based models can take
inputs in the form of tensor representations–
eg. word-level FastText (Bojanowski et al.,
2017) or semi-character (Sakaguchi et al., 2017)
representations, or character-level representations–
eg. char-BiLSTM3.
Tag-Informed Modeling: Studies in the
past have shown the usefulness of language
tag-aware modeling for mixed and cross-lingual

3Sequence Tagging with Tensorflow

114

Benchmarking transformer based models (F1 / Accuracy)
Text Classification Tasks Sequence Tagging Tasks

Sentiment Classification
Aggression

Identification
Hate Speech
Identification

Offensiveness
Identification

Youtube
Comments

Classification

Language
Identification

NER POS

Model HIN-ENG1 HIN-ENG2 SPA-ENG† HIN-ENG HIN-ENG TAM-ENG† HIN-ENG HIN-ENG† HIN-ENG† HIN-ENG
mBert 65.9 / 65.7 58.8 / 60.7 50.1 / 51.3 48.1 48.7 47.1 / 61.7 76.8 / 79.0 83.3 / 83.4 96.9 / 96.9 95.1 / 95.6 75.0 / 75.8

w/ Task adaptive 67.4 / 67.2 61.4 / 61.5 53.2 / 55.0 50.3 / 51.2 67.9 70.3 76.9 / 78.9 83.6 / 83.7 97.1 / 97.1 97.1 / 97.1 77.1 / 77.6
w/ Domain adaptive 71.4 / 71.3 62.5 / 63.0 − 50.7 / 51.4 65.5 / 70.3 − 85.2 / 85.3 97.3 / 97.3 97.2 / 97.3 75.8 / 76.3

XLM-RoBERTa 68.9 / 69.1 61.5 / 61.5 54.4 / 54.6 49.0 / 49.6 64.4 / 69.6 76.7 / 77.4 85.7 / 85.8 97.1 / 97.1 96.1 / 96.3 73.7 / 74.8
w/ Task adaptive 70.4 / 70.4 63.0 / 63.0 54.4 / 54.8 55.3 / 55.4 64.6 / 69.8 77.1 / 78.8 85.8 / 85.9 97.6 / 97.6 97.1 / 97.2 76.5 / 76.9
w/ Domain adaptive 72.1 / 72.2 65.6 / 65.7 − 56.7 / 57.1 65.2 / 70.4 − 87.3 / 87.4 97.5 / 97.5 96.9 / 97.0 74.9 / 75.7

Table 1: Results are reported for eight different tasks, namely, Sentiment Classification (HIN-ENG1 (Patwa et al., 2020),
HIN-ENG2 (Patra et al., 2018), SPA-ENG(Aguilar et al., 2020)), Aggression Identification (Kumar et al., 2018), Hate Speech
Identification (Bohra et al., 2018), Offensiveness Identification (Chakravarthi et al., 2020), Youtube Comments Classification
(Kaur et al., 2019), Language Identification (Aguilar et al., 2020), Named Entity Recognition and Parts of Speech Tagging
(Khanuja et al., 2020). † Implies results on dev split, otherwise on test splits.

Sentiment
Classification

Model HIN-ENG1 HIN-ENG2

XLM-RoBERTa 68.9 / 69.1 61.5 / 61.5
w/ multi-view integration 71.1 / 71.3 62.0 / 62.8
w/ language-tag informed 68.9 / 69.3 62.8 / 63.1
w/ fasttext-BiLSTM fusion 69.9 / 70.0 61.2 / 62.1
w/ char-BiLSTM fusion 69.3 / 69.1 62.0 / 62.3
w/ semi-char-BiLSTM fusion 69.4 / 68.9 60.0 / 60.8
w/ data noising 70.5 / 70.5 61.9 / 62.2
w/ monolingual corpora 68.9 / 69.3 68.2 / 68.3

Table 2: Results of various modelling techniques (F1 /
Accuracy) when used with a pretrained transformers-based
encoder. HIN-ENG1 refers (Patwa et al., 2020) and
HIN-ENG2 refers to (Patra et al., 2018)

texts (Chandu et al., 2018; Lample and Conneau,
2019). However, their usefulness in the context
of pretrained models and code-mixing is not
thoroughly investigated. To this end, we offer a
more generalized method in our toolkit to conduct
any tag-aware fine-tuning, wherein representations
for different kinds of tags can be added to the text
representations. Examples of such tags include
POS tags, Language IDs, etc.

2.2 Models

Encoders: An Encoder in our toolkit can
consist of a transformer-based or BiLSTM-based
architecture. Specifically, for the former, we
utilize pretrained models from the HuggingFace
library (Wolf et al., 2020) and the latter is
implemented in Pytorch (Paszke et al., 2019).
Representation Fusion: Encodings from
different encoders can be combined, and if required
be augmented with (non-trainable) representations
before passing through an adaptor. To combine
encodings, one can either simply concat them
or obtain a (trainable) weighted average, a more
parameter-efficient choice than the former. Both
choices are available in our toolkit.
Adaptors: An adaptor is a task-specific neural

layer and currently, BiLSTM and Multi-Layer
Perceptron (MLP) choices are available as part
our toolkit. The inputs to adaptors are fused
representations if multiple encoders are specified,
else output from a single encoder. These adaptors
serve as task-specific learnable parameters.

Multitasking: Multi-task learning can help
models to pick relevant cues from one task
to be applied to another. Such a setting was
also previously investigated in the context
of mixed texts, which showed promising
improvements (Chandu et al., 2018). Furthermore,
it is also shown in monolingual NLP that
incorporating explicit semantics as an auxiliary
task can enhance BERT’s performance (Zhang
et al., 2020). Motivated by these, our toolkit offers
support to conduct training of one or more tasks.
Once a final representation is produced by adaptors
of each task, we use a training criterion to compute
loss and perform gradient backpropagation.

2.3 Tasks

Tasks: Our toolkit currently supports two kinds
of tasks– sentence-level text classification and
word-level sequence tagging, the flow for each is
demonstrated in Figure 1. The decoupled design of
our toolkit helps in seamlessly creating multi-task
training setups. The kinds of tasks for which we
offer support currently are listed in Table 1.

Adaptive Pretraining: Following the successes
of task-adaptive and domain-adaptive pretraining
in monolingual and multilingual NLP tasks
(Gururangan et al., 2020), users of our toolkit
can also perform such adaptive pretrainings using
mixed texts on top of pretrained transformer-based
models.

115

2.4 Codemixed Quantification

Our toolkit offers 5 standardized metrics for
quantifying mixing in text, namely Code-Mixing
Index (Gambäck and Das, 2014), Average
switch-points (Khanuja et al., 2020), Multilingual
Index, Probability of Switching and Language
Entropy (Guzmán et al., 2017). We offer simple
command line methods to compute these metrics
and also offer metric-based data sampling.

2.5 Data Augmentation

Our toolkit also offers techniques to do data
augmentation. While data augmentation is useful
in cases where there is training data scarcity, for
mixed datasets, it is also essential to produce
a more generalized model. As part of this
feature, this toolkit currently offers augmentation
through transliteration, spelling variations and
monolingual corpora. We currently support
transliteration of Indic languages through an
off-the-shelf tool- indic-trans (Bhat et al.,
2015). Spelling variations include noising spelling,
such as randomly removing/replacing vowel
characters. Monolingual corpora augmentation
is task specific. For a given task, such as
sentiment classification, we augment publicly
available monolingual corpora based on the task
type from one or all of the mixing languages and
use it while fine-tuning models.

2.6 Data Format

Due to diverse data formats of existing mixed
datasets, benchmarking and comparing results
across tasks is not readily feasible. To this end, we
propose a standardized data format for syntactic,
semantic level understanding and generation tasks,
and our toolkit offers command line methods to
adopt a user’s dataset to this standard format.

3 Experiments

Among many potential research applications of
our toolkit, in this section, we demonstrate one
– benchmarking. Table 1 presents performances
of selected model architectures obtained using
our toolkit on some popular mixed datasets. In
Table 2, we also demonstrate the performances
of different architectural choices implemented
through our toolkit on two Hinglish datasets. For
domain-adaptive pretraining of Hinglish datasets,
we collate around 160K mixed sentences from
several of the publicly available Hinglish datasets.

Figure 2: Command line interface for utilizing fine-tuned
models. We provide several functionality compatible with the
popular Huggingface and Fairseq libraries. Marked in boxes
are customizable input arguments.

For task-adaptive pretraining, we just use the
training and testing data available in the dataset of
interest. For training, we use standard optimizers
and model configurations. 4

4 Demo

We fine-tune and publish transformer-based models
for 7 tasks in Hinglish. We include 3 task types– (1)
Semantic (Sentiment Classification, Hate Speech
and Aggression Identification), (2) Syntactic
(NER, POS and Language Identification), and
(3) Generation (Hinglish→English Machine
Translation). We present some examples of
utilizing these models in Figure 2.

5 Conclusion

In this work, we presented a unified toolkit for
modeling code-mixed texts. Additionally, the
toolkit contains various functionalities such as
data augmentation, code-mixing quantification,
and ready-to-use fine-tuned models for 7 different
NLP tasks in Hinglish. Our toolkit is simple
enough for practitioners to integrate new features
as well as develop wrappers around its existing
functionalities. We believe this contribution
facilitates a sustainable and extensible ecosystem
of models by adding novel pretraining techniques
tailored for mixed texts, text normalization
techniques to counter spelling variations, error
analysis tools to identify peculiarities in incorrect
predictions and so on.

4Due to the space limitations, we direct the reader to
check github.com/murali1996/CodemixedNLP for toolkit
usage patterns and for the list of modeling choices.

116

References
Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.

2020. LinCE: A centralized benchmark for
linguistic code-switching evaluation. In
Proceedings of the 12th Language Resources
and Evaluation Conference, pages 1803–1813,
Marseille, France. European Language Resources
Association.

Gustavo Aguilar and Thamar Solorio. 2020. From
English to code-switching: Transfer learning with
strong morphological clues. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8033–8044,
Online. Association for Computational Linguistics.

Irshad Ahmad Bhat, Vandan Mujadia, Aniruddha
Tammewar, Riyaz Ahmad Bhat, and Manish
Shrivastava. 2015. Iiit-h system submission for
fire2014 shared task on transliterated search. In
Proceedings of the Forum for Information Retrieval
Evaluation, FIRE ’14, pages 48–53, New York, NY,
USA. ACM.

Aditya Bohra, Deepanshu Vijay, Vinay Singh,
Syed Sarfaraz Akhtar, and Manish Shrivastava.
2018. A dataset of hindi-english code-mixed social
media text for hate speech detection. In Proceedings
of the second workshop on computational modeling
of people’s opinions, personality, and emotions in
social media, pages 36–41.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information.

Hicham El Boukkouri, Olivier Ferret, Thomas
Lavergne, Hiroshi Noji, Pierre Zweigenbaum, and
Junichi Tsujii. 2020. Characterbert: Reconciling
elmo and bert for word-level open-vocabulary
representations from characters.

Bharathi Raja Chakravarthi, Vigneshwaran
Muralidaran, Ruba Priyadharshini, and John Philip
McCrae. 2020. Corpus creation for sentiment
analysis in code-mixed Tamil-English text. In
Proceedings of the 1st Joint Workshop on Spoken
Language Technologies for Under-resourced
languages (SLTU) and Collaboration and
Computing for Under-Resourced Languages
(CCURL), pages 202–210, Marseille, France.
European Language Resources association.

Sharanya Chakravarthy, Anjana Umapathy, and
Alan W Black. 2020. Detecting entailment in
code-mixed Hindi-English conversations. In
Proceedings of the Sixth Workshop on Noisy
User-generated Text (W-NUT 2020), pages 165–170,
Online. Association for Computational Linguistics.

Khyathi Chandu, Thomas Manzini, Sumeet Singh,
and Alan W. Black. 2018. Language informed
modeling of code-switched text. In Proceedings
of the Third Workshop on Computational
Approaches to Linguistic Code-Switching, pages

92–97, Melbourne, Australia. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman
Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Unsupervised cross-lingual representation learning
at scale. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 8440–8451, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Flair. Flair toolkit. https://github.com/
flairNLP/flair. Accessed: 2021-03-09.

Björn Gambäck and Amitava Das. 2014. On measuring
the complexity of code-mixing. In Proceedings
of the 11th International Conference on Natural
Language Processing, Goa, India, pages 1–7.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of ACL.

Gualberto A Guzmán, Joseph Ricard, Jacqueline
Serigos, Barbara E Bullock, and Almeida Jacqueline
Toribio. 2017. Metrics for modeling code-switching
across corpora. In INTERSPEECH, pages 67–71.

IndicNLP. Indic nlp library. https:
//anoopkunchukuttan.github.io/
indic nlp library/. Accessed: 2021-03-09.

iNLTK. Natural language toolkit for indic languages
(inltk). https://github.com/goru001/inltk.
Accessed: 2021-03-09.

Sai Muralidhar Jayanthi and Akshat Gupta.
2021. SJ AJ@DravidianLangTech-EACL2021:
Task-adaptive Pre-Training of Multilingual BERT
models for Offensive Language Identification.

Gagandeep Kaur, Abhishek Kaushik, and Shubham
Sharma. 2019. Cooking is creating emotion: a
study on hinglish sentiments of youtube cookery
channels using semi-supervised approach. Big Data
and Cognitive Computing, 3(3):37.

Simran Khanuja, Sandipan Dandapat, Anirudh
Srinivasan, Sunayana Sitaram, and Monojit
Choudhury. 2020. GLUECoS: An evaluation
benchmark for code-switched NLP. In Proceedings
of the 58th Annual Meeting of the Association

117

for Computational Linguistics, pages 3575–3585,
Online. Association for Computational Linguistics.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of
the First Workshop on Trolling, Aggression and
Cyberbullying (TRAC-2018), pages 1–11, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Guillaume Lample and Alexis Conneau. 2019.
Cross-lingual language model pretraining.

NLTK. Nltk sentiment analysis toolkit. http:
//www.nltk.org/howto/sentiment.html.
Accessed: 2021-03-09.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative
style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

Braja Gopal Patra, Dipankar Das, and Amitava Das.
2018. Sentiment analysis of code-mixed indian
languages: An overview of sail code-mixed shared
task@ icon-2017. arXiv preprint arXiv:1803.06745.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of
sentiment analysis of code-mixed tweets. In
Proceedings of the 14th International Workshop
on Semantic Evaluation (SemEval-2020), Barcelona,
Spain. Association for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette.
2019. How multilingual is multilingual BERT?
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 4996–5001, Florence, Italy. Association for
Computational Linguistics.

Keisuke Sakaguchi, Kevin Duh, Matt Post, and
Benjamin Van Durme. 2017. Robsut wrod
reocginiton via semi-character recurrent neural
network. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA., pages
3281–3287. AAAI Press.

Sunayana Sitaram, Khyathi Raghavi Chandu,
Sai Krishna Rallabandi, and Alan W Black.
2020. A survey of code-switched speech and
language processing.

Genta Indra Winata, Samuel Cahyawijaya, Zihan
Liu, Zhaojiang Lin, Andrea Madotto, and Pascale
Fung. 2021. Are multilingual models effective in
code-switching?

Genta Indra Winata, Zhaojiang Lin, Jamin Shin,
Zihan Liu, and Pascale Fung. 2019. Hierarchical
meta-embeddings for code-switching named entity
recognition. arXiv preprint arXiv:1909.08504.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander
Rush. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations,
pages 38–45, Online. Association for Computational
Linguistics.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020.
Semantics-aware bert for language understanding.

118

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 119–124
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_015

Normalization and BackTransliteration for CodeSwitched Data

Dwija Parikh and Thamar Solorio
Department of Computer Science

University of Houston
Houston, TX 772043010

{dkparikh, tsolorio}@uh.edu

Abstract
Codeswitching is an omnipresent phe
nomenon in multilingual communities all
around the world but remains a challenge for
NLP systems due to the lack of proper data
and processing techniques. HindiEnglish
codeswitched text on social media is often
transliterated to the Roman script which
prevents from utilizing monolingual resources
available in the native Devanagari script.
In this paper, we propose a method to nor
malize and backtransliterate codeswitched
HindiEnglish text. In addition, we present
a graphemetophoneme (G2P) conversion
technique for romanized Hindi data. We
also release a dataset of scriptcorrected
HindiEnglish codeswitched sentences
labeled for the named entity recognition
and partofspeech tagging tasks to facilitate
further research in this area.

