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Stronger Biomedical NLP in the Face of COVID-19
Dina Demner-Fushman, Sophia Ananiadou, Kevin Bretonnel Cohen, Junichi Tsujii

This year marks the second virtual BioNLP workshop. BioNLP 2020 workshop was one of the
community’s first experiences in online conferences, BioNLP 2021 finds us as cohort of seasoned
zoomers, webexers and users of other platforms that the conference organizers select in the hopes of
finding an environment that will get us as close as possible to an in-person meeting. There is some
light at the end of the tunnel: in many places the new SARS-CoV-2 infections are going down and the
numbers of fully vaccinated people are going up, which allows us hoping for an in-person meeting in
2022. We believe that some of this success was enabled by our community: In 2020, BioNLP researchers
contributed to development of efficient approaches to retrieval of pandemic-related information and
developed approaches to clinical text processing that supported many tasks focused on containment of
the pandemic and reduction of COVID-19 severity and complications.

Much of the language processing work related to COVID-19 was enabled by and built on the foundation
established by the BioNLP community. This year, the community continued expanding BioNLP research
that resulted in 43 submissions to the workshop and 16 additional submissions of the work describing
innovative approaches to the MADIQA 2021 Shared Task described in the overview paper in this volume.

As always, we are deeply grateful to the authors of the submitted papers and to the reviewers (listed
elsewhere in this volume) that produced three thorough and thoughtful reviews for each paper in a
fairly short review period. The quality of submitted work continues growing and the Organizers are
truly grateful to our amazing Program Committee that helped us determine which work is ready to be
presented and which will benefit from additional experiments and analysis suggested by the reviewers.
Based on the PC recommendations, we selected eight papers for oral presentations and 15 for poster
presentations. These presentations include transformer-based approaches to such fundamental tasks
as relation extraction and named entity recognition and normalization, creation of new datasets and
exploration of knowledge-capturing abilities of deep learning models.

The keynote titled "Information Extraction from Texts Using Heterogeneous Information" will be
presented by Dr. Makoto Miwa, an associate professor of Toyota Technological Institute (TTI). Dr. Miwa
received his Ph.D. from the University of Tokyo in 2008. His research mainly focuses on information
extraction from texts, deep learning, and representation learning. Specifically, the keynote will highlight
the following:

With the development of deep learning, information extraction targeting sentences using only linguistic
information has matured, and interest increases beyond the boundaries of sentences and languages.
Labeled information is limited for such information extraction due to high annotation costs, and a variety
of information must be used to complement them, such as language structure and external knowledge
base information. In the talk, Dr Miwa will mainly introduce his recent efforts to extract information
from texts using various heterogeneous information inside and outside the language and discuss the
direction and prospects of information extraction in the future.

As always, we are looking forward to a productive workshop, and we hope that new collaborations and
research will evolve, continuing contributions of our community to public health and well-being.

iii





Organizing Committee

Dina Demner-Fushman, US National Library of Medicine
Kevin Bretonnel Cohen, University of Colorado School of Medicine, USA
Sophia Ananiadou, National Centre for Text Mining and University of Manchester, UK
Junichi Tsujii, National Institute of Advanced Industrial Science and Technology, Japan

Program Committee:
Sophia Ananiadou, National Centre for Text Mining and University of Manchester, UK

Emilia Apostolova, Language.ai, USA
Eiji Aramaki, University of Tokyo, Japan
Steven Bethard, University of Arizona, USA
Olivier Bodenreider, US National Library of Medicine
Leonardo Campillos Llanos, Universidad Autonoma de Madrid, Spain
Qingyu Chen, US National Library of Medicine
Fenia Christopoulou, National Centre for Text Mining and University of Manchester, UK
Kevin Bretonnel Cohen, University of Colorado School of Medicine, USA
Brian Connolly, Kroger Digital, USA
Jean-Benoit Delbrouck, Stanford University, USA
Dina Demner-Fushman, US National Library of Medicine
Bart Desmet, Clinical Center, National Institutes of Health, USA
Travis Goodwin, US National Library of Medicine
Natalia Grabar, CNRS, France
Cyril Grouin, LIMSI - CNRS, France
Tudor Groza, The Garvan Institute of Medical Research, Australia
Antonio Jimeno Yepes, IBM, Melbourne Area, Australia
William Kearns, UW Medicine, USA
Halil Kilicoglu, University of Illinois at Urbana-Champaign, USA
Ari Klein, University of Pennsylvania, USA
Andre Lamurias, University of Lisbon, Portugal
Alberto Lavelli, FBK-ICT, Italy
Robert Leaman, US National Library of Medicine
Ulf Leser, Humboldt-Universität zu Berlin, Germany
Timothy Miller, Children’s Hospital Boston, USA
Claire Nedellec, INRA, France
Aurelie Neveol, LIMSI - CNRS, France
Mariana Neves, German Federal Institute for Risk Assessment, Germany
Denis Newman-Griffis, University of Pittsburgh, USA
Nhung Nguyen, The University of Manchester, UK
Karen O’Connor, University of Pennsylvania, USA
Yifan Peng, Weill Cornell Medical College, USA
Laura Plaza, UNED, Madrid, Spain
Francisco J. Ribadas-Pena, University of Vigo, Spain
Fabio Rinaldi, IDSIA (Dalle Molle Institute for Artificial Intelligence), Switzerland
Angus Roberts, King’s College London, UK
Kirk Roberts, The University of Texas Health Science Center at Houston, USA
Roland Roller, DFKI GmbH, Berlin, Germany
Diana Sousa, University of Lisbon, Portugal
Karin Verspoor, The University of Melbourne, Australia
Davy Weissenbacher, University of Pennsylvania, USA
W John Wilbur, US National Library of Medicine

v



Shankai Yan, US National Library of Medicine
Chrysoula Zerva, National Centre for Text Mining and University of Manchester, UK
Ayah Zirikly, Johns Hopkins University, USA
Pierre Zweigenbaum, LIMSI - CNRS, France

Additional Reviewers:
Jaya Chaturvedi, King’s College London, UK

Vani K, IDSIA (Dalle Molle Institute for Artificial Intelligence), Switzerland
Joseph Cornelius, IDSIA (Dalle Molle Institute for Artificial Intelligence), Switzerland
Shogo Ujiie, Nara Institute of Science and Technology, Japan

Shared Task MEDIQA 2021 Organizing Committee

Asma Ben Abacha, US National Library of Medicine
Chaitanya Shivade, Amazon
Yassine Mrabet, US National Library of Medicine
Yuhao Zhang, Stanford University, USA
Curtis Langlotz, Stanford University, USA
Dina Demner-Fushman, US National Library of Medicine

Shared Task MEDIQA 2021 Program Committee:
Asma Ben Abacha, US National Library of Medicine
Sony Bachina, National Institute of Technology Karnataka, India
Spandana Balumuri, National Institute of Technology Karnataka, India
Yi Cai, Chic Health, Shanghai, China
Duy-Cat Can, VNU University of Engineering and Technology, Hanoi, Vietnam
Songtai Dai, Baidu Inc., Beijing, China
Jean-Benoit Delbrouck, Stanford University, USA
Huong Dang, George Mason University, Virginia, USA
Deepak Gupta, US National Library of Medicine
Yifan He, Alibaba Group
Ravi Kondadadi, Optum
Jooyeon Lee, Christopher Newport University, Virginia, USA
Lung-Hao Lee, National Central University, Taiwan
Diwakar Mahajan, IBM Research, USA
Yassine Mrabet, US National Library of Medicine
Khalil Mrini, University of California, San Diego, La Jolla, CA, USA
Mourad Sarrouti, US National Library of Medicine
Chaitanya Shivade, Amazon
Mario Sänger, Humboldt-Universität zu Berlin, Germany
Quan Wang, Baidu Inc., Beijing, China
Leon Weber, Humboldt-Universität zu Berlin, Germany
Shweta Yadav, US National Library of Medicine
Yuhao Zhang, Stanford University, USA
Wei Zhu, East China Normal University, Shanghai, China

vi



Table of Contents

Improving BERT Model Using Contrastive Learning for Biomedical Relation Extraction
Peng Su, Yifan Peng and K. Vijay-Shanker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Triplet-Trained Vector Space and Sieve-Based Search Improve Biomedical Concept Normalization
Dongfang Xu and Steven Bethard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Scalable Few-Shot Learning of Robust Biomedical Name Representations
Pieter Fivez, Simon Suster and Walter Daelemans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SAFFRON: tranSfer leArning For Food-disease RelatiOn extractioN
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Abstract

Contrastive learning has been used to learn
a high-quality representation of the image in
computer vision. However, contrastive learn-
ing is not widely utilized in natural language
processing due to the lack of a general method
of data augmentation for text data. In this
work, we explore the method of employing
contrastive learning to improve the text repre-
sentation from the BERT model for relation
extraction. The key knob of our framework
is a unique contrastive pre-training step tai-
lored for the relation extraction tasks by seam-
lessly integrating linguistic knowledge into the
data augmentation. Furthermore, we inves-
tigate how large-scale data constructed from
the external knowledge bases can enhance the
generality of contrastive pre-training of BERT.
The experimental results on three relation ex-
traction benchmark datasets demonstrate that
our method can improve the BERT model rep-
resentation and achieve state-of-the-art perfor-
mance. In addition, we explore the inter-
pretability of models by showing that BERT
with contrastive pre-training relies more on ra-
tionales for prediction. Our code and data
are publicly available at: https://github.
com/udel-biotm-lab/BERT-CLRE.

1 Introduction

Contrastive learning is a family of methods to learn
a discriminative model by comparing input pairs
(Le-Khac et al., 2020). The comparison is per-
formed between positive pairs of “similar” inputs
and negative pairs of “dissimilar” inputs. The pos-
itive pairs can be generated in an automatic way
by transforming the original data to variants with-
out changing the key information (e.g., rotate an
image). Contrastive learning can encode general
properties (e.g. invariance) in the learned represen-
tation while it is relatively hard for other represen-
tation learning methods to achieve (Bengio et al.,

1These authors contributed equally.

2013; Le-Khac et al., 2020). Therefore, contrastive
learning provides a powerful approach to learn rep-
resentations in a self-supervised manner and has
shown great promise and achieved the state of the
art results in recent years (He et al., 2020; Chen
et al., 2020).

Despite its advancement, contrastive learning
has not been well studied in biomedical natural
language processing (BioNLP), especially for rela-
tion extraction (RE) tasks. One obstacle lies in the
discrete characteristics of text data. Compared to
computer vision, it is more challenging to design a
general and efficient data augmentation method to
construct positive pairs. Instead, there have been
significant advances in the development of pre-
trained language models to facilitate downstream
BioNLP tasks (Devlin et al., 2019; Radford et al.,
2019; Peng et al., 2019). Therefore, leveraging con-
trastive learning in the large pre-trained language
models to learn more general representation for RE
tasks remains unexplored.

To bridge this gap, this paper presents an innova-
tive method of contrastive pre-training to improve
the language model representation for biomedical
relation extraction. As the main difference from
the existing contrastive learning framework, we
augment the datasets for RE tasks by randomly
changing the words that do not affect the relation
expression. Here, we hypothesize that the short-
est dependency path (SDP) between two entities
(Bunescu and Mooney, 2005) captures the required
knowledge for the relation expression. We hence
keep words on SDP fixed during the data augmen-
tation. In addition, we utilize external knowledge
bases to construct more data to make the learned
representation generalize better, which is a method
that is frequently used in distant supervision (Mintz
et al., 2009; Peng et al., 2016).

To verify the effectiveness of the proposed
method, we use the transformer-based BERT model
as a backbone (Devlin et al., 2019) and evaluate
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our method on three widely studied RE tasks in
the biomedical domain: the chemical-protein inter-
actions (ChemProt) (Krallinger et al., 2017), the
drug-drug interactions (DDI) (Herrero-Zazo et al.,
2013), and the protein-protein interactions (PPI)
(Krallinger et al., 2008). The experimental results
show that our method boosts the BERT model per-
formance and achieves state-of-the-art results on
all three tasks.

Interest has also grown in designing interpretable
BioNLP models that are both plausible (accurate)
and rely on a specific part of the input (faithful
rationales) (DeYoung et al., 2020; Lei et al., 2016).
Here rationale is defined as the supporting evidence
in the inputs for the model to make correct predic-
tions. In this direction, we propose a new metric,
”prediction shift”, to measure the sensitivity degree
to which the small changes (out of the SDP) of
the inputs will make model change its predictions.
We show that the contrastively pre-trained model
is more robust than the original model, suggesting
that our model is more likely to make predictions
based on the rationales of the inputs.

In sum, the contribution of this work is four-
fold. (1) We propose a new method that utilizes
contrastive learning to improve the BERT model
on biomedical relation extraction tasks. (2) We
utilize external knowledge to generate more data
for learning more generalized text representation.
(3) We achieve state-of-the-art performance on
three benchmark datasets of relation extraction
tasks. (4) We propose a new metric that aims to
reveal the rationales that the model uses for pre-
dicting relations. The code and the new rationale
test datasets are available at https://github.
com/udel-biotm-lab/BERT-CLRE.

2 Related Work

The history of contrastive representation learning
can be traced back to (Hadsell et al., 2006), in
which the authors explore the method of repre-
sentation learning that similar inputs are mapped
to nearby points in the representation space. Re-
cently, with the development of data augmentation
techniques, deep neural network architectures, con-
trastive learning regains attention and achieves su-
perior performance on visual representation learn-
ing (He et al., 2020; Chen et al., 2020). In (He et al.,
2020), the Momentum Contrast (MoCo) framework
is designed to learn representation using the mech-
anism of dictionary look-up: an encoded example

(the query) should be similar to its matching key
(augmented sample from the same data example)
and dissimilar to others. In (Chen et al., 2020),
the authors propose the SimCLR frame to learn
the representations by maximizing the agreement
between augmented views of the same data point.

The contrastive representation has all the prop-
erties that a good representation should have: 1)
Distributed property; 2) Abstraction and invariant
property; 3) Disentangled representation (Bengio
et al., 2013; Le-Khac et al., 2020). The distributed
property emphasizes the expressive aspect of the
representation (different data points should have
distinguishable representations). The capture of
abstract concepts and the invariance to small and
local changes are concerned in the abstraction and
invariant property. From the disentangled repre-
sentation’s perspective, it should encode as much
information as possible. In this work, we will show
contrastive learning can improve the invariant as-
pect of the representation.

In the natural language processing (NLP) field,
several works have utilized the contrastive learning
technique. Fang et al. (2020) propose a pre-trained
language representation model (CERT) using con-
trastive learning at the sentence level to benefit
the language understanding tasks. Klein and Nabi
(2020) employ contrastive self-supervised learn-
ing to solve the commonsense reasoning problem.
Peng et al. (2020) propose a self-supervised pre-
training framework for relation extraction to ex-
plore the encoded information for the textual con-
text and entity type. Compared with the previous
works, we employ different data augmentation tech-
niques and utilize data from external knowledge
bases in contrastive learning to improve the model
for relation extraction tasks.

Relation extraction is usually seen as a classifi-
cation problem when the entity mentions are given
in the text. Many different methods have been
proposed to solve the relation extraction problem
(Culotta and Sorensen, 2004; Sierra et al., 2008;
Sahu and Anand, 2018; Zhang et al., 2019; Su et al.,
2019). However, the language model methods re-
define this field with their superior performance
(Dai and Le, 2015; Peters et al., 2018; Devlin
et al., 2019; Radford et al., 2019; Su and Vijay-
Shanker, 2020). Among all the language models,
BERT (Devlin et al., 2019) –a language represen-
tation model based on bidirectional Transformer
(Vaswani et al., 2017), attracts lots of attention in
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Figure 1: The framework of contrastive learning. For
the data augmentation of relation extraction, we ran-
domly replace some words that are not affecting the
relation expression (wi → w

′
i in the left sample, wj →

w
′
j in the right sample).

different fields. Several BERT models have been
adapted for biomedical domain: BioBERT (Lee
et al., 2020), SciBERT (Beltagy et al., 2019), Blue-
BERT (Peng et al., 2019) and PubMedBERT (Gu
et al., 2021). BioBERT, SciBERT and BlueBERT
are pre-trained based on the general-domain BERT
using different pre-training data. In contrast, Pub-
MedBERT (Gu et al., 2021) is pre-trained from
scratch using PubMed abstracts.

In recent years, there is increasing interest in de-
signing more interpretable NLP models that reveal
the logic behind model predictions. In (DeYoung
et al., 2020), multiple datasets of rationales (from
human experts) are collected to facilitate the re-
search on interpretable models in NLP. In (Lei et al.,
2016), the authors propose an encoder-generator
framework to automatically generate candidate ra-
tionales to justify the predictions of neural network
models.

3 Methodology

3.1 The framework of contrastive learning
Our goal is to learn a text representation by max-
imizing agreement between inputs from positive
pairs via a contrastive loss in the latent space and
the learned representation can then be used for
relation extraction. Figure 1 shows our frame-
work of contrastive learning. Given a sentence
s = w1, ...wn, we first produce two augmented
views (a positive pair) v′ = w1, ..., w

′
i, ...wn and

v′′ = w1..., w
′
j , ...wn (i 6= j) from s by applying

text augmentation technique (Section 3.1.1).
Our framework then uses one neural network to

encode the two inputs, which consists of a neural
network encoder f (Section 3.1.2) and a projection
head g (Section 3.1.3). From the first augmented
view v′, we output a representation h′ , f(v′)
and a projection z′ , g(h′). From the second
augmented view v′′, we output h′′ , f(v′′) and
another projection z′′ , g(h′′).

The contrastive learning method learns the rep-
resentation by comparing different samples in the
training data (Section 3.1.4). The comparison is
performed between both similar inputs and dissim-
ilar inputs, and the similar inputs are positive pairs
and the dissimilar inputs are negative pairs. Dur-
ing the training, the representations are learned by
leading the positive pairs to have similar represen-
tations and making negative pairs have dissimilar
representations. In applications, the positive pairs
are usually from the augmented data of the same
sample, and the negative pairs are generated by
selecting augmented data from different samples.

At the end of training, we only keep the encoder
f as in (Chen et al., 2020). For any text input x,
h = f(x) will be the representation of x from
contrastive learning.

3.1.1 Data augmentation for relation
extraction

The data augmentation module is a key component
of contrastive learning, which needs to randomly
generate two correlated views for the original data
point. At the same time, the generated data should
be different from each other to make them dis-
tinguishable (from the model’s perspective), but
should not be significantly different to change the
structure and semantics of the original data. It is
especially difficult to augment the text data of re-
lation extraction. In this work, we only focus on
binary relations. Given < s, e1, e2, r >, where e1
and e2 are two entity mentions in the sentence s
with the relation type r, we keep e1 and e2 in the
sentence and retain the relation expression between
e1 and e2 in the augmented views.

Specifically, we propose a data augmentation
method utilizing the shortest dependency path
(SDP) between the two entities in the text. We
hypothesize that the shortest dependency path cap-
tures the required information to assert the rela-
tionship of the two entities (Bunescu and Mooney,
2005). Therefore we fix the shortest dependency
path, and randomly change the other tokens in
the text to generate the augmented data. This
idea is inspired by (Wei and Zou, 2019), which
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Original We further show that @PROTEIN$ directly interacts with @PROTEIN$ and Rpn4.
After SR We further show that @PROTEIN$ straight interacts with @PROTEIN$ and Rpn4.
After RS Further we show that @PROTEIN$ directly interacts with @PROTEIN$ and Rpn4.
After RD We further show that @PROTEIN$ interacts with @PROTEIN$ and Rpn4.

Table 1: Examples after the three operations for data augmentation. The shortest dependency path between two
proteins is "@PROTEIN$ interacts @PROTEIN$", which is marked with underline in the examples. The changed
words are also marked with bold font.

employed easy data augmentation techniques to
improve model performance on text classification
tasks.

As the preliminary study, we experiment with
three techniques to randomly replace the tokens
to generate the augmented data and choose the
best one for our contrastive learning method: 1)
Synonym replacement (SR), 2) Random swap (RS),
and 3) Random deletion (RD).

Table 1 gives some samples after applying the
three operations on a sentence from the PPI task.
For the synonym replacement, we randomly re-
place n words with their synonyms. To acquire
the synonym of a word, we utilize the WordNet
database (Miller, 1995) to extract a list of syn-
onyms and randomly choose one from the list. For
the random swap, we swap the positions of two
words and repeat this operation n times. For the
random deletion, we delete some words with the
probability p. The probability p is set to 0.1 in our
experiments and the parameter n for SR and RS
is calculated by p× l, where l is the length of the
sentence.

To examine which operation performs better for
relation extraction tasks, we train three BERT mod-
els using the three types of augmented data (com-
bined with the original training data). Table 4
shows that the synonym replacement (SR) opera-
tion achieves the best performance on all three tasks
and we will employ this operation in our data aug-
mentation module in our contrastive learning exper-
iments (We will further discuss it in Section 5.2).

3.1.2 The neural network encoder
In this work, we employ the BERT model (Devlin
et al., 2019) as our encoder for the text data and the
classification token ([CLS]) output in the last layer
will be the representation of the input.

3.1.3 Projection head
As demonstrated in (Chen et al., 2020), adding a
nonlinear projection head on the model output will
improve the representation quality during training.

Following the same idea, a multi-layer perceptron
(MLP) will be applied to the model output h. For-
mally,

z = g(h) =W 2φ(W 1h)

and φ is the ReLU activation function, W 1 and
W 2 are the weights of the perceptron in the hidden
layers.

3.1.4 Contrastive loss

Contrastive learning is designed to make similar
representations be learned for the augmented sam-
ples (positive pairs) from the same data point. We
follow the work of (Chen et al., 2020) to design
the loss function (Algorithm 1). During contrastive
learning, the contrastive loss is calculated based
on the augmented batch derived from the original
batch. Given N sentences in a batch, we first em-
ploy the data augmentation technique to acquire
two views for each sentence in the batch. There-
fore, we have 2N views from the batch. Given one
positive pair (two views from the same sentence),
we treat the other 2(N − 1) within the batch as
negative examples. Similar to (Chen et al., 2020),
the loss for a positive pair is defined as:

l(z′, z′′) = −log exp(sim(z′, z′′)/τ)
∑2N

k=1 1[zk 6=z′]exp(sim(z′, zk)/τ)

where sim(·, ·) is the cosine similarity function,
1[zk 6=z′] is the indicator function and τ is the tem-
perature parameter. The final loss L is computed
across all positive pairs, both (z′, z′′) and (z′′, z′),
in a batch.

For computation convenience, we arrange the
(2k − 1)-th example and the 2k-th example in the
batch are generated from the same sentence, a.k.a.,
(2k−1, 2k) is a positive pair. Please see Algorithm
1 for calculating the contrastive loss in one batch.
Then we can update the parameters of the BERT
model and projection head g to minimize the loss
L.
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Algorithm 1: Contrastive loss in a batch
Input: encoder f (BERT), project head g,
data augmentation module, data batch
{sk}Nk=1;

for k=1,...,N do
v′, v′′ = data_augment(sk);
z2k−1 = g(f(v′));
z2k = g(f(v′′));

end
L =

1
2N

∑N
k=1[l(z2k−1, z2k) + l(z2k, z2k−1)]

Figure 2: The pipeline of BERT model training with
contrastive pre-training.