1 Introduction

Linguistic codeswitching (CS) is the phenomenon
of mixing two or more languages in the context of
a single utterance. Multilingual speakers around
the world engage in codeswitching on a regular
basis. Codeswitched data differs from monolin
gual data to a great extent which discourages use
of existing NLP technologies on codeswitched
text. Codeswitching also combines the syntax and
lexicon of the languages used, making it difficult
for monolingual models to adapt to codeswitched
data (Çetinoğlu and Çöltekin, 2019).
In textual codeswitching, text is frequently

romanized1 due to various technical constraints.
This is especially true in the case of HindiEnglish
since the Devanagari script for Hindi is not widely
available or efficient on modern technology. Fig
ure 1 shows an example of a codeswitched Hindi
English tweet. As we can see in the example, key
board layouts force users to choose a single script

1Throughout this paper, we use romanized to mean
transliterated to the Roman script

Original: bhai...why r u crying, film
me to boht maza a aajyega...!!☺☺☺
Translation: brother why are you crying, the film
will be fun!

Figure 1: An example of a codeswitched Hindi
English tweet. English text appears in italics and Hindi
text is underlined.

during time of purchase or adapt to using the stan
dard QWERTY layout for transliterating multiple
scripts. Since most users need to use English in
their daily life, it is impractical to choose a differ
ent keyboard layout. The ease of convenience due
to Latin script keyboard layouts and the lack of a
standardized transliteration process leads users to
employ adhoc phonetic transcription rules when
transcribing Hindi in the Roman script (Aguilar
and Solorio, 2020). Variations in transliteration
and the informality of social media adds noise
which makes HindiEnglish codeswitched data in
creasingly different from standard script text and
harder to process. Further, transliteration also pre
vents from leveraging the resources available for
standard Devanagari text like Wikipedia entries
and monolingual models for Hindi.
Recent trends in NLP research on code

switching have explored the performance of large
pretrained models on codeswitching tasks. State
oftheart multilingual models are typically trained
on standard script text like Wikipedia and struggle
at adapting to transliterated noisy codeswitched
input. Transfer learning has emerged as a promis
ing method to adapt monolingual models trained
on high resource languages like English to code
switched data. Large pretrainedmodels likemulti
lingual BERT (henceforth, mBERT) (Devlin et al.,
2019) have shown robust crosslingual zeroshot
performance with codeswitching data. Aguilar
and Solorio (2020) demonstrated the crosslingual
transfer ability of ELMo (Peters et al., 2018) ,

119

https://doi.org/10.26615/978-954-452-056-4_015

which was trained on English, to SpanishEnglish,
HindiEnglish, and NepaliEnglish codeswitched
data. They observe that mBERT is outperformed
by their model (CSELMo) for HindiEnglish, pos
sibly due to the fact that mBERT is trained on
Hindi in Devanagari and their codeswitched input
is Romanized. In another study, Pires et al. (2019)
tested mBERT’s zeroshot performance on code
switched data in two formats: transliterated, where
Hindi words are written in the Roman script, and
corrected, where Hindi words have been converted
back to the Devanagari script by human annotators.
Their results show a substantial increase in zero
shot performance with scriptcorrected data. Other
studies have also shown improvement in perfor
mance after normalization and backtransliteration
on various tasks like named entity recognition and
partofspeech tagging (Ball and Garrette, 2018;
Bhat et al., 2018). Thus, there is often a need for
computationally inexpensive systems to prepocess
data by normalization and/or backtransliteration.
We begin by providing background for the

normalization and backtransliteration tasks.
Then, we describe our system for normalization,
graphemetophoneme, and backtransliteration.
Finally, we provide results and statistics of
our system against human annotated data. Our
contributions include: (1) a model to normal
ize phonetic typing variations, (2) a simplified
backtransliteration technique, (3) a grapheme
tophoneme conversion technique for romanized
Hindi, and (4) publicly available data sets of script
corrected HindiEnglish text.

2 Related Work

Normalization. Research in phonetic typing vari
ations when transliterating Hindi has gained in
creasing attention recently due to the presence
of codeswitched data on social media. Singh
et al. (2018c) proposed a normalization model us
ing skipgram and clustering techniques for Hindi
English data. Mandal and Nanmaran (2018) pre
sented the first sequencetosequence model for
normalizing BengaliEnglish codeswitched data.
Transliteration. Previous work in Hindi transliter
ation has fallen in two classes: rule based systems
and machine translation based approaches. Multi
ple libraries like indictransliteration2 exist for sim
ple transliteration tasks using rule based systems;

2https://pypi.org/project/
indic-transliteration/

however, they require input to be normalized and
fail at adapting to nonstandard data that is typ
ical on social media. Before the advent of neu
ral machine translation, statistical machine trans
lation tools such as Moses (Koehn et al., 2007)
were deployed for transliteration. Neural machine
translation based approaches have continued to
treat transliteration as a translation problem and ap
plied methods such as sequencetosequence learn
ing successfully. For instance, Bhat et al. (2018)
proposed a three step encoderdecoder model for
normalization and transliteration of HindiEnglish
codeswitched text.
GraphemetoPhoneme. Graphemetophomene
(G2P) is an important task for speech recogni
tion. Mortensen et al. (2018) presented a multi
lingual G2P system for transcribing a multitude of
languages using simple mappings. G2P for stan
dard Hindi is a straightforward task using simple
phonetic mappings. However, for nonstandard
transliterated Hindi, it can be tricky to generate ac
curate phonemic representations.

3 Background

User generated codeswitched data is noisy and rid
dled with word variations, spelling mistakes, and
grammatical errors. Since the Latin script does not
possess all the consonants and vowels required to
transliterate Hindi, users come up with the most
convenient ways to transcribe Hindi. Common
variations in transliterated Hindi are:

• Ambiguous consonant transliteration: For
consonants not covered by the Roman script,
users rely on the most appropriate translitera
tion available which leads to multiple sounds
being transliterated to the same grapheme in
the roman script. For example, both िदल
<heart> and डब्बा <box> are transliterated
as dil and dabba respectively but the charac
ter <d> corresponds to different consonants in
Hindi.

• Vowel dropping: Since native speakers of
Hindi do not require explicit notation for vow
els that can be easily inferred, they tend to
skip their transcription in text. For instance,
the Hindi word यार is generally transliterated
as yaar. However, vowel dropping changes it
to yr.

• Long vowel transliteration: Users transliter
ate long vowels in various ways. For ex

120

ample, the most standard way to transliter
ate the word काम would be kaam but it is
often transliterated as kam. During back
transliteration, this can be confused as कम in
stead of काम.

• Double consonant transliteration: Singh et al.
(2018c) describe informal variations in dou
ble consonant transliteration, similar to long
vowel transliteration, where users use vari
ants with or without repeating the respec
tive consonant. For example, इज़्ज़त can be
transliterated as izzat or izat.

• Slang and abbreviations: We define some
commonly used slang and abbreviations for
both Hindi and English. Some examples in
clude:

btw > by the way

wassup > what’s up?

Besides the above, there are other non standard
variations observed in transliterated Hindi as well.
These variations make it difficult to properly
transliterate text using simple phonetic mappings
due to the lack of a standard transliteration scheme.
Numerous schemes like WX notation (Chaitanya
et al., 1996), BrahmiNetITRANS (Kunchukuttan
et al., 2015), and others have been introduced.
However, none of these have been widely em
ployed by the general public.

4 Methodology

We follow a two step system to transliterate Ro
manized Hindi to the Devanagari orthography.
First, we normalize the input using a sequenceto
sequence model. Then, for the backtransliteration
task, we syllabify the token and transcribe to De
vanagari. For the graphemetophoneme task, we
directly map the normalized tokens into the inter
national phonetic alphabet (IPA).

5 Data

We use the hinglishNorm dataset by Makhija et al.
(2020) to train the normalization model. The
dataset comprises of romanized codeswitched sen
tences and their normalized forms annotated by hu
mans. The data contains both Hindi and English
tokens along with their normalized forms. We cre
ate pairs of tokens and their normalized forms to
train our model. We further augment the dataset

with some frequently encountered Hindi words on
social media and their variations.

6 Experiments

6.1 Normalization

Rule based systems are not the most efficient solu
tion to normalization since they are not capable of
capturing all possible variations. Instead, we treat
normalization as a general machine translation
problem. We train a character level sequenceto
sequencemodel for normalization following the ar
chitecture of Sutskever et al. (2014). The model is
comprised of a Long ShortTerm Memory(LSTM)
encoder and LSTM decoder. We use the Keras li
brary (Chollet, 2015) for training the model. Ta
ble 1 compares our model’s performance with
the baselines provided by Makhija et al. (2020).
We evaluate our system using Word Error Rate
(Nießen et al., 2000), BLEU score (Papineni et al.,
2002), and METEOR score (Banerjee and Lavie,
2005).

Model WER BLEU METEOR
(Makhija et al., 2020) 15.55 71.21 0.50

Ours 18.5 80.48 0.56

Table 1: Results showing the effectiveness of the nor
malization model using the WER, BLEU, and ME
TEOR metrics.

It is likely that some of the errors are due to
inconsistencies in the transcription scheme in the
hinglishNorm dataset since it is annotated by hu
mans. One such instance is the long vowel आ
which is normalized to “aa” through most of the
data. However, in some instances, the annotators
normalize it to “a”. For example, “bt control to
krna pdega” from the training data is normalized
to “but control to karana padega”. A sample nor
malized output is shown in Table 2. Here we see
that the Hindi token “bhai” has been normalized to
“bhaai” while the English tokens “wher”, “r”, “u”,
and “frmm” have all been corrected to their correct
spellings.

Original bhaiHIN wher r u frmm
Translation brother, where are you from?
Normalized bhaai where are you from

Table 2: An example of normalized output

121

6.2 Backtransliteration
Contemporary approaches treat transliteration us
ing computationally intensive deep learning ap
proaches. However, once data is normalized in ef
fort tomitigate these variations, transliterating data
does not require any sophisticated approaches.

Roman IPA Dev Roman IPA Dev
k,q kə क kh kʰə ख
g gə ग gh gʰə घ
h ɦə ह ch t͡ʃə च
chh t͡ʃʰə छ j d͡ʑə ज
jh d͡ʑʱə झ y jə य
sh ʃə श t tə त
th ʈʰ थ d d̪ द
dh d̪ɦ ध r ɹə र
n nə न l lə ल
s sə स p pə प
f,ph pʰ फ़ b bə ब
bh bʱə भ m mə म
v ʋə व z zə ज़

Table 3: Mappings for consonants

Table 3 shows mappings between orthographic
forms and phonemic forms for consonants. Table 4
describes the corresponding mappings for vowels.

Roman IPA Dev Roman IPA Dev
a ə अ aa ɑː आ
i i इ ee iː ई
u u उ oo uː ऊ
ri, ru r ̩ ऋ e eː ए
ai,ei ɑːi ऐ o oː ओ
ou ɑːu, ɔː औ am əm अं
ah əh अः

Table 4: Mappings for vowels

A sample process for transliteration is outlined
in Table 5.

Original let’s go bhaaiHIN abhiHIN
kitnaaHIN wait karogeHIN

Translation let’s go brother how long
will you wait

Transliterated let’s go भाई अभी िकतना wait
करोगेे

Table 5: An example of backtransliteration

We test our system against human annotated

data from the XlitCrowd3 corpus for Hindi
English transliteration (Khapra et al., 2014). The
corpus provides crowdsourced data for roman
ized Hindi backtransliterated by human annota
tors. Results show that our system is 78.6% ac
curate. Most of the errors are due to inconsisten
cies in transcription schemes and the rest are due
to mistakes in normalizing by our model. For com
parison, the popular indictrans4 library achieves
63.56% on the same data set (Bhat et al., 2015).

6.3 GraphemetoPhoneme
For the graphemetophoneme task, we describe
manytoone mappings from romanized Hindi to
IPA and Devanagari as shown in Tables 4 and 3.
We use the Epitran5 library by Mortensen et al.
(2018) for transcribing English tokens to IPA. We
extend Epitran with customized mappings for the
Hindi tokens. Since the Roman script doesn’t
cover all the consonants required for transcribing
Hindi, there are multiple ways of transcribing the
same phoneme. However, prepocessing by nor
malization reduces the variation to a large extent.
An example of graphemetophoneme is provided
in Table 6.

Original let’s go bhaaiHIN abhiHIN
kitnaaHIN wait karogeHIN

Translation let’s go brother how long will
you wait

IPA lɛts gəʊ baɪ kɪtnɑ weɪt kəɾoːɡeː
Table 6: An example of Grapheme to Phoneme

7 Released Datasets

We use our system to backtransliterate the Hindi
English corpora from the LinCE6 benchmark
(Aguilar et al., 2020). The NER corpus is from
Singh et al. (2018a) and has 2,079 tweets while the
POS tagging corpus is from Singh et al. (2018b)
and has 1,489 tweets. Some statistics about the
datasets are presented in Table 7.

8 Conclusion and Future Work

Our method can easily be extended to other lan
guages that employ variations of the Devanagari

3https://github.com/anoopkunchukuttan/
crowd-indic-transliteration-data

4https://github.com/libindic/indic-trans
5https://github.com/dmort27/epitran
6https://ritual.uh.edu/lince/home

122

Task Corpus Hindi English
NER Singh et al. (2018a) 13,860 11,391
POS Singh et al. (2018b) 12,589 9,882

Table 7: Statistics on the datasets

script, for instance Gujarati and Nepali. For other
Romanized languages, simple phonetic mappings
can be generated by domain experts. Using back
transliteration can help preprocess codeswitched
data to improve performance on a variety of tasks.
We also plan to augment the normalization pro
cess with a dictionary of common word varia
tions to make the normalization task more effi
cient. Our ongoing work includes testing perfor
mance of crosslingual transfer on romanized and
scripcorrected text using multilingual models like
mBERT.

9 Acknowledgements

This work was supported by the National Science
Foundation (NSF) on the grant #1910192. We also
thank Gustavo Aguilar for insightful discussions
during preliminary investigations.

References
Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.

2020. LinCE: A centralized benchmark for linguis
tic codeswitching evaluation. In Proceedings of
the 12th Language Resources and Evaluation Con
ference, pages 1803–1813, Marseille, France. Euro
pean Language Resources Association.

Gustavo Aguilar and Thamar Solorio. 2020. From
English to codeswitching: Transfer learning with
strong morphological clues. In Proceedings of the
58th Annual Meeting of the Association for Compu
tational Linguistics, pages 8033–8044, Online. As
sociation for Computational Linguistics.

Kelsey Ball andDanGarrette. 2018. Partofspeech tag
ging for codeswitched, transliterated texts without
explicit language identification. In Proceedings of
the 2018 Conference on Empirical Methods in Natu
ral Language Processing, pages 3084–3089, Brus
sels, Belgium. Association for Computational Lin
guistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im
proved correlation with human judgments. In Pro
ceedings of the ACL Workshop on Intrinsic and Ex
trinsic Evaluation Measures for Machine Transla
tion and/or Summarization, pages 65–72, Ann Ar
bor, Michigan. Association for Computational Lin
guistics.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2018. Universal Dependency parsing
for HindiEnglish codeswitching. In Proceedings
of the 2018 Conference of the North American Chap
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa
pers), pages 987–998, New Orleans, Louisiana. As
sociation for Computational Linguistics.

Irshad Ahmad Bhat, Vandan Mujadia, Aniruddha Tam
mewar, Riyaz Ahmad Bhat, and Manish Shrivastava.
2015. Iiith system submission for fire2014 shared
task on transliterated search. In Proceedings of the
Forum for Information Retrieval Evaluation, FIRE
’14, pages 48–53, New York, NY, USA. ACM.

Özlem Çetinoğlu and Çağrı Çöltekin. 2019. Chal
lenges of annotating a codeswitching treebank. In
Proceedings of the 18th International Workshop on
Treebanks and Linguistic Theories (TLT, SyntaxFest
2019), pages 82–90, Paris, France. Association for
Computational Linguistics.

Vineet Chaitanya, Rajeev Sangal, and Akshar Bharati
(Group), editors. 1996. Natural language process
ing: a Paninian perspective, eastern economy ed edi
tion. PrenticeHall of India, New Delhi.

François Chollet. 2015. keras. https://github.
com/fchollet/keras.

Jacob Devlin, MingWei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pretraining of
deep bidirectional transformers for language under
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ
ation for Computational Linguistics.

Mitesh M. Khapra, Ananthakrishnan Ramanathan,
Anoop Kunchukuttan, Karthik Visweswariah, and
Pushpak Bhattacharyya. 2014. When transliter
ation met crowdsourcing : An empirical study
of transliteration via crowdsourcing using efficient,
nonredundant and fair quality control. In Proceed
ings of the Ninth International Conference on Lan
guage Resources and Evaluation (LREC’14), Reyk
javik, Iceland. European Language Resources Asso
ciation (ELRA).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
CallisonBurch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL. The Association for Computational Linguis
tics.

Anoop Kunchukuttan, Ratish Puduppully, and Pushpak
Bhattacharyya. 2015. BrahmiNet: A transliteration
and script conversion system for languages of the In
dian subcontinent. In NAACL: System Demonstra
tions.

123

Piyush Makhija, Ankit Kumar, and Anuj Gupta. 2020.
hinglishNorm a corpus of HindiEnglish code
mixed sentences for text normalization. In Proceed
ings of the 28th International Conference on Compu
tational Linguistics: Industry Track, pages 136–145,
Online. International Committee on Computational
Linguistics.

Soumil Mandal and Karthick Nanmaran. 2018. Nor
malization of transliterated words in codemixed
data using Seq2Seq model & Levenshtein distance.
In Proceedings of the 2018 EMNLP Workshop W
NUT: The 4th Workshop on Noisy Usergenerated
Text, pages 49–53, Brussels, Belgium. Association
for Computational Linguistics.

David R.Mortensen, Siddharth Dalmia, and Patrick Lit
tell. 2018. Epitran: Precision G2P for many lan
guages. InProceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Sonja Nießen, Franz Josef Och, Gregor Leusch, and
Hermann Ney. 2000. An evaluation tool for machine
translation: Fast evaluation for MT research. In
Proceedings of the Second International Conference
on Language Resources and Evaluation (LREC’00),
Athens, Greece. European Language Resources As
sociation (ELRA).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
Jing Zhu. 2002. Bleu: a method for automatic eval
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, NewOrleans, Louisiana. Association for Com
putational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro
ceedings of the 57th Annual Meeting of the Asso
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computational
Linguistics.

Kushagra Singh, Indira Sen, and Ponnurangam Ku
maraguru. 2018a. Language identification and
named entity recognition in Hinglish code mixed
tweets. In Proceedings of ACL 2018, Student Re
search Workshop, pages 52–58, Melbourne, Aus
tralia. Association for Computational Linguistics.

Kushagra Singh, Indira Sen, and Ponnurangam Ku
maraguru. 2018b. A Twitter corpus for Hindi

English code mixed POS tagging. In Proceed
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 12–
17, Melbourne, Australia. Association for Computa
tional Linguistics.

Rajat Singh, Nurendra Choudhary, andManish Shrivas
tava. 2018c. Automatic normalization of word vari
ations in codemixed social media text.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys
tems, volume 27. Curran Associates, Inc.

124

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 125–130
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_016

Abusive content detection in transliterated Bengali-English social media
corpus

Salim Sazzed
Old Dominion University

Norfolk, VA, USA
ssazz001@odu.edu

Abstract

Abusive text detection in low-resource lan-
guages such as Bengali is a challenging task
due to the inadequacy of resources and tools.
The ubiquity of transliterated Bengali com-
ments in social media makes the task even
more involved as monolingual approaches
cannot capture them. Unfortunately, no
transliterated Bengali corpus is publicly avail-
able yet for abusive content analysis. There-
fore, in this paper, we introduce an annotated
corpus of 3000 transliterated Bengali com-
ments categorized into two classes, abusive
and non-abusive, 1500 comments for each.
For baseline evaluations, we employ several
supervised machine learning (ML) and deep
learning-based classifiers. We find support
vector machine (SVM) classifier shows the
highest efficacy for identifying abusive con-
tent. We make the annotated corpus publicly
available for the researchers to aid abusive
content detection in Bengali social media data.

1 Introduction

With the popularity of social media, nowadays,
user-generated contents are available in many lan-
guages. In various social media platforms, such as
review forums and social networking sites, users
express their feelings, opinions, emotion, etc. Due
to the open nature of social media, the presence of
abusive, offensive, and hateful comments is com-
mon there (Schmidt and Wiegand, 2017; Wang
et al., 2014).

Abusive language refers to the usage of de-
meaning, insulting, vulgar, or profane expression
to attack individuals or groups (Nobata et al.,
2016); However, there exist inconsistencies in the
definitions of abusive language in various litera-
ture (Waseem et al., 2017). For example, Nobata
et al. (2016) considered hate speech as a kind of
abusive language, while Founta et al. (2018) dis-
tinguished it from abusive speech. As the presence
of abusive and hatred content inflicts a negative

impact on society and individuals (Nobata et al.,
2016; Duggan, 2017; Park et al., 2018), it is im-
portant to identify them. While plenty of resources
are available for abusive language detection in En-
glish (Poletto et al., 2020), limited research has
been performed on abusive content analysis in low
resource Bengali language.

Code-Mixing (CM) is a natural phenomenon of
embedding linguistic units such as phrases, words,
or morphemes of one language into an utterance
of another (Myers-Scotton, 1993; Muysken et al.,
2000). Transliteration can be considered as a spe-
cial form of code-mixing where the phonetic trans-
formations of the words from a source language to
a target language is performed. The presence of
code-mixing and transliterated Bengali (i.e., Ben-
gali text using the Latin alphabet) is a common
phenomenon in Bengali, as shown by the previous
studies (Barman et al., 2014; Chanda et al., 2016).

The existing research on abusive content or hate
speech detection in Bengali mainly investigated
text written in Bengali (Kumar et al., 2021; Emon
et al., 2019; Eshan and Hasan, 2017; Ishmam
and Sharmin, 2019; Karim et al., 2020; Romim
et al., 2020). Although a few works addressed
the phenomenon of code-switching in word-level
or sentence level (i.e., presence of both English
and Bengali words written using the alphabet of
the corresponding language), most of them did
not consider transliterated Bengali. Only Jahan
et al. (2019) utilized a small number of transliter-
ated Bengali comments (around 200 abusive com-
ments) in their study. English is the second lan-
guage in Bangladesh, the country with the high-
est number of Bengali native speakers; therefore,
transliterated Bengali is ubiquitous in Bengali so-
cial media content. Hence, to detect abusive con-
tent in Bengali social media, it is essential to con-
sider the transliterated Bengali text. For exam-
ple, ”Dor besorom mor tui” is an abusive com-
ment which is written in transliterated Bengali;

125

https://doi.org/10.26615/978-954-452-056-4_016

the corresponding English translation is, ” You are
shameless, you die”. The monolingual approaches
can not identify it as an abusive comment as the
transliterated words neither exist in the Bengali or
English dictionary nor available in the monolin-
gual training data.

Supervised ML classifiers are more effective for
abusive content detection than the word-list based
approaches, as shown in previous studies (Nobata
et al., 2016; Park and Fung, 2017). However, ML
classifiers require annotated training data, which
are missing for transliterated Bengali text. There-
fore, in this work, we develop an annotated corpus
for transliterated Bengali for abusive content de-
tection and make them publicly available 1.

We manually annotate around 3000 transliter-
ated Bengali comments collected from YouTube
into abusive and non-abusive categories, 1500 for
each category. To the best of our knowledge, this
is the largest annotated transliterated Bengali cor-
pus for abusive content analysis. We then em-
ploy popular ML classifiers, logistic regression
(LR), support vector machine (SVM), random for-
est (RF), and deep learning-based bidirectional
long short-term memory (BiLSTM) architecture
for baseline evaluations.

1.1 Contributions
The major contributions of this work can be sum-
marized as follows:

• We introduce a large transliterated Bengali
corpus consisting of 3000 comments col-
lected from YouTube.

• We manually annotate the transliterated com-
ments into abusive and non-abusive cate-
gories.

• We provide the comparative performances of
various supervised ML and deep learning-
based classifiers for recognizing abusive con-
tent in the transliterated Bengali corpus.

2 Related Work

Researchers explored code-mixed and transliter-
ated content for tasks like linguistic analysis, Part-
of-Speech (POS) tagging, and sentiment analy-
sis in various South Asian languages, such as
Hindi and Bengali (Choudhury et al., 2010; Jama-
tia et al., 2015; Patwa et al., 2020). Mathur et al.

1https://github.com/sazzadcsedu/AbusiveCorpus.git

(2018) introduced a Twitter dataset for the classi-
fication of offensive tweets written in the Hindi-
English code-switched language. However, such
a dataset for abusive content analysis in transliter-
ated Bengali is not available yet.

2.1 Abusive Content Analysis in Bengali Text
Emon et al. (2019) applied linear support vector
classifier (LinearSVC), logistic regression (LR),
multinomial naı̈ve bayes (MNB), random forest
(RF), artificial neural network (ANN), and re-
current neural network (RNN) with a long short
term memory (LSTM) to detect multi-type abu-
sive Bengali text. They also introduced a stem-
ming rule to improve the classifier performance.
Eshan and Hasan (2017) investigated the perfor-
mance of RF, MNB, SVM classifiers for abusive
language detection using unigram, bigrams, and
trigram based feature vectors. They found that the
SVM classifier with linear kernel and tri-gram fea-
tures showed the highest accuracy.

Ishmam and Sharmin (2019) employed tradi-
tional and deep learning-based ML algorithms for
classifying different types of offensive comments
collected from Facebook pages. They collected
and annotated around 5000 Bengali comments and
categorized them into six classes. They obtained
the highest accuracy utilizing GRU based model,
which is around 70.10%. Hussain et al. (2018)
collected 300 comments from Facebook and an
online newspaper for abusive content detection.
They proposed a weighted-rule based method that
utilized labeled data. Awal et al. (2018) employed
Naı̈ve Bayes (NB) classifier to detect the abu-
sive content in Bengali; They collected text from
YouTube and provided the performance of NB
using 10-fold cross-validation. Chakraborty and
Seddiqui (2019) employed MNB, SVM, Convolu-
tional Neural Network (CNN) with LSTM classi-
fiers. They leveraged both emoticons and Bengali
characters as input. They found SVM with linear
kernel performed best with 78% accuracy.

2.2 Abusive Content in Transliterated
Bengali

In Jahan et al. (2019), the authors utilized
Bengali-English code-mixed text and translit-
erated Bengali text in addition to the Bengali
only text. They collected comments from several
public Facebook pages. As input features, they
used unigrams, bigrams, the number of likes,
emojis along with their categories, sentiment

126

scores, offensive and threatening words used in
the comments. They employed three Machine
Learning classifiers, SVM, RF, and Adaboost for
abusive speech detection.

As we mentioned earlier, most of the existing
works considered only the Bengali text. Although
few of them utilized code-switching text, translit-
erated Bengali is hardly explored. To the best of
our knowledge, this is the first work that intro-
duces a large annotated corpus of transliterated
Bengali for abusive language detection and pro-
vides comparative performances of ML classifiers.

3 Corpus Creation

The developed corpus contains user-generated
transliterated Bengali text regarding several Ben-
gali dramas and celebrities (i.e., opinion data).

3.1 Data Collection

Using a web scraping tool, we first download the
raw JSON data from YouTube that contains infor-
mation such as user name, id, timestamp, com-
ments, and like/dislike, etc. Utilizing a parsing
script, we extract the viewer’s comments from the
JSON data.

3.2 Data Filtering

The comments are written in Bengali, English,
transliterated Bengali, or using code-switching
words. Since our goal is to create a corpus for
transliterated Bengali (i.e., Bengali words in Latin
alphabet), we exclude comments written using the
Bengali alphabet (i.e., Bengali comments). We
utilize a language detection tool2 to distinguish
comments written using the Latin alphabet and
Bengali alphabet. However, the tool can not dif-
ferentiate between English and transliterated Ben-
gali words as both use the Latin alphabet. Since
social media contains lots of non-dictionary and
misspelled English words (especially when writ-
ten by non-native speakers), checking the English
dictionary is not a feasible option to distinguish
English and Transliterated Bengali words. There-
fore, we manually inspect all the comments to in-
clude them in the corpus. We discard comments
which are written using only English words. Com-
ments with both transliterated Bengali and English
words are included in the corpus if they contain at
least two transliterated Bengali words. Note that,

2https://github.com/Mimino666/langdetect

unlike Bengali or English words, there is not fixed
spelling for transliterated Bengali words; thus, the
same transliterated word with different spellings
can be present in the corpus.

3.3 Data Annotation

3.3.1 Annotation Guideline
For assigning the transliterated Bengali comments
into abusive or non-abusive categories, we follow
a similar guideline of Nobata et al. (2016). They
labeled a piece of text as abusive if it contains ei-
ther hate speech or derogatory language or profan-
ity.

Based on that, we assign the class of the com-
ments into two categories-

• Abusive: This class includes hate speech
which attacks or demeans a group based on
race, ethnic origin, religion, disability, gen-
der, age, disability, etc. Besides, it consists
of derogatory or demeaning remarks which
attack an individual or a group and profanity
towards individuals using sexually offensive
and pornographic comments.

• Non-abusive: comments which do not fall
into the abusive category. These comments
could convey a positive, (non-abusive) nega-
tive or neutral opinion or could be objective
in nature.

3.3.2 Inter-annotator Agreement
Two native Bengali speakers assign the class of the
transliterated comments into two categories, abu-
sive and non-abusive. Among the 3764 transliter-
ated comments, both annotators assign 3000 com-
ments into the same class; 323 comments are iden-
tified as abusive by the first annotator only, while
141 comments are rated abusive by the second an-
notator only. We observe a Cohen’s kappa score
of 0.733 between two annotators, which refers to
substantial agreement.

3.4 Corpus Statistics

The final corpus includes the 3000 comments
which are assigned to the same class by both anno-
tators, 1500 from each category. To avoid ambigu-
ity, we exclude the comments in which annotators
disagree on class assignment (Awal et al., 2020;
Waseem, 2016).

Each comment contains one or multiple sen-
tences and 1-300 words. We purposely make the

127

Figure 1: Examples of annotated abusive and non-abusive reviews

corpus class-balanced to avoid introducing any
bias in the classifier. Figure 1 shows some exam-
ples of original transliterated Bengali comments,
corresponding English machine translations, and
annotations.

3.4.1 Word Frequency Distribution

We manually investigate the presence of English
and transliterated Bengali words in the comments
by randomly selecting 100 abusive and 100 non-
abusive comments. After tokenizing the 100 abu-
sive comments, we find 1720 words. A manual
inspection on them identifies 412 English words
and 1308 Transliterated Bengali words, which in-
dicates that 76% of the words are transliterated
Bengali words. Among the 1088 words in the 100
non-abusive comments, we notice 858 transliter-
ated Bengali and 230 English words, which re-
veals that nearly 80% of words are transliterated
Bengali. As we discard the words written using
the Bengali alphabet in the data filtering step, no
Bengali words are present in the final corpus.

4 Baseline Classifiers

4.1 Traditional ML Classifiers

Three popular supervised ML classifiers, LR, RF,
and SVM are employed to identify abusive com-
ments. We extract unigrams and bigrams from the
text and calculate the term frequency-inverse doc-
ument frequency (TF-IDF) scores for them, which
are used as an input for the ML classifiers. TF-IDF
is a numerical statistic that aims to reflect the im-
portance of a word to a document in a corpus. We
utilize the LR, RF, and SVM implementation of
scikit-learn (Pedregosa et al., 2011) library. The
default parameter settings of ML classifiers are
used.

4.2 Deep Learning Classifier

Furthermore, we apply the deep learning-based
BiLSTM architecture for identifying abusive con-
tent. For BiLSTM, we use word embedding of
100-dimensional vectors trained on the transliter-
ated corpus. A dropout rate of 0.25 is applied in
the dropout layers; Rectified Linear Unit (ReLU)
activation is used in the intermediate layers. In the
final layer, softmax activation is employed. As an
optimization function, Adam optimizer (Kingma
and Ba, 2014), and as a loss function, binary-cross
entropy is utilized. We set the batch size to 64, use
a learning rate of 0.001, and train the model for
6 epochs. We use the Keras (Chollet et al., 2015)
library for implementing BiLSTM model.

5 Results and Discussion

We report the precision (Pabus), recall (Rabus) and
F1 scores (F1abus) of various classifiers for iden-
tifying abusive comments. The TP , FP , and FN
values of the abusive class are defined as follows-
TP = abusive review classified as abusive
FP = non-abusive review classified as abusive
FN = abusive review classified as non-abusive

Rabus = TP
TP+FN , Pabus = TP

TP+FP

F1abus = 2∗Pabus∗Rabus
Pabus+Rabus

We perform 10-fold cross-validation on the
transliterated corpus. We run each classifier 10
times and provide the range of Rabus, Pabus and
F1abus scores.

Table 1 shows the performance of various ML
classifiers for abusive language detection in the
translated Bengali corpus. We observe that among
the three traditional ML classifiers, LR and SVM

128

Table 1: Performance of various classifiers for abusive language detection in the transliterated corpus

Classifier Rabus Pabus F1abus
SVM 0.790 ±0.008 0.865 ±0.015 0.827 ±0.010
LR 0.779 ±0.006 0.876 ±0.004 0.823 ±0.006

BiLSTM 0.781 ±0.031 0.800 ±0.036 0.790 ±0.031
RF 0.781 ±0.013 0.762 ±0.028 0.770 ±0.020

show similar Rabus and Pabus scores. RF clas-
sifier provides a similar Rabus score of LR and
SVM; however, it attains a lower Pabus score.
We find both LR and SVM yield lower Rabus

scores than the Pabus scores. BiLSTM, the deep
learning-based architecture, obtains a relatively
lower F1abus score compared to LR and SVM,
which could be attributed to the small size (i.e.,
3000 comments) of the corpus.