3.2 Training procedure

Figure 2 shows the training procedure of our frame-
work. It consists of three stages. First, we pre-
train the BERT model on a large amount of unla-
beled data from a specific domain(e.g., biomedi-
cal domain). Second, we conduct contrastive pre-
training on task-specific data as a continual pre-
training step after the domain pre-training of BERT
model. In this way, we retain the learned knowl-
edge from general pre-training, and add the new
features from contrastive learning. Finally, we fine-
tune the model on the RE tasks to further gain task-
specific knowledge through supervised training on
the labeled datasets.

The domain pre-training stage follows that of the
BERT using the masked language model and next
sentence prediction technique (Devlin et al., 2019).
In our experiments, we use two pre-trained versions
for the biomedical domain: BioBERT (Lee et al.,
2020) and PubMedBERT (Gu et al., 2021).

3.3 A knowledge-based method to enrich
training dataset for contrastive learning

Contrastive pre-training requires a large-scale
dataset to generalize the representation. Also, our
data augmentation for contrastive learning needs
SDP between two given entities, so we need to
construct the augmented dataset with the entities

Task Train Dev Test EK

ChemProt 18,035 11,268 15,745 35,500
DDI 22,233 5,559 5,716 67,959
PPI∗ 5,251 - 583 97,853

Table 2: Statistics of datasets used for contrastive pre-
training and fine-tuning. EK: datasets generated by ex-
ternal knowledge bases; *: since there is no standard
split of training and test set for the PPI dataset (AIMed),
we use 10-fold cross-validation and here we show num-
ber of the training and test in each fold.

mentioned in the text. For these purposes, we uti-
lize external databases for the relations to acquire
extra instances for contrastive learning.

Formally, assuming a curated database for re-
lation r contains all the relevant entities and text,
we consider every combination of the entity pairs
in one sentence and use them as examples for
this relation. For instance, there are three pro-
teins in the sentence s: "Thus NIPP1 works as a
molecular sensor for PP1 to recognize phosphory-
lated Sap155." We will generate three examples for
PPI task from this sentence: <s,NIPP1,PP1,PPI>,
<s,NIPP1,Sap155,PPI> and <s,PP1,Sap155,PPI>.

We use the IntAct database (Orchard et al., 2014)
as the interacting protein pairs database for the
PPI task. Similarly, DrugBank (Wishart et al.,
2008) and BioGRID (Stark et al., 2006) are uti-
lized for DDI and ChemProt, respectively. In the
column "EK" of Table 2, we show the statistics of
datasets for each task generated by external knowl-
edge bases. We can see that the datasets from the
external database are much larger than that of the
human-labeled datasets.

4 Experiments

As discussed before, we will utilize the BERT
model as the encoder for the inputs. In particu-
lar, we will employ two BERT models pre-trained
for the biomedical domain in our experiments:
BioBERT (Lee et al., 2020) and PubMedBERT
(Gu et al., 2021).

4.1 Datasets and evaluation metrics

We will evaluate our method on three benchmark
datasets. The statistics of these datasets is shown in
Table 2. For ChemProt and DDI tasks, we employ
the corpora in (Krallinger et al., 2017) and (Herrero-
Zazo et al., 2013) respectively, and we use the same
split of training, development and test sets with the
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Model
ChemProt DDI PPI

P R F P R F P R F

BioBERT 74.3 76.3 75.3 79.9 78.1 79.0 79.0 83.3 81.0
BioBERT+CL 77.0 74.7 75.8 82.6 77.4 79.9 79.8 83.1 81.3
BioBERT+CLEK 76.6 76.0 76.3 82.9 78.4 80.6 81.1 83.2 82.1

PubMedBERT 78.8 75.9 77.3 82.6 81.9 82.3 80.1 84.3 82.1
PubMedBERT+CL 79.6 76.2 77.8 83.3 81.5 82.4 79.4 85.6 82.4
PubMedBERT+CLEK 80.6 76.9 78.7 83.3 82.4 82.9 79.9 85.7 82.7

Table 3: BERT model performance on ChemProt, DDI and PPI tasks. BioBERT/PubMedBERT: original BERT
model; BioBERT/PubMedBERT+CL: BioBERT/PubMedBERT with contrastive pre-training on the training set of
human-labeled dataset; BioBERT/PubMedBERT+CLEK: BioBERT/PubMedBERT with contrastive pre-training
on the data from the external knowledge base.

PubMedBERT model (Gu et al., 2021) during the
model evaluation. We utilize the AIMed corpus
(Bunescu et al., 2005) for the PPI task, and we will
employ 10-fold cross-validation on it since there is
no standard split of training and test.

PPI is a binary classification problem, and we
will use the standard precision (P), recall (R) and
F1-score (F) to measure the model performance.
However, the ChemProt and DDI tasks are multi-
class classification problems. The ChemProt cor-
pus is labeled with five positive classes and the neg-
ative class: CPR:3, CPR:4, CPR:5, CPR:6, CPR:9
and negative. Similar to the DDI corpus, there are
four positive labels and one negative label: AD-
VICE, EFFECT, INT, MECHANISM and negative.
The models for ChemProt and DDI will be evalu-
ated utilizing micro precision, recall and F1 score
on the non-negative classes.

4.2 Data pre-processing

One instance of relation extraction task contains
two parts: the text and the entity mentions. In
order to make the BERT model identify the posi-
tions of the entities, we replace the relevant entity
names with predefined tags by following the stan-
dard pre-processing step for relation extraction (De-
vlin et al., 2019). Specifically, all the protein names
are replaced with @PROTEIN$, drug names with
@DRUG$, and chemical names with @CHEMI-
CAL$. In Table 1, we show a pre-processed exam-
ple of the PPI task.

4.3 Training setup

For the fine-tuning of the BioBERT models, we
use the learning rate of 2e-5, batch size of 16, train-
ing epoch of 10, and max sequence length of 128.

During the fine-tuning of PubMedBERT models,
the learning rate of 2e-5, batch size of 8, training
epoch of 10 and max sequence length of 256 are
utilized.

In the contrastive pre-training step of the BERT
models, we use the same learning rate with the
fine-tuning, and the training epoch is selected from
[2, 4, 6, 8, 10] based on the performance on the
development set. If there is no development set
(e.g., PPI task), we will use 6 as the default training
epoch. Since contrastive learning benefits more
from larger batch (Chen et al., 2020), we utilize the
batch size of 256 and 128 for BioBERT and Pub-
MedBERT respectively. In addition, the tempera-
ture parameter τ is set to 0.1 during the training.

5 Results and discussion

5.1 BERT model performance with
contrastive pre-training

Table 3 demonstrates the experimental results us-
ing the BERT models with contrastive pre-training
and external datasets. The first row is the BioBERT
model performance without applying contrastive
learning. The following two rows demonstrate the
results after adding the contrastive pre-training step
in BioBERT. The "BioBERT+CL" stands for the
BioBERT model with contrastive pre-training on
the training set of the human-labeled dataset, while
"BioBERT+CLEK" is for the BioBERT model with
contrastive pre-training on the data from the exter-
nal knowledge base. Similarly, we give the Pub-
MedBERT model performance of our method in
the last three rows of Table 3.

We can see that the contrastive per-training im-
proves the model performance in both cases. How-
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Training data ChemProt DDI PPI

Original 75.3 79.0 81.0
+RS 75.6 78.4 75.4
+RD 75.4 79.8 81.2
+SR 76.0 80.1 81.9

Table 4: BioBERT model performance (F1 score) us-
ing different types of augmented data. RS: random
swap; RD: random deletion; SR: synonym replace-
ment.

ever, contrastive pre-training on human-labeled
dataset only improves the model with a small mar-
gin. We hypothesize that the limited improvement
might be due to the poor generalization on small
training set. Therefore, we include more data (EK
data) in contrastive learning to enhance the model
generalizability. The data generated from the ex-
ternal knowledge base are much more than the
training data of the human-labeled dataset (col-
umn "EK" and "train" in Table 2). As shown in the
third and sixth row in Table 3, contrastive learning
with more external data can further boost the model
performance. Compared with the BERT models
without contrastive pre-training, we observe an av-
eraged F1 score improvement (on the two BERT
models) of 1.2%, 1.2%, and 0.85% on ChemProt,
DDI, and PPI datasets, respectively.

Since PubMedBERT is the state-of-the-art
(SOTA) model on these three tasks, we further im-
prove its performance by adding contrastive pre-
training. Thus, we achieve state-of-the-art perfor-
mance on all three datasets.

5.2 Comparison of data augmentation
techniques

Table 4 shows the BERT model performance af-
ter including three types of augmented data. We
can see that the synonym replacement (SR) op-
eration yields the best results on all three tasks.
Therefore we use it as our default operation to gen-
erate augmented data in all our contrastive learning
experiments. We also notice that the augmented
data from the random swap (RS) operation hurt
the model performance on the DDI and PPI tasks,
which indicates that this operation might change
the relation expression in the sentence. Thus it is
necessary to verify the effectiveness of the opera-
tions before applying them on contrastive learning.

Input sentence Prediction

(1) Instead, radiolabeled @CHEMICAL$ result-
ing from @PROTEIN$ hydrolysis were ob-
served.

CPR:9

(2) Or else, radiolabeled @CHEMICAL$ result-
ing from @PROTEIN$ hydrolysis were ob-
served.

False

(1) These results indicate that membrane @PRO-
TEIN$ levels in N-38 neurons are dynamically
autoregulated by @CHEMICAL$.

CPR:3

(2) These results indicate that membrane @PRO-
TEIN$ levels in N-38 nerve cell are dynami-
cally autoregulated by @CHEMICAL$.

False

Table 5: Examples of prediction shift. (1): Original
sentence; (2): Augmented sentence.

Task Model Prediction
Shift

ChemProt

BioBERT 246
BioBERT+CLEK 191 (22% ↓)
PubMedBERT 248
PubMedBERT+CLEK 189 (24% ↓)

DDI

BioBERT 111
BioBERT+CLEK 89 (20% ↓)
PubMedBERT 90
PubMedBERT+CLEK 75 (17% ↓)

PPI∗
BioBERT 51
BioBERT+CLEK 33 (35%↓)
PubMedBERT 49
PubMedBERT+CLEK 34 (31%↓)

Table 6: Count of prediction shift on the "augmented"
test set. *: The sum of counts on the 10 folds.

5.3 Measurement of rationale faithfulness

As discussed previously, we hypothesize the words
on the shortest dependency path (SDP) as the ra-
tionales in the input. Therefore, the model should
make its predictions based on them. If the model
predictions are all made based on a specific part
of the input, we can define this specific part of the
input to be the completely faithful rationales. In
practice, the rationales are more faithful means they
are more influential on the model predictions.

In this work, we define a new metric to mea-
sure the faithfulness of the rationales: "prediction
shift". If the model predicts one test example (non-
negative) with label Lt, but changes its prediction
on its neighbor (the augmented data point) with
another label L

′
t, we will say a "prediction shift"

happens (In Table 5, we give two examples of pre-
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diction shift on PubMedBERT model). Fewer "pre-
diction shift" indicates the information outside of
SDP influences the prediction less, which means
the rationales are more faithful.

To generate a similar set (with test set) for the
measurement of "prediction shift", we apply the
same synonym replacement (SR) technique on the
original test data. Since we retain the words that
are on the shortest dependency path between the
two entities, the generated data should express the
same relation with the original ones. The trained
model should predict them with the same labels if
the rationales of input are utilized during inference,
and in that case, we say the rationales are faithful.

We compare the number of "prediction shift"
on two types of BERT model: the original BERT
and the BERT model with contrastive pre-training.
Table 6 illustrates that the BERT models with con-
trastive pre-training dramatically reduce the num-
ber of "prediction shift". Those results indicate that
the BERT models with contrastive pre-training rely
more on the information of shortest dependency
path for prediction, a.k.a., the rationales are more
faithful. From another perspective, the results in
Table 6 also demonstrate that the BERT models
with contrastive pre-training are resilient to small
changes of the inputs, which means the models are
more robust.

6 Conclusion and Future Directions

In this work, we propose a contrastive pre-training
method to improve the text representation of the
BERT model. Our approach differs from previous
studies in the choice of text data augmentation with
linguistic knowledge and the use of the external
knowledge bases to construct large-scale data to
facilitate contrastive learning. The experimental re-
sults demonstrate that our method outperforms the
original BERT model on three relation extraction
benchmarks. Additionally, our method shows ro-
bustness to slightly changed inputs over the BERT
models. In the future, we will investigate differ-
ent settings of data augmentation and contrastive
pre-training to exploit their capability on language
models. We also hope that our work can inspire
researchers to design better metrics and create high-
quality datasets for the exploration of model inter-
pretability.
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Abstract

Concept normalization, the task of linking
textual mentions of concepts to concepts in
an ontology, is critical for mining and an-
alyzing biomedical texts. We propose a
vector-space model for concept normalization,
where mentions and concepts are encoded via
transformer networks that are trained via a
triplet objective with online hard triplet min-
ing. The transformer networks refine exist-
ing pre-trained models, and the online triplet
mining makes training efficient even with hun-
dreds of thousands of concepts by sampling
training triples within each mini-batch. We
introduce a variety of strategies for searching
with the trained vector-space model, including
approaches that incorporate domain-specific
synonyms at search time with no model retrain-
ing. Across five datasets, our models that are
trained only once on their corresponding on-
tologies are within 3 points of state-of-the-art
models that are retrained for each new domain.
Our models can also be trained for each do-
main, achieving new state-of-the-art on multi-
ple datasets.

1 Introduction

Concept normalization (aka. entity linking or entity
normalization) is a fundamental task of information
extraction which aims to map concept mentions in
text to standard concepts in a knowledge base or
ontology. This task is important for mining and an-
alyzing unstructured text in the biomedical domain
as the texts describing biomedical concepts have
many morphological and orthographical variations,
and utilize different word orderings or equivalent
words. For instance, heart attack, coronary attack,
MI, myocardial infarction, cardiac infarction, and
cardiovascular stroke all refer to the same concept.
Linking such terms with their corresponding con-
cepts in an ontology or knowledge base is critical
for data interoperability and the development of
natural language processing (NLP) techniques.

Research on concept normalization has grown
thanks to shared tasks such as disorder normaliza-
tion in the 2013 ShARe/CLEF (Suominen et al.,
2013), chemical and disease normalization in
BioCreative V Chemical Disease Relation (CDR)
Task (Wei et al., 2015), and medical concept nor-
malization in 2019 n2c2 shared task (Henry et al.,
2020), and to the availability of annotated data
(Doğan et al., 2014; Luo et al., 2019). Existing
approaches can be divided into three categories:
rule-based approaches using string-matching or dic-
tionary look-up (Leal et al., 2015; D’Souza and Ng,
2015; Lee et al., 2016), which rely heavily on hand-
crafted rules and domain knowledge; supervised
multi-class classifiers (Limsopatham and Collier,
2016; Lee et al., 2017; Tutubalina et al., 2018; Niu
et al., 2019; Li et al., 2019), which cannot gener-
alize to concept types not present in their training
data; and two-step frameworks based on a non-
trained candidate generator and a supervised can-
didate ranker (Leaman et al., 2013; Li et al., 2017;
Liu and Xu, 2017; Nguyen et al., 2018; Murty et al.,
2018; Mondal et al., 2019; Ji et al., 2020; Xu et al.,
2020), which require complex pipelines and fail if
the candidate generator does not find the gold truth
concept.

We propose a vector space model for concept
normalization, where mentions and concepts are en-
coded as vectors – via transformer networks trained
via a triplet objective with online hard triplet min-
ing – and mentions are matched to concepts by vec-
tor similarity. The online hard triplet mining strat-
egy selects the hard positive/negative exemplars
from within a mini-batch during training, which
ensures consistently increasing difficulty of triplets
as the network trains for fast convergence. There
are two advantages of applying the vector space
model for concept normalization: 1) it is compu-
tationally cheap compared with other supervised
classification approaches as we only compute the
representations for all concepts in ontology once
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after training the network; 2) it allows concepts
and synonyms to be added or deleted after the net-
work is trained, a flexibility that is important for
the biomedical domain where frequent updates to
ontologies like the Unified Medical Language Sys-
tem (UMLS) Metathesaurus1 are common. Unlike
prior work, our simple and efficient model requires
neither negative sampling before the training nor a
candidate generator during inference.

Our work makes the following contributions:

• We propose a triplet network with online
hard triplet mining for training a vector-space
model for concept normalization, a simpler
and more efficient approach than prior work.

• We propose and explore a variety of strate-
gies for matching mentions to concepts using
the vector-space model, with the most suc-
cessful being a simple sieve-based approach
that checks domain-specific synonyms before
domain-independent ones.

• Our framework produces models trained on
only the ontology – no domain-specific train-
ing – that can incorporate domain-specific
concept synonyms at search time without re-
training, and these models achieve within 3
points of state-of-the-art on five datasets.

• Our framework also allows models to be
trained for each domain, achieving state-of-
the-art performance on multiple datasets.

The code for our proposed framework is available
at https://github.com/dongfang91/
Triplet-Search-ConNorm.

2 Related work

Earlier work on concept normalization focuses on
how to use morphological information to conduct
lexical look-up and string matching (Kang et al.,
2013; D’Souza and Ng, 2015; Leaman et al., 2015;
Leal et al., 2015; Kate, 2016; Lee et al., 2016; Jon-
nagaddala et al., 2016). They rely heavily on hand-
crafted rules and domain knowledge, e.g., D’Souza
and Ng (2015) define 10 types of rules at different
priority levels to measure morphological similarity
between mentions and candidate concepts in the
ontologies. The lack of lexical overlap between
concept mention and concept in domains like so-
cial media, makes rule-based approaches that rely
on lexical matching less applicable.

1https://www.nlm.nih.gov/research/
umls/knowledge_sources/metathesaurus/
index.html

Supervised approaches for concept normaliza-
tion have improved with the availability of anno-
tated data and deep learning techniques. When
the number of concepts to be predicted is small,
classification-based approaches (Limsopatham and
Collier, 2016; Lee et al., 2017; Tutubalina et al.,
2018; Niu et al., 2019; Li et al., 2019; Miftahut-
dinov and Tutubalina, 2019) are often adopted,
with the size of the classifier’s output space equal
to the number of concepts. Approaches differ in
neural architectures, such as character-level con-
volution neural networks (CNN) with multi-task
learning (Niu et al., 2019) and pre-trained trans-
former networks (Li et al., 2019; Miftahutdinov
and Tutubalina, 2019). However, classification ap-
proaches struggle when the annotated training data
does not contain examples of all concepts – com-
mon when there are many concepts in the ontology
– since the output space of the classifier will not
include concepts absent from the training data.

To alleviate the problems of classification-based
approaches, researchers apply learning to rank in
concept normalization, a two-step framework in-
cluding a non-trained candidate generator and a su-
pervised candidate ranker that takes both mention
and candidate concept as input. Previous candi-
date rankers have used point-wise learning to rank
(Li et al., 2017), pair-wise learning to rank (Lea-
man et al., 2013; Liu and Xu, 2017; Nguyen et al.,
2018; Mondal et al., 2019), and list-wise learning
to rank (Murty et al., 2018; Ji et al., 2020; Xu et al.,
2020). These learning to rank approaches also have
drawbacks. Firstly, if the candidate generator fails
to produce the gold truth concept, the candidate
ranker will also fail. Secondly, the training of candi-
date ranker requires negative sampling beforehand,
and it is unclear if these pre-selected negative sam-
ples are informative for the whole training process
(Hermans et al., 2017; Sung et al., 2020).

Inspired by Schroff et al. (2015), we propose
a triplet network with online hard triplet mining
for concept normalization. Our framework sets up
concept normalization as a one-step process, cal-
culating similarity between vector representations
of the mention and of all concepts in the ontol-
ogy. Online hard triplet mining allows such a vec-
tor space model to generate triplets of (mention,
true concept, false concept) within a mini-batch,
leading to efficient training and fast convergence
(Schroff et al., 2015). In contrast with previous
vector space models where mention and candidate
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concepts are mapped to vectors via TF-IDF (Lea-
man et al., 2013), TreeLSTMs (Liu and Xu, 2017),
CNNs (Nguyen et al., 2018; Mondal et al., 2019)
or ELMO (Schumacher et al., 2020), we generate
vector representations with BERT (Devlin et al.,
2019), since it can encode both surface and seman-
tic information (Ma et al., 2019).

There are a few similar works to our vector
space model, CNN-triplet (Mondal et al., 2019),
BIOSYN (Sung et al., 2020), RoBERTa-Node2Vec
(Pattisapu et al., 2020), and TTI (Henry et al.,
2020). CNN-triplet is a two-step approach, requir-
ing a generator to generate candidates for train-
ing the triplet network, and requiring various em-
bedding resources as input to CNN-based encoder.
BIOSYN, RoBERTa-Node2Vec, and TTI are one-
step approaches. BIOSYN requires an iterative can-
didate retrieval over the entire training data during
each training step, requires both BERT-based and
TF-IDF-based representations, and performs a vari-
ety of pre-processing such as acronym expansion.
Both RoBERTa-Node2Vec and TTI use a BERT-
based encoder to encode the mention texts into a
vector space, but they differ in how to generate vec-
tor representations for medical concepts. Specifi-
cally, RoBERTa-Node2Vec uses a Node2Vec graph
embedding approach to generate concept represen-
tations, and fixes such representations during train-
ing, while TTI randomly initializes vector represen-
tations for concepts, and keeps such representations
learnable during training. Note that none of these
works explore search strategies that allow domain-
specific synonyms to be added without retraining
the model, while we do.

3 Proposed methods

We define a concept mention m as a text string in a
corpus D, and a concept c as a unique identifier in
an ontology O. The goal of concept normalization
is to find a mapping function f that maps each tex-
tual mention to its correct concept, i.e., c = f(m).
We define concept text t as a text string denoting
the concept c, and t ∈ T (c), where T (c) is all the
concept texts denoting concept c. Concept text may
come from an ontology, t ∈ O(c), where O(c) is
the synonyms of the concept c from the ontology
O, or from an annotated corpus, t ∈ D(c), where
D(c) is the mentions of the concept c in an an-
notated corpus D. T (c) will allow the generation
of tuples (t, c) such as (MI,C0027051) and (My-
ocardial Infarction,C0027051). Note that, for a

tp
heart
attack

BERT
encoder

V (tp)

ti
myocardial
infarction

BERT
encoder

V (ti)

tn
cardiovascular

infections

BERT
encoder

V (tn)

Sip = Sim(V (ti), V (tp)) Sin = Sim(V (ti), V (tn))

L = ln (1 + e(Sin−Sip))

Figure 1: Example of loss calculation for a single in-
stance of triplet-based training. The same BERT model
is used for encoding ti, tp, and tn.

concept c, it is common to have |O(c)| > |D(c)|,
O(c)∩D(c) = ∅, or even D(c) = ∅, i.e., it is com-
mon for there to be more concept synonyms in the
ontology than the annotated corpus, it is common
for the ontology and annotated corpus to provide
different concept synonyms, and it is common that
annotated corpus only covers a small subset of all
concepts in an ontology.

We implement f as a vector space model:

f(m) = argmax
c∈O

t∈T (c)

Sim(V (m), V (t)) (1)

where V (x) is a vector representation of text
x and Sim is a similarity measure such as co-
sine similarity, inner product, or euclidean distance.
We learn the vector representations V (x) using
a triplet network architecture (Hoffer and Ailon,
2015), which learns from triplets of (anchor text ti,
positive text tp, negative text tn) where ti and tp
are texts for the same concept, and tn is a text for a
different concept. The triplet network attempts to
learn V such that for all training triplets:

Sim(V (ti), V (tip)) > Sim(V (ti), V (tin)) (2)

The triplet network architecture has been adopted
in learning representations for images (Schroff
et al., 2015; Gordo et al., 2016) and text (Necu-
loiu et al., 2016; Reimers and Gurevych, 2019). It
consists of three instances of the same sub-network
(with shared parameters). When fed a (ti, tip, tin)
triplet of texts, the sub-network outputs vector rep-
resentations for each text, which are then fed into
a triplet loss. We adopt PubMed-BERT (Gu et al.,
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2020) as the sub-network, where the representa-
tion for the concept text is an average pooling of
the representations for all sub-word tokens2. This
architecture is shown in Figure 1. The inputs to
our model are only the mentions or synonyms. We
leave the resolution of ambiguous mentions, which
will require exploration of contextual information,
for future work.

3.1 Online hard triplet mining

An essential part of learning using triplet loss is
how to generate triplets. As the number of syn-
onyms gets larger, the number of possible triplets
grows cubically, making training impractical. We
follow the idea of online triplet mining (Schroff
et al., 2015) which considers only triplets within a
mini-batch. We first feed a mini-batch of b concept
texts to the PubMed-BERT encoder to generate a
d-dimensional representation for each concept text,
resulting in a matrix M ∈ Rb×d. We then compute
the pairwise similarity matrix:

S = Sim(M,MT ) (3)

where each entry Sij corresponds to the similarity
score between the ith and jth concept texts in the
mini-batch. As the easy triplets would not con-
tribute to the training and result in slower conver-
gence (Schroff et al., 2015), for each concept text
ti, we only select a hard positive tp and a hard
negative tn from the mini-batch such that:

p = argmin
j∈[1,b]:j 6=i∧C(j)=C(i)

Sij (4)

n = argmax
k∈[1,b]:k 6=i∧C(k) 6=C(i)

Sik (5)

where C(x) is the ontology concept from which tx
was taken, i.e., if tx ∈ T (c) then C(x) = c.

We train the triplet network using batch hard soft
margin loss (Hermans et al., 2017):

L(i) = ln (1 + e(Sin−Sip)) (6)

where S, n, and p are as in eqs. (3) to (5), and the
hinge function, max(·, 0), in the traditional triplet
loss is replaced by a softplus function, ln(1 + e(·)).

3.2 Similarity search

Once our vector space model has been trained, we
consider several options for how to find the most
similar concept c to a text mention m. First, we

2We also experimented with using the output of the CLS-
token, and max-pooling of the output representations for the
sub-word tokens as proposed by (Reimers and Gurevych,
2019), but neither resulted in better performance.

Searching Over Representation Type

Ontology Training Data Text Concept

O-T X X
O-C X X
D-T X X
D-C X X
OD-T X X X
OD-C X X X

Table 1: Names for similarity search modules.

must choose a search target: we can search over the
concepts from the ontology, or the training data, or
both. Second we must choose a representation type:
we can compare m directly to each text (ontology
synonym or training data mention) of each concept,
or we can calculate a vector representation of each
concept and then comparem directly to the concept
vector. Table 1 summarizes these options.

We consider the following search targets:

Data We search over the concepts in the anno-
tated data. These mentions will be more domain-
specific (e.g., PT may refer to patient in clinical
notes, but to physical therapy in scientific arti-
cles), but may be more predictive if the evalua-
tion data is from the same domains. We search
over the train subset of the data for dev evalua-
tion, and train + dev subset for test evaluation.

Ontology We search over the concepts in the on-
tology. The synonyms will be more domain-
independent, and the ontology will cover con-
cepts never seen in the annotated training data.

Data and ontology We search over the concepts
in both the training data and the ontology. For
concepts in the annotated training data, their rep-
resentations are averaged over mentions in the
training data and synonyms in the ontology.

We consider the following representation types:

Text We represent each text (ontology synonym
or training data mention) as a vector by running
it through our triplet-fine-tuned PubMed-BERT
encoder. Concept normalization then compares
the mention vector to each text vector:

f(m) = argmax
c∈O

t∈T (c)

Sim(V (m), V (t)) (7)

When a retrieved text t is present in more than
one concept (e.g., no appetite appears in con-
cepts C0426579, C0003123, C1971624), and
thus we see the same Sim for multiple concepts,
we pick a concept randomly to break ties.
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First component Second component

D-T O-T
D-T O-C
D-C O-T
D-C O-C
D-T OD-T
D-T OD-C
D-C OD-T
D-C OD-C

Table 2: Options for components in sieve-based search.

Concept We represent each concept as a vector
by taking an average over the triplet-fine-tuned
PubMed-BERT representations of that concept’s
texts (ontology synonyms and/or training data
mentions). Concept normalization then com-
pares the mention vector to each concept vector:

f(m) = argmax
c∈O

Sim

(
V (m),mean

t∈T (c)
V (t)

)

(8)

The averages here mean that different con-
cepts with some (but not all) overlapping syn-
onyms (e.g., C0426579, C0003123, C1971624
in UMLS all have the synonym no appetite) will
end up with different vector representations.

3.2.1 Sieve-based search
Traditional sieve-based approaches for concept nor-
malization (D’Souza and Ng, 2015; Jonnagaddala
et al., 2016; Luo et al., 2019; Henry et al., 2020)
achieved competitive performance by ordering a
sequence of searches over dictionaries from most
precise to least precise.

Inspired by this work, we consider a sieve-based
similarity search that: 1) searches over the anno-
tated training data, then 2) searches over the ontol-
ogy (possibly combined with the annotated training
data). Table 2 lists all possible combinations of first
and second components in sieve-based search. For
instance, in sieve-based search D-T + O-C, we first
search over the annotated corpus using training-
data-mention vectors (D-T), and then search over
the ontology using concept vectors (O-C).

4 Experiments

4.1 Datasets

We conduct experiments on three scientific article
datasets – NCBI (Doğan et al., 2014), BC5CDR-D
and BC5CDR-C (Li et al., 2016) – and two clin-
ical note datasets – MCN (Luo et al., 2019) and

ShARe/CLEF (Suominen et al., 2013). The statis-
tics of each dataset are described in table 3.

NCBI The NCBI disease corpus3 contains 17,324
manually annotated disorder mentions from 792
PubMed abstracts. The disorder mentions are
mapped to 750 MEDIC lexicon (Davis et al.,
2012) concepts. We split the released training
set into use 5,134 training mentions and 787 de-
velopment mentions, and keep the 960 mentions
from the original test set as evaluation. We use
the 2012 version of MEDIC ontology which con-
tains 11,915 concepts and 71,923 synonyms.

BC5CDR-D & BC5CDR-C These corpora were
used in the BioCreative V chemical-induced
disease (CID) relation extraction challenge4.
BC5CDR-D and BC5CDR-C contain 12,850 dis-
ease mentions and 15,935 chemical mentions, re-
spectively. The annotated disease mentions are
mapped to 1075 unique concepts out of 11,915
concepts in the 2012 version of MEDIC ontol-
ogy. The chemical mentions are mapped to
1164 unique concepts out of 171,203 concepts
from the 2019 version of Comparative Toxicoge-
nomics Database (CTD) chemical ontology. We
use the configuration in the BioCreative V chal-
lenge to keep the same train/dev/test splits.

ShARe/CLEF The ShARe/CLEF corpus is from
the ShARe/CLEF eHealth 2013 Challenge5,
where 11,167 disorder mentions in 298 clini-
cal notes are annotated with their concepts map-
ping to the 12,6524 disorder concepts from the
SNOMED-CT subset of the 2011AA version of
UMLS. We take the 199 clinical notes consisting
of 5,816 mentions as the train set and 5,351 men-
tions from the 99 clinical notes as test. Around
30.4% of the mentions in the corpus could not
be mapped to any concepts in the ontology, and
are assigned the CUI-less label.

MCN The MCN corpus from 2019 n2c2 Shared-
Task track 36 consists of 13,609 concept men-
tions in 100 discharge summaries. The men-
tions are mapped to 3,792 unique concepts out of
434,056 possible concepts in the SNOMED-CT
and RxNorm subset of UMLS version 2017AB.

3https://www.ncbi.nlm.nih.gov/
CBBresearch/Dogan/DISEASE/

4https://biocreative.bioinformatics.
udel.edu/tasks/biocreative-v/

5https://sites.google.com/site/
shareclefehealth/data

6https://n2c2.dbmi.hms.harvard.edu/
track3
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Scientific Articles Clinical Notes

Dataset NCBI BC5CDR-D BC5CDR-C ShARe/CLEF MCN

Ontology MEDIC MEDIC CTD-Chemical SNOMED-CT SNOMED-CT & RxNorm
# of Concepts (Ontology) 11,915 11,915 171,203 126,524 434,056
# of Synonyms (Ontology) 71,923 71,923 407,247 520,665 1,550,586
# of Documents (Datasets) 792 1,500 1,500 298 100
# of Concepts (Datasets) 750 1,075 1,164 1,313 3,792
# of Mentions (Datasets) 6,881 12,850 15,935 11,167 13,609

Table 3: Statistics of the five datasets in our experiments.

We take 40 clinical notes from the released data
as training, consisting of 5,334 mentions, and the
standard evaluation data with 6,925 mentions as
our test set. Around 2.7% of mentions in MCN
are assigned the CUI-less label.

4.2 Implementation details

Unless specifically noted otherwise, we use the
same training procedure and hyper-parameter set-
tings across all experiments and on all datasets. As
the triplet mining requires at least one positive text
in a batch for each anchor text, we randomly sam-
ple one positive text for each anchor text and group
them into batches. Like previous work (Schroff
et al., 2015; Hermans et al., 2017), we adopt eu-
clidean distance to calculate similarity score during
training, while at inference time, we compute co-
sine similarity as it is simpler to interpret. For the
sieve-based search, if the cosine similarity score
between the mention and the prediction of the first
sieve is above 0.95, we use the prediction of first
sieve, otherwise, we use the prediction of the sec-
ond sieve.

When training the triplet network on the combi-
nation of the ontology and annotated corpus, we
take all the synonyms from the ontology and repeat
the concept texts in the annotated corpus such that
|D|
|O| =

1
3 . In preliminary experiments we found

that large ontologies overwhelmed small annotated
corpora. We also experimented with three ratios
1
3 , 2

3 , and 1 between concept texts and synonyms
of ontology on NCBI and BC5CDR-D datasets,
and found that the ratio of 1

3 achieves the best per-
formance for Train:OD models. We then kept the
same ratio setting for all datasets. We did not thor-
oughly explore other ratios and leave that to future
work.

For all experiments, we use PubMed-BERT (Gu
et al., 2020) as the starting point, which pre-trains
a BERT-style model from scratch on PubMed ab-
stracts and full texts. In our preliminary experi-

ments, we also tried BioBERT (Lee et al., 2019) as
the text encoder, but that resulted in worse perfor-
mance across five datasets. We use the pytorch im-
plementation of sentence-transformers7 to train the
Triplet Network for concept normalization. We use
the following hyper-parameters during the train-
ing of the triplet network: sequence_length = 8,
batch_size = 1500, epoch_size = 100, optimizer =
Adam, learning_rate = 3e-5, warmup_steps = 0.

4.3 Evaluation metrics

The standard evaluation metric for concept nor-
malization is accuracy, because the most similar
concept in prediction is of primary interest. For
composite mentions like breast and ovarian cancer
that are mapped to more than one concept in NCBI,
BC5CDR-D, and BC5CDR-C datasets, we adopt
the evaluation strategy that composite entity is cor-
rect if every prediction for each separate mention
is correct (Sung et al., 2020).

5 Model selection

We use the development data to choose whether to
train the triplet network on just the ontology or also
the training data, and to choose which among the
similarity search strategies described in section 3.2.
Table 4 shows the performance of all such systems
across the five different corpora. The top half of the
table focuses on settings where the triplet network
only needs to be trained once, on the ontology, and
the bottom half focuses on settings where the triplet
network is retrained for each new dataset. For each
half of the table, the last column gives the average
of the ranks of each setting’s performance across
the five corpora. For example, when training the
triplet network only on the ontology, the searching
strategy D-C (search the training data using concept
vectors) is almost always the worst performing,

7https://github.com/UKPLab/
sentence-transformers
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Train Search NCBI BC5CDR-D BC5CDR-C ShARe/CLEF MCN Avg. Rank

1 O O-T 83.74 82.65 97.00 82.76 69.11 10.2
2 O O-C 85.01 82.43 92.62 81.12 70.96 12
3 O D-T 85.39 77.29 74.21 79.76 61.26 12.6
4 O D-C 85.26 75.18 74.11 69.70 59.70 13.6
5 O OD-T 89.58 88.87 97.75 88.12 72.67 4.8
6 O OD-C 88.56 85.85 93.30 82.23 72.59 9.4
7 O D-T + O-T 90.34 89.66 97.62 87.26 81.33 3.6
8 O D-T + O-C 89.96 89.40 96.88 83.73 81.93 5
9 O D-C + O-T 86.28 83.72 97.14 82.98 76.67 7.4

10 O D-C + O-C 88.56 83.51 95.77 81.58 76.52 9.8
11 O D-T + OD-T 91.36 90.50 97.64 90.50 81.85 2
12 O D-T + OD-C 90.85 89.90 96.88 84.69 82.15 3.6
13 O D-C + OD-T 91.99 89.47 97.76 86.83 79.19 3.2
14 O D-C + OD-C 88.82 86.93 96.32 82.55 77.41 7.6

15 OD O-T 89.58 87.82 96.71 86.62 72.37 9.8
16 OD O-C 91.36 89.85 96.32 88.11 80.52 9.6
17 OD D-T 86.40 79.01 74.23 79.87 63.33 13.2
18 OD D-C 86.40 78.41 74.23 80.19 62.52 13.4
19 OD OD-T 91.11 90.38 97.85 88.87 76.15 8.2
20 OD OD-C 91.61 89.92 96.32 88.33 81.4 7.8
21 OD D-T + O-T 91.25 91.10 97.81 90.15 84.37 4
22 OD D-T + O-C 91.49 90.88 96.22 88.76 84.52 6.4
23 OD D-C + O-T 92.25 90.71 97.87 89.61 83.78 4
24 OD D-C + O-C 91.49 90.47 96.28 88.65 83.93 7.8
25 OD D-T + OD-T 91.61 91.22 97.81 90.21 84.37 2.4
26 OD D-T + OD-C 91.61 90.83 96.22 89.08 84.67 5.2
27 OD D-C + OD-T 92.25 90.95 97.91 90.15 83.70 3.4
28 OD D-C + OD-C 91.61 90.55 96.28 89.40 84.00 5.8

Table 4: Dev performances of the triplet network trained on ontology and ontology + data with different similarity
search strategies. The last column Avg. Rank shows the average rank of each similarity search strategy across
multiple datasets. Models with best average rank are highlighted in grey; models with best accuracy are bolded.

ranking 14th of 14 in four corpora and 12th of 14
in one corpus, for an average rank of 13.6.

Table 4 shows that the best models search over
both the ontology and the training data. Models
that only search over the training data (D-T and
D-C) perform worst, with average ranks of 12.6
or higher regardless of what the triplet network is
trained on, most likely because the training data
covers only a fraction of the concepts in the test
data. Models that only search over the ontology
(O-T and O-C) are only slightly better, with aver-
age ranks between 9.6 and 12, though the models
in the first two rows of the table at least have the
advantage that they require no annotated training
data (they train on and search over only the ontol-
ogy). However, the performance of such models
can be improved by adding domain-specific syn-
onyms to the ontology, i.e., OD-T vs. O-T (rows 5
vs. 1), and OD-C vs. O-C (rows 6 vs. 2), or adding
domain-specific synonyms and then searching in a
sieve-based manner (rows 7-14).

Table 4 also shows that searching based on text
(ontology synonyms or training data mentions) vec-
tors typically outperforms searching based on con-

cept (average of text) vectors. Each pair of rows
in the table shows such a comparison, and only in
rows 15-16 and 19-20 are the average ranks of the
-C models higher than the -T models.

Table 4 also shows that models using mixed rep-
resentation types (-T and -C) have worse ranks
than the text-only models (-T). For instance, going
from Train:O-Search:O-C to Train:O-Search:O-T
improves the average rank from 12 to 10.2, going
from Train:OD-Search:D-T+OD-C to Train:OD-
Search:D-T+OD-T improves the average rank from
5.2 to 2.4, etc. There are a few exceptions to this
on the MCN dataset. We analyzed the differences
in the predictions of Train:OD-Search:D-T+OD-T
(row 25) and Train:OD-Search:D-T+OD-C (row
26) on this dataset, and found that concept vectors
sometimes helps to solve ambiguous mentions by
averaging their concept texts. For instance, the OD-
T model finds concepts C0013144 and C2830004
for mention somnolent as they have the overlap-
ping synonym somnolent, while the OD-C model
ranks C2830004 higher as the other concept also
has other synonyms such as Drowsy, Sleepiness.

Finally, table 4 shows that sieve-based models
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Approach NCBI BC5CDR-D BC5CDR-C ShARe/CLEF MCN

Sieve-based (D’Souza and Ng, 2015) 84.65 - - 90.75 -
Sieve-based (Luo et al., 2019) - - - - 76.35
TaggerOne (Leaman and Lu, 2016) 88.80 88.9 94.1 - -
CNN-based ranking (Li et al., 2017) 86.10 - - 90.30 -
BERT-based ranking (Ji et al., 2020) 89.06 - - 91.10 -
BERT-based ranking (Xu et al., 2020) - - - - 83.56
BIOSYN (Sung et al., 2020) 91.1 93.2 96.6 - -
TTI (Henry et al., 2020) - - - - 85.26

PubMed-BERT + Search:O-T 76.56 76.60 91.78 73.64 59.97
PubMed-BERT + Search:D-T+OD-T 82.19 90.53 94.24 85.35 75.81

Train:O + Search:O-T 82.60 84.44 95.79 83.48 69.62
Train:O + Search:D-T+OD-T 89.48 92.30 96.67 89.19 82.19
Train:OD + Search:D-T+OD-T 88.96 92.92 96.81 90.41 83.23
Train:OD + Search:tuned 91.15 92.92 96.91 90.41 83.70

Table 5: Comparisons of our proposed approaches against the current state-of-the-art performances on NCBI,
BC5CDR-D, BC5CDR-C, ShARe/CLEF, and MCN datasets. Approaches with best accuracy are bolded.

outperform their non-sieve-based counterparts. For
example, D-T + O-T has better average ranks than
O-T, D-T, or OD-T (rows 7 vs. 1, 3, and 5; and
rows 21 vs. 15, 17, and 19).

From this analysis on the dev set, we select the
following models to evaluate on the test set:

Train:O + Search:O-T This is the best approach
that requires only the ontology; no annotated
training data is used.

Train:O + Search:D-T+OD-T This is the best
approach that only needs to be trained once (on
the ontology), as the training data is only used to
add extra concept text during search time. This
is similar to a real-world scenario where a user
manually adds some extra domain-specific syn-
onyms for concepts they care about.

Train:OD + Search:D-T+OD-T This is the best
approach that can be created from any combina-
tion of ontology and training data. The triplet
network must be retrained for each new domain.

Train:OD + Search:tuned This is the bold mod-
els in the second half of table 4. It requires not
only retraining the triplet network for each new
domain, but also trying out all search strategies
on the new domain and selecting the best one.

6 Results

Table 5 shows the results of our selected mod-
els on the test set, alongside the best models
in the literature. Our Train:OD+Search:tuned
model achieves new state-of-the-art on BC5CDR-
C (p8=0.0291), equivalent performance on NCBI

8We used a one-sample bootstrap resampling test. The one
sample is 10,000 runs of bootstrapping results of our system.

(p=0.6753) and BC5CDR-D (p=0.1204), <1 point
worse on ShARe (p=0.0375), and <2 points worse
on MCN (p=0). Note that the performance of TTI
is from an ensemble of multiple system runs. Yet
this model is simpler than most prior work: it re-
quires no two-step generate-and-rank framework
(Li et al., 2017; Ji et al., 2020; Xu et al., 2020), no
iterative candidate retrieval over the entire training
data (Sung et al., 2020), no hand-crafted rules or
features (D’Souza and Ng, 2015; Leaman and Lu,
2016; Luo et al., 2019), and no acronym expansion
or TF-IDF transformations (D’Souza and Ng, 2015;
Ji et al., 2020; Sung et al., 2020).

The PubMed-BERT rows in Table 5 demonstrate
that the triplet training is a critical part of the suc-
cess: if we use PubMed-BERT without triplet train-
ing, performance is 2 to 8 points worse than our
best models, depending on the dataset. Yet, we
can see that our proposed search strategies are also
important, as on the BC5CDR datasets, PubMed-
BERT can get within 3 points of the state-of-the-art
using the D-T+OD-T search strategy (though it is
much further away on the other datasets).

Perhaps most interestingly, our triplet network
trained only on the ontology and no annotated train-
ing data, Train:O+Search:D-T+OD-T, achieves
within 3 points of state-of-the-art on all datasets.
We believe this represents a more realistic scenario:
unlike prior work, our triplet network does not
need to be retrained for each new dataset/domain if
their concepts are from the same ontology. Instead,
the model can be adapted to a new dataset/domain
by simply pointing out any extra domain-specific
synonyms for concepts, and the search can inte-
grate these directly. Domain-specific synonyms do

18



PubMed-BERT + Search:OD-T Train:O + Search:OD-T Train:OD + Search:OD-T

Rank Text Concept Score Text Concept Score Text Concept Score

1 HNSCC C535575 0.919 Hyperparathyroidism,
Primary

D049950 0.767 Hyperparathyroidism,
Primary

D049950 0.838

5 NPC2 C536119 0.903 Hyperparathyroidism 1 C564166 0.692 Primary Hyperparathy-
roidism

D049950 0.830

10 MPNST D009442 0.900 HRPT1 C564166 0.611 HRPT1 C564166 0.672
15 HPNS D006610 0.897 Hyperparathyroidism 2 C563273 0.595 Parathyroid Adenoma,

Familial
C564166 0.644

20 PBC2 C567817 0.895 Hyperparathyroidism,
Secondary

D006962 0.566 Hyperparathyroidisms,
Secondary

D006962 0.608

Table 6: Top similar texts, their concepts, and similarity scores for mention primary HPT (D049950) predicted
from models PubMed-BERT + Search:OD-T, Train:O + Search:OD-T and Train:OD + Search:OD-T.

seem to be necessary for all datasets; without them
(i.e., Train:O+Search:O-T), performance is about
10 points below state-of-the-art.