6 Conclusion and Future Work

Identifying abusive content in social media is of
paramount importance due to its detrimental im-
pact. Not addressing this problem can lead to
the increasing growth of harassment and cyber-
bullying in social media. While there have been
few works for abusive speech detection in Ben-
gali social media content, they mostly ignored
the presence of transliterated Bengali. In this pa-
per, we present the most comprehensive study of
abusive content detection in transliterated Bengali
text by providing an annotated corpus and base-
line evaluations. Our future works will focus on
expanding the size of the transliterated corpus,
providing more rigorous analysis, and introduc-
ing a customized deep learning model to improve
the performance of abusive content detection in
transliterated Bengali text.

References
Md Abdul Awal, Md Shamimur Rahman, and Jakaria

Rabbi. 2018. Detecting abusive comments in dis-
cussion threads using naı̈ve bayes. In 2018 Interna-
tional Conference on Innovations in Science, Engi-
neering and Technology (ICISET), pages 163–167.
IEEE.

Md Rabiul Awal, Rui Cao, Roy Ka-Wei Lee, and San-
dra Mitrović. 2020. On analyzing annotation con-
sistency in online abusive behavior datasets. arXiv
preprint arXiv:2006.13507.

Utsab Barman, Amitava Das, Joachim Wagner, and
Jennifer Foster. 2014. Code mixing: A challenge
for language identification in the language of social

media. In Proceedings of the first workshop on com-
putational approaches to code switching, pages 13–
23.

Puja Chakraborty and Md Hanif Seddiqui. 2019.
Threat and abusive language detection on social me-
dia in bengali language. In 2019 1st International
Conference on Advances in Science, Engineering
and Robotics Technology (ICASERT), pages 1–6.
IEEE.

Arunavha Chanda, Dipankar Das, and Chandan
Mazumdar. 2016. Unraveling the english-bengali
code-mixing phenomenon. In Proceedings of the
Second Workshop on Computational Approaches to
Code Switching, pages 80–89.

François Chollet et al. 2015. Keras. https://
keras.io.

Monojit Choudhury, Kalika Bali, Tirthankar Dasgupta,
and Anupam Basu. 2010. Resource creation for
training and testing of transliteration systems for in-
dian languages. LREC.

Maeve Duggan. 2017. Online harassment 2017.

Estiak Ahmed Emon, Shihab Rahman, Joti Banar-
jee, Amit Kumar Das, and Tanni Mittra. 2019. A
deep learning approach to detect abusive bengali
text. In 2019 7th International Conference on Smart
Computing & Communications (ICSCC), pages 1–5.
IEEE.

Shahnoor C Eshan and Mohammad S Hasan. 2017.
An application of machine learning to detect abusive
bengali text. In 2017 20th International Conference
of Computer and Information Technology (ICCIT),
pages 1–6. IEEE.

Antigoni Founta, Constantinos Djouvas, Despoina
Chatzakou, Ilias Leontiadis, Jeremy Blackburn, Gi-
anluca Stringhini, Athena Vakali, Michael Siriv-
ianos, and Nicolas Kourtellis. 2018. Large scale
crowdsourcing and characterization of twitter abu-
sive behavior. In Proceedings of the International
AAAI Conference on Web and Social Media, vol-
ume 12.

Md Gulzar Hussain, Tamim Al Mahmud, and Waheda
Akthar. 2018. An approach to detect abusive bangla
text. In 2018 International Conference on Innova-
tion in Engineering and Technology (ICIET), pages
1–5. IEEE.

129

Alvi Md Ishmam and Sadia Sharmin. 2019. Hateful
speech detection in public facebook pages for the
bengali language. In 2019 18th IEEE International
Conference On Machine Learning And Applications
(ICMLA), pages 555–560. IEEE.

Maliha Jahan, Istiak Ahamed, Md Rayanuzzaman
Bishwas, and Swakkhar Shatabda. 2019. Abusive
comments detection in bangla-english code-mixed
and transliterated text. In 2019 2nd International
Conference on Innovation in Engineering and Tech-
nology (ICIET), pages 1–6. IEEE.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2015. Part-of-speech tagging for code-mixed
english-hindi twitter and facebook chat messages.
Association for Computational Linguistics.

Md Rezaul Karim, Bharathi Raja Chakravarthi, John P
McCrae, and Michael Cochez. 2020. Classification
benchmarks for under-resourced bengali language
based on multichannel convolutional-lstm network.
In 2020 IEEE 7th International Conference on Data
Science and Advanced Analytics (DSAA), pages
390–399. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ritesh Kumar, Bornini Lahiri, and Atul Kr Ojha. 2021.
Aggressive and offensive language identification in
hindi, bangla, and english: A comparative study. SN
Computer Science, 2(1):1–20.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 18–
26.

Pieter Muysken, Pieter Cornelis Muysken, et al. 2000.
Bilingual speech: A typology of code-mixing. Cam-
bridge University Press.

Carol Myers-Scotton. 1993. Common and uncommon
ground: Social and structural factors in codeswitch-
ing. Language in society, pages 475–503.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
twitter. arXiv preprint arXiv:1706.01206.

Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection.
arXiv preprint arXiv:1808.07231.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of sentiment
analysis of code-mixed tweets. arXiv e-prints, pages
arXiv–2008.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Fabio Poletto, Valerio Basile, Manuela Sanguinetti,
Cristina Bosco, and Viviana Patti. 2020. Resources
and benchmark corpora for hate speech detection: a
systematic review. Language Resources and Evalu-
ation, pages 1–47.

Nauros Romim, Mosahed Ahmed, Hriteshwar
Talukder, and Md Saiful Islam. 2020. Hate
speech detection in the bengali language: A
dataset and its baseline evaluation. arXiv preprint
arXiv:2012.09686.

Anna Schmidt and Michael Wiegand. 2017. A sur-
vey on hate speech detection using natural language
processing. In Proceedings of the fifth international
workshop on natural language processing for social
media, pages 1–10.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2014. Cursing in english on twit-
ter. In Proceedings of the 17th ACM conference
on Computer supported cooperative work & social
computing, pages 415–425.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? annotator influence on hate speech detection
on twitter. In Proceedings of the first workshop on
NLP and computational social science, pages 138–
142.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding abuse:
A typology of abusive language detection subtasks.
arXiv preprint arXiv:1705.09899.

130

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 131–132
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_017

Developing ASR for Indonesian-English Bilingual Language Teaching

Zara Maxwell-Smith1,3 Ben Foley2,3

1. The Australian National University, Canberra, ACT, Australia
2. The University of Queensland, Brisbane, QLD, Australia

3. ARC Centre of Excellence for the Dynamics of Language (CoEDL), Australia
Zara.Maxwell-Smith@anu.edu.au, B.Foley@uq.edu.au

Usage-based analyses of teacher corpora and code-
switching (Boztepe, 2003) are an important next
stage in understanding language acquisition. Multi-
lingual corpora are difficult to compile and a class-
room setting adds pedagogy to the mix of factors
which make this data so rich and problematic to
classify. Using quantitative methods to understand
language learning and teaching is difficult work as
the ‘transcription bottleneck’ constrains the size of
datasets. We found that using an automatic speech
recognition (ASR) toolkit with a small set of train-
ing data is likely to speed data collection in this
context (Maxwelll-Smith et al., 2020).

For this study we used approximately 150 min-
utes of data from a project recording a single
teacher’s speech in a second-year, tertiary Indone-
sian language program. Our methodological con-
siderations addressed the following: which ASR
tool to use, how to prepare training data for this
tool, and how to best manage the bias of the train-
ing data inherent in all transcription processes.

We chose the Elpis ASR system, which
combines user-friendly data processing scripts
with a Kaldi HMM/GMM (Hidden Markov
Model/Gaussian Mixture Model) recipe. Elpis
generates transcripts as time-aligned ELAN files,
which was a good fit with the broader project inves-
tigating Indonesian language teaching.

A team of transcribers established guidelines
which reflexively responded to a range of method-
ological considerations. Indonesian diglossic vari-
ants exist in a highly diverse linguistic ecosystem
(Djenar and Ewing, 2015; Sneddon, 2003; Goebel,
2010). This was highlighted by transcriber sub-
jectivity in the teaching context. For example, the
task of analyzing and choosing orthography to tran-
scribe teacher speech into over-simplified, binary
L1 versus L2 categories (1st language: English,
2nd language: Indonesian) is influenced by tran-
scriber expectations of language norms in ‘high’
vs. ‘low’ varieties of Indonesian. Further, the goal

of modifying sociolinguistic norms which brings
people to language classrooms precipitated a level
of variance and unpredictability unusual in other
speech contexts as teachers respond to student ac-
quisition processes. We also provided examples
of the development of a Community of Practice
(Wenger, 1998) as another layer of complexity in
the group classroom environment.

The dataset was transcribed using several “tiers”
to create parallel structures for storing data. While
predominately working from a code-switching
paradigm, the data structure allowed us to train
multiple models for comparative evaluation. We
trained three models, two of which included all
training data and multi-lingual pronunciation lex-
icons, resonating with work on translanguaging
in educational settings (Garcia and Wei, 2014).
The third model was trained with Indonesian data
only. Our preliminary result of 64% word error rate
(WER) is high in comparison to mono-lingual ASR
systems (Maxwelll-Smith et al., 2020). However,
WERs from code-switch bilingual data (Biswas
et al., 2019) were more similar to our WER, espe-
cially given our small amount of training data.

By analysing the text spans in the machine tran-
scription, we found a high incidence of resyllabifi-
cation (word splitting), particularly with omission
of initial or middle consonants. The analysis iden-
tified which model would include less disruptive
errors than the others, and which would be more
responsive to the addition of further training data.

The application of ASR tools is limited in this
setting given the small set of training data, how-
ever using these tools has potential to expedite the
transcription of teacher corpora. These tools could
change workflow and decrease cognitive load for
human transcribers by generating a draft transcript
for revision. We highlight some of the benefits and
risks of using these emerging technologies to ana-
lyze the complex work of language teachers, and
in education more generally.

131

https://doi.org/10.26615/978-954-452-056-4_017

Acknowledgements

We acknowledge the contributions of Associate
Professor Hanna Suominen (The Australian Na-
tional University, Canberra, ACT, Australia,
Data61/Commonwealth Scientific and Industrial
Research Organisation, Canberra, ACT, Australia
and University of Turku, Turku, Finland) and
Simón González Ochoa (The Australian National
University, Canberra, ACT, Australia).

References
Astik Biswas, Emre Yilmaz, Febe de Wet, Ewald

van der Westhuizen, and Thomas Niesler. 2019.
Semi-supervised acoustic model training for five-
lingual code-switched asr. In Interspeech 2019.

Erman Boztepe. 2003. Issues in code-switching: Com-
peting theories and models. Issues in CS: Compet-
ing Theories and Models, 3(2).

Dwi Noverini Djenar and Michael C. Ewing. 2015.
Language varieties and youthful involvement in
Indonesian fiction. Language and Literature,
24(2):108–128.

Ofelia Garcia and Li Wei. 2014. Translanguaging:
Language, Bilingualism and Education. Palgrave
Macmillan, New York.

Zane Goebel. 2010. Identity and social conduct in a
transient multilingual setting. Language in Society,
39(02):203–240.

Max Planck Institute for Psycholinguistics - The Lan-
guage Archive: Nijmegen. 2018. ELAN (Ver-
sion 5.2) [Computer Software]. Retrieved from
https://archive.mpi.nl/tla/elan.

Zara Maxwelll-Smith, Simón González Ochoa, Ben Fo-
ley, and Hanna Suominen. 2020. Applications of
natural language processing in bilingual language
teaching: An Indonesian-English case study. In Pro-
ceedings of the Fifteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 124–134, Seattle, WA, USA â†’ Online. Asso-
ciation for Computational Linguistics.

James N. Sneddon. 2003. Diglossia in Indonesian. Bi-
jdragen tot de taal-, land- en volkenkunde / Journal
of the Humanities and Social Sciences of Southeast
Asia, 159(4):519–549.

Etienne Wenger. 1998. Communities of Practice:
Learning, Meaning, and Identity. Cambridge Uni-
versity Press, Cambridge.

132

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 133–140
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_018

Transliteration for Low-Resource Code-Switching Texts:
Building an Automatic Cyrillic-to-Latin Converter for Tatar

Chihiro Taguchi∗, Yusuke Sakai∗, and Taro Watanabe
{taguchi.chihiro.td0, sakai.yusuke.sr9, taro}@is.naist.jp

Nara Institute of Science and Technology

Abstract

We introduce a Cyrillic-to-Latin transliterator
for the Tatar language based on subword-level
language identification. The transliteration is a
challenging task due to the following two rea-
sons. First, because modern Tatar texts often
contain intra-word code-switching to Russian,
a different transliteration set of rules needs to
be applied to each morpheme depending on the
language, which necessitates morpheme-level
language identification. Second, the fact that
Tatar is a low-resource language, with most of
the texts in Cyrillic, makes it difficult to pre-
pare a sufficient dataset. Given this situation,
we proposed a transliteration method based
on subword-level language identification. We
trained a language classifier with monolingual
Tatar and Russian texts, and applied different
transliteration rules in accord with the identi-
fied language. The results demonstrate that our
proposed method outscores other Tatar translit-
eration tools, and imply that it correctly tran-
scribes Russian loanwords to some extent.

1 Introduction

Modern Tatar has two orthographies: Cyrillic and
Latin. The two alphabets are mostly mutually com-
patible when an input string consists of only Tatar-
origin words. Effectively, however, modern Tatar
has a massive amount of Russian loanwords, and,
in colloquial texts, even a whole phrase may be
switched to Russian. This linguistic phenomenon
is known as code-switching or code-mixing.

A difficulty of transliteration from Cyrillic to
Latin lies in the following two facts. First, a dif-
ferent set of transliteration rules has to be applied
to Tatar and Russian words. This requires a lan-
guage detection for each token, or worse, for each
morpheme, which would additionally require mor-
phological analysis. It is expected that a full imple-
mentation of such a system will produce heavy pro-
cesses. Second, because modern Tatar frequently

∗Equal contribution

mixes Russian words, it is not easy to obtain a pure
Tatar dataset for developing a language detector.

Existing methods are based on either Tatar mono-
lingual rules or a huge bundle of ad-hoc rules aimed
to cover Russian-origin words (Bradley, 2014; Ko-
rbanov, n.d.). The experimental results in Section
6 demonstrate that the former monolingual rule-
based transliterators show low accuracy because
Russian words are not supported. The latter exten-
sively rule-based transliterator has better accuracy,
but still misses a certain amount of words. This
implies that a strictly rule-based method requires
an ever-lasting process of adding rules ad hoc for
exceptional words to further improve the accuracy.
This is obviously unrealistic and inefficient.

In this study, in contrast, we pursue a simple
yet high-accuracy automatic transliteration system
from Cyrillic Tatar to Latin Tatar. We prepare two
sets of simple rule-based monolingual translitera-
tion rules for Tatar and Russian each. In addition,
we train a classifier that automatically determines
Tatar or Russian for each subword. Each token
is then transliterated to Latin Tatar by applying
the rules of the detected language to its subwords.
The results demonstrate that our proposed method
achieves higher accuracy than the previous tools.
Also, our proposed method demonstrates higher ac-
curacy than the transliterator with only Tatar-based
rules, indicating that the method can correctly pre-
dict and transcribe Russian words to some extent.

2 Tatar: Linguistic Background

Tatar (ISO 639-1 Code: tt) is a Kipchak language
of the Turkic language family mainly spoken in
the Republic of Tatarstan, Russia. The number of
the speakers is estimated to be around five million
(Eberhard et al., 2021). The canonical word order
is SOV, but allows for free word order with scram-
bling. Morphological inflections and declensions
are derived by means of suffixation. The suffixa-
tion obeys the vowel harmony rule where backness

133

https://doi.org/10.26615/978-954-452-056-4_018

(or frontness) of vowels is kept consistent.
Through the long history of language contact

with Russian, modern Tatar contains a large amount
of Russian loanwords. Most of the speakers are
bilingual along with Russian, and younger genera-
tions living in urbanized cities tend to have better
competence in Russian than in Tatar. This bilin-
gualism leads to frequent code-switching (CS) in
text and speech, particularly of colloquial genre
(Izmailova et al., 2018).

2.1 Tatar Orthographies
The mainstream orthography for modern Tatar is
the Cyrillic alphabet, which comprises the Russian
standard alphabet and six extended Cyrillic letters.
Cyrillic Tatar is mostly used by Tatars living in
Russian-speaking countries, while the Latin alpha-
bet is used by Tatars living in other areas such as
Turkey and Finland.