As a small qualitative analysis of the models, Ta-
ble 6 shows an example of similarity search results,
where the systems have been asked to normalize
the mention primary HPT. PubMed-BERT fails,
producing unrelated acronyms, while both triplet
network models find the concept and rank it with
the highest similarity score.

7 Limitations and future research

Our ability to normalize polysemous concept men-
tions is limited by their context-independent repre-
sentations. Although our PubMed-BERT encoder
is a pre-trained contextual model, we feed in only
the mention text, not any context, when producing a
representation vector. This is not ideal for mentions
with multiple meanings, e.g., potassium in clinical
notes may refer to the substance (C0032821) or
the measurement (C0202194), and only the context
will reveal which one. A better strategy to generate
the contextualized representation for the concept
mention, e.g., Schumacher et al. (2020), may yield
improvements for such mentions.

We currently train a separate triplet network
for each ontology (one for MEDIC, one for CTD,
one for SNOMED-CT, etc.) but in the future
we would like to train on a comprehensive ontol-
ogy like the UMLS Metathesaurus (Bodenreider,
2004), which includes nearly 200 different vocab-
ularies (SNOMED-CT, MedDRA, RxNorm, etc.),
and more than 3.5 million concepts. We expect
such a general vector space model would be more
broadly useful to the biomedical NLP community.

We explored one type of triplet training network,
but in the future we would like to explore other
variants, such as semi-hard triplet mining (Schroff

et al., 2015) for generating samples, cosine similar-
ity for measuring the similarity during training and
inference, and multi-similarity loss (Wang et al.,
2019) for calculating the loss.

8 Conclusions

We presented a vector-space framework for concept
normalization, based on pre-trained transformers, a
triplet objective with online hard triplet mining, and
a new approach to vector similarity search. Across
five datasets, our models that require only an on-
tology to train are competitive with state-of-the-art
models that require domain-specific training.
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ong Lu. 2013. DNorm: disease name normaliza-
tion with pairwise learning to rank. Bioinformatics,
29(22):2909–2917.

Robert Leaman and Zhiyong Lu. 2016. Tag-
gerone: joint named entity recognition and normal-
ization with semi-markov models. Bioinformatics,
32(18):2839–2846.

Robert Leaman, Chih-Hsuan Wei, and Zhiyong Lu.
2015. tmchem: a high performance approach for
chemical named entity recognition and normaliza-
tion. Journal of cheminformatics, 7(S1):S3.

Hsin-Chun Lee, Yi-Yu Hsu, and Hung-Yu Kao. 2016.
AuDis: an automatic CRF-enhanced disease nor-
malization in biomedical text. Database, 2016.
Baw091.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics. Btz682.

Kathy Lee, Sadid A. Hasan, Oladimeji Farri, Alok
Choudhary, and Ankit Agrawal. 2017. Medical Con-
cept Normalization for Online User-Generated Texts.
In 2017 IEEE International Conference on Health-
care Informatics (ICHI), pages 462–469. IEEE.

Fei Li, Yonghao Jin, Weisong Liu, Bhanu Pratap Singh
Rawat, Pengshan Cai, and Hong Yu. 2019. Fine-
Tuning Bidirectional Encoder Representations From
Transformers (BERT)–Based Models on Large-
Scale Electronic Health Record Notes: An Empiri-
cal Study. JMIR Med Inform, 7(3):e14830.

Haodi Li, Qingcai Chen, Buzhou Tang, Xiaolong
Wang, Hua Xu, Baohua Wang, and Dong Huang.
2017. Cnn-based ranking for biomedical entity nor-
malization. BMC bioinformatics, 18(11):79–86.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database, 2016.

Nut Limsopatham and Nigel Collier. 2016. Normalis-
ing medical concepts in social media texts by learn-
ing semantic representation. In Proceedings of the

20



54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1014–1023, Berlin, Germany. Association for Com-
putational Linguistics.

Hongwei Liu and Yun Xu. 2017. A Deep Learning
Way for Disease Name Representation and Normal-
ization. In Natural Language Processing and Chi-
nese Computing, pages 151–157. Springer Interna-
tional Publishing.

Yen-Fu Luo, Weiyi Sun, and Anna Rumshisky. 2019.
MCN: A comprehensive corpus for medical concept
normalization. Journal of Biomedical Informatics,
pages 103–132.

Xiaofei Ma, Peng Xu, Zhiguo Wang, Ramesh Nallap-
ati, and Bing Xiang. 2019. Universal text represen-
tation from bert: An empirical study. arXiv preprint
arXiv:1910.07973.

Zulfat Miftahutdinov and Elena Tutubalina. 2019.
Deep neural models for medical concept normal-
ization in user-generated texts. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 393–399, Florence, Italy. Association
for Computational Linguistics.

Ishani Mondal, Sukannya Purkayastha, Sudeshna
Sarkar, Pawan Goyal, Jitesh Pillai, Amitava Bhat-
tacharyya, and Mahanandeeshwar Gattu. 2019.
Medical entity linking using triplet network. In Pro-
ceedings of the 2nd Clinical Natural Language Pro-
cessing Workshop, pages 95–100, Minneapolis, Min-
nesota, USA. Association for Computational Lin-
guistics.

Shikhar Murty, Patrick Verga, Luke Vilnis, Irena
Radovanovic, and Andrew McCallum. 2018. Hier-
archical losses and new resources for fine-grained
entity typing and linking. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
97–109, Melbourne, Australia. Association for Com-
putational Linguistics.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru.
2016. Learning text similarity with Siamese re-
current networks. In Proceedings of the 1st Work-
shop on Representation Learning for NLP, pages
148–157, Berlin, Germany. Association for Compu-
tational Linguistics.

Thanh Ngan Nguyen, Minh Trang Nguyen, and
Thanh Hai Dang. 2018. Disease Named Entity Nor-
malization Using Pairwise Learning To Rank and
Deep Learning. Technical report, VNU University
of Engineering and Technology.

Jinghao Niu, Yehui Yang, Siheng Zhang, Zhengya Sun,
and Wensheng Zhang. 2019. Multi-task Character-
Level Attentional Networks for Medical Concept
Normalization. Neural Process Lett, 49(3):1239–
1256.

Nikhil Pattisapu, Sangameshwar Patil, Girish Palshikar,
and Vasudeva Varma. 2020. Medical Concept Nor-
malization by Encoding Target Knowledge. In
Proceedings of the Machine Learning for Health
NeurIPS Workshop, volume 116 of Proceedings
of Machine Learning Research, pages 246–259.
PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815–823.

Elliot Schumacher, Andriy Mulyar, and Mark Dredze.
2020. Clinical concept linking with contextualized
neural representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 8585–8592, Online. Asso-
ciation for Computational Linguistics.

Mujeen Sung, Hwisang Jeon, Jinhyuk Lee, and Jaewoo
Kang. 2020. Biomedical entity representations with
synonym marginalization. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3641–3650, Online. As-
sociation for Computational Linguistics.

Hanna Suominen, Sanna Salanterä, Sumithra Velupil-
lai, Wendy W Chapman, Guergana Savova, Noemie
Elhadad, Sameer Pradhan, Brett R South, Danielle L
Mowery, Gareth JF Jones, et al. 2013. Overview of
the share/clef ehealth evaluation lab 2013. In Inter-
national Conference of the Cross-Language Evalu-
ation Forum for European Languages, pages 212–
231. Springer.

Elena Tutubalina, Zulfat Miftahutdinov, Sergey
Nikolenko, and Valentin Malykh. 2018. Medical
concept normalization in social media posts with
recurrent neural networks. Journal of Biomedical
Informatics, 84:93–102.

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong,
and Matthew R. Scott. 2019. Multi-similarity loss
with general pair weighting for deep metric learn-
ing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Al-
lan Peter Davis, Carolyn J Mattingly, Jiao Li,
Thomas C Wiegers, and Zhiyong Lu. 2015.
Overview of the biocreative v chemical disease re-
lation (cdr) task. In Proceedings of the fifth BioCre-
ative challenge evaluation workshop, volume 14.

21



Dongfang Xu, Zeyu Zhang, and Steven Bethard. 2020.
A generate-and-rank framework with semantic type
regularization for biomedical concept normalization.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8452–8464, Online. Association for Computational
Linguistics.

22



Proceedings of the BioNLP 2021 workshop, pages 23–29
June 11, 2021. ©2021 Association for Computational Linguistics

Scalable Few-Shot Learning of Robust Biomedical Name Representations

Pieter Fivez
CLiPS Research Centre
University of Antwerp

pieter.fivez@uantwerpen.be

Simon Šuster
Faculty of Engineering and Information Technology

University of Melbourne
simon.suster@unimelb.edu.au

Walter Daelemans
CLiPS Research Centre
University of Antwerp

walter.daelemans@uantwerpen.be

Abstract

Recent research on robust representations of
biomedical names has focused on modeling
large amounts of fine-grained conceptual dis-
tinctions using complex neural encoders. In
this paper, we explore the opposite paradigm:
training a simple encoder architecture us-
ing only small sets of names sampled from
high-level biomedical concepts. Our encoder
post-processes pretrained representations of
biomedical names, and is effective for various
types of input representations, both domain-
specific or unsupervised. We validate our pro-
posed few-shot learning approach on multi-
ple biomedical relatedness benchmarks, and
show that it allows for continual learning,
where we accumulate information from vari-
ous conceptual hierarchies to consistently im-
prove encoder performance. Given these find-
ings, we propose our approach as a low-
cost alternative for exploring the impact of
conceptual distinctions on robust biomedical
name representations. Our code is open-
source and available at www.github.com/
clips/fewshot-biomedical-names.

1 Introduction

Recent research in biomedical NLP has focused
on learning robust representations of biomedical
names. To achieve robustness, an encoder should
represent the semantic similarity and relatedness
between different names (e.g. by their closeness in
the embedding space), while its embeddings should
also remain as transferable and generally applicable
as self-supervised pretrained representations.

Prior research into robust representations has
shown three distinct tendencies. Firstly, research
typically focuses on encoders with complex neural
architectures and a large amount of parameters. As

Chapter V: Mental and behavioural disorders

F34 F63
Persistent mood disorders Habit and impulse disorders

F34.0 F63.0
Cyclothymia Pathological gambling

F34.1 F63.1
Dysthymia Pyromania

Table 1: Example of how reference names are grouped
together within the ICD-10 hierarchy of disorders.

compensation for this complexity, such models can
be heavily regularized during training, e.g. by tying
the output of a nested LSTM to a pooled embedding
of its input representations (Phan et al., 2019), or
by integrating a finetuned BERT model with sparse
lexical representations (Sung et al., 2020).

Secondly, encoders are typically trained on fine-
grained concepts from biomedical ontologies such
as the UMLS, i.e., concepts with no child nodes in
the ontological directed graph. Small synonym sets
of such fine-grained concepts are readily available
as training data, and often serve as evaluation data
for normalization tasks to which trained encoders
can be applied.

Lastly, as a result of using fine-grained concepts,
vast amounts of biomedical names are needed to
model the large collection of fine-grained distinc-
tions present in ontologies. For instance, Phan
et al. (2019) train their encoder on 156K disorder
names. These three tendencies share an underlying
assumption: complex neural encoder architectures
can learn biomedical semantics by generalizing in
a bottom-up fashion from large amounts of fine-
grained semantic distinctions, if provided with suf-
ficient quantities of training data.
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However, it is not self-evident that such an ap-
proach is the most effective way to achieve general-
purpose biomedical name representations. For in-
stance, it does not directly address what concep-
tual distinctions are actually relevant to improve
representations for downstream NLP applications.
Finding and exploiting relevant distinctions can
be an empirical question, and as such require low-
cost exploration of various conceptual hierarchies.
Such a heuristic search is expensive in the current
paradigm.

In this paper, we explore a scalable few-shot
learning approach for robust biomedical name rep-
resentations which is orthogonal to this paradigm.
We investigate to what extent we can fit a simple
encoder architecture using only a small selection of
data, with a limited amount of concepts containing
only a few samples each (i.e., few-shot learning).
To this end, we don’t use fine-grained concepts for
training, but more general higher-level concepts
which span a large range of fine-grained concepts.
Table 1 gives an example of such a larger grouping
of biomedical names.

This paper offers two main contributions. Firstly,
our proposed approach offers an alternative for
training biomedical name encoders with much
lower computational cost, both for training and
inference at test time. It is applicable to large-
scale hierarchies containing at least ten thousands
of names and is equally effective for different types
of pretrained representations when tested on vari-
ous biomedical relatedness benchmarks. Secondly,
we show that this approach allows for low-cost con-
tinual learning from multiple concept hierarchies,
and as such can help with the accumulation of rele-
vant domain-specific information for downstream
biomedical NLP tasks.

2 Approach

Our approach is similar to supervised post-
processing techniques of word embeddings such as
retrofitting and counterfitting (Faruqui et al., 2015;
Mrkšić et al., 2016), but instead post-processes pre-
trained representations of biomedical names.

2.1 Encoder architecture

Our encoder architecture is a feedforward neural
network with Rectified Linear Unit (ReLU) as non-
linear activation function. This neural network
transforms a pretrained representation of a biomed-
ical name, after which this transformation is aver-

min max mean stdev
ICD-10 247 40,519 3,414 8,693

SNOMED-CT 397 19,114 3,532 4,094
(+ ambiguous 1,108 23,915 4,990 5,134)

Table 2: Descriptive statistics about the number of
names per concept for our training data.

aged with the pretrained representation:

f(n) =
enc(un) + un

2
(1)

where f(n) is the output representation for a
biomedical name, un is its pretrained input rep-
resentation, and enc is the feedforward neural net-
work which transforms the input representation.
The averaging step ensures that the encoder archi-
tecture learns to update the pretrained input rep-
resentation rather than create an entirely new rep-
resentation. This makes our model more robust
against overfitting in few-shot learning settings.

2.2 Training objectives
Our training objectives are based on the state-of-
the-art BNE model by Phan et al. (2019) and the
DAN model by Fivez et al. (2021b), which gener-
alizes the BNE model to any hierarchical level of
biomedical concepts. Our framework requires a set
of concepts C, where each concept c ∈ C contains
a set of concept names Cn. The set of biomedical
names N contains the union of all those sets of
concept names. We propose a simple multi-task
training regime which applies two training objec-
tives to each biomedical name n ∈ N . We use
cosine distance as distance function d for both ob-
jectives.

Semantic similarity We enforce embedding sim-
ilarity between names that are from the same con-
cept by using a siamese triplet loss (Chechik et al.,
2010). This loss forces the encoding of a biomed-
ical name f(n) to be closer to the encoding of a
semantically similar name f(npos) than that of an
encoded negative sample name f(nneg), within a
specified (possibly tuned) margin:

pos = d(f(n), f(npos))

neg = d(f(n), f(nneg))

Lsem = max(pos− neg +margin, 0)

(2)

To select negative names during training we apply
distance-weighted negative sampling (Wu et al.,
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2017) over all training names, since this has been
proven more effective than hard or random negative
sampling.

Conceptually grounded regularization To pre-
vent the model from overfitting on the semantic
similarity objective, we regularize it by grounding
the output representations to a stable and meaning-
ful target. Simple approximations of prototypical
concept representations can already be very effec-
tive as targets (Fivez et al., 2021a). Following the
model by Fivez et al. (2021b), we use a grounding
target which is applicable to any level of catego-
rization, from fine-grained concept distinctions to
higher-level groupings of names. This target is a
compromise between the contextual meaningful-
ness and conceptual meaningfulness objectives of
the BNE model. Rather than constraining a name
encoding either to its pretrained name representa-
tion or to a pretrained representation of its concept,
we minimize the distance to the average of both
pretrained representations:

uc =
1

|Cn|
∑

n∈Cn

un

uground =
uc + un

2
Lground = d(f(n), uground)

(3)

where the concept representation uc is approxi-
mated by averaging each pretrained embedding
representation un from the set of names Cn belong-
ing to the concept.

This constraint implies that the dimensionality
of the encoder output should be the same as that
of the input. However, if the input dimensionality
is smaller than the desired output dimensionality,
this could be solved using e.g. random projections,
which work well for increasing the dimensionality
of neural encoder inputs (Wieting and Kiela, 2019).

Multi-task loss Our multi-task loss sums the
losses of the 2 training objectives:

L = αLsem + βLground (4)

where α and β are possible weights for the indi-
vidual losses. Since both losses directly reflect co-
sine distances, they are similarly scaled and don’t
require weighting to work properly. In our experi-
ments, α = β = 1 showed the most robust perfor-
mance along all settings.

2.3 Training data

We extract sets of high-level concepts and their
constituent names from 2 large-scale hierarchies
of disorder concepts, ICD-10 and SNOMED-CT.
Table 2 gives an overview of our data distributions.

ICD-10 We use the 2018 version of the ICD-10
coding system.1 We select the 21 chapters as con-
cept labels, and assign the reference name of each
code in a chapter to its concept label. Table 1 gives
an example of how such a grouping includes di-
verse semantic relations.

SNOMED-CT We use the 2018AB release of
the UMLS ontology2 to extract a directed on-
tological graph of SNOMED-CT concepts. We
then select the first-degree child nodes of concept
C0012634, which is the parent concept for all dis-
orders. We then remove those children which are
direct parents to other selected children, since they
are redundant for our purpose.

This leaves us with 87 concepts, to which we
assign the reference terms of all their child concepts
in the ontological graph as biomedical names. To
make this setup directly comparable to our ICD-10
setup, we select the 21 largest concepts. Finally,
we leave out ambiguous names which belong to
multiple concepts. Table 2 shows the impact on the
data distribution.

3 Experiments and discussion

3.1 Pretrained representations

We experiment with 3 pretrained name representa-
tions. As a first baseline, we use 300-dimensional
fastText (Bojanowski et al., 2017) word embed-
dings which we train on 76M sentences of pre-
processed MEDLINE articles released by Hakala
et al. (2016). We use average pooling (Shen et al.,
2018) to extract a 300-dimensional name repre-
sentation. As a second baseline, we average the
728-dimensional context-specific token activations
of a name extracted from the publicly released
BioBERT model (Lee et al., 2019).

As state-of-the-art reference, we extract 200-
dimensional name representations using the pub-
licly released pretrained BNE model with skipgram
word embeddings, BNE + SGw,3 which was trained
on approximately 16K synonym sets of disease

1https://www.cdc.gov/nchs/icd
2https://uts.nlm.nih.gov/home.html
3https://github.com/minhcp/BNE
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Figure 1: Few-shot performance for fastText encoders
on MayoSRS, averaged over 5 random samples.

concepts in the UMLS, containing 156K disease
names.

3.2 Training details

We randomly sample a small fixed amount of
names from each concept in our training data as
actual few-shot training names. We then randomly
sample the same amount of names as validation
data to calculate the multi-task loss as stopping cri-
terion. This criterion is also used to finetune the
size of the encoder network. Using only 1 hidden
layer proved best in all settings, which leaves only
the dimensionality of this layer to be tuned.

Our encoder network is implemented in PyTorch
(Paszke et al., 2019). Adam optimization (Kingma
and Ba, 2015) is performed on a batch size of 16,
using a learning rate of 0.001 and a dropout rate
of 0.5. Input strings are first tokenized using the
Pattern tokenizer (Smedt and Daelemans, 2012)
and then lowercased. We use a triplet margin of
0.1 for the siamese triplet loss Lsem defined in
Equation 2.

3.3 Results

We evaluate our trained encoders on 3 biomedical
benchmarks of semantic relatedness and similar-
ity, which allow to compare similarity scores be-
tween name embeddings with human judgments
of relatedness. MayoSRS (Pakhomov et al., 2011)
contains multi-word name pairs of related but dif-
ferent fine-grained concepts. UMNSRS (Pakho-
mov et al., 2016) contains only single-word pairs,
and makes a distinction between relatedness and
similarity, which is a more narrow form of related-
ness. Finally, EHR-RelB (Schulz et al., 2020) is

EHR-RelB
(rel)

MayoSRS
(rel)

UMNSRS
(rel) (sim)

BioSyn 0.45 0.50 0.40 0.42
Fivez et al. (2021a) 0.67 0.56 0.56

fastText 0.39 0.44 0.47 0.48
BioBERT 0.34 0.23 0.18 0.26

BNE 0.47 0.63 0.54 0.58
SNOMED

fastText 0.43 0.51 0.46 0.51
BioBERT 0.40 0.31 0.32 0.38

BNE 0.53 0.63 0.55 0.60
ICD-10
fastText 0.43 0.55 0.52 0.56

BioBERT 0.35 0.34 0.32 0.38
BNE 0.51 0.65 0.56 0.60
S→ I

fastText 0.44 0.55 0.46 0.52
BioBERT 0.39 0.33 0.35 0.42

BNE 0.54 0.67 0.52 0.58
I→ S

fastText 0.45 0.54 0.46 0.51
BioBERT 0.39 0.33 0.37 0.42

BNE 0.54 0.67 0.53 0.58

Table 3: Spearman’s rank correlation coefficient be-
tween human judgments and similarity scores of name
embeddings, reported on semantic similarity (sim) and
relatedness (rel) benchmarks. The highest score is de-
noted in bold; the second highest is underlined.

much larger than the other benchmarks, and con-
tains multi-word concept pairs which are chosen
based on co-occurrence in electronic health records.
This ensures that the evaluated concept pairs are
actually relevant in function of downstream appli-
cations such as information retrieval.

We average all test results over 5 different ran-
dom training samples. We use cosine similarity as
similarity score for all baseline representations and
trained encoders. Figure 1 shows the impact of the
amount of few-shot training names on performance
when using fastText representations. Our model
already substantially improves over the baseline
with only 5 names per concept (105 in total), and
maintains consistent improvement up to 15 few-
shot names. This confirms that our approach is
well-suited to anticipate expected improvements
from training on large-scale hierarchies.

Table 3 shows the results on all benchmarks
for 15-shot learning. All encoders were tuned to
9,600 hidden dimensions. We include two state-of-
the-art biomedical name encoders in our compari-
son. Firstly, BioSyn (Sung et al., 2020) sums the
weighted inner products of fine-tuned BioBERT
representations and sparse TF-IDF representations
into one similarity score between two names. The
pre-trained model4 for which we report results was

4https://github.com/dmis-lab/BioSyn
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Parent concept C0042075
Parent concept name disorder of the urinary system

Validation mention urinary hesitancy

15-shot BNE BNE

Top 10 ranking

nebulous urine
calculus of lower urinary tract ( disorder )

urinary obstruction due to nodular prostate ( disorder )
double kidney and/or pelvis

covered exstrophy of bladder ( disorder )
nephropathy caused by aminoglycoside ( disorder )

renal vein thrombosis
benign tumour of urethra

injury of male urethra
postprocedural bulbous urethral stricture

nebulous urine
calculus of lower urinary tract ( disorder )

urinary obstruction due to nodular prostate ( disorder )
double kidney and/or pelvis

genital oedema
perineal laceration during delivery , nos

abdominal hernia
covered exstrophy of bladder ( disorder )

heart :[ weak ] or [ failure nos ] ( disorder )
hourglass contraction of uterus

Table 4: A comparison between the rankings of 315 SNOMED-CT training names for the validation mention
urinary hesitancy. Non-matching names are underlined. While the pretrained BNE model makes various topical
associations, our 15-shot model using the BNE representations as input has learned to cluster around the semantics
of urinary tract disorders.

trained on the NCBI disease benchmark (Doğan
et al., 2014) for biomedical entity normalization.
Secondly, we include the results of the conceptually
grounded Deep Averaging Network by Fivez et al.
(2021a), which was trained on SNOMED-CT syn-
onym sets mapped into larger ICD-10 categories.

The results show various trends. Firstly, almost
all trained encoders improve over their input base-
lines for all benchmarks, regardless of the type of
input representation. Secondly, the performance in-
crease is consistent for both ICD-10 and SNOMED-
CT, even as their conceptual hierarchies are sub-
stantially different. Lastly, we also look at con-
tinual learning from SNOMED-CT to ICD-10 (S
→ I) or vice versa (I→ S), where we use the out-
put of the first model as input representations to
train the second model. This approach leads to sys-
tematic improvements for all representation types,
including the state-of-the-art BNE representations.
In other words, we provide tangible empirical evi-
dence that few-shot robust representations can al-
low for continual specialization in biomedical se-
mantics.

To better understand how our few-shot learning
approach can have a visible impact on various re-
latedness benchmarks, Table 4 gives an example
of nearest neighbor names from the training set
of SNOMED-CT names for the validation men-
tion urinary hesitancy. While the pretrained BNE
model makes various topical associations, our 15-
shot model using the BNE representations as input
has learned to cluster around the semantics of uri-
nary tract disorders. As this already generalizes

to validation mentions, we can expect the model
to transfer this information to downstream applica-
tions wherever urinary tract disorders are relevant.
This applies to all 21 high-level topics which were
simultaneously encoded for both the ICD-10 and
SNOMED-CT ontologies.

4 Conclusion and future work

We have proposed a novel approach for scalable
few-shot learning of robust biomedical name rep-
resentations, which trains a simple encoder ar-
chitecture using only small subsamples of names
from higher-level concepts of large-scale hierar-
chies. Our model works for various pretrained
input embeddings, including already specialized
name representations, and can accumulate infor-
mation over various hierarchies to systematically
improve performance on biomedical relatedness
benchmarks. Future work will investigate whether
such improvements trickle down properly to down-
stream biomedical NLP tasks.
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Abstract

The accelerating growth of big data in the
biomedical domain, with an endless amount
of electronic health records and more than 30
million citations and abstracts in PubMed, in-
troduces the need for automatic structuring of
textual biomedical data. In this paper, we de-
velop a method for detecting relations between
food and disease entities from raw text. Due
to the lack of annotated data on food with re-
spect to health, we explore the feasibility of
transfer learning by training BERT-based mod-
els on existing datasets annotated for the pres-
ence of cause and treat relations among dif-
ferent types of biomedical entities, and using
them to recognize the same relations between
food and disease entities in a dataset created
for the purposes of this study. The best mod-
els achieve macro averaged F1 scores of 0.847
and 0.900 for the cause and treat relations, re-
spectively.

1 Introduction

The ongoing prevalence of malnutrition, the rising
incidence of chronic diseases affected by diet, and
the fact that even food that is generally considered
to be healthy can be harmful to patients suffering
from certain diseases or when ingested in com-
bination with specific drugs, require a profound
understanding of the role of nutrition in the com-
plex environmental interactions that contribute to
the development or treatment of different ailments.
The effect of food on human health is the subject of
numerous biomedical studies, however, the sheer
volume and the predominantly unstructured form
of newly published articles prevents medical pro-
fessionals from keeping up with recent discover-
ies, and impedes the development of systems for
knowledge-base construction, Decision Support,
and Question-Answering (QA), which brings about
the need for information extraction (IE) methods
for structuring the newly published knowledge.

Knowledge graphs (KGs) are specialized data
representation structures that store information as
a collection of interlinked descriptions of entities.
The development of Relation Extraction (RE) meth-
ods is necessary for automatic linking of the nodes
in KGs and reducing the amount of work required
by the experts in order to create and extend these
resources.

A lot of research effort has been dedicated to
extracting relations between different biomedical
entities, however, the lack of annotated data im-
pedes the development of food-disease RE meth-
ods, which are necessary for linking food entities to
concepts from the biomedical domain, and under-
standing the impact of nutrition on human health.

Transfer learning (TL) (Weiss et al., 2016;
Zhuang et al., 2019) is a potential solution for this
problem, which involves improving a learner from
one domain by transferring information from a re-
lated domain. The use of TL in this paper is two-
fold. On the one hand, we use models that are
pre-trained on large amounts of data, and fine-tune
them for the RE task. On the other hand, we in-
vestigate the feasibility of re-purposing existing
annotated IE resources in the biomedical domain
as a potential strategy for making up for the deficit
of such resources in the food domain.

We focus on the detection of cause and treat
relations among food and disease entities, and rep-
resent the RE task as a binary classification prob-
lem, meaning that we train separate classifiers that
detect the presence of each relation type. We per-
form fine-tuning of BERT (Devlin et al., 2018),
BioBERT (Lee et al., 2019) and RoBERTa (Liu
et al., 2019) models, which have achieved state of
the art results in several Natural Language Process-
ing (NLP) tasks.

To train the classifiers, we use the
CrowdTruth (Dumitrache et al., 2017, 2015b,a) and
Adverse Drug Events (ADE) (Gurulingappa et al.,
2012) datasets, which contain sentences annotated
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for the existence of relations between different
types of biomedical entities. We then apply TL in
order to use the classifiers trained on the source
datasets to directly predict relations among food
and disease entities. The reasoning behind the
use of TL in this setting is that even though the
sentences contain entities of different types, by
masking the entity occurrences in the sentence,
the models could use the context words around
the entities and pick up on linguistic features such
as keywords or sentence structure to detect the
presence of a particular relation. Even though our
goal is focused on detecting the relations between
food and disease entities, we believe the method to
be general enough to be applicable for entities of
any type, as long as the relation is the same as the
one the model was trained to recognize.

To evaluate the proposed models, we introduce
a dataset of 608 sentences, which are extracted
from abstracts of scientific articles from PubMed
and are manually annotated for the presence of
cause and treat relations between food and disease
entities. To the best of our knowledge, this is the
first English RE dataset in the food domain, and it is
publicly available on GitHub 1, as an open-source
resource that can be reused in future studies.

The rest of the paper is organized as follows. In
the next section, we give an overview of the RE
work in the domains of biomedicine, and food and
nutrition. The data sources used for the experi-
ments are described in Section 3. The text repre-
sentation and classification models are presented
in Section 4, while their evaluation is discussed in
Section 5.

2 Related work

In the past decade, numerous methods have been
developed for extracting biomedical relations, such
as drug-drug (Dewi et al., 2017; Liu et al., 2016;
Kim et al., 2015; Sahu and Anand, 2018), protein-
protein (Koyabu et al., 2015; Fan et al., 2018; Zhou
et al., 2018), drug-disease (Wang et al., 2017; Bchir
and Karaa, 2013), chemical-gene (Lim and Kang,
2018) and chemical-protein (Lung et al., 2019) in-
teractions.

In the domain of food and nutrition, the efforts di-
rected at creating RE systems have been quite more
limited in comparison. A gold standard for food RE
has been generated for the German language (Wie-

1https://github.com/gjorgjinac/
food-disease-dataset

gand et al., 2012b), and different methods such
as distant supervision (DS), pattern-matching, and
the use of co-occurrence measures have been in-
vestigated for the detection of food relations for
customer advice (Wiegand et al., 2012a; Reiplinger
et al., 2014). A Chinese food RE system (Miao
et al., 2012) has also been developed, which treats
RE as a sequence labeling task and adopts Con-
ditional Random Fields (CRFs) models to extract
relations between food and disease entities from
Chinese biomedical data. However, resources in
other languages are not easily re-purposed for the
English language.

A related resource in the English language which
contains extracted relations of food and disease
entities is the NutriChem database (Jensen et al.,
2014; Ni et al., 2017), which links plant-based
foods with their small molecule components, drugs
and disease phenotypes. A critical difference be-
tween NutriChem and the method we aim to de-
velop in this work is the fact that NutriChem limits
its scope to plant-based foods, while we do not pose
a limitation on the type of foods or diseases be-
tween which the relations occur, and aim to extract
relations from a broader range of food categories.

The benefits of TL have previously been investi-
gated for the purposes of biomedical NER (Sun and
Yang, 2019; Francis et al., 2019) and RE (Zhang
et al., 2019; Peng et al., 2019; Hafiane et al., 2020).
Recent work has been aimed at solving the chal-
lenges of imbalanced relation distribution, linguis-
tic variation and partial transfer using relation-
gated adversarial learning (Zhang et al., 2019),
and capturing dependency tree information using
TreeLSTM models (Legrand et al., 2018).

BERT has achieved state-of-the-art results on
natural language processing (NLP) tasks, including
RE between several types of biomedical entities,
which is one of the tasks in the Biomedical Lan-
guage Understanding Evaluation (BLUE) bench-
mark (Peng et al., 2019). A comparison of the
performance of BERT models for detecting rela-
tions between proteins and chemicals, and genomic
factors and drugs or drug responses (Hafiane et al.,
2020), finds that depending on the target corpus,
different variants of BERT may achieve the best re-
sults, and that fine-tuning the models is preferable
over freezing the layers of the original model and
only updating the weights of new layers added on
top of the original ones. Guided by these findings,
we perform fine-tuning of several BERT variants
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for the RE task.
The Adverse Drug Events (ADE) corpus (Gu-

rulingappa et al., 2012), which is one of the source
datasets in our experiments, has been extensively
used for training RE models, and more recently,
for the exploitation of inter-task correlations for
joint entity and relation extraction using differ-
ent approaches, such as adversarial training (Bek-
oulis et al., 2018), Cross-Modal Attention Net-
works (Zhao et al., 2020) and BERT models (Eberts
and Ulges, 2019). However, unlike the previous
work done with this corpus, our goal is not to pre-
dict relations between the annotated entities, but to
learn the context words used for expressing causal
relations, so they can be recognized regardless of
the entities between which they occur.

3 Data

TL usually involves the use of two types of
datasets: source datasets and target datasets, where
models are trained on the source datasets, and
adapted to make predictions on the target datasets.
We are specifically interested in extracting rela-
tions between food and disease entities, and we
use the help of two existing source datasets, the
CrowdTruth (Dumitrache et al., 2017) and the ADE
dataset (Gurulingappa et al., 2012), in order to ex-
tract relations in the target FoodDisease dataset,
which was created for the purposes of this study.

3.1 The CrowdTruth dataset

The CrowdTruth dataset (Dumitrache et al., 2017)
for medical RE contains annotated data for cause
and treat relations in sentences from abstracts of
PubMed articles.

The dataset contains 4028 sentences annotated
for the existence of a cause relation and 3983 sen-
tences annotated for the existence of a treat relation.
Every sample of the dataset contains the name of
a relation, and a sentence containing two entities
between which the relation may or may not occur.
Each entity is further described by its UMLS name,
its starting and ending position in the sentence, and
the exact textual form in which it appears in the
sentence. Apart from this, each sample is assigned
several labels which indicate whether the relation
is observed between the two terms.

The initial data (Wang and Fan, 2014) were col-
lected using Distant supervision (DS) (Mintz et al.,
2009), which is a inexpensive and straightforward
way of labeling training data, but is also prone to

producing noisy, low quality labels (Dumitrache
et al., 2015b; Ji et al., 2017; Chen et al., 2021). Be-
cause of that, the annotations for the cause and treat
relations collected using DS were further refined
using the CrowdFlower platform where a multi-
label annotation task was executed through crowd-
sourcing (Dumitrache et al., 2017, 2015b,a). Ad-
ditionally, experts annotated sentences with binary
labels, based on whether a specified seed relation
discovered by DS is present between two given
biomedical entities that occur in the sentence.

The sentence relation score given for each sam-
ple is computed as the cosine similarity between
the vector containing the sum of the annotations of
the non-expert workers, and the unit vector for the
relation. Here, the unit vector refers to a one-hot
vector where the value corresponding to the relation
is equal to 1, and all other components are equal
to 0. This score is in the range [0, 1]. The crowd
score is calculated using the sentence relation score,
by applying a threshold of 0.5 to separate positive
from negative examples, and rescaling the obtained
positive and negative samples in the ranges [0.5, 1],
and [-1, -0.5], respectively.

The expert label is based on the experts’ annota-
tions and it takes values of either 1 or -1, indicating
the presence or absence of the relation, respectively.
However, due to the cost, limited time and availabil-
ity of experts, the expert annotations were limited
to 975 samples in the cause dataset and 621 sam-
ples in the treat dataset.

3.1.1 Target variable construction in the
CrowdTruth dataset

The target variable is a binary indicator of the exis-
tence of the cause or treat relationship in the respec-
tive dataset. As the CrowdTruth dataset contains
multiple indicators of these relations, we choose
to rely on the labels assigned by experts, but since
these are not available for all samples, we also use
the crowd score, which has been shown to give
reliable results in the original studies (Dumitrache
et al., 2017, 2015b,a). To be more precise, if the
sentence has been labeled by an expert, the target
label is assigned a value of 1, if the score given by
the expert is 1, or 0, if the score given by the expert
is -1. If the sentence has not been labeled by an
expert, the target label is assigned a value of 1, if
the crowd score is positive, or 0, if the crowd score
is negative.
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3.2 The Adverse Drug Events (ADE) dataset

The ADE dataset (Gurulingappa et al., 2012) con-
tains 6821 sentences expressing truthful relations
between drugs and adverse effects they have been
shown to cause, and 279 sentences with relations
between drugs and dosages. Each sample consists
of a sentence, the name of a drug, the name of a
condition (if the relation expressed is adverse ef-
fect) or a dosage term (if the relation expressed is
dose), and their starting and ending position in the
sentence. The sentences were extracted from MED-
LINE case reports, and were manually annotated
by three annotators. There are 1319 unique drugs,
3341 unique conditions, and 130 unique dosage
terms. In order to be consistent with the nomencla-
ture in the other datasets, we refer to the adverse
effect relation in the ADE dataset as a cause rela-
tion, and to the condition entities as diseases. The
intuition behind using relations annotated as ad-
verse effect to detect cause relations between food
and disease entities is that one would use similar
sentence structures to describe a disease occurring
as a result of the ingestion of a particular drug or
food.

3.3 The FoodDisease dataset

Since there was no data labeled for the existence of
cause and treat relations between food and disease
entities, for the purposes of this research we con-
structed a dataset containing 608 sentences from
abstracts of PubMed articles. Fig. 1 depicts the
steps taken in order to generate the dataset.

BuTTER (Cenikj et al., 2020) and
SABER (Giorgi and Bader, 2019) were used
for finding the food and disease entities in each
abstract. Both are Named Entity Recognition
(NER) methods based on Bidirectional Long
Short-Term Memory and Conditional Random
Fields. BuTTER extracts food entities from raw
text, and is trained on the golden version of the
FoodBase corpus (Popovski et al., 2019), which
contains 1000 recipes annotated with food entities.
In particular, we used the lexical lemmatized
BuTTER model introduced in (Cenikj et al.,
2020), which achieves a macro averaged F1 score
of 0.946.

SABER is a biomedical NER tool, which pro-
vides several pre-trained NER models, from which
we use the DISO model 2 to extract disease entities.

2https://baderlab.github.io/saber/
resources

PubMed abstracts

Extraction of disease
entities with SABER

Extraction of food
entities with BuTTER

Extraction of sentences with
food and disease entities

False positive entity removal

Relation annotation

Partial match entity
completion

Figure 1: Steps taken to generate the FoodDisease
dataset

The abstracts were filtered so that only sentences
which contain at least one food and one disease en-
tity were kept. The entities in each sentence were
then manually checked and corrected in order to re-
move false positives and complete partial matches.
Removing the false positive entities means that the
tokens that were incorrectly extracted as food or dis-
ease entities by the BuTTER and SABER methods
were discarded. Completing partial matches entails
adding the missing words in entities which should
contain multiple words, but some of them were
not captured by the automatic annotators. Each
sample contains a single food and a single disease
entity, even if multiple such entities are mentioned
in the sentence. Finally, each sentence was as-
signed binary labels to indicate if the cause and
treat relations are present.

4 Methodology

In this section, we describe the proposed RE
method, starting with the preprocessing applied to
accomplish the generalization of the models trained
on the source datasets to the target dataset. We then
introduce the pre-trained transformer models used
for text representation, and their fine-tuning for the
RE task.
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Several epidemiological and preclinical studies supported the
protective effect of coffee on Alzheimer's disease (AD).

Several epidemiological and preclinical studies supported the
protective effect of XXX on YYY.

supported the protective effect of XXX on YYY.

ORIGINAL SENTENCE

ENTITY MASKING

CONTEXT EXTRACTION

Figure 2: Application of the preprocessing steps on a
sentence from the FoodDisease dataset

4.1 Data preprocessing

Since the datasets we are using are annotated with
relations between different types of biomedical en-
tities, and we would like the developed models to
generalize, and be able to extract the same relations
between different types of entities, we mask out the
entity mentions in each sentence. The reasoning
behind this is that the model would not learn to
detect relations between the concrete entities, but
instead, use the surrounding words to determine
whether they express the particular relation.

Since there could be several relations present in
one sentence, we use a context window of length 5,
i.e. use the words whose positions in the sentence
are in the range (i-5,j+5), where i is the word index
of the first occurring entity in the sentence, and j
is the word index of the second occurring entity in
the sentence.

Fig. 2 shows an example of the preprocessing
steps being applied on a sentence from the FoodDis-
ease dataset. The bolded words in the original sen-
tence are the food and disease entities, which get
masked out in the Entity Masking step, where they
are replaced by XXX and YYY, respectively. These
masking tokens are chosen arbitrarily, since their
only use is for the model to distinguish between
the subject and object entity. In the Context Ex-
traction step, the final preprocessed version of the
sentence is generated by keeping only the words in
between the entities, and the 5 words that precede
the first entity, coffee. Had there been additional
words after the second entity, Alzheimer’s disease
(AD), the first 5 of them would also be included in
the context.

4.2 Text representation

In order to represent the textual data in numerical
format, we use 3 pre-trained transformed-based
models: BERT, RoBERTa and BioBERT.

4.2.1 BERT
BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) is a bidi-
rectional, contextual representation model that
achieves state-of-the-art results in several natural
language processing tasks. Following the princi-
ples of transductive TL, BERT is pre-trained on an
unsupervised Mask Language Modeling (MLM)
or Next Sentence Prediction (NSP) task, and then
fine-tuned on another downstream task, such as
NER, Natural Language Inference or Question An-
swering. The pre-trained BERT models can be
finetuned without substantial modifications in their
architecture. In the simplest case, only the out-
put layer needs to be replaced, depending on the
task that the model is intended to perform. We use
the original BERT model, which is pre-trained on
the BooksCorpus (Zhu et al., 2015) and English
Wikipedia, and fine tune it for relation classifica-
tion.

4.2.2 RoBERTa
RoBERTa (Robustly Optimized BERT Ap-
proach) (Liu et al., 2019) is a text representation
model based on the original BERT architecture,
with a number of improvements introduced in
the pre-training phase, some of which include
training on a larger amount of data, longer training,
removal of the NSP task, and introduction of
dynamic masking. Apart from the BooksCorpus
and Wikipedia, which are used for the pretraining
of BERT, RoBERTa is trained on data from 3
additional sources: the CommonCrawl News
dataset (Nagel, 2016), the OpenWebText cor-
pus (Gokaslan and Cohen, 2019) and Stories
subset from the Common Crawl dataset (Trinh and
Le, 2018).

4.2.3 BioBERT
BioBERT (Bidirectional Encoder Representations
from Transformers for Biomedical Text Min-
ing) (Lee et al., 2019) is a domain-specific version
of the BERT model. Due to the fact that biomedi-
cal texts contain a considerable amount of domain-
specific proper nouns and terms that do not appear
in more general texts and would hence be unfa-
miliar to the original BERT, the data on which
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BioBERT is trained is supplemented by PubMed
abstracts and full-text articles from PubMed Cen-
tral. As a result, BioBERT has been shown to out-
perform BERT in biomedical NER, RE, and QA
(Lee et al., 2019).

4.3 Models
We perform end-to-end fine-tuning of the pre-
trained BERT, RoBERTa and BioBERT models
for the RE task. In order to adapt the original ar-
chitecture to perform binary classification, the last
layer of the models is replaced with a dropout and
a linear layer which performs binary classification.
During fine-tuning, the model parameters are ini-
tialized with the values from the pre-training step,
and are fine-tuned using the labeled data from the
source datasets. The input of a BERT model can un-
ambiguously represent both a single sequence and
a pair of text sequences (for example, a question
and an answer) in one token sequence, by using
a separator token [SEP] to mark the end of each
sequence. We explore both types of inputs and
construct two different models:

• Single Sequence Classifier (SSC) - The model
takes a single sequence as an input and per-
forms simple binary classification.

• Sequence Pair Classifier (SPC) - The model
takes as input two sequences. The first se-
quence is the sequence that we want to clas-
sify (the one that is used on its own in the
SSC), while the second sequence is a con-
catenation of 10 randomly sampled sequences
which have positive labels for the relation we
are aiming to detect. We refer to the first
sequence as the sequence of interest, while
we call the concatenation of 10 sequences a
ground truth for the relation in question. The
sentences used in the ground truth sequences
are not used as sequences of interest.

The intuition behind this approach is that we
can reformulate the task Does sequence X ex-
press relation Y? as Is sequence X similar to
other sequences that contain relation Y?. The
task is still a binary classification, and the la-
bel remains the same as for the SSC.

We construct 10 ground truth sequences for
each relation, and pair each sequence of in-
terest with each ground truth. The same gen-
erated ground truths are used at training and
prediction time. For each sequence of interest

Table 1: Examples of inputs given to the SSC and SPC
models when identifying the treat relation

Inputs given to the SSC model
Input Label
supported the protective effect of XXX
on YYY

1

XXX is known to cause YYY 0

Inputs given to the SPC model
Input Label
Sequence of interest: supported the pro-
tective effect of XXX on YYY

Ground truth: XXX has been used in
the treatment of YYY; XXX is known
to cure YYY; XXX is associated with a
reduced incidence of YYY

1

Sequence of interest: XXX is known to
cause YYY

Ground truth: XXX has been used in
the treatment of YYY; XXX is known
to cure YYY; XXX is associated with a
reduced incidence of YYY

0

in the test set, we generate 10 predictions (one
for each ground truth) and assign the average
of the predicted probabilities as the probabil-
ity of the sequence of interest belonging to the
positive class.

Table 1 features examples of the inputs given
to the SSC and SPC models that identify the treat
relation. The first input sample expresses a treat
relation, so the label is one, while the second input
sample expresses a cause relation, so the label is
zero. The inputs of the SSC model are the same
as for the sequences of interest of the SPC model.
For the sake of simplicity, for the SPC model in the
examples, we demonstrate one ground truth, which
is a concatenation of 3 sequences that represent a
treat relation. In our experiments, we use 10 such
ground truths, each being a concatenation of 10
sequences.

During the fine-tuning, the AdamW optimizer is
used with a learning rate of 4∗10−5. An early stop-
ping strategy is applied to prevent overfitting. The
models are trained for a maximum of 10 epochs,
or until the improvement in validation loss of 2
consecutive epochs does not surpass 5 ∗ 10−3.