Until 1928, Tatar was exclusively written in the
Arabic script. Along with the latinization project
prevailing in the Soviet Union in 1920–30s, a Latin
alphabet system yañalif was introduced to Tatar. In
1939, for political reasons, yañalif was superseded
by the Cyrillic alphabet which has been officially
used in Tatarstan as of now. After the demise of
the Soviet Union, with the resurgence of the move-
ment for restoring the Latin orthography, a new
Latin-based orthography system was adopted by
a republic law in 1999 (National Council of the
Republic of Tatarstan, 1999). However, the law
soon lost its validity in 2002 when a new para-
graph stipulating that all the ethnic languages in
Russia must be written in Cyrillic was added to
the federal law (Yeltsin, 2020). The current Latin
alphabet (2013Latin henceforth) based on the Com-
mon Turkic Alphabet was officially adopted by a
republic law in 2013, and is commonly used in
Tatar diaspora communities (National Council of
the Republic of Tatarstan, 2013).

We define that the term “Latin alphabet” used
in this paper refers to 2013Latin. A detailed
rules for the conversion to 2013Latin is given in
Timerkhanov and Safiullina (2019).

2.2 Code-switching in Tatar
An example of the former is displayed in (1) with
transliteration in the Latin alphabet and the trans-
lation. Underlined klass (klass “class, grade”) is
a Russian word naturalized in Tatar, though it is
pronounced with Russian phonology and therefore
requires a different transliteration. In addition, a

locative suffix -ta (-ta “at, in”) is attached in the
example, as Russian loanwords may take Tatar suf-
fixes, causing CS within a token (intra-word CS).

(1) Bezneң klassta kyzlar sigezenqedәn
�qә baxlagan ide.
translit.: Bezneñ klassta qızlar sigezençedän
eçä başlağan ide.
“In our class, girls used to start drinking by the
eighth grade.”

3 Related Work

Code-Switching. Even though CS has attracted
researchers in NLP, the lack of resource has been
a major difficulty, because CS is an exclusively
colloquial linguistic phenomenon and CS texts are
seldom recorded. Jose et al. (2020) enumerates
a list of available CS datasets at the time of the
publication. In terms of both the availability of
datasets and the popularity of research, CS lan-
guage pairs in trend are Hindi–English (Srivastava
et al., 2020, Singh and Lefever, 2020), Spanish–
English (Alvarez-Mellado, 2020, Claeser et al.,
2018), Arabic varieties and Modern Standard Ara-
bic (Hamed et al., 2019).

As for the studies of intra-word CS in other lan-
guages, Mager et al. (2019) for German–Turkish
and Spanish–Wixarika, Nguyen and Cornips (2016)
for Dutch–Limburgish, and Yirmibeşoğlu and Ery-
iğit (2018) for Turkish–English have a similar ap-
proach to ours. The differences from ours are that
Mager et al. (2019) employs segRNN (Lu et al.,
2016) for segmentation and language identification,
and that Nguyen and Cornips (2016) uses Morfes-
sor (Creutz and Lagus, 2006) for morphological
segmentation. However, our task that combines
language detection of intra-word CS and translit-
eration has never been undertaken in any of these
studies.

Tatar Transliteration. At the time of this writing,
the following tools are available for Tatar Cyrillic-
Latin conversion. The Tatar Transcription Tool
(TTT henceforth) (Bradley, 2014) is a translitera-
tor published online by Universität Wien as a part
of the Mari Web Project. speak.tatar1 is an anony-
mously developed transliteration service. FinTat2 is
a transliteration tool developed as a part of the Cor-
pus of Written Tatar (Saykhunov et al., 2019). Ay-
landirow is a strictly rule-based transliteration tool

1https://speak.tatar/en/language/converter/tat/cyrillic/latin
2http://www.corpus.tatar/fintat

134

available online that extensively covers Russian-
origin words as well as Tatar-origin (Korbanov,
n.d.). The transliteration system employed in Fin-
Tat is based on the Latin alphabet used by Tatars in
Finland, whose orthography is somewhat different
from 2013Latin.

4 Method

We transliterate Cyrillic Tatar to Latin Tatar word
by word, as each word does not affect other words
in Tatar transliteration3.

Taking into account the fact that Tatar has intra-
word CS, we created a classifier that detects a lan-
guage (Tatar or Russian) for each subword. To
implement the language classifier, we prepared two
monolingual corpora of Tatar and Russian. Given
the lack of pure Tatar texts without CS in modern
texts4, we employed Tatar translation of Qur’an5

(19,691 words with duplication) translated in 1912
that contains no Russian loanwords in order to
avoid noise to train the classifier. Its Russian coun-
terpart6 (21,256 words with duplication) was trans-
lated by the Ministry of Awqaf, Egypt.

The training process is as follows. First, the
words collected from the dataset were automati-
cally divided into subwords by the Byte Pair En-
coding algorithm (Sennrich et al., 2016). Baner-
jee and Bhattacharyya (2018) reports that, unlike
Morfessor, BPE can flexibly solve the OOV prob-
lem because some subwords are character-level
segments. In our case, due to the meagerness of
the monolingual training data, we employed BPE
to avoid the OOV problem. Then, assuming that
longer subwords are less ambiguous with respect to
labels to be assigned, we took the longest match to
make it easier to distinguish between Russian and
Tatar; for this reason, the subword merge opera-
tion was repeated until no further merge was possi-
ble. The obtained subwords are then represented in
subword embeddings using fastText7 (Bojanowski
et al., 2017). The classification model is the su-
pervised classifier provided by fastText, with the
following hyperparameters that are known to per-

3The code is available here: https://github.com/naist-
nlp/tatar_transliteration. A demonstration page is published
on the website: https://yusuke1997.com/tatar.

4In the evaluation dataset we prepared for this study, 1,009
words out of 8,466 contained at least one Russian morpheme.

5https://cdn.jsdelivr.net/gh/fawazahmed0/quran-
api@1/editions/tat-yakubibnnugman.json

6https://cdn.jsdelivr.net/gh/fawazahmed0/quran-
api@1/editions/rus-ministryofawqaf.json

7https://github.com/facebookresearch/fastText

form high accuracy8: the number of dimensions is
16, the minimum and maximum character n-gram
sizes are 2 and 4. Hierarchical softmax is used as
the loss function. Together with this representa-
tion, the subword embeddings are annotated with a
language label (Joulin et al., 2017).

It is worth noting that, unlike Mager et al. (2019),
we do not employ deep learning approach. While
the task in Mager et al. (2019) is multi-labeling,
our language identification task is a binary classifi-
cation with a low-resource training dataset; for this
reason, deep learning is too superfluous and heavy
for achieving our task.

To evaluate the performance of our model, we
apply BPE also to the test data in the same manner,
and predict a language label for each subword. Ad-
jacent subwords are, when possible, combined to
form a longer subword with a single language label
for the sake of better accuracy; that is, for example,
when two consecutive subwords are both labeled
as tt, then they are combined into one subword la-
beled as tt. Finally, each subword is converted to
the Latin alphabet with the transliteration rules of
the predicted language, and combined into a word
as an output.

5 Experimental Setup

For the evaluation of the performance, we prepared
700 sentences (shuffled; 8,466 words with duplica-
tion, 5,261 without duplication) from the Corpus
of Written Tatar (Saykhunov et al., 2019) and their
Latin counterpart as the gold data that was man-
ually transcribed by us and verified by a native
speaker. Also, we annotated the Cyrillic text data
so that CS Russian morphemes are tagged. Accord-
ing to this, the text data contains 1,009 words (with
duplication) with a Russian morpheme, and 598
words (with duplication) with intra-word CS.

For evaluation metrics, we calculated BLEU and
longest common sequence (LCS) F-measure for
each letter in a word as well as word accuracy
(ACC) and character error rate (CER). The calcula-
tion of LCS F-measure and ACC is based on Chen
et al. (2018).

To compare the performances of Tatar monolin-
gual transliteration and of Tatar–Russian bilingual
transliteration (i.e., our proposed method; “tt-ru
hybrid” henceforth), we also evaluated the data
with solely Tatar monolingual transliteration rules

8The training setting was inspired by the blog post by
fastText: https://fasttext.cc/blog/2017/10/02/blog-post.html

135

BLEU LCS F-score CER ACC # correct sentence # error word

speak.tatar 0.869 0.953 0.049 0.952 67 1,747
TTT 0.879 0.956 0.054 0.946 121 1,505
Aylandirow 0.971 0.994 0.009 0.991 362 526

tt-based 0.968 0.989 0.011 0.989 365 552
tt-ru hybrid 0.981 0.994 0.007 0.993 437 332

Table 1: The experimental results with 700 sentences (5,261 words without duplication). CER and ACC are
complementary in probability (i.e., ACC = 1−CER). Note that the transliteration result is uniquely determined
as the proposed method is rule-based.

(“tt-based” henceforth). For the comparison with
the existing transliteration tools, we computed the
scores of speak.tatar, TTT, and Aylandirow9.

6 Results

As shown in Table 1, the experimental results
demonstrate that our tt-ru hybrid marked the best
score in all the metrics. CER is the lowest, mean-
ing that the total number of mistakes at a charac-
ter level is the fewest. The difference is evident
between monolingual transliterators (in particular,
speak.tatar and TTT) that do not support Russian
loanwords and bilingual transliterators (Aylandirow
and tt-ru hybrid). Between the two groups, there
is more or less a difference by 0.1 points in their
BLEU scores. Furthermore, our monolingual tt-
based marked higher scores than the other two
monolingual transliterators. A possible explana-
tion to this gap will be given in the next section.

Compared to Aylandirow, an extensive rule-
based transliterator, CER (i.e., ACC also) in tt-
ru hybrid was slightly better by 0.002 points. In
LCS F-Score, in contrast, Aylandirow has the same
score as our tt-ru hybrid. This fact means that Ay-
landirow returned transliterations somewhat closer
to the gold data than our tt-ru hybrid.

Note that the perfection is not necessarily the
ultimate goal of this transliteration. As described
in detail in Section 7, there may be several ways of
spelling in actual language use, particularly of the
spelling of proper nouns. This variance in spelling
foreign words is common among languages.

7 Analysis

The results illustrated that the bilingual translit-
erators generally have higher accuracy than the

9Although we mentioned FinTat in Section 2, we excluded
it from the evaluation because it is based on a spelling system
slightly different from 2013Latin.

monolingual transliterators. However, it needs to
be examined that tt-based also gained higher scores
than the other monolingual ones, even though it
does not support Russian loanwords. This is due
to the fact that their transliteration rule sometimes
does not follow the rules of 2013Latin. For exam-
ple, tәnky�t~ “criticism” is transliterated as tän-
qit’ (with a hamza at the end) by the TTT, where
it should be transliterated as tänqit according to
2013Latin. In fact, due to the de-facto absence
of any institution that regulates the Latin orthog-
raphy, different varieties in spelling styles can be
observed on the Internet. For this reason, the seem-
ingly high scores in tt-based are merely a product
of the orthographical consistency.

Keeping this in mind, the improvement in the
scores between tt-based and tt-ru hybrid indicates
that the bilingual transliteration method designed
to be adaptive to Russian loanwords successfully
predicted the language and transcribed them.

Table 3 illustrates the number of error words cat-
egorized with respect to the transliteration rules (tt-
based and tt-ru hybrid). We can see from the table
that, among the error words observed in tt-based
(V (T)), 336 words were correctly transliterated by
tt-ru hybrid.

Examples of successful transliteration in our tt-
ru hybrid are zakon and sovet shown in the upper
example of Table 2. The tt-based transliteration
converted them as zaqon and sowet, while tt-ru
hybrid correctly returned zakon and sovet. This
shows that tt-ru hybrid successfully identified the
language, since they are Russian loanwords.

However, tt-ru hybrid wrongly transliterated 116
words that were correct in tt-based; for example,
in the lower example of Table 2, the underlined
transliteration soklanıp in tt-ru hybrid is a translit-
eration error, where the correct word form is so-
qlanıp. Because the language classifier identified

136

Source RF Zakon qygaruqylar sovety prezidiumy utyryxynda katnaxty.
tt-based RF Zaqon çığaruçılar sowetı prezidiumı utırışında qatnaştı.
tt-ru hybrid RF Zakon çığaruçılar sovetı prezidiumı utırışında qatnaştı.

Source Һәr �lqy tuktap, anyң hozurlygyna soklanyp kitә.
tt-based Här yulçı tuqtap, anıñ xozurlığına soqlanıp kitä.
tt-ru hybrid Här yulçı tuqtap, anıñ xozurlığına soklanıp kitä.

Table 2: Examples of successful and unsuccessful transliterations in tt-ru hybrid based on subword tokenization.
The underlined words are error words (Russian loanwords). The upper sentence is an example where tt-ru hybrid
can correctly transliterate the underlined words while tt-based cannot. The lower example is, on the other hand,
tt-ru hybrid mistakenly transliterates the underlined word that is correctly transliterated by tt-based.

set (total 5,261 words) # words
V (T) 552
V (H) 332
V (T) ∩ V (H) 216
V (T) \ V (H) 336
V (H) \ V (T) 116

Table 3: Comparison of the number of error words
(without duplication) between the monolingual tt-
based transliteration and our proposed tt-ru hybrid
transliteration. V (T) is the set of error words observed
in tt-based, V (H) in tt-ru hybrid, V (T)∩V (H) in both
tt-based and tt-ru hybrid, V (T) \ V (H) is the set of er-
ror words observed only in tt-based, and V (H) \ V (T)
only in tt-ru hybrid.

the first subword as Russian, the Russian translit-
eration rule was applied, whereas in fact it is not a
Russian loanword.

As for the high LCS F-score in Aylandirow
(0.994), it implies that Aylandirow is good at cor-
rectly transcribing frequent words including Rus-
sian loanwords. Because Aylandirow is strictly
rule-based without automatic language detection,
it can easily suffer from the rule coverage problem;
for example, the word taksi (taksi, a Russian loan-
word) was mistakenly transliterated as taqsi.

As the comparison of performance with respect
to Russian CS words in Table 4 shows, tt-ru hy-
brid demonstrated higher accuracy in transliterat-
ing words with Russian morphemes10. In particular,
the tt-ru hybrid’s performance adaptive to Russian
morphemes is clearly visible in the accuracies of
transcribing words containing Russian, where tt-ru
hybrid scored 78.1% and tt-based 46.7%.

Considering that Russian CS in Tatar may arbi-
trarily occur, our proposed method with automatic

10In this respect, speak.tatar scores the best for Russian
words. This is merely because its transliteration rules are
designed to work well for Russian words, and, in contrast, its
performance to Tatar words is poor as shown in Table 1.

ru words CS words

accuracy # accuracy

speak.tatar 805 0.798 455 0.752
TTT 258 0.256 175 0.283
Aylandirow 738 0.731 461 0.762

tt-based 471 0.467 294 0.486
tt-ru hybrid 788 0.781 464 0.767

Table 4: A comparison of performance in Russian CS
words. The left column (ru words) demonstrates the
number of correctly transcribed words that contain Rus-
sian and its accuracy that is given by dividing by the
total Russian words (1,009 with duplication). The right
column (CS words) contains the number of correct tran-
scriptions out of 605 words (with duplication) and its
accuracy with respect to intra-word CS words.

language detection is expected to show a stable per-
formance to any Russian words; in contrast, rule-
based systems such as Aylandirow are less flexible
to unknown Russian words, which, in effect, exist
infinitely in natural languages as hapax legomena.

8 Conclusion

In this paper, we proposed a new transliteration
system that converts Cyrillic Tatar to Latin Tatar.
Taking into account the facts that different translit-
eration rules are applied to Russian loanwords and
that intra-word CS is frequently observed, our pro-
posed method involved language identification for
each subword. Even though Tatar resources avail-
able at hand for training were limited, the results
were significantly better than existing translitera-
tion tools. The simple architecture of language
detection employed in this approach is language-
agnostic does not need detailed analyses such as
syntactic parsing and POS tagging, our method
is applicable to other low-resource languages that
have intra-word CS.

137

References
Elena Alvarez-Mellado. 2020. An annotated corpus

of emerging anglicisms in Spanish newspaper head-
lines. In Proceedings of the The 4th Workshop
on Computational Approaches to Code Switching,
pages 1–8, Marseille, France. European Language
Resources Association.

Tamali Banerjee and Pushpak Bhattacharyya. 2018.
Meaningless yet meaningful: Morphology grounded
subword-level NMT. In Proceedings of the Sec-
ond Workshop on Subword/Character LEvel Models,
pages 55–60, New Orleans. Association for Compu-
tational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jeremy Bradley. 2014. Tatar transcription tool. Avail-
able at: https://www.univie.ac.at/maridict/site-2014
[retrieved 28 March 2021].