The source codes for fine-tuning the SSC mod-
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Table 2: Number of samples from the positive and neg-
ative class in each dataset

Dataset CrowdTruth ADE FoodDisease
Relation Cause Treat Cause Cause Treat
Class
Positive 1429 1406 6821 142 323
Negative 2555 2578 1685 466 285

els3 and the SPC4 models are publicly available on
the Colab platform.

5 Evaluation

5.1 Evaluation on the source datasets
When applying TL, a model trained on a source
dataset can experience some degradation in perfor-
mance when evaluated on the target dataset. In
order to get an idea about the upper bound of the
performance expected on the target dataset, the
models’ performance is first evaluated on the same,
source datasets they were trained on using 10-fold
cross validation.

All 3 of the datasets are unbalanced, and the
class distribution of each dataset is given in Table
2. For the ADE dataset, we only train classifiers
for the detection of the cause relation, since that
dataset does not contain annotations for the treat
relations. We consider the sentences annotated
with the dose relation in the ADE dataset to be
negative samples for the cause relation. However,
since there are only 279 such sentences, in order to
avoid extreme class unbalance, we supplement the
negative samples in the train portion of the ADE
dataset by adding the samples that are annotated
as positive for the treat relation in the CrowdTruth
dataset. 10% of the training portion of each fold
is removed and used for validation, preserving the
ratio of the positive and negative samples.

Because of the unbalanced class distribution in
all three datasets, we evaluate the models in terms
of the macro averaged f1 scores, averaged from all
folds, and these are depicted in Table 3. The mod-
els are both trained and evaluated on the datasets
indicated in the table header. The SSC and SPC
models combined with 3 different pretrained BERT
models (BERT, RoBERTa and BioBERT) result in

3https://colab.research.google.com/
drive/1UOFuk6-_6c-za6P54SiIhdY9ZH6T5Xpo?
usp=sharing

4https://colab.research.google.com/
drive/1HA78g3YG90UuYT9SZPxw5brE6LqPKC2s?
usp=sharing

Table 3: Macro averaged F1 scores obtained from the
evaluation on the source datasets when the proposed
preprocessing is applied, averaged from 10 folds

Dataset CrowdTruth ADE FoodDisease
Relation Cause Treat Cause Cause Treat
Model:
SSC
BERT 0.753 0.880 0.871 0.744 0.886
RoBERTa 0.740 0.879 0.866 0.711 0.884
BioBERT 0.750 0.890 0.894 0.847 0.871
Model:
SPC
BERT 0.745 0.873 0.822 0.478 0.835
RoBERTa 0.752 0.880 0.743 0.433 0.835
BioBERT 0.771 0.884 0.873 0.545 0.900

6 models, which are evaluated on the 3 datasets.
The first group of three rows of scores refers to the
performance of the SSC model, while the second
group refers to the SPC model. The underlined
values refer to the highest f1 macro score in each
column, and we can note that the BioBERT mod-
els give the best performance. The SSC models
generally outperform the SPC models.

The performance of the SPC models which de-
tect the cause relation in the FoodDisease dataset
is notably lower than the rest of the models. Look-
ing into the models’ raw predictions, it is obvious
that the models predict the negative class too often,
which results in high recall for the negative class,
but very low recall for the positive class. This can
be attributed to the fact that from the 114 positive
samples in the training portion of each fold, 100 are
used for constructing the ground truth sequences
used by the SPC models, leaving only 14 posi-
tive samples for training. Annotating more data,
decreasing the number of ground truth sequences
or the number of sentences in each ground truth
sequence, and balancing the data are possible strate-
gies which are expected to remedy this anomaly.

5.2 Transfer learning evaluation

In this subsection, we report the performance
reached by the models trained on the CrowdTruth
and ADE source datasets, when evaluated on the
target FoodDisease dataset. In this case, the models
are trained on balanced data, since the class distri-
bution in the source datasets does not reflect the
distribution in the target dataset, and are evaluated
on the whole FoodDisease dataset.
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Table 4: Macro averaged F1 scores obtained from the
evaluation on the target FoodDisease dataset, when the
proposed preprocessing is applied

Dataset CrowdTruth ADE
Relation Cause Treat Cause
Model: SSC
BERT 0.727 0.841 0.750
RoBERTa 0.805 0.883 0.710
BioBERT 0.805 0.878 0.750
Model: SPC
BERT 0.585 0.689 0.619
RoBERTa 0.701 0.838 0.648
BioBERT 0.636 0.872 0.639

Table 4 features the macro averaged F1 scores
that the models achieve when the preprocessing
introduced in subsection 4.1 is applied on the input.

When comparing the results in Table 3 and 4,
we can observe that the SPC models and the mod-
els trained on the ADE dataset experience perfor-
mance deterioration when they are evaluated on the
target dataset, but the SSC models trained on the
CrowdTruth dataset have a similar performance in
both evaluations. This is expected to some extent,
since the relations in the ADE dataset are originally
annotated as adverse effect, which we loosely in-
terpret as a cause relation, while the sentences in
the CrowdTruth dataset are annotated for precisely
cause and treat relations.

Additionally, we conduct experiments to evalu-
ate the proposed preprocessing technique, which
we compare to the scenario when no preprocessing
is applied (neither the Entity Masking nor the Con-
text Extraction step) and the entire sentences are
given to the model. The macro averaged F1 scores
obtained in such a setting are featured in Table 5.
The best results are achieved by the RoBERTa and
BioBERT models. Most of the models benefit from
the preprocessing, which is especially noticable in
the SSC models that identify the cause relation,
where the proposed preprocessing leads to an im-
provement of the averaged macro f1 scores of at
least 0.100. Looking into the metrics for the posi-
tive and negative class separately reveals that the
lower performance of the models which do not
use the proposed processing is due to their lower
precision in identifying the positive class.

Interestingly, the SPC models that identify the
treat relation seem to perform better without the
preprocessing, even though only one the perfor-

Table 5: Macro averaged F1 scores obtained from the
evaluation on the target FoodDisease dataset, when the
entire sentence is being used as input

Dataset CrowdTruth ADE
Relation Cause Treat Cause
Model: SSC
BERT 0.595 0.828 0.568
RoBERTa 0.659 0.759 0.228
BioBERT 0.610 0.900 0.633
Model: SPC
BERT 0.557 0.837 0.608
RoBERTa 0.594 0.844 0.587
BioBERT 0.657 0.881 0.625

mance of the BERT model differs by a large mar-
gin, while the performances of the BioBERT and
RoBERTa models differ by less than 0.010.

It is important to note that the evaluation on these
models on the FoodDisease dataset may be some-
what flawed, since it may hide the possible disad-
vantage of using entire sentences as input, because
all of the sentences in the FoodDisease dataset are
unique. This would mean that if a sentence con-
tains both relations, as for example Nuts are known
to reduce the risk of heart disease, but can also
cause allergies, the dataset would either contain
the (food, relation, disease) triple (nuts, treat, heart
disease) or the triple (nuts, cause, allergies), but
not both. The models that do not use the proposed
preprocessing and get the entire sentence as input,
would in this case produce an identical output for
both triples, but when evaluated on the FoodDis-
ease dataset, they would not be penalized for doing
so.

Overall, the best models trained on the source
datasets achieve a macro F1 scores of 0.805 and
0.900, for the detection of cause and treat rela-
tions, respectively, between food and disease enti-
ties in the target dataset. In comparison, the per-
formance of the best models trained on the target
FoodDisease dataset (the SSC-BioBERT and SPC-
BioBERT in Table 3) is 0.847 and 0.900. This in-
dicates that the application of TL using pretrained
transformer models enables us to train models us-
ing a small amount of annotated data, but we can
also obtain satisfactory results with no annotated
data for the specific RE task, by repurposing an-
notations for the same relations between different
entities.
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6 Conclusion

In this paper, we propose Relation Extraction (RE)
models for the detection of cause and treat rela-
tions between food and disease entities from raw
text. To make up for the absence of annotated data
for this task, we explore the feasibility of Trans-
fer Learning (TL) by using the transformer models
BERT, RoBERTa, and BioBERT, which are pre-
trained on large amounts of data, and fine-tuned for
performing RE between various types of biomedi-
cal entities. The models are trained to recognize re-
lations based on the context words used to express
each relation, rather than the entities themselves,
so they can successfully generalize to the task of
recognizing the relations between food and disease
entities, and likely, other types of entities, though
this is not evaluated in the scope of this paper.

In order to evaluate the proposed approach, we
introduce the FoodDisease dataset, which consists
of 608 sentences annotated for the existence of the
cause and treat relations between food and disease
entities in sentences of PubMed abstracts. The
dataset is released as an open-source resource, and
is, to the best of our knowledge, the first annotated
English RE dataset of such kind in the food domain.

The best models that are fine-tuned on this
dataset achieve macro averaged F1 scores of 0.847
and 0.900 for the cause and treat relations, respec-
tively. The best models which are fine-tuned using
the data where the entities are not food-disease
pairs, but other biomedical entities of various types,
achieve macro averaged F1 score of 0.805 for the
cause relation and 0.900 for the treat relation. This
indicates that in the event where no experts are
available to annotate data, the proposed method
enables the repurposing of existing RE datasets
for the training of models that can recognize the
relation that the dataset is annotated for, between
different types of entities.

The developed models will be used as part of an
information extraction pipeline which will struc-
ture the findings of experts in biomedical scientific
literature, with the aim of alleviating the process
of linking knowledge graphs from the domain of
biomedicine to the domain of food and nutrition.
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Abstract

We explore whether state-of-the-art BERT
models encode sufficient domain knowledge
to correctly perform domain-specific infer-
ence. Although BERT implementations such
as BioBERT are better at domain-based rea-
soning than those trained on general-domain
corpora, there is still a wide margin compared
to human performance on these tasks. To
bridge this gap, we explore whether supple-
menting textual domain knowledge in the med-
ical NLI task: a) by further language model
pretraining on the medical domain corpora, b)
by means of lexical match algorithms such as
the BM25 algorithm, c) by supplementing lex-
ical retrieval with dependency relations, or d)
by using a trained retriever module, can push
this performance closer to that of humans. We
do not find any significant difference between
knowledge supplemented classification as op-
posed to the baseline BERT models, however.
This is contrary to the results for evidence re-
trieval on other tasks such as open domain
question answering (QA). By examining the
retrieval output, we show that the methods fail
due to unreliable knowledge retrieval for com-
plex domain-specific reasoning. We conclude
that the task of unsupervised text retrieval to
bridge the gap in existing information to facili-
tate inference is more complex than what the
state-of-the-art methods can solve, and war-
rants extensive research in the future.

1 Introduction

Transformers-based neural architectures (Vaswani
et al., 2017) currently hold the state-of-the-art per-
formance on several NLP tasks and domains. In the
biomedical domain itself, there exist several ver-
sions of transformers-based BERT models (Devlin
et al., 2019) that have been shown to be successful.
However, an analysis of the availability of medical
knowledge to these models is incomplete. To facil-
itate better understanding, in our research, we ana-
lyze a sample of errors made by BioBERT (v1.1)

model (Lee et al., 2019a) on a clinical language
inference task (Romanov and Shivade, 2018). We
find that the errors related to domain knowledge-
based reasoning, such as the knowledge of treat-
ments administered for certain diseases, are domi-
nant (40%).

To address this limitation, we analyze a broad
range of state-of-the-art methods to integrate medi-
cal knowledge in BERT models from textual medi-
cal corpora. These methods have previously been
shown to excel at evidence retrieval in the generic
domain. The goal of our study is to understand
whether these methods can be successfully applied
for knowledge integration in the more complex
setup of finding missing medical information for
supporting sentence-pair inference.

We explore both implicit and explicit knowledge
integration, where implicit refers to indirect ac-
cess to this knowledge by further language model
pretraining on medical corpora, and explicit knowl-
edge integration refers to the setup where a relevant
sentence from external corpora is appended to the
premise to support inference. For explicit knowl-
edge integration, as the baseline method, we make
use of the traditional best match 25 (BM25) algo-
rithm (Robertson and Zaragoza, 2009) for finding
the most relevant sentence in the medical corpora.
As a modification of this method, we additionally
incorporate syntactic knowledge in the retrieval
step. We do so by restricting the retrieved sentence
to the one that contains at least one dependency
relation between premise and hypothesis medical
entities. In the third setup, instead of using BM25
scores and dependency paths, we train an end-to-
end model to first find the most relevant text block
from Wikipedia for a given instance, and then ap-
pend it to the instance for classification.

In both knowledge integration setups, we do not
see any significant performance difference due to
access to additional knowledge. On inspecting the
sentences retrieved by the BM25 and dependency
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relation-based methods, we find that these meth-
ods successfully shortlist sentences related to the
topic, but it is difficult to then automatically rank
the best candidate among the shortlisted options.
This best candidate should fill the information gap
between the sentence pairs to enable pairwise in-
ference. We expect to overcome the ranking issue
when we instead train an end-to-end model that
learns to dynamically retrieve relevant supporting
knowledge alongwith pairwise classification, as op-
posed to static heuristic-based retrieval. However,
we find that although the blocks of text retrieved in
the end-to-end setup provide medical context, they
are often unrelated to the desired information and
are insufficient for improving inference.

Although knowledge-integration methods are
effective for evidence retrieval in open domain
QA (Lee et al., 2019b), where the task is to re-
trieve a passage that mentions the correct entities,
they are insufficient for the more complex task of
augmenting missing information for pairwise do-
main knowledge-based reasoning in an unsuper-
vised setup. Entity span-based supervision simpli-
fies the problem statement in the first case, hence
resulting in the documented success. However, the
more realistic setup of retrieving the specific con-
text that can fill the information gap between pairs
of sentences without supervision is not yet solved.

2 Related work

Since the BERT models were found to be effective
for a wide range of NLP tasks (Devlin et al., 2019),
several efforts have been extended towards improv-
ing them by more efficient training strategies (Liu
et al., 2019; Yang et al., 2019b; Sanh et al., 2019;
Lan et al., 2019), training them for different do-
mains (Beltagy et al., 2019; Lee et al., 2019a; Lee
and Hsiang, 2019; Chalkidis et al., 2020; Guru-
rangan et al., 2020) and languages (Devlin, 2018;
de Vries et al., 2019; Le et al., 2020; Martin et al.,
2020; Delobelle et al., 2020; Cañete et al., 2020).
Within the clinical domain, different models in-
clude the BioBERT models pretrained on PubMed
abstracts and PMC full-text articles (Lee et al.,
2019a), SciBERT trained on scientific text (Belt-
agy et al., 2019), clinicalBERT models trained on
patient notes from the MIMIC-III corpus (John-
son et al., 2016) (sometimes as a continuation of
the BioBERT models) (Alsentzer et al., 2019), and
BlueBERT models that also use Pubmed abstracts
and MIMIC-III patient notes for training (Peng

et al., 2019). These models hold promising perfor-
mance for clinical language processing (Si et al.,
2019; Lin et al., 2019) and have become a popular
choice for several classification tasks that involve
the medical data, spanning tasks such as litera-
ture search and question answering for assisting
healthcare professionals (Jin et al., 2019; Wang
et al., 2020; Möller et al., 2020), as well as pa-
tient outcome prediction such as diagnosis predic-
tion (Franz et al., 2020; Rasmy et al., 2020). De-
spite being a popular choice, little is known about
the medical knowledge of these models and their
limitations when in-depth domain knowledge is
required for correctly solving a task.

Much prior research has explored augmenta-
tion of background knowledge in neural models
to make them more effective for downstream tasks.
Most common approaches include adapting en-
tity embeddings learned by models such as BERT
by providing additional knowledge from differ-
ent ontologies that define relations between enti-
ties. This can be done either by using templates
to convert the relations to text before finetuning
embeddings (Weissenborn et al., 2017; Lauscher
et al., 2020; Chen et al., 2020), by combining re-
lational information from knowledge graphs with
text embeddings (Mihaylov and Frank, 2018; Chen
et al., 2018; Zhang et al., 2019; Yang et al., 2019a;
Liu et al., 2020), or by jointly learning knowl-
edge graph and textual embeddings (Peters et al.,
2019; Feng et al., 2020). These ontologies are ei-
ther generic like WordNet (Miller, 1995), Concept-
Net (Liu and Singh, 2004), and Wikidata (Vran-
dečić and Krötzsch, 2014), or more specific to a
particular domain like the UMLS (Bodenreider,
2004). An advantage of using ontologies is that the
semantics of entities gets encoded in the learned
representations, thereby enhancing their effective-
ness. However, they are expensive to construct and
either are incomplete, or do not exist for special-
ized domains. Methods that make use of textual
corpora for background knowledge integration are
therefore more easily transferable to other domains.
Talmor et al. (2020) have shown earlier that hav-
ing explicit access to external information can of-
ten improve reasoning skills of the state-of-the-art
models, which we investigate further.

Use of TF-IDF (Ullman, 2011) and BM25 scores
has been frequently explored for evidence retrieval
from Wikipedia for open domain QA (Chen et al.,
2017; Wang et al., 2018; Glass et al., 2020). An-
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other popular approach includes representation
similarity-based evidence retrieval (Lee et al., 2018;
Das et al., 2019). Recently, joint training of re-
triever for span identification and pretraining lan-
guage models have also been analyzed by Hu et al.
(2019); Lee et al. (2019b); Guu et al. (2020). Al-
though the methods extensively explore QA, this
line of work has not been explored much for lan-
guage inference, especially in specialized domains.

Existing studies for augmenting medical knowl-
edge for clinical language inference are limited
to the use of UMLS knowledge graph embed-
dings (Sharma et al., 2019), interaction weighting
between premise and hypothesis based on distance
in the UMLS (Chopra et al., 2019), augmenting
clinical concept definitions during representation
learning (Lu et al., 2019) and adding domain knowl-
edge by means of pretraining existing models fur-
ther on different in-domain corpora and closely re-
lated tasks (Romanov and Shivade, 2018; Lee et al.,
2019a; Alsentzer et al., 2019; Chopra et al., 2019).
The closest work to ours is the contemporary work
by He et al. (2020) that shows improvements when
knowledge from Wikipedia is implicitly integrated
by training BERT masked language models to pre-
dict disease names and their aspects (such as symp-
toms, treatments) given the corresponding context.
In our work, we instead explore whether we can
augment domain knowledge by dynamically fetch-
ing relevant context in an unsupervised manner to
improve medical language inference.

3 Medical language inference

In medical language inference, given a pair of
sentences, the goal is to describe a logical rela-
tion between them. We make use of the MedNLI
dataset (Romanov and Shivade, 2018), where the
premise is a sentence borrowed from patient notes
in the MIMIC-III dataset (Johnson et al., 2016),
and the hypothesis is written by medical experts
such that the premise either entails or contradicts
the hypothesis, or their relation cannot be estab-
lished (neutral). Entailment refers to whether the
meaning of the second sentence, also known as
the ‘hypothesis’, is already contained in the first
sentence called the ‘premise’. We explore whether
the BioBERT v(1.1) model encodes sufficient med-
ical knowledge for this task. In the same manner
as Peng et al. (2019), we model this task as a sen-
tence pair classification task, where the final pooled
BERT [CLS] representations of the premise and the

hypothesis are processed through a dense neural
layer to classify the correct class. We then per-
form manual analysis on a subset of 50 incorrectly
classified instances in the development set to un-
derstand the type of errors made by the model. We
eliminate ambiguity in the cause of errors by using
an adversarial evaluation, where we modify an in-
stance according to a potential cause of error, and
monitor whether the output changes accordingly.
In this manner, we obtain the distribution of errors
presented in Table 2 and discussed in Section 5.1.

4 Medical knowledge augmentation

4.1 External medical corpora

Different versions of BERT that exist for biomed-
ical tasks are either trained on journal abstracts
and articles, or on patient notes. These articles
and notes are written by and for an audience with
an advanced level of domain knowledge. Funda-
mental domain-specific information, such as an un-
derstanding of domain terminology, commonly ac-
cepted clinical practices for specific medical condi-
tions, human physiology and anatomy, etc. is often
also required for clinical language understanding.
We hypothesize that access to such fundamental
domain knowledge during model training would
complement training on more advanced informa-
tion. To explore this, we create two corpora — one
containing only the medical subset of Wikipedia
(Wikimed), and one with contents of a popular
medical textbook (Medbook). The Wikimed subset
is parsed from the HTML sources of the medical
Wikipedia dataset used in the Android app by the
Kiwix team1. The medical subset of Wikipedia
contains about 40 million tokens, and the medical
textbook corpus contains nearly 3.6 million tokens.

4.2 Implicit knowledge integration

Starting from an existing BioBERT checkpoint that
is already pretrained on a combination of Google
books, Wikipedia, biomedical abstracts and journal
articles (Lee et al., 2019a), we continue to train
BERT language models on the Medbook and the
Wikimed corpora. Our goal is to explore whether
further training on corpora that contain fundamen-
tal domain knowledge can implicitly improve med-
ical knowledge-based reasoning in the medical
language inference task. Since Wikimed is the

1https://play.google.com/store/apps/
details?id=org.kiwix.kiwixcustomwikimed&
hl=en_US&gl=US
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(a) Lexical knowledge retrieval using BM25 score be-
tween a query formulated from premise-hypothesis pair
and sentences in the external corpora. These sentences
are restricted to either those that mention a premise and
a hypothesis medical entity term, or hold a dependency
relation between them.

(b) Relevant knowledge retrieval in an end-to-end man-
ner by training weights that compute similarity be-
tween sentences in an external corpus and a premise(P)-
hypothesis(H) query during classification.

Figure 1: Explicit domain knowledge integration for
the MedNLI task.

medical-only subset of Wikipedia, it was also in-
cluded in the first phase of training of BERT mod-
els. We do not expect to see a significant difference
in the classification performance here due to this
reason. However, since the Medbook corpus is
quite different from other corpora used earlier, we
expect bigger differences in classification results.

4.3 Explicit knowledge integration

We explore methods to explicitly augment medical
knowledge to the instances in the MedNLI dataset
by retrieving and appending relevant text blocks
from either the Wikimed corpus or the Medbook
corpus before processing it through our BERT mod-
els for finetuning, as described next. We illustrate
the methods pipeline in Figure 1.

4.3.1 Lexical retrieval
We first explore the use of TF-IDF based techniques
for retrieving evidence from external textual cor-
pora to support inference. Although these methods

are fairly simple, they have been shown to be effec-
tive for several open domain QA tasks (Lee et al.,
2019b). Our goal is to investigate whether these
simple methods are also effective at more complex
information retrieval in our setup.

To this end, we construct a query from premise
and hypothesis by retaining only the lemmas that
are a part of infrequent medical entities, and then
use the best match 25 (BM25) algorithm (Robert-
son and Zaragoza, 2009) to find the most relevant
sentences. As the first step, we recognize premise
and hypothesis medical entities with the help of
Scispacy (Neumann et al., 2019). We lemmatize
these entities and retain only those lemmas that
occur less than a thousand times in the external
corpus2. These lemmas jointly form the query. We
first rank the documents in the external corpora
according to their BM25 scores to retain the top 10
documents. The query is then used again to find
the best matching sentences from these documents.

Due to the manner in which the MedNLI data
has been annotated, premise is longer and more
varied than the hypothesis. Hence, premise entities
often dominate the BM25 retrieval at the cost of
hypothesis entities. To overcome this, we prune the
retrieved sentences if they do not mention at least
one premise and one hypothesis entity lemma.

The highest ranking sentence retrieved in this
manner is then appended3 to the premise before
classification. If none of the sentences satisfy either
the constraint or the threshold score, then the use
of explicit knowledge is skipped.

4.3.2 Lexical and syntactic retrieval
In our previous setup, we add an entity-presence
constraint to ensure that the retrieved sentence is
about both the premise and the hypothesis. In or-
der to ensure that the retrieved knowledge also
establishes an explicit relation between the two, we
modify the previous approach to rank sentences
based on dependency paths between premise and
hypothesis lemmas. In this setup, we find the top
documents in the same manner as earlier. Once the
top documents are found, we restrict to the set of
sentences in these documents that have a depen-
dency relation between a premise and a hypothesis
lemma. Once we have established the set of sen-
tences that hold this relation, we rank them either

2The threshold was decided based on preliminary results
on the development set, where retaining less frequent lemmas
provides more specific matches.

3Separated by a space.
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using the minimum dependency path length, or
using the BM25 score between the query and a sen-
tence. The sentence with the highest score above
the threshold is then appended to the instance in
the same manner as described earlier.

4.3.3 Joint retrieval and classification model

By using lexical and syntactic approaches that we
have discussed earlier, we ensure that the candi-
date and the retrieved sentences would be related
to both the premise and the hypothesis. However,
when we are confronted with a high number of
relevant candidate sentences, shortlisting one sen-
tences becomes challenging. Adding multiple sen-
tences is also infeasible due to the limited input
sequence length in BERT models. In order to over-
come this challenge, in our third setup, we instead
train an end-to-end model, where the weights of
the retriever are updated along with classification.
Hence, the retriever learns to select the sentence
that provides information that can improve classifi-
cation. This approach has been previously shown
to be quite successful in open domain QA via span
identification (Lee et al., 2019b) and in language
model pretraining (Guu et al., 2020), since it pro-
vides access to a wider evidence space compared
to the limited number of retrieved blocks when us-
ing lexical approaches. However, the use of such
an end-to-end retriever has not been explored for
augmenting knowledge from textual corpora to sup-
port reasoning in NLI tasks. Since we do not have
data annotated specifically for retrieval of support-
ing evidence for NLI tasks, training the retriever
becomes much more complex compared to span
identification. However, given the success of the
end-to-end approaches earlier, we are interested in
investigating its feasibility for our setup and we
build upon existing methods for this.

Retriever pretraining: We reuse the pretrained
retrieval model shared by Lee et al. (2019b), trained
in an inverse cloze task (ICT) setup on complete
Wikipedia, for our experiments. In this setup, a
sentence in Wikipedia is treated as the query, and
the retriever is trained to retrieve its context4 in
the original text. This retrieval is performed by
computing a weighted dot product between the
pooled BERT [CLS] embeddings of the query and
the text block. In 10% of the cases, the query is
not removed from the context to ensure that the
model learns to retrieve lexical as well as semantic

4Blocks of at most 288 wordpiece tokens (Wu et al., 2016)

matches. Although it is trained on entire Wikipedia
instead of only a subset, we reuse it due to resource
constraints for retraining the retriever. Since the
medical portion of Wikipedia is only a subset of
this data, we expect to still be able to retrieve the
sentences relevant for the MedNLI task.

End-to-end-classification: In an end-to-end
setup, the retriever module first returns the k5

most similar blocks of text given a BERT-encoded
premise and hypothesis pair, in the same manner as
described earlier. We add these k retrieved blocks
to the input along with the premise and the hy-
pothesis to obtain k inputs corresponding to each
instance. We then encode these inputs with BERT
to obtain k different [CLS] representations. All of
these k [CLS] representations are then individually
used for classification by adding a dense layer on
the top in the finetuning phase. In this manner, we
obtain k different outputs for a given instance. We
then aggregate these k outputs together by retain-
ing the most frequent output among the k options.
We also experimented with average pooling and
selecting the most peaked softmax output distribu-
tion, but majority pooling provided more promising
results on the development set.

Classification loss: We use the categorical cross
entropy loss (Murphy, 2012). The gradients are
backpropagated jointly to both the classifier and
the weights used to compute the similarity between
the query and the blocks of Wikipedia text.

Retriever loss: In the span identification setup
developed by Lee et al. (2019b), mention of the
correct entity in the text provides the retriever with
an explicit feedback. This makes their training
easier compared to our setup where we do not have
this supervised signal. To make the training more
feasible, we experiment with an additional retrieval
loss. This loss quantifies the difference between the
model performance with and without the retrieved
text block, and uses this difference to improve the
retriever. The objective of this loss is to reward the
model when it is better if a retrieved text block is
used as opposed to when only the premise and the
hypothesis are used for inference. We define this
loss in terms of pairwise retrieval loss, i.e.,

R = max(0,m− (L(P,H) − L(P,H,R))),

where R is the retrieval loss, L(P,H) is the categor-
ical cross entropy loss without using the retrieved

5We use k = 5 in our experiments
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text block, and L(P,H,R) is the categorical cross
entropy loss after adding the retrieved text block
to the given instance, and m is the margin value
that we treat as a hyperparameter. We use m = 0.1
based on the results on the development set. To
explain this loss, we consider three different cases:

1. The model performs equivalently with and
without the retrieved text block: In this case,
the model ignores the retriever and optimizes
for classification without it. This is undesir-
able, and we set the retriever loss to the margin
value, which refers to the minimum desired
difference between the two sets of losses.

2. The model is worse after adding the retrieved
text block: This behavior is again undesirable
since the goal of retrieval is to improve the
model. Hence, along with the margin, we also
add the difference between the two losses to
compute the retrieval loss.

3. The model improves after adding the retrieved
text block: If the model becomes better due
to retrieval, it could either be better by chance
(when the difference is lower than the mini-
mum margin), or the difference could be sub-
stantial. In the first case, we quantify the re-
trieval loss as the margin value. The latter
behavior is the desired behavior of the model,
and we set the retrieval loss to be zero.

Here, the final loss function is computed as the
sum of the classification loss and the retrieval loss.

5 Results and Discussion

5.1 Availability of domain knowledge

In the top section of Table 1, we present the re-
sults when we finetune BERT models for medi-
cal language inference. Here we can see that the
BERT model which has been trained on in-domain
Pubmed abstracts for the largest number of opti-
mization steps is consistently the best on both devel-
opment and test sets. As expected based on prior
research, all other models trained on in-domain
data are also significantly better than the BERT
models that are not trained on in-domain data.

We investigate the errors made by the best model,
BioBert (v1.1). As discussed in Section 3, in Ta-
ble 2, we present the distribution of the first 50
errors made on the development set of the MedNLI
dataset. Examples of these errors are illustrated in

Table 3. Although we present the distribution of er-
rors for one specific run here, we also analyzed this
distribution across 3 different runs of the model.
We found that the average pairwise Cohen’s kappa
agreement (McHugh, 2012) between the predic-
tions on the development set across 3 different runs
is 0.9, and the distribution of errors across these
runs is comparable. In Table 2, we can see that 40%
of the errors happen due to insufficient domain in-
formation. Some of these errors happen because
of missing factual domain knowledge, some lack
advance reasoning based on factual domain knowl-
edge, and some are incorrect potentially because
of model biases due to limited size of the training
dataset, such as assumption that a certain treatment
is always administered for a specific condition, al-
though the treatment might be more diverse. This
highlights the potential to improve the BioBERT
model by providing access to additional fundamen-
tal domain information.

Other dominant category of errors are related
to spurious correlations, numeric inference, nega-
tion, and temporal reasoning. These categories are
important for understanding patient condition in
medical notes, since test results are often expressed
in a numeric manner, patient conditions are often
hedged and negated, and patient information is usu-
ally longitudinal in nature. We limit the focus of
this work to the more frequent error category of
integrating domain information.

5.2 Domain knowledge integration

In Table 1, we see marginal improvements on the
test set between the BioBERT (v1.1) models with
and without additional domain knowledge — both
when the integration is done implicitly via addi-
tional language model pretraining, and when rele-
vant sentences are retrieved using lexical and syn-
tactic methods. Knowledge integration from the
Medbook corpus — both implicit and explicit, does
not show any improvement in the results. Despite
marginal improvements using the Wikimed corpus,
a lack of consistent pattern across both develop-
ment and test sets suggests a random effect rather
than significant differences. When we train an end-
to-end retrieval model instead of further language
modeling or pre-selecting the most relevant sen-
tence, we again see a marginal improvement on
the test set. However, this improvement is again
not visible on the development set. Furthermore,
we see that the pairwise loss for more aggressive
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Model MedNLI (% Acc.)
Dev Test

BERT-base-uncased 82.1 77.8
BERT-base-cased 79.9 78.8
BERT-base-cased + PMC + PubMed (BioBERT v1.0) 84.3 82.5
BERT-base-cased + Pubmed 1M (BioBERT v1.1) 84.8 82.9
SciBERT-base-uncased (SciBERT vocab) 81.5 82.2
He et al. (2020): BioBERT v1.1 + disease NA 82.2
Sharma et al. (2019) NA 79.0
BERT-base-cased + Pubmed 1M (BioBERT v1.1) 84.8 82.9
BioBERT v1.1 + Wikimed MLM 84.2 83.3
BioBERT v1.1 + Medbook MLM 83.2 80.1
BioBERT v1.1 + Wikimed (lexical) 84.3 83.2
BioBERT v1.1 + Medbook (lexical) 83.8 82.6
BioBERT v1.1 + Wikimed (lexical+syntactic) 83.9 83.1
BioBERT v1.1 + Medbook (lexical+syntactic) 83.8 82.5
BERT-base-uncased (Wikipedia+BooksCorpus) 82.1 77.8
BERT-base-uncased + trained Wiki retriever 79.4 78.5
BERT-base-uncased + trained Wiki retriever + retrieval loss 79.1 77.9

Table 1: Classification accuracy of BERT models and explicit and implicit domain knowledge integration methods
on MedNLI development and test sets. MLM here refers to masked language modeling.

Error type Count
Insufficient domain knowledge 20
Spurious correlations / dataset bias 6
Difficult instance 5
Incorrect numeric inference 4
Incorrect negation 3
Incorrect tense resolution 2
Incorrect temporal sequence inference 2
Lexical (P,H) overlap trick 2
Modifier ignored 2
Incorrect abbreviation understanding 2
Insufficient commonsense knowledge 1

Table 2: Analysis of the first 50 errors of the BioBERT
(v1.1) model on the MedNLI development set.

retriever training along with the classification cross-
entropy loss does not have any significant impact.
Despite this additional signal, the classifier con-
tinues to learn the task by ignoring the retrieved
context, thus indicating that the penalty for incor-
rect retrieval is still not aggressive enough.

Our joint models use the complete Wikipedia as
the source of knowledge, and the improvement pat-
terns here are consistent with using the Wikimed
corpus both implicitly and explicitly, but contrary
to using the Medbook corpus. This suggests that
Wikipedia, both complete and the medical-only

subset, functions as a better source of information
for the MedNLI task as compared to the medical
textbook that contains more fundamental domain
information. We believe that the difference in re-
sults of the two corpora emerges from a difference
in their sizes, since the medical subset of Wikipedia
is 10 times in size compared to the textbook corpus.
We could not scale the Medbook corpus to larger
sizes due to copyright limitations.

When we analyze the retrieved text blocks for
one example in the development set and compare it
to the gold standard retrieval by humans (presented
in Table 4), we see that none of the retrieval algo-
rithms are capable of finding the desired missing in-
formation to improve semantic inference. Although
the ‘lexical + syntactic’ retriever finds a sentence
related to the topic as well as to the premise and
the hypothesis, it doesn’t bridge the knowledge gap
for correct inference. Moreover, the end-to-end
model with a trained retriever retrieves text block
that is unrelated to the topic, although in the medi-
cal genre.

Hence, we find that none of the explored meth-
ods provide better access to medical information
for domain knowledge-based reasoning, although
the desired factual information is present in these
external corpora. One reason why we do not see fur-
ther improvements on the BioBERT (v1.1) model
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Error type Example

Insufficient domain knowledge
P: ... she was treated with Benadryl ...
H: Patient has had an allergic reaction
Entailment Neutral

Spurious correlations / dataset bias
P: She spoke with her oncology team ...
H: The patient has cancer.
Neutral Entailment

Incorrect numeric inference
P: ... an ejection fraction of 69% with normal wall
motion.
H: patient has normal cardiac output
Entailment Contradiction

Incorrect negation resolution
P: ... no identified sepsis risk factors.
H: ... has multiple risk factors for sepsis
Contradiction Entailment

Incorrect tense resolution
P: ... he had a CT of the chest and CTA of his
coronary arteries ...
H: patient will go for coronary angiography
Neutral Entailment

Incorrect temporal inference
P: ... biopsy ... showed signs of rejection ... subse-
quently did well.
H: The patient had transplant failure
Contradiction Entailment

Lexical (P, H) overlap trick
P: Pt denies any recent chills ...
H: The patient denies recent illness
Neutral Entailment

Modifier ignored
P: Left common femoral dorsalis pedis bypass graft.
H: Patient has CAD
Neutral Entailment

Incorrect abbreviation understanding
P: Her ... PO intake have been normal.
H: She has been NPO since midnigh
Contradiction Neutral

Insufficient commonsense knowledge
P: ... status post high speed motor vehicle crash ...
H: Patient has recent trauma
Entailment Neutral

Table 3: One example of each category of errors made by the BioBERT (v1.1) model on the MedNLI development
set. a b refers to the fact that class a is the gold class, but the model predicts class b instead.

(that is a very strong baseline), despite the suc-
cess of these methods in other tasks and domains,
could be the complexity of the research question.
Retrieval of relevant information for language infer-
ence demands a delicate balance between selecting
a sentence that provides sufficient supporting in-
formation related to the given topic and instance
to improve inference, and yet that is neither redun-
dant nor superfluous. As we show in our results,
in a limited computation setting as ours, current
state-of-the-art methods are not capable of strik-
ing this balance in unsupervised setups and result
in unreliable knowledge augmentation. He et al.

(2020) also report similar results on the same task
using the same BioBERT model. These results sug-
gest that we either need more computation power
to train these models for longer time to enable
convergence, or we need to create large annotated
corpora for retrieving missing facts to enable bet-
ter performance of these algorithms with limited
computation power. We need to direct our efforts
towards investigating advanced evidence retrieval
and knowledge integration setups such as this to
improve knowledge-based reasoning of the current
state-of-the-art models.

48



Method Text
Example P: Infusion stopped and she was treated with Benadryl 50 mg x 1, prednisone 40 mg

x 1, ativan 1 mg.
H: Patient has had an allergic reaction

Gold
retrieval

Benadryl is a brand name for a number of different antihistamine medications used
to stop allergies, including diphenhydramine, acrivastine and cetirizine.

Lexical
retrieval

None

Lexical +
syntactic
retrieval

Prednisone is used for many different autoimmune diseases and inflammatory con-
ditions, including asthma, COPD, CIDP, rheumatic disorders, allergic disorders,
ulcerative colitis and Crohn’s disease, granulomatosis with polyangiitis, adreno-
cortical insufficiency, hypercalcemia due to cancer, thyroiditis, laryngitis, severe
tuberculosis, hives, lipid pneumonitis, pericarditis, multiple sclerosis, nephrotic
syndrome, sarcoidosis, to relieve the effects of shingles, lupus, myasthenia gravis,
poison oak exposure, Méniére’s disease, autoimmune hepatitis, giant-cell arteritis,
the Herxheimer reaction that is common during the treatment of syphilis, Duchenne
muscular dystrophy, uveitis, and as part of a drug regimen to prevent rejection after
organ transplant.

Trained
Wiki
retriever +
retrieval
loss

Gemeprost (16, 16-dimethyl-trans-delta2 PGE methyl ester) is an analogue of
prostaglandin E. It is used as a treatment for obstetric bleeding. It is used with
mifepristone to terminate pregnancy up to 24 weeks gestation. Vaginal bleeding,
cramps, nausea, vomiting, loose stools or diarrhea, headache, muscle weakness;
dizziness; flushing; chills; backache; dyspnoea; chest pain; palpitations and mild
pyrexia. Rare: Uterine rupture, severe hypotension, coronary spasms with subsequent
myocardial infarctions. ...

Table 4: Text blocks retrieved by different methods from the (medical) Wikipedia corpus for one example in the
development set that requires further domain knowledge for correct inference. Gold retrieval mentioned here is a
manually retrieved sentence from Wikipedia, in presence of which the model corrects its output.

6 Conclusions and Future Work

On investigating the error categories of BioBERT
(v1.1) models on the clinical language understand-
ing task, we find that despite having a strong per-
formance, the models still make several mistakes
on examples that require medical domain knowl-
edge. To this end, we explored multiple methods
to improve access of these models to medical do-
main knowledge by implicit and explicit knowl-
edge retrieval and augmentation. However, we
see that these extensions do not show significant
improvement on the test sets. We conclude that
state-of-the-art solutions lead to unreliable knowl-
edge augmentation for language inference, as is
shown by a detailed analysis in our work. Future
research should concentrate efforts towards devel-
oping methods to augment fundamental domain
knowledge from textual corpora to solve the prob-
lem of advanced knowledge-based reasoning in
these domains.

Acknowledgements

This research was carried out within the Accu-
mulate strategic basic research project, funded by
the government agency Flanders Innovation & En-
trepreneurship (VLAIO) [grant number 150056].
It also received funding from the Flemish Govern-
ment (AI Research Program). This research was
conducted following an internship at Google Re-
search in Zürich. The experience gained during
the internship was instrumental in the research. We
would like to thank everyone in the team, and partic-
ularly André Susano Pinto for several discussions
related to BERT and Tensorflow, for exchange of
ideas, and for feedback on the draft. We would like
to additionally thank all the anonymous review-
ers whose useful comments have ensured a better
version of the paper.

49



References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Asso-
ciation for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267–
D270.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, and
Jorge Pérez. 2020. Spanish pre-trained bert model
and evaluation data. In to appear in PML4DC at
ICLR 2020.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.
2020. Legal-bert: The muppets straight out of law
school. arXiv preprint arXiv:2010.02559.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

Mingda Chen, Zewei Chu, Karl Stratos, and Kevin
Gimpel. 2020. Mining knowledge for natural lan-
guage inference from wikipedia categories. arXiv
preprint arXiv:2010.01239.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana
Inkpen, and Si Wei. 2018. Neural natural language
inference models enhanced with external knowledge.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2406–2417, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Sahil Chopra, Ankita Gupta, and Anupama Kaushik.
2019. MSIT_SRIB at MEDIQA 2019: Knowledge
directed multi-task framework for natural language
inference in clinical domain. In Proceedings of the
18th BioNLP Workshop and Shared Task, pages 488–
492, Florence, Italy. Association for Computational
Linguistics.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2019. Multi-step retriever-
reader interaction for scalable open-domain question

answering. In International Conference on Learn-
ing Representations.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. Bertje: A dutch bert model.
arXiv preprint arXiv:1912.09582.

Pieter Delobelle, Thomas Winters, and Bettina Berendt.
2020. Robbert: a dutch roberta-based language
model. arXiv preprint arXiv:2001.06286.

Jacob Devlin. 2018. Multilingual bert readme docu-
ment.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng
Wang, Jun Yan, and Xiang Ren. 2020. Scalable
multi-hop relational reasoning for knowledge-aware
question answering.

Leopold Franz, Yash Raj Shrestha, and Bibek Paudel.
2020. A deep learning pipeline for patient diagno-
sis prediction using electronic health records. arXiv
preprint arXiv:2006.16926.

Michael Glass, Alfio Gliozzo, Rishav Chakravarti, An-
thony Ferritto, Lin Pan, G P Shrivatsa Bhargav, Di-
nesh Garg, and Avi Sil. 2020. Span selection pre-
training for question answering. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2773–2782, On-
line. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
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Abstract

Automatic ICD coding is the task of assigning
codes from the International Classification of
Diseases (ICD) to medical notes. These codes
describe the state of the patient and have mul-
tiple applications, e.g., computer-assisted diag-
nosis or epidemiological studies. ICD coding
is a challenging task due to the complexity and
length of medical notes. Unlike the general
trend in language processing, no transformer
model has been reported to reach high perfor-
mance on this task. Here, we investigate in de-
tail ICD coding using PubMedBERT, a state-
of-the-art transformer model for biomedical
language understanding. We find that the dif-
ficulty of fine-tuning the model on long pieces
of text is the main limitation for BERT-based
models on ICD coding. We run extensive ex-
periments and show that despite the gap with
current state-of-the-art, pretrained transform-
ers can reach competitive performance using
relatively small portions of text. We point at
better methods to aggregate information from
long texts as the main need for improving
BERT-based ICD coding.

1 Introduction

During patient stays in medical institutions, clini-
cians generate text notes that record the state of the
patient as well as the diagnoses and the treatments
administered. Typically, a code from the Interna-
tional Classification of Diseases (ICD) is assigned
to these clinical notes, in order to provide stan-
dardized information about the patient condition.
ICD codes are used for different purposes, such
as billing, computer-assisted diagnosis or epidemi-
ological studies (Choi et al., 2016; Denny et al.,
2010; Avati et al., 2018). Assigning ICD codes to
medical notes is usually done manually by clini-
cians. This is an error-prone and time-consuming
procedure and therefore, automatic solutions have
been studied for over two decades (Larkey and
Croft, 1996; de Lima et al., 1998).

However, automatic ICD code assignment
proves challenging for multiple reasons. First, there
exists a very large number of ICD codes ( 17.000)
and each clinical report may have associated more
than one code. To deal with this large multi-label
classification problem, it is common to reduce the
number of codes to those that appear most fre-
quently (Mullenbach et al., 2018). Second, medi-
cal text usually lacks structure, includes irrelevant
passages, as well as abbreviations, misspellings,
numbers and a very specific vocabulary. On top of
that, medical notes are long, which makes it diffi-
cult for automatic coding models to draw relations
between different sections of the reports.

Current state-of-the-art methods for automatic
ICD coding from medical notes are based on deep
learning (Wang et al., 2018b; Mullenbach et al.,
2018; Vu et al., 2020). These methods use different
configurations of convolutional (CNN) and recur-
rent (RNN) neural networks as well as attention
modules(Bahdanau et al., 2014). This stands in
contrast to most areas of natural language process-
ing (NLP), where models based on the transformer
architecture (Vaswani et al., 2017) dominate the
state-of-the-art (Wang et al., 2019). One of the
main strengths of transformer models is their abil-
ity to deal with long range dependencies. This
is a desirable property in ICD coding, where an
understanding of different parts of the document
may be necessary to assign a code. The lack of
transformer models for ICD coding is surprising,
especially since there already exist BERT-based
models (Devlin et al., 2019) (a type of bidirec-
tional transformer) that are trained on medical text
data (Lee et al., 2020; Alsentzer et al., 2019; Gu
et al., 2020). These models have achieved state-of-
the-art performance on other tasks such as named
entity recognition or question answering on medi-
cal documents (Gu et al., 2020).