Nancy Chen, Rafael E. Banchs, Min Zhang, Xiangyu
Duan, and Haizhou Li. 2018. Report of NEWS 2018
named entity transliteration shared task. In Proceed-
ings of the Seventh Named Entities Workshop, pages
55–73, Melbourne, Australia. Association for Com-
putational Linguistics.

Daniel Claeser, Samantha Kent, and Dennis Felske.
2018. Multilingual named entity recognition on
Spanish-English code-switched tweets using sup-
port vector machines. In Proceedings of the Third
Workshop on Computational Approaches to Lin-
guistic Code-Switching, pages 132–137, Melbourne,
Australia. Association for Computational Linguis-
tics.

Mathias Creutz and Krista Lagus. 2006. Morfessor in
the morpho challenge. In PASCAL Challenge Work-
shop on Unsupervised segmentation of words into
morphemes.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig, editors. 2021. Ethnologue, 24th edi-
tion. SIL International, Dallas, Texas. Available
at: http://www.ethnologue.com [retrieved 12 March
2021].

Injy Hamed, Moritz Zhu, Mohamed Elmahdy, Slim
Abdennadher, and Ngoc Thang Vu. 2019. Code-
switching language modeling with bilingual word
embeddings: A case study for egyptian arabic-
english.

Guzel A. Izmailova, Irina V. Korovina, and Elzara V.
Gafiyatova. 2018. A study on tatar–russian code
switching (based on instagram posts). The Journal
of Social Sciences Research, Special Issue. 1:187–
191.

N. Jose, B. R. Chakravarthi, S. Suryawanshi, E. Sherly,
and J. P. McCrae. 2020. A survey of current datasets

for code-switching research. In 2020 6th Inter-
national Conference on Advanced Computing and
Communication Systems (ICACCS), pages 136–141.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Dinar Korbanov. n.d. Aylandirow. Available
at: http://aylandirow.tmf.org.ru [retrieved 29 March
2021].

Liang Lu, Lingpeng Kong, Chris Dyer, Noah A. Smith,
and Steve Renals. 2016. Segmental recurrent neu-
ral networks for end-to-end speech recognition. In
Proceedings of Interspeech 2016, Interspeech, pages
385–389. International Speech Communication As-
sociation.

Manuel Mager, Özlem Çetinoglu, and Katharina Kann.
2019. Subword-level language identification for
intra-word code-switching. CoRR, abs/1904.01989.

National Council of the Republic of Tatarstan. 1999.
O vosstanovlenii tatarskogo alfavita na
osnove latinsko� grafiki [on the restoration
of the tatar alphabet based on the latin script]. Avail-
able at: http://docs.cntd.ru/document/917005056
[retrieved 28 March 2021].

National Council of the Republic of Tatarstan.
2013. Ob ispol~zovanii tatarskogo �zyka
kak gosudarstvennogo �zyka Respubliki
Tatarstan [on the use of the tatar language as the
national language of the republic of tatarstan]. Avail-
able at: http://docs.cntd.ru/document/463300868
[retrieved April 26, 2021].

Dong Nguyen and Leonie Cornips. 2016. Automatic
detection of intra-word code-switching. In Proceed-
ings of the 14th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology, pages 82–86, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Mansur R. Saykhunov, R. R. Khusainov, T. I. Ibragi-
mov, J. Luutonen, I. F. Salimzyanov, G. Y. Shaydul-
lina, and A. M. Khusainova. 2019. Corpus of writ-
ten tatar. Available at: http://www.corpus.tatar [re-
trieved 28 March 2021].

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Pranaydeep Singh and Els Lefever. 2020. Sentiment
analysis for Hinglish code-mixed tweets by means

138

of cross-lingual word embeddings. In Proceed-
ings of the The 4th Workshop on Computational Ap-
proaches to Code Switching, pages 45–51, Marseille,
France. European Language Resources Association.

Abhishek Srivastava, Kalika Bali, and Monojit Choud-
hury. 2020. Understanding script-mixing: A case
study of Hindi-English bilingual Twitter users. In
Proceedings of the The 4th Workshop on Computa-
tional Approaches to Code Switching, pages 36–44,
Marseille, France. European Language Resources
Association.

Aynur Akhatovich Timerkhanov and Gul-
shat Rafailevna Safiullina. 2019. Tatarça-inglizçä,
inglizçä-tatarça süzlek: Tatar-English, English-
Tatar dictionary. G. Ibragimov Institute of
Language, Literature and Art, Kazan.

Boris Yeltsin. 2020. O �zykah narodov
Rossi�sko� Federacii [on the languages of
nations in the russian federation]. First pub-
lished in 1991, last amended in 2020. Available at:
http://pravo.gov.ru.

Zeynep Yirmibeşoğlu and Gülşen Eryiğit. 2018. De-
tecting code-switching between Turkish-English lan-
guage pair. In Proceedings of the 2018 EMNLP
Workshop W-NUT: The 4th Workshop on Noisy User-
generated Text, pages 110–115, Brussels, Belgium.
Association for Computational Linguistics.

139

A Appendix

Cyrillic Latin (Tatar) Latin (Russian)
a a a
b b b
v w v
g g, ğ g
d d d
e e, ye, yı e
� NA yo
� j j
z z z
i i i
� y y
k k, q k
l l l
m m m
n n n
o o o
p p p
s s s
t t t

Cyrillic Latin (Tatar) Latin (Russian)
u u, uw, w u
f f f
h x x
c NA ts
q ç ç
x ş ş
w NA şç
� — —
y ı ı
~ — —
� e, ’ e
� yu, yü, yuw, yüw yu
� ya, yä ya
ә ä NA
ө ö NA
ү ü, üw, w NA
җ c NA
ң ñ NA
һ h NA

Table 5: Tatar’s Cyrillic–Latin correspondence for Tatar- and Russian-origin words. NA (not applicable) means
that the letter does not appear in the language. An em-dash means that the letter is ignored in Latin transcription.

original RF Prezidenty Vladimir Putin Rossi� mөselmannaryn izge Ramazan
gold (Latin) RF Prezidentı Vladimir Putin Rossiyä möselmannarın izge Ramazan

speak.tatar RF Prezidentı Vladimir Putin Rossiyä möselmannarın izge Ramazan
TTT RF Prezidentı Wlädimir Pütin Rössiyä möselmannarın izge Ramazan
Aylandirow RF Prezidentı Vladimir Putin Rossiä möselmännarın izge Ramazan

tt-based RF Prezidentı Wladimir Putin Rossiyä möselmannarın izge Ramazan
tt-ru hybrid RF Prezidentı Vladimir Putin Rossiyä möselmannarın izge Ramazan

Table 6: An example of comparison of transliterations. The sequence on the top is the original corpus sentence
in Cyrillic, below which is the Latin counterpart manually transcribed. The three sentences in the middle row are
transliterations by the previous tools. The first sentence in the bottom row is the monolingual tt-based translitera-
tion, and the second is transcribed by our proposed method.

140

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, page 141
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_019

Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots

Samson Tan§\ Shafiq Joty§‡
§Salesforce Research Asia \National University of Singapore ‡Nanyang Technological University

{samson.tan,sjoty}@salesforce.com

Abstract
Multilingual models have demonstrated im-
pressive cross-lingual transfer performance.
However, test sets like XNLI are monolingual
at the example level. In multilingual commu-
nities, it is common for polyglots to code-mix
when conversing with each other. Inspired by
this phenomenon, we present two strong black-
box adversarial attacks (one word-level, one
phrase-level) for multilingual models that push
their ability to handle code-mixed sentences
to the limit. The former (POLYGLOSS) uses
bilingual dictionaries to propose perturbations
and translations of the clean example for sense
disambiguation. The latter (BUMBLEBEE) di-
rectly aligns the clean example with its trans-
lations before extracting phrases as perturba-
tions. BUMBLEBEE has a success rate of
89.75% against XLM-Rlarge, bringing its av-
erage accuracy of 79.85 down to 8.18 on
XNLI. Finally, we propose an efficient adver-
sarial training scheme, Code-mixed Adversar-
ial Training (CAT), that trains in the same num-
ber of steps as the original model. Even af-
ter controlling for the extra training data intro-
duced, CAT improves model accuracy when
the model is prevented from relying on lexical
overlaps (+3.45), with a negligible drop (-0.15
points) in performance on the original XNLI
test set. t-SNE visualizations reveal that CAT
improves a model’s language agnosticity.

141

https://doi.org/10.26615/978-954-452-056-4_019

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 142–153
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_020

Are Multilingual Models Effective in Code-Switching?

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu, Zhaojiang Lin,
Andrea Madotto, Pascale Fung

Center for Artificial Intelligence Research (CAiRE)
The Hong Kong University of Science and Technology

giwinata@connect.ust.hk

Abstract

Multilingual language models have shown de-
cent performance in multilingual and cross-
lingual natural language understanding tasks.
However, the power of these multilingual mod-
els in code-switching tasks has not been fully
explored. In this paper, we study the effective-
ness of multilingual language models to under-
stand their capability and adaptability to the
mixed-language setting by considering the in-
ference speed, performance, and number of pa-
rameters to measure their practicality. We con-
duct experiments in three language pairs on
named entity recognition and part-of-speech
tagging and compare them with existing meth-
ods, such as using bilingual embeddings and
multilingual meta-embeddings. Our findings
suggest that pre-trained multilingual models
do not necessarily guarantee high-quality rep-
resentations on code-switching, while using
meta-embeddings achieves similar results with
significantly fewer parameters.

1 Introduction

Learning representation for code-switching has be-
come a crucial area of research to support a greater
variety of language speakers in natural language
processing (NLP) applications, such as dialogue
system and natural language understanding (NLU).
Code-switching is a phenomenon in which a per-
son speaks more than one language in a conver-
sation, and its usage is prevalent in multilingual
communities. Yet, despite the enormous number of
studies in multilingual NLP, only very few focus on
code-switching. Recently, contextualized language
models, such as mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) have achieved state-
of-the-art results on monolingual and cross-lingual
tasks in NLU benchmarks (Wang et al., 2018a; Hu
et al., 2020; Wilie et al., 2020; Liu et al., 2020; Lin
et al., 2020). However, the effectiveness of these
multilingual language models on code-switching
tasks remains unknown.

Several approaches have been explored in
code-switching representation learning in NLU.
Character-level representations have been utilized
to address the out-of-vocabulary issue in code-
switched text (Winata et al., 2018c; Wang et al.,
2018b), while external handcrafted resources such
as gazetteers list are usually used to mitigate
the low-resource issue in code-switching (Aguilar
et al., 2017; Trivedi et al., 2018); however, this
approach is very limited because it relies on the
size of the dictionary and it is language-dependent.
In another line of research, meta-embeddings
have been used in code-switching by combin-
ing multiple word embeddings from different lan-
guages (Winata et al., 2019a,b). This method
shows the effectiveness of mixing word representa-
tions in closely related languages to form language-
agnostic representations, and is considered very
effective in Spanish-English code-switched named
entity recognition tasks, and significantly outper-
forming mBERT (Khanuja et al., 2020) with fewer
parameters.

While more advanced multilingual language
models (Conneau et al., 2020) than multilin-
gual BERT (Devlin et al., 2019) have been pro-
posed, their effectiveness is still unknown in code-
switching tasks. Thus, we investigate their effec-
tiveness in the code-switching domain and compare
them with the existing works. Here, we would like
to answer the following research question, “Which
models are effective in representing code-switching
text, and why?."

In this paper, we evaluate the representation
quality of monolingual and bilingual word embed-
dings, multilingual meta-embeddings, and multi-
lingual language models on five downstream tasks
on named entity recognition (NER) and part-of-
speech tagging (POS) in Hindi-English, Spanish-
English, and Modern Standard Arabic-Egyptian.
We study the effectiveness of each model by con-
sidering three criteria: performance, speed, and the

142

https://doi.org/10.26615/978-954-452-056-4_020

Figure 1: Model architectures for code-switching modeling: (a) model using word embeddings, (b) model us-
ing multilingual language model, (c) model using multilingual meta-embeddings (MME), and (d) model using
hierarchical meta-embeddings (HME).

number of parameters that are essential for practi-
cal applications. Here, we set up the experimental
setting to be as language-agnostic as possible; thus,
it does not include any handcrafted features.

Our findings suggest that multilingual pre-
trained language models, such as XLM-RBASE,
achieves similar or sometimes better results than
the hierarchical meta-embeddings (HME) (Winata
et al., 2019b) model on code-switching. On the
other hand, the meta-embeddings use word and
subword pre-trained embeddings that are trained
using significantly less data than mBERT and
XLM-RBASE and can achieve on par performance
to theirs. Thus, we conjecture that the masked lan-
guage model is not be the best training objective for
representing code-switching text. Interestingly, we
found that XLM-RLARGE can improve the perfor-
mance by a great margin, but with a substantial cost
in the training and inference time, with 13x more
parameters than HME-Ensemble for only around
a 2% improvement. The main contributions of our
work are as follows:

• We evaluate the performance of word embed-
dings, multilingual language models, and mul-
tilingual meta-embeddings on code-switched
NLU tasks in three language pairs, Hindi-
English (HIN-ENG), Spanish-English (SPA-
ENG), and Modern Standard Arabic-Egyptian
(MSA-EA), to measure their ability in repre-
senting code-switching text.

• We present a comprehensive study on the ef-
fectiveness of multilingual models on a vari-
ety of code-switched NLU tasks to analyze
the practicality of each model in terms of per-
formance, speed, and number of parameters.

• We further analyze the memory footprint re-

quired by each model over different sequence
lengths in a GPU. Thus, we are able to un-
derstand which model to choose in a practical
scenario.

2 Representation Models

In this section, we describe multilingual models
that we explore in the context of code-switching.
Figure 1 shows the architectures for a word em-
beddings model, a multilingual language model,
and the multilingual meta-embeddings (MME), and
HME models.

2.1 Word Embeddings
2.1.1 FastText
In general, code-switching text contains a primary
language the matrix language (ML)) as well as a
secondary language (the embedded language (EL)).
To represent code-switching text, a straightforward
idea is to train the model with the word embed-
dings of the ML and EL from FastText (Grave et al.,
2018). Code-switching text has many noisy tokens
and sometimes mixed words in the ML and EL that
produce a “new word”, which leads to a high num-
ber of out-of-vocabulary (OOV) tokens. To solve
this issue, we utilize subword-level embeddings
from FastText (Grave et al., 2018) to generate the
representations for these OOV tokens. We conduct
experiments on two variants of applying the word
embeddings to the code-switching tasks: FastText
(ML) and FastText (EL), which utilize the word
embeddings of ML and EL, respectively.

2.1.2 MUSE
To leverage the information from the embeddings
of both the ML and EL, we utilize MUSE (Lample
et al., 2018) to align the embeddings space of the
ML and EL so that we can inject the information

143

of the EL embeddings into the ML embeddings,
and vice versa. We perform alignment in two di-
rections: (1) We align the ML embeddings to the
vector space of the EL embeddings (denoted as
MUSE (ML → EL)); (2) We conduct the align-
ment in the opposite direction, which aligns the EL
embeddings to the vector space of the ML embed-
dings (denoted as MUSE (EL→ML)). After the
embeddings alignment, we train the model with the
aligned embeddings for the code-switching tasks.

2.2 Multilingual Pre-trained Models

Pre-trained on large-scale corpora across numer-
ous languages, multilingual language models (De-
vlin et al., 2019; Conneau et al., 2020) possess the
ability to produce aligned multilingual representa-
tions for semantically similar words and sentences,
which brings them advantages to cope with code-
mixed multilingual text.

2.2.1 Multilingual BERT
Multilingual BERT (mBERT) (Devlin et al., 2019),
a multilingual version of the BERT model, is pre-
trained on Wikipedia text across 104 languages
with a model size of 110M parameters. It has been
shown to possess a surprising multilingual abil-
ity and to outperform existing strong models on
multiple zero-shot cross-lingual tasks (Pires et al.,
2019; Wu and Dredze, 2019). Given its strengths
in handling multilingual text, we leverage it for
code-switching tasks.

2.2.2 XLM-RoBERTa
XLM-RoBERTa (XLM-R) (Conneau et al., 2020)
is a multilingual language model that is pre-trained
on 100 languages using more than two terabytes of
filtered CommonCrawl data. Thanks to the large-
scale training corpora and enormous model size
(XLM-RBASE and XLM-RLARGE have 270M and
550M parameters, respectively), XLM-R is shown
to have a better multilingual ability than mBERT,
and it can significantly outperform mBERT on a
variety of cross-lingual benchmarks. Therefore, we
also investigate the effectiveness of XLM-R for
code-switching tasks.

2.2.3 Char2Subword
Char2Subword introduces a character-to-subword
module to handle rare and unseen spellings by
training an embedding lookup table (Aguilar et al.,
2020b). This approach leverages transfer learn-
ing from an existing pre-trained language model,

such as mBERT, and resumes the pre-training of
the upper layers of the model. The method aims
to increase the robustness of the model to various
typography styles.

2.3 Multilingual Meta-Embeddings

The MME model (Winata et al., 2019a) is formed
by combining multiple word embeddings from dif-
ferent languages. Let’s define w to be a sequence of
words with n elements, where w = [w1, . . . , wn].
First, a list of word-level embedding layers is used
E

(w)
i to map words w into embeddings xi. Then,

the embeddings are combined using one out of the
following three methods: concat, linear, and self-
attention. We briefly discuss each method below.

Concat This method concatenates word embed-
dings by merging the dimensions of word represen-
tations into higher-dimensional embeddings. This
is one of the simplest methods to join all embed-
dings without losing information, but it requires a
larger activation memory than the linear method.

xCONCAT
i = [xi,1, ...,xi,n]. (1)

Linear This method sums all word embeddings
into single word embeddings with equal weight
without considering each embedding’s importance.
The method may cause a loss of information and
may generate noisy representations. Also, though
it is very efficient, it requires an additional layer to
project all embeddings into a single-dimensional
space if one embedding is larger than another.

x′
i,j = Wj · xi,j ,

xLINEAR
i =

n∑

j=0

x′
i,j .

Self-Attention This method generates a meta-
representation by taking the vector representation
from multiple monolingual pre-trained embeddings
in different subunits, such as word and subword.
It applies a projection matrix Wj to transform the
dimensions from the original space xi,j ∈ Rd to
a new shared space x′

i,j ∈ Rd′ . Then, it calcu-
lates attention weights αi,j ∈ Rd′ with a non-linear
scoring function φ (e.g., tanh) to take important
information from each individual embedding x′

i,j .
Then, MME is calculated by taking the weighted

144

sum of the projected embeddings x′
i,j :

x′
i,j = Wj · xi,j , (2)

αi,j =
exp(φ(x′

i,j))∑n
k=1 exp(φ(x

′
i,k))

, (3)

ui =
n∑

j=1

αi,jx
′
i,j . (4)

2.4 Hierarchical Meta-Embedings
The HME method combines word, subword, and
character representations to create a mixture of em-
beddings (Winata et al., 2019b). It generates multi-
lingual meta-embeddings of words and subwords,
and then, concatenates them with character-level
embeddings to generate final word representations.
HME combines the word-level, subword-level, and
character-level representations by concatenation,
and randomly initializes the character embeddings.
During the training, the character embeddings are
trainable, while all subword and word embeddings
remain fixed.

2.5 HME-Ensemble
The ensemble is a technique to improve the model’s
robustness from multiple predictions. In this case,
we train the HME model multiple times and take
the prediction of each model. Then, we compute
the final prediction by majority voting to achieve
a consensus. This method has shown to be very
effective in improving the robustness of an unseen
test set (Winata et al., 2019c). Interestingly, this
method is very simple to implement and can be
easily spawned in multiple machines, as in parallel
processes.

3 Experiments

In this section, we describe the details of the
datasets we use and how the models are trained.

3.1 Datasets
We evaluate our models on five downstream tasks in
the LinCE Benchmark (Aguilar et al., 2020a). We
choose three named entity recognition (NER) tasks,
Hindi-English (HIN-ENG) (Singh et al., 2018a),
Spanish-English (SPA-ENG) (Aguilar et al., 2018)
and Modern Standard Arabic (MSA-EA) (Aguilar
et al., 2018), and two part-of-speech (POS) tag-
ging tasks, Hindi-English (HIN-ENG) (Singh et al.,
2018b) and Spanish-English (SPA-ENG) (Soto
and Hirschberg, 2017). We apply Roman-to-
Devanagari transliteration on the Hindi-English

datasets since the multilingual models are trained
with data using that form. Table 1 shows the num-
ber of tokens of each language for each dataset.
We classify the language with more tokens as the
ML and the other as the EL. We replace user
hashtags and mentions with <USR>, emoji with
<EMOJI>, and URL with <URL> for models that
use word-embeddings, similar to Winata et al.
(2019a). We evaluate our model with the micro
F1 score for NER and accuracy for POS tagging,
following Aguilar et al. (2020a).

#L1 #L2 ML EL

NER

HIN-ENG 13,860 11,391 HIN ENG
SPA-ENG 163,824 402,923 ENG SPA
MSA-EA† - - MSA EA

POS

HIN-ENG 12,589 9,882 HIN ENG
SPA-ENG 178,135 92,517 SPA ENG

Table 1: Dataset statistics are taken from Aguilar et al.
(2020a). We define L1 and L2 as the languages found
in the dataset. For example, in HIN-ENG, L1 is HIN
and L2 is ENG. †We define MSA as ML and EA as
EL. #L1 represents the number of tokens in the first
language and #L2 represents the number of tokens in
the second language.

3.2 Experimental Setup

We describe our experimental details for each
model.

3.2.1 Scratch
We train transformer-based models without any pre-
training by following the mBERT model structure,
and the parameters are randomly initialized, includ-
ing the subword embeddings. We train transformer
models with four and six layers with a hidden size
of 768. This setting is important to measure the
effectiveness of pre-trained multilingual models.
We start the training with a learning rate of 1e-4
and an early stop of 10 epochs.

3.2.2 Word Embeddings
We use FastText embeddings (Grave et al., 2018;
Mikolov et al., 2018) to train our transformer mod-
els. The model consists of a 4-layer transformer
encoder with four heads and a hidden size of 200.
We train a transformer followed by a Conditional
Random Field (CRF) layer (Lafferty et al., 2001).

145

The model is trained by starting with a learning rate
of 0.1 with a batch size of 32 and an early stop of
10 epochs. We also train our model with only ML
and EL embeddings. We freeze all embeddings and
only keep the classifier trainable.

We leverage MUSE (Lample et al., 2018) to
align the embeddings space between the ML and
EL. MUSE mainly consists of two stages: adver-
sarial training and a refinement procedure. For
all alignment settings, we conduct the adversarial
training using the SGD optimizer with a starting
learning rate of 0.1, and then we perform the re-
finement procedure for five iterations using the Pro-
crustes solution and CSLS (Lample et al., 2018).
After the alignment, we train our model with the
aligned word embeddings (MUSE (ML→ EL) or
MUSE (EL→ML)) on the code-switching tasks.

3.2.3 Pre-trained Multilingual Models

We use pre-trained models from Huggingface. 1

On top of each model, we put a fully-connected
layer classifier. We train the model with a learn-
ing rate between [1e-5, 5e-5] with a decay of 0.1
and a batch size of 8. For large models, such as
XLM-RLARGE and XLM-MLMLARGE, we freeze
the embeddings layer to fit in a single GPU.

3.2.4 Multilingual Meta-Embeddings (MME)

We use pre-trained word embeddings to train our
MME. Table 2 shows the embeddings used for each
dataset. We freeze all embeddings and train a trans-
former classifier with the CRF. The transformer
classifier consists of a hidden size of 200, a head
of 4, and 4 layers. All models are trained with a
learning rate of 0.1, an early stop of 10 epochs, and
a batch size of 32. We follow the implementation
from the code repository. 2 Table 2 shows the list
of word embeddings used in MME.

3.2.5 Hierarchical Meta-Embeddings (HME)

We train our HME model using the same embed-
dings as MME and pre-trained subword embed-
dings from Heinzerling and Strube (2018). The
subword embeddings for each language pair are
shown in Table 3. We freeze all word embeddings
and subword embeddings, and keep the character
embeddings trainable.

1https://github.com/huggingface/transformers
2https://github.com/gentaiscool/meta-emb

Word Embeddings List

NER

HIN-ENG FastText: Hindi, English (Grave et al., 2018)
SPA-ENG FastText: Spanish, English, Catalan,

Portugese (Grave et al., 2018)
GLoVe: English-Twitter (Pennington et al., 2014)

MSA-EA FastText: Arabic, Egyptian (Grave et al., 2018)

POS

HIN-ENG FastText: Hindi, English (Grave et al., 2018)
SPA-ENG FastText: Spanish, English, Catalan,

Portugese (Grave et al., 2018)
GLoVe: English-Twitter (Pennington et al., 2014)

Table 2: Embeddings list for MME.

Subword Embeddings List

NER

HIN-ENG Hindi, English
SPA-ENG Spanish, English, Catalan, Portugese
MSA-EA Arabic, Egyptian

POS

HIN-ENG Hindi, English
SPA-ENG Spanish, English, Catalan, Portugese

Table 3: Subword embeddings list for HME.

3.3 Other Baselines

We compare the results with Char2subword and
mBERT (cased) from Aguilar et al. (2020b). We
also include the results of English BERT provided
by the organizer of the LinCE public benchmark
leaderboard (accessed on March 12nd, 2021). 3

4 Results and Discussions

4.1 LinCE Benchmark

We evaluate all the models on the LinCE bench-
mark, and the development set results are shown
in Table 4. As expected, models without any pre-
training (e.g., Scratch (4L)) perform significantly
worse than other pre-trained models. Both Fast-
Text and MME use pre-trained word embeddings,
but MME achieves a consistently higher F1 score
than FastText in both NER and POS tasks, demon-
strating the importance of the contextualized self-
attentive encoder. HME further improves on the F1
score of the MME models, suggesting that encod-
ing hierarchical information from sub-word level,
word level, and sentence level representations can
improve code-switching task performance. Com-
paring HME with contextualized pre-trained mul-

3https://ritual.uh.edu/lince

146

NER POS

HIN-ENG SPA-ENG MSA-EA HIN-ENG SPA-ENG

Method Avg Perf. Params F1 Params F1 Params F1 Params Acc Params Acc

Scratch (2L) 63.40 96M 46.51 96M 32.75 96M 60.14 96M 83.20 96M 94.39
Scratch (4L) 60.93 111M 47.01 111M 19.06 111M 60.24 111M 83.72 111M 94.64

Mono/Multilingual Word Embeddings

FastText (ML) 76.43 4M 63.58 18M 57.10 16M 78.42 4M 84.63 6M 98.41
FastText (EL) 76.71 4M 69.79 18M 58.34 16M 72.68 4M 84.40 6M 98.36
MUSE (ML→ EL) 76.54 4M 64.05 18M 58.00 16M 78.50 4M 83.82 6M 98.34
MUSE (EL→ML) 75.58 4M 64.86 18M 57.08 16M 73.95 4M 83.62 6M 98.38

Pre-Trained Multilingual Models

mBERT (uncased) 79.46 167M 68.08 167M 63.73 167M 78.61 167M 90.42 167M 96.48
mBERT (cased)‡ 79.97 177M 72.94 177M 62.66 177M 78.93 177M 87.86 177M 97.29
Char2Subword‡ 81.07 136M 74.91 136M 63.32 136M 80.45 136M 89.64 136M 97.03
XLM-RBASE 81.90 278M 76.85 278M 62.76 278M 81.24 278M 91.51 278M 97.12
XLM-RLARGE 84.39 565M 79.62 565M 67.18 565M 85.19 565M 92.78 565M 97.20
XLM-MLMLARGE 81.41 572M 73.91 572M 62.89 572M 82.72 572M 90.33 572M 97.19

Multilingual Meta-Embeddings

Concat 79.70 10M 70.76 86M 61.65 31M 79.33 8M 88.14 23M 98.61
Linear 79.60 10M 69.68 86M 61.74 31M 79.42 8M 88.58 23M 98.58
Attention (MME) 79.86 10M 71.69 86M 61.23 31M 79.41 8M 88.34 23M 98.65
HME 81.60 12M 73.98 92M 62.09 35M 81.26 12M 92.01 30M 98.66
HME-Ensemble 82.44 20M 76.16 103M 62.80 43M 81.67 20M 92.84 40M 98.74

Table 4: Results on the development set of the LinCE benchmark. ‡ The results are taken from Aguilar et al.
(2020b). The number of parameters of mBERT (cased) is calculated by approximation.

NER POS

Method Avg Params Avg Perf.↑ HIN-ENG SPA-ENG MSA-EA HIN-ENG SPA-ENG

English BERT (cased)† 108M 75.80 74.46 61.15 59.44 87.02 96.92
mBERT (cased)‡ 177M 77.08 72.57 64.05 65.39 86.30 97.07
HME 36M 77.64 73.78 63.06 66.14 88.55 96.66
Char2Subword‡ 136M 77.85 73.38 64.65 66.13 88.23 96.88
XLM-MLMLARGE 572M 78.40 74.49 64.16 67.22 89.10 97.04
XLM-RBASE 278M 78.75 75.72 64.95 65.13 91.00 96.96
HME-Ensemble 45M 79.17 75.97 65.11 68.71 89.30 96.78
XLM-RLARGE 565M 80.96 80.70 69.55 65.78 91.59 97.18

Table 5: Results on the test set of the LinCE benchmark.‡ The results are taken from Aguilar et al. (2020b). † The
result is taken from the LinCE leaderboard.

tilingual models such as mBERT and XLM-R, we
find that HME models are able to obtain compet-
itive F1 scores while maintaining a 10x smaller
model sizes. This result indicates that pre-trained
multilingual word embeddings can achieve a good
balance between performance and model size in
code-switching tasks. Table 5 shows the models’
performance in the LinCE test set. The results are
highly correlated to the results of the development
set. XLM-RLARGE achieves the best-averaged per-
formance, with a 13x larger model size compared
to the HME-Ensemble model.

4.2 Model Effectiveness and Efficiency

Performance vs. Model Size As shown in Fig-
ure 2, the Scratch models yield the worst average
score, at around 60.93 points. With the smallest
pre-trained embedding model, FastText, the model
performance can improve by around 10 points com-
pared to the Scratch models and they only have
10M parameters on average. On the other hand,
the MME models, which have 31.6M parameters
on average, achieve similar results to the mBERT
models, with around 170M parameters. Interest-
ingly, adding subwords and character embeddings
to MME, such as in the HME models, further im-

147

10M 31.6M 100M 316.2M 1B
#Parameter (log scaled)

60

65

70

75

80

85
Av

g.
 S

co
re

 (%
)

MUSE
(ML EL)

Scratch (4L)

MUSE
(EL ML)

XLM-R
base

XLM-MLM
large

Scratch (2L)

XLM-R
large

mBERT
(cased)

HME

mBERT
(uncased)

HME
Ensemble

Char2Subword

MME

31.6M 100M 316.2M 1B
#Parameter (log scaled)

74

75

76

77

78

79

80

81

Av
g.

 S
co

re
 (%

)

XLM-R
large

mBERT

HME Char2Subword

XLM-R
base

HME
Ensemble

XLM-MLM
large

English BERT
(cased)

Figure 2: Validation set (left) and test set (right) evaluation performance (y-axis) and parameter (x-axis) of different
models on LinCE benchmark.

proves the performance of the MME models and
achieves a 81.60 average score, similar to that of
the XLM-RBASE and XLM-MLMLARGE models,
but with less than one-fifth the number of param-
eters, at around 42.25M. The Ensemble method
adds further performance improvement of around
1% with an additional 2.5M parameters compared
to the non-Ensemble counterparts.

Inference Time To compare the speed of differ-
ent models, we use generated dummy data with
various sequence lengths, [16, 32, 64, 128, 256,
512, 1024, 2048, 4096]. We measure each model’s
inference time and collect the statistics of each
model at one particular sequence length by run-
ning the model 100 times. The experiment is per-
formed on a single NVIDIA GTX1080Ti GPU. We
do not include the pre-processing time in our analy-
sis. Still, it is clear that the pre-processing time for
meta-embeddings models is longer than for other
models as pre-processing requires a tokenization
step to be conducted for the input multiple times
with different tokenizers. The sequence lengths are
counted based on the input tokens of each model.
We use words for the MME and HME models, and
subwords for other models.

The results of the inference speed test are shown
in Figure 3. Although all pre-trained contextualized
language models yield a very high validation score,
these models are also the slowest in terms of infer-
ence time. For shorter sequences, the HME model
performs as fast as the mBERT and XLM-RBASE
models, but it can retain the speed as the sequence
length increases because of the smaller model di-
mension in every layer. The FastText, MME, and
Scratch models yield a high throughput in short-
sequence settings by processing more than 150

16 32 64 128 256 512 1024 2048 4096
Sequence length (log scaled)

0

50

100

150

200

250

Av
g.

 S
pe

ed
 (s

am
pl

e/
se

co
nd

)

Attention (MME)
Concat
HME
Linear
mBERT (Cased)
FastText

Scratch (2L)
Scratch (4L)
XLM-MLM large
XLM-R base
XLM-R large

Figure 3: Speed-to-sequence length comparison of dif-
ferent models.

samples per second. For longer sequences, the
same behavior occurs, with the throughput of the
Scratch models reducing as the sequence length
increases, even becoming lower than that of the
HME model when the sequence length is greater
than or equal to 256. Interestingly, for the FastText,
MME, and HME models, the throughput remains
steady when the sequence length is less than 1024,
and it starts to decrease afterwards.

Memory Footprint We record the memory foot-
print over different sequence lengths, and use the
same setting for the FastText, MME, and HME
models as in the inference time analysis. We record
the size of each model on the GPU and the size of
the activation after performing one forward oper-
ation to a single sample with a certain sequence
length. The result of the memory footprint analy-
sis for a sequence length of 512 is shown in Table
6. Based on the results, we can see that meta-
embedding models use a significantly smaller mem-
ory footprint to store the model and activation mem-
ory. For instance, the memory footprint of the HME

148

model is less than that of the Scratch (4L) model,
which has only four transformer encoder layers, a
model dimension of 768 and a feed-forward dimen-
sion of 3,072. On the other hand, large pre-trained
language models, such as XLM-MLMLARGE and
XLM-RLARGE, use a much larger memory for stor-
ing the activation memory compared to all other
models. The complete results of the memory foot-
print analysis are shown in Appendix A.

Model Activation (MB)

FastText 79.0
Concat 85.3
Linear 80.8
Attention (MME) 88.0
HME 154.8
Scratch (2L) 133.0
Scratch (4L) 264.0
mBERT 597.0
XLM-RBASE 597.0
XLM-RLARGE 1541.0
XLM-MLMLARGE 1158.0

Table 6: GPU memory consumption of different mod-
els with input size of 512.

5 Related Work

Transfer Learning on Code-Switching Previ-
ous works on code-switching have mostly focused
on combining pre-trained word embeddings with
trainable character embeddings to represent noisy
mixed-language text (Trivedi et al., 2018; Wang
et al., 2018b; Winata et al., 2018c). Winata et al.
(2018a) presented a multi-task training framework
to leverage part-of-speech information in a lan-
guage model. Later, they introduced the MME in
the code-switching domain by combining multiple
word embeddings from different languages (Winata
et al., 2019a). MME has since also been applied
to Indian languages (Priyadharshini et al., 2020;
Dowlagar and Mamidi, 2021).

Meta-embeddings have been previously ex-
plored in various monolingual NLP tasks (Yin
and Schütze, 2016; Muromägi et al., 2017; Bol-
legala et al., 2018; Coates and Bollegala, 2018;
Kiela et al., 2018). Winata et al. (2019b) intro-
duced hierarchical meta-embeddings by leverag-
ing subwords and characters to improve the code-
switching text representation. Pratapa et al. (2018b)
propose to train skip-gram embeddings from syn-
thetic code-switched data generated by Pratapa

et al. (2018a). This improves syntactic and se-
mantic code-switching tasks. Winata et al. (2018b);
Lee et al. (2019); Winata et al. (2019d); Samanta
et al. (2019), and Gupta et al. (2020) proposed
a generative-based model for augmenting code-
switching data from parallel data. Recently,
Aguilar et al. (2020b) proposed the Char2Subword
model, which builds representations from charac-
ters out of the subword vocabulary, and they used
the module to replace subword embeddings that
are robust to misspellings and inflection that are
mainly found in a social media text. Khanuja et al.
(2020) explored fine-tuning techniques to improve
mBERT for code-switching tasks, while Winata
et al. (2020) introduced a meta-learning-based
model to leverage monolingual data effectively in
code-switching speech and language models.

Bilingual Embeddings In another line of works,
bilingual embeddings have been introduced
to represent code-switching sentences, such
as in bilingual correlation-based embeddings
(BiCCA) (Faruqui and Dyer, 2014), the bilin-
gual compositional model (BiCVM) (Hermann and
Blunsom, 2014), BiSkip (Luong et al., 2015), RC-
SLS (Joulin et al., 2018), and MUSE (Lample et al.,
2017, 2018), to align words in L1 to the correspond-
ing words in L2, and vice versa.

6 Conclusion

In this paper, we study multilingual language mod-
els’ effectiveness so as to understand their capa-
bility and adaptability to the mixed-language set-
ting. We conduct experiments on named entity
recognition and part-of-speech tagging on various
language pairs. We find that a pre-trained multi-
lingual model does not necessarily guarantee high-
quality representations on code-switching, while
the hierarchical meta-embeddings (HME) model
achieve similar results to mBERT and XLM-RBASE
but with significantly fewer parameters. Interest-
ingly, we find that XLM-RLARGE has better perfor-
mance by a great margin, but with a substantial
cost in the training and inference time, using 13x
more parameters than HME-Ensemble for only a
2% improvement.

Acknowledgments

This work has been partially funded by
ITF/319/16FP and MRP/055/18 of the Inno-
vation Technology Commission, the Hong Kong

149

SAR Government, and School of Engineering
Ph.D. Fellowship Award, the Hong Kong Uni-
versity of Science and Technology, and RDC
1718050-0 of EMOS.AI.

References
Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona

Diab, Julia Hirschberg, and Thamar Solorio. 2018.
Named entity recognition on code-switched data:
Overview of the calcs 2018 shared task. In Proceed-
ings of the Third Workshop on Computational Ap-
proaches to Linguistic Code-Switching, pages 138–
147.

Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.
2020a. Lince: A centralized benchmark for linguis-
tic code-switching evaluation. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 1803–1813.

Gustavo Aguilar, Suraj Maharjan, Adrian Pastor López-
Monroy, and Thamar Solorio. 2017. A multi-task ap-
proach for named entity recognition in social media
data. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 148–153.

Gustavo Aguilar, Bryan McCann, Tong Niu, Nazneen
Rajani, Nitish Keskar, and Thamar Solorio. 2020b.
Char2subword: Extending the subword embed-
ding space from pre-trained models using ro-
bust character compositionality. arXiv preprint
arXiv:2010.12730.

Danushka Bollegala, Kohei Hayashi, and Ken-Ichi
Kawarabayashi. 2018. Think globally, embed lo-
cally: locally linear meta-embedding of words. In
Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, pages 3970–3976.
AAAI Press.

Joshua Coates and Danushka Bollegala. 2018. Frus-
tratingly easy meta-embedding–computing meta-
embeddings by averaging source word embeddings.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 194–198.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Suman Dowlagar and Radhika Mamidi. 2021. Cm-
saone@ dravidian-codemix-fire2020: A meta em-
bedding and transformer model for code-mixed sen-
timent analysis on social media text. arXiv preprint
arXiv:2101.09004.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 462–471.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 2267–2280.

Benjamin Heinzerling and Michael Strube. 2018.
Bpemb: Tokenization-free pre-trained subword em-
beddings in 275 languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC-2018).

Karl Moritz Hermann and Phil Blunsom. 2014. Mul-
tilingual models for compositional distributed se-
mantics. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 58–68, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine
Learning, pages 4411–4421. PMLR.

Armand Joulin, Piotr Bojanowski, Tomáš Mikolov,
Hervé Jégou, and Édouard Grave. 2018. Loss in
translation: Learning bilingual word mapping with a
retrieval criterion. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2979–2984.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. Gluecos: An evaluation benchmark for code-
switched nlp. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3575–3585.

150

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018. Dynamic meta-embeddings for improved sen-
tence representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1466–1477.

John D Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282–289.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Grandee Lee, Xianghu Yue, and Haizhou Li. 2019.
Linguistically motivated parallel data augmentation
for code-switch language modeling. In INTER-
SPEECH, pages 3730–3734.

Zhaojiang Lin, Zihan Liu, Genta Indra Winata, Samuel
Cahyawijaya, Andrea Madotto, Yejin Bang, Etsuko
Ishii, and Pascale Fung. 2020. Xpersona: Eval-
uating multilingual personalized chatbot. arXiv
preprint arXiv:2003.07568.

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng
Xu, and Pascale Fung. 2020. Attention-informed
mixed-language training for zero-shot cross-lingual
task-oriented dialogue systems. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8433–8440.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for Natural
Language Processing, pages 151–159, Denver, Col-
orado. Association for Computational Linguistics.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Avo Muromägi, Kairit Sirts, and Sven Laur. 2017. Lin-
ear ensembles of word embedding models. In Pro-
ceedings of the 21st Nordic Conference on Compu-
tational Linguistics, pages 96–104.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4996–5001.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018a. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1543–1553.

Adithya Pratapa, Monojit Choudhury, and Sunayana
Sitaram. 2018b. Word embeddings for code-mixed
language processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3067–3072, Brussels, Bel-
gium. Association for Computational Linguistics.

Ruba Priyadharshini, Bharathi Raja Chakravarthi,
Mani Vegupatti, and John P McCrae. 2020. Named
entity recognition for code-mixed indian corpus us-
ing meta embedding. In 2020 6th International Con-
ference on Advanced Computing and Communica-
tion Systems (ICACCS), pages 68–72. IEEE.

Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti. 2019. A
deep generative model for code-switched text. arXiv
preprint arXiv:1906.08972.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018a. Language identification and
named entity recognition in hinglish code mixed
tweets. In Proceedings of ACL 2018, Student Re-
search Workshop, pages 52–58.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018b. A twitter corpus for hindi-english
code mixed pos tagging. In Proceedings of the Sixth
International Workshop on Natural Language Pro-
cessing for Social Media, pages 12–17.

Victor Soto and Julia Hirschberg. 2017. Crowdsourc-
ing universal part-of-speech tags for code-switching.
Proc. Interspeech 2017, pages 77–81.

Shashwat Trivedi, Harsh Rangwani, and Anil Kumar
Singh. 2018. Iit (bhu) submission for the acl
shared task on named entity recognition on code-
switched data. In Proceedings of the Third Work-
shop on Computational Approaches to Linguistic
Code-Switching, pages 148–153.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018a.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

Changhan Wang, Kyunghyun Cho, and Douwe Kiela.
2018b. Code-switched named entity recognition
with embedding attention. In Proceedings of the

151

Third Workshop on Computational Approaches to
Linguistic Code-Switching, pages 154–158.

Bryan Wilie, Karissa Vincentio, Genta Indra Winata,
Samuel Cahyawijaya, Xiaohong Li, Zhi Yuan Lim,
Sidik Soleman, Rahmad Mahendra, Pascale Fung,
Syafri Bahar, et al. 2020. Indonlu: Benchmark and
resources for evaluating indonesian natural language
understanding. In Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 843–857.

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang
Lin, Zihan Liu, Peng Xu, and Pascale Fung. 2020.
Meta-transfer learning for code-switched speech
recognition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3770–3776.

Genta Indra Winata, Zhaojiang Lin, and Pascale Fung.
2019a. Learning multilingual meta-embeddings for
code-switching named entity recognition. In Pro-
ceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 181–
186.

Genta Indra Winata, Zhaojiang Lin, Jamin Shin, Zihan
Liu, and Pascale Fung. 2019b. Hierarchical meta-
embeddings for code-switching named entity recog-
nition. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3532–3538.

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin,
Jamin Shin, Yan Xu, Peng Xu, and Pascale Fung.
2019c. Caire_hkust at semeval-2019 task 3: Hierar-
chical attention for dialogue emotion classification.
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 142–147.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2018a. Code-switching
language modeling using syntax-aware multi-task
learning. In Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 62–67.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2018b. Learn to code-switch:
Data augmentation using copy mechanism on lan-
guage modeling. arXiv preprint arXiv:1810.10254.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019d. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280.

Genta Indra Winata, Chien-Sheng Wu, Andrea
Madotto, and Pascale Fung. 2018c. Bilingual char-
acter representation for efficiently addressing out-of-
vocabulary words in code-switching named entity

recognition. In Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 110–114.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844.

Wenpeng Yin and Hinrich Schütze. 2016. Learning
word meta-embeddings. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1351–1360.

A Memory Footprint Analysis

We show the complete results of our memory foot-
print analysis in Table 7.

152

Model Activation (MB)
16 32 64 128 256 512 1024 2048 4096

FastText 1.0 2.0 4.0 10.0 26.0 79.0 261.0 941.0 3547.0
Linear 1.0 2.0 4.0 10.0 27.4 80.8 265.6 950.0 3562.0
Concat 1.0 2.0 5.0 11.2 29.2 85.2 274.5 967.5 3596.5
Attention (MME) 1.0 2.0 5.4 12.4 31.0 89.0 283.2 985.6 3630.6
HME 3.2 6.6 13.4 28.6 64.2 154.8 416.4 1252.0 4155.0
Scratch (2L) 2.0 4.0 8.0 20.0 46.0 133.0 - - -
Scratch (4L) 3.0 7.0 15.0 38.0 90.0 264.0 - - -
mBERT (uncased) 10.0 20.0 41.0 100.0 218.0 597.0 - - -
XLM-RBASE 10.0 20.0 41.0 100.0 218.0 597.0 - - -
XLM-RLARGE 25.0 52.0 109.0 241.0 579.0 1541.0 - - -
XLM-MLMLARGE 20.0 42.0 89.0 193.0 467.0 1158.0 - - -

Table 7: Memory footprint (MB) for storing the activations for a given sequence length.

153

Author Index

Abdul-Mageed, Muhammad, 36, 56
Agüero-Torales, Marvin, 95
Appicharla, Ramakrishna, 31

Bhattacharyya, Pushpak, 31
Black, Alan W, 103, 113

Cahyawijaya, Samuel, 142
Çetinoğlu, Özlem, 72
Chandu, Khyathi Raghavi, 113

Dowlagar, Suman, 26

Ekbal, Asif, 31
Elmadany, AbdelRahim, 56

Foley, Ben, 131
Fung, Pascale, 142

Gautam, Devansh, 15, 47
Goel, Anmol, 47
Grand, Rasmus, 65
Gupta, Akshat, 103
Gupta, Kamal Kumar, 31
Gupta, Kshitij, 15, 47

Iliescu, Dana-Maria, 65

Jawahar, Ganesh, 36
Jayanthi, Sai Muralidhar, 113
Joty, Shafiq, 141

Kameswari, Lalitha, 1
Kodali, Prashant, 47
Kumaraguru, Ponnurangam, 47

Lakshmanan, V.S., Laks, 36
Lin, Zhaojiang, 142
Liu, Zihan, 142
López-Herrera, Antonio, 95

Madotto, Andrea, 142
Mamidi, Radhika, 1, 26
Maxwelll-Smith, Zara, 131
Menghani, Sargam, 103

Nagoudi, El Moatez Billah, 36, 56

Nerella, Kavya, 113

Özateş, Şaziye Betül, 72

Parikh, Dwija, 119

Qirko, Sara, 65

Rallabandi, Sai Krishna, 103

Sakai, Yusuke, 133
Sazzed, Salim, 125
Shrivastava, Manish, 15, 47
Singh, Mayank, 6
Solorio, Thamar, 119
Sravani, Dama, 1
Srivastava, Vivek, 6

Taguchi, Chihiro, 133
Tan, Samson, 141

van der Goot, Rob, 65
Vilares, David, 95

Watanabe, Taro, 133
Winata, Genta Indra, 142

Xu, Jitao, 84

Yvon, François, 84

155

	Program
	Political Discourse Analysis: A Case Study of Code Mixing and Code Switching in Political Speeches
	Challenges and Limitations with the Metrics Measuring the Complexity of Code-Mixed Text
	Translate and Classify: Improving Sequence Level Classification for English-Hindi Code-Mixed Data
	Gated Convolutional Sequence to Sequence Based Learning for English-Hingilsh Code-Switched Machine Translation.
	IITP-MT at CALCS2021: English to Hinglish Neural Machine Translation using Unsupervised Synthetic Code-Mixed Parallel Corpus
	Exploring Text-to-Text Transformers for English to Hinglish Machine Translation with Synthetic Code-Mixing
	CoMeT: Towards Code-Mixed Translation Using Parallel Monolingual Sentences
	Investigating Code-Mixed Modern Standard Arabic-Egyptian to English Machine Translation
	Much Gracias: Semi-supervised Code-switch Detection for Spanish-English: How far can we get?
	A Language-aware Approach to Code-switched Morphological Tagging
	Can You Traducir This? Machine Translation for Code-Switched Input
	On the logistical difficulties and findings of Jopara Sentiment Analysis
	Unsupervised Self-Training for Sentiment Analysis of Code-Switched Data
	CodemixedNLP: An Extensible and Open NLP Toolkit for Code-Mixing
	Normalization and Back-Transliteration for Code-Switched Data
	Abusive content detection in transliterated Bengali-English social media corpus
	Developing ASR for Indonesian-English Bilingual Language Teaching
	Transliteration for Low-Resource Code-Switching Texts: Building an Automatic Cyrillic-to-Latin Converter for Tatar
	Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots
	Are Multilingual Models Effective in Code-Switching?