On the other hand, the complexity of transform-
ers scales quadratically with the length of their in-
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put, which restricts the maximum number of words
that they can process at once. This limitation may
be critical in ICD coding, since clinical notes usu-
ally exceed this maximum input length. In this
work, we investigate in detail BERT-based ICD
coding, and explore different strategies to over-
come the constraint on the input length by using an
encoder-decoder architecture. We use the MIMIC-
III dataset (Johnson et al., 2016), a big and widely
used dataset for the ICD coding task, in order that
our results are directly comparable to other exist-
ing methods (Wang et al., 2018b; Mullenbach et al.,
2018; Vu et al., 2020). By exposing the limitations
and benefits of BERT-based models on this task
our work sets a solid basis for further research on
automatic ICD coding systems.

2 Related Work

Automatic ICD coding has been an active area of
research for over two decades. Already Larkey
and Croft (1996) and de Lima et al. (1998) pro-
posed different strategies to extract features from
medical documents in order to build classifiers
for automatically assigning ICD codes to medi-
cal notes. More recently, Perotte et al. (2014) pro-
posed a multi-level Support Vector Machine (SVM)
model to predict ICD codes from the MIMIC-II
dataset (Saeed et al., 2011), the precursor of the
MIMIC-III dataset (Johnson et al., 2016) that we
consider in this work. Similarly, Scheurwegs et al.
(2017) presented a method to extract features from
structured and unstructured text and evaluated it on
the MIMIC-III dataset.

In the last years, the state-of-the-art of automatic
ICD coding has been dominated by deep learning
models. Shi et al. (2017) proposed an LSTM model
that operates at the character-level combined with
an attention mechanism (Bahdanau et al., 2014).
Wang et al. (2018b) proposed an embedding model
based on GloVE embeddings (Pennington et al.,
2014) that maps text and labels to the same space,
where predictions are made using the cosine simi-
larity. Mullenbach et al. (2018) proposed a model
that combined convolutions with a per-label atten-
tion mechanism. This model was further improved
by Xie et al. (2019) and Li and Yu (2020). Vu
et al. (2020), proposed a label-attention model that
reached the current best performance for ICD cod-
ing on the MIMIC-III dataset. All of these works
represent only a portion of the research carried out
in this field (Karimi et al., 2017; Baumel et al.,

2018; Song et al., 2020; Prakash et al., 2017; Cao
et al., 2020).

Since the appearance of the Transformer
model (Vaswani et al., 2017), transformer-based
architectures (Brown et al., 2020; Lewis et al.,
2020; Raffel et al., 2019) have become state-of-
the-art in almost every area of Natural Language
Processing (Wang et al., 2018a, 2019) thanks to
their ability to handle long range dependencies.
BERT (Devlin et al., 2019), a bidirectional trans-
former, is of particular importance since it is the
basis of many other language understanding mod-
els. Nonetheless, given the specific characteris-
tics of medical text, e.g., specialized vocabulary,
models pretrained on generic language, like BERT,
do not reach high performance on biomedical lan-
guage understanding tasks. Therefore, specialized
models, such as BioBERT (Lee et al., 2020) or
ClinicalBERT (Alsentzer et al., 2019), pretrained
on medical text have been proposed. In particular,
the recent PubMedBERT model (Gu et al., 2020) is
the state-of-the-art in the BLURB benchmark (Gu
et al., 2020), a benchmark for biomedical language
understanding which includes the following tasks:
named entity recognition, question answering, doc-
ument classification, relation extraction, sentence
similarity and evidence-based medical information
extraction. Despite its prominence in medical lan-
guage understanding, automatic ICD coding es-
capes the set of tasks where BERT-based models
excel. To the best of our knowledge, no BERT-
based model has been proposed yet that reaches
competitive performance on ICD coding on the
MIMIC-III dataset. In this work, we investigate in
detail BERT-based ICD coding and identify exist-
ing limitations and opportunities.

3 Background

In this section we present the BERT model used
in our experiments as well as the evaluation met-
rics.

3.1 PubMedBERT

PubMedBERT (Gu et al., 2020) is a transformer
model with the same architecture as BERT-
base (Devlin et al., 2019), i.e., it has 12 transformer
layers, 100 million parameters and it outputs vector
representations of 768 elements. PubMedBERT is
trained from scratch on PubMed text, on a dataset
of 3.1 billion words (21 GB). Furthermore, Pub-
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MedBERT has not been pretrained on the MIMIC
datasets as ClinicalBERT (Alsentzer et al., 2019)
or BlueBERT (Peng et al., 2019), and therefore, we
can evaluate it on MIMIC-III without information
leakage from the test set. We choose this model
among the existing ones because it is currently the
state-of-the-art in biomedical understanding tasks
as measured by the BLURB benchmark1. We use
the implementation from HuggingFace (Wolf et al.,
2019).

3.2 Evaluation Metrics

Following previous work (Wang et al., 2018b; Mul-
lenbach et al., 2018; Vu et al., 2020), we report
the results of our experiments using macro- and
micro-averaged AUC (Area Under the ROC Curve).
In a multi-class classification problem, the macro-
average computes the metric (AUC in our case)
for each class independently and then averages it
across classes. This gives the same weight to all
classes regardless of possible imbalances in the
data. Micro-averaging, on the other hand, com-
putes the average score over all samples, giving
the same weight to each sample rather than to each
class.

4 Dataset

In this work, we use the widely-used MIMIC-III
dataset (Johnson et al., 2016). This dataset contains
medical information in various forms, however, as
in previous studies (Wang et al., 2018b; Mullen-
bach et al., 2018; Vu et al., 2020), we consider ex-
clusively the discharge summaries for ICD coding.
Discharge summaries are medical notes created by
doctors at the end of a stay in a medical facility
and contain all the information about the stay. In
the MIMIC-III dataset, the length of the discharge
summaries after tokenization ranges from 78 to
18, 429 tokens with a mean length of 2, 740 tokens
and a median of 2, 500. Each of these discharge
summaries has associated to it one or more ICD
codes from the ICD-9 taxonomy, with an average
of 13.15 ICD codes per summary. Therefore, ICD
coding is a multi-label classification task.

The MIMIC-III dataset consists of 52, 722 dis-
charge summaries with a total of 8, 921 unique ICD
codes. However, most of the codes are very infre-
quent, and therefore, existing work (Wang et al.,
2018b; Mullenbach et al., 2018; Vu et al., 2020)

1https://microsoft.github.io/BLURB/
leaderboard.html

narrows down the task to finding only the 50 most
frequent ICD codes. We follow this strategy and
use the reduced dataset, sometimes referred to as
MIMIC-III-50. This dataset consists of a training
set of 8, 067 samples, a validation set of 1, 574 sam-
ples and a test set of 1, 730 samples. This data split
is aligned with previous work, and thus, our results
are directly comparable to those in the existing
literature.

4.1 Pre-processing
We pre-process the discharge summaries from the
MIMIC-III dataset following the method proposed
by Mullenbach et al. (2018), which is also used by
other recent work (Vu et al., 2020). This way, we
convert all the text to lower case and we remove all
numbers. However, we do not remove infrequent
words as in (Mullenbach et al., 2018) since BERT
uses WordPiece for tokenizing and hence, it does
not suffer from out-of-vocabulary terms.

5 Model

Discharge summaries are longer than the maximum
length accepted by PubMedBERT such that it fits
in the memory of a modern GPU and thus, we
need to split the summaries into pieces of text. In
order to process more than one piece of text per
summary we adopt an encoder-decoder structure,
where the encoder and the decoder are trained sep-
arately. This way, the encoder is the BERT model
that maps the different pieces of text to vector rep-
resentations. These vector representations are then
combined and decoded into ICD codes by the de-
coder, which can be any kind of model.

5.1 Encoder
We use PubMedBERT as the encoder of our model,
as described in Section 3. We run our experiments
on TITAN RTX GPUs with 24 GB of memory,
where we can fit PubMedBERT with a maximum
sequence length of 512 tokens.2 We devise five
different strategies to split the text of the discharge
summaries:

• Front: First 512 tokens of the summary.

• Back: Last 512 tokens of the summary.

• Mixed: First 256 and the last 256 tokens of
the summary.

2Note that even if we could fit sequences of 1024 or 2048
tokens, they would still be shorter than the mean and median
sequence length of the summaries.
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Figure 1: Validation losses for PubMED-BERT trained
on different parts of the text.

• All: Split the whole discharge summary into
consecutive chunks of 512 tokens; since sum-
maries are of different length, each summary
is split in a different number of chunks with
the last chunk being possibly shorter.

• Paragraph: Given that the discharge sum-
maries consist of named paragraphs, we select
the 200 most frequent paragraphs, i.e., those
that are present most often in the discharge
summaries, each with a maximum length of
512 tokens.

PubMedBERT has been pretrained on the
masked language modeling task, and therefore, it
can produce generic representations of the input
text. To fine-tune this model for the ICD coding
task without exceeding the memory constraints we
can feed only one chunk of text at a time. This
way, we fine-tune five different instances of the
PubMedBERT model, one per splitting strategy,
using a batch size of 1 (to ensure the model fits
in memory) and a learning rate of 5e−4. In each
case, the model receives as input a piece of text of
a maximum length of 512 tokens and it is trained
to predict the ICD codes of the corresponding dis-
charge summary. Note that while the text of front,
back and mixed corresponds always to the same
part of the discharge summary, when fine-tuning
the model on the paragraph and all splits, each
training example consists of only one paragraph or
chunk, respectively. Therefore, there is no align-
ment across training examples (each training exam-
ple comes from a different section of a discharge
summary), which introduces noise to the training.

Figure 1 depicts the validation losses after 6
epochs of training for each of the trained mod-
els. For front, back and mixed, we see that the

validation loss decreases quickly during the first
three epochs and then, it slowly stabilizes. How-
ever, for paragraph and all, the validation loss
stays constant, which indicates that the model is
failing to learn; in other words, the lack of align-
ment between training samples makes the task of
ICD coding too challenging for the model to learn
meaningful representations of the input text.

5.2 Decoder
If we consider only one part of the text at a time,
PubMedBERT can directly make a prediction on
the ICD codes for the corresponding summary, as
done during fine-tuning. However, in order to use
the information from different pieces of text, we
need a decoder capable of combining the informa-
tion from several encodings. This way, the decoder
receives as input one or several encoded represen-
tations (from the same discharge summary) gener-
ated by PubMedBERT during the encoding stage
and outputs a vector of probabilities for the 50 ICD
codes. For the decoder architecture, we consider
a linear layer, multi-layer perceptrons (MLPs) and
transformers.

In all cases, the decoders are trained with binary
cross entropy loss with logits. We use a batch size
of 32, a learning rate of 1e−4 with linear decay
for 30 epochs and weight decay with λ = 1e−3.
We train for a maximum of 100 epochs with early
stopping on the validation set.

Linear layer Our simplest decoder consists of
a linear layer that takes as input a concatenation
of the encoding vectors (of size 768 each); when
only one chunk is considered, the input is just one
encoding vector. The output of this linear layer is
the probability vector for the ICD codes.

Multi Layer Perceptron We consider two vari-
ants of MLP-architectures, flat and parallel. In the
flat architecture, the input is the concatenation of
the encodings, as for the linear layer. This vector
is passed through two non-linear layers, which pro-
duce intermediate representation of size 768 and
512 respectively, and then to a final linear layer that
outputs the probabilities of the 50 ICD codes. In
the parallel architecture, each of the input encod-
ings is processed by a different dense layer, each
of which produces an output of size 768/n, where
n is the number of input encodings. These interme-
diate representations are concatenated and passed
through two additional non-linear layers, with the
same sizes as in the flat architecture.
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Each of the non-linear layers includes layer nor-
malization (Ba et al., 2016), PReLU activation (He
et al., 2015), and dropout (Srivastava et al., 2014)
with p = 0.1.

Transformer This decoder takes as input the en-
codings and treats each of them as a token of di-
mensionality 768. These tokens are passed through
a transformer layer with 8 attention heads. The out-
put of this transformer layer is of the same size as
the input, i.e., a set of tokens of 768 elements. The
tokens are then concatenated and passed through
an MLP of the same structure as the flat MLP de-
scribed above.

6 Results

We pose six research questions regarding the dif-
ferent strategies to encode and decode discharge
summaries using a BERT-based encoder. In our
experiments, we fix the random seed so that all the
results are comparable.

How much does fine-tuning the encoder help
decoding?
Here, we consider only the PubMedBERT models
fine-tuned on front, back and mixed data, since they
were the only ones to learn during fine-tuning, as
shown in Section 5.1. To investigate the impact of
this fine-tuning step on decoding performance, we
use a simple linear layer which receives as input the
concatenation of the encodings of the front, back
and mixed chunks. Each of these pieces of text
is encoded by the PubMedBERT model trained
on that piece of text, i.e., we use three different
encoders. We study the difference in performance
for three different training points of the encoders:
not fine-tuned, fine-tuned for three epochs and fine-
tuned for six epochs. The results are detailed in
Table 1.

Epochs Macro AUC Micro AUC
None 55.76 69.55

3 81.47 86.00
6 83.00 86.98

Table 1: Performance for different number of train-
ing epochs when combining the front, back and mixed
chunks with a linear decoder.

These results show that fine-tuning the encoder
significantly improves the decoding performance
and that the best performance is obtained after six
epochs. In fact, the difference between fine-tuning
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Figure 2: Performance of a linear layer (top) and a non-
linear MLP (bottom) on the front, back and mixed en-
codings.

for six epochs and not fine-tuning is as large as
27.24 points for the Macro AUC score and 17.43
points for the Micro AUC score. We observed
the same pattern in all of our experiments, and
therefore, in the following we will only present
results with the encoder fine-tuned for six epochs,
unless stated otherwise.

Which of the three pieces of text, front, back or
mixed, contains the most relevant information
for ICD coding?

We experiment with a linear and a flat MLP decoder
and apply these models to the encodings of each of
the three chunks of text separately, i.e., front, back
and mixed. We report the results in Figure 2.

We see that front, i.e., the first 512 tokens of the
discharge summary yields the best performance,
both when the decoder is a linear layer and an MLP.
Although slightly inferior, the mixed chunk pro-
duces competitive scores while when using an MLP
the AUC scores are more than 3 points lower for
back than for front. Furthermore, using as decoder
an MLP improves the performance significantly
over using a linear layer; with the front non-linear
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model performing comparably to the combination
of the three chunks with a linear decoder, as re-
ported in the previous section, Table 1.

This naturally raises the question of whether the
combination of the chunks yields an improvement.
To study this, we use the same non-linear MLP
architecture as in Figure 2 (bottom) on 1) the con-
catenation of the encodings of front and back and
2) the concatenation of the three encodings, front,
back and mixed. We report the results in Table 2.

Model Mac. AUC Mic. AUC
Front-Back 83.70 88.11

Front-Back-Mixed 84.42 88.58

Table 2: Performance of combining the front, back and
mixed chunks using a two-layer flat MLP decoder.

These results show that combining front and
back improves performance in comparison to using
only front. As it may be expected, adding the mixed
paragraph, which contains redundant information,
produces only a small improvement. Overall, the
combination of the three chunks produces an im-
provement of 2.07 points for Macro AUC and 1.67
points for Micro AUC over using only front. Given
the larger input, these models have more param-
eters than the ones using only one of the chunks,
which could partly explain the improvement, espe-
cially when adding redundant information, i.e., the
mixed chunk. This result leads us to investigate the
influence of the decoder architecture.

How does the architecture of the decoder
impact performance?

Here, we consider flat MLP, parallel MLP and trans-
former decoders on the combination of front, back
and mixed. For each of these architectures, we eval-
uate three different sizes: Base, Large and X-Large,
where the difference between these sizes is only
the number of layers and the size of the internal
representations. This way, our experiments aim at
discerning whether the structure of the decoder, the
number of parameters, or both, influence the per-
formance of the ICD coding model. Table 3 details
the results of these experiments.

None of the models considered obtains a perfor-
mance significantly higher than the others, with the
largest difference across Macro and Micro AUC
scores being of only 0.28 and 0.57 points, respec-
tively. This result is surprising since, given the com-
plexity of the task, it could be expected that larger

Model AUC Mac. AUC Mic.
Flat (1.5M ) 84.42 88.58
Flat L (3M ) 84.30 88.45

Flat XL (7M ) 84.30 88.47
Parallel (1M ) 84.45 88.65

Parallel L (2M ) 84.23 88.48
Parallel XL (3M ) 84.51 88.49

Transformer (6.5M ) 84.30 88.49
Transformer L (14M ) 84.27 88.45

Transformer XL (18M ) 84.29 88.08

Table 3: Performance of different decoder architectures
for the combination of front, back and mixed, the num-
ber of parameters of each model is specified in paren-
thesis.

and more sophisticated decoders would perform
better. Notwithstanding, the saturation in perfor-
mance suggests that all the information available
in the input of the decoder is successfully extracted
by every model, regardless of its complexity. This
in turn indicates that the performance of the whole
encoder-decoder model is limited by the reduced
amount of text that is given as input (only the be-
ginning and the end of the discharge summaries).
Therefore, we next consider providing larger por-
tions of text from the discharge summaries as input.

Is dividing the discharge summaries by
paragraphs a good splitting strategy?
By splitting the discharge summaries into para-
graphs we take into account information from a
larger body of text than by using the front and the
back. The main disadvantage of this approach is
that the encoder fails to converge during fine-tuning.
Here, we test the hypothesis of whether the decoder
can compensate the lack of fine-tuning of the en-
coder and, by leveraging the larger amount of infor-
mation available, reach competitive performance.
We encode the 200 most frequent paragraphs using
the PubMedBERT model fine-tuned on paragraph
data, although due to lack of convergence during
fine-tuning, we observed very similar results when
using the not fine-tuned version.

Since not all the discharge summaries contain the
same paragraphs, there is a misalignment between
samples. For this reason, here we consider only
the transformer decoder; the self-attention modules
of the transformer should be able to cope with the
misalignment better than the other architectures.
We consider the transformer decoders (Base, Large
and X-Large) from the previous section. Now, the

59



FBM-Par. Tranf Transf-L Transf-XL
40

60

80

100

88.8

76.8 76.6 76.6

84.7

68.9 68.7 68.8%
Mac AUC
Mic AUC

Figure 3: Comparison of front-back-mixed parallel
(FBM-Par.) and three sizes of transformer decoders
(Transf) on paragraph data.

transformer decoder receives 200 encoded repre-
sentations, one per paragraph. Given this large
number of input representations or tokens, we ag-
gregate the output of the transformers by taking the
mean over the representations produced for all the
paragraphs3.

In Figure 3, we compare these paragraph de-
coders to the Parallel MLP model on the front, back
and mixed chunks from the previous section.

We see that dividing the discharge summaries
into paragraphs greatly under-performs in compar-
ison to using the beginning and end of the sum-
maries encoded by fine-tuned PubMedBERT mod-
els. This result partly rejects the hypothesis that
the decoder can benefit from a larger unstructured
input. Next, we continue investigating this hypoth-
esis by feeding the decoder with the complete dis-
charge summaries following the all strategy.

How does splitting the complete summaries in
consecutive chunks perform?

We split the whole text of each discharge summary
into consecutive chunks of 512 tokens (the last
chunk of each summary may be smaller). We en-
code these chunks using the PubMedBERT model
fine-tuned on all data; as before, we observed very
similar results with the not fine-tuned model. The
encodings are then fed into the decoder. Again,
the varying size of the discharge summaries pro-
duces misalignment across examples. Therefore,
we consider only the transformer decoders (Base,
Large and X-Large). We report the results of this
experiment in Figure 4.

The largest transformer model (XL) performs the

3We experimented with other aggregation techniques like
max pooling and large MLPs obtaining very similar results.
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Figure 4: Comparison of front-back-mixed parallel
(FBM-Par.) and three sizes of transformer decoders
(Transf) on all data.

best of the three models on all data. Nevertheless,
its 50.5% Macro and 68.7% Micro AUC scores
are much lower than the results obtained by the
front-back-mixed. In fact, splitting the text into
chunks of the same size performs the worst among
all the methods that we have investigated. These
results confirm that the decoder cannot compensate
the lack of convergence during the fine-tuning of
the encoder and points at the encoder as the main
responsible for the model’s performance.

How do our results compare to the
state-of-the-art?

Finally, in Table 4 we compare one of our best per-
forming BERT-ICD models, the front-back-mixed
Parallel model, with the existing state-of-the art
models for ICD coding on the MIMIC-III dataset.
In particular, we compare against the condensed
memory networks (C-MemNN) by Prakash et al.
(2017), LEAM by Wang et al. (2018b), CAML and
DR-CAML by Mullenbach et al. (2018), MSATT-
KG by Xie et al. (2019) and the Label Attention
model by Vu et al. (2020). We report the perfor-
mance of each model as provided in the correspond-
ing original work.

Model AUC Mac. AUC Mic.
C-MemNN 83.3 -

LEAM 88.1 91.2
CAML 87.5 90.9

DR-CAML 88.0 90.2
MSATT-KG 91.4 93.6

Label Attention 92.1 94.6
BERT-ICD 84.45 88.65

Table 4: Comparison of different state-of-the-art mod-
els for ICD coding.
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We see that although our BERT-based ICD cod-
ing model is competitive with some of the state-
of-the-art models, there is still a substantial gap
between the best performing model from Vu et al.
(2020), and our BERT-ICD model.

7 Discussion

Automatic ICD coding from discharge summaries
using transformer models has proven to be chal-
lenging. Discharge summaries are very long docu-
ments and thus, they need to be divided into chunks
in order to be entirely processed by BERT-like mod-
els.This way, a decoder is necessary to combine the
representations of each chunk, which are indepen-
dently generated by the BERT encoder. We have
shown that for these representations to be meaning-
ful the encoder needs to be fine-tuned on the ICD
coding task. It is straight-forward to fine-tune a
BERT encoder such as PubMedBERT using spe-
cific parts of the summary, e.g., the beginning or
the end. However, in our experiments, fine-tuning
PubMedBERT on excerpts extracted from different
parts of the text, i.e., paragraph and all, prevented
convergence due to the lack of alignment between
samples, i.e., due to each training sample contain-
ing information from a different section of a dis-
charge summary. Furthermore, our results show
that the decoder, regardless of its architecture, can-
not compensate for lack of convergence during the
fine-tuning of the encoder.

On the other hand, our best BERT-ICD model
reaches competitive performance using only 1, 024
tokens (front and back), which represents a signifi-
cantly smaller portion of text than state-of-the-art
models, based on CNNs and RNNs. Unlike BERT,
CNN and RNN models can extract information
from texts of any length without needing to split
them, which allows for end-to-end training over
long pieces of text. Mullenbach et al. (2018) found
that the performance of their convolutional atten-
tion model benefits from longer input texts until
a length of between 2, 500 and 6, 500 words, and
Vu et al. (2020) use up to 4, 000 words as input.
Our model combines encodings from the begin-
ning and the end of the discharge summary, and
reaches better performance in that case than when
it processes either of those portions of text alone.
This supports the statement that including more text
improves ICD coding. All of these results suggest
that the difficulty of fine-tuning a BERT encoder
on long pieces of text is the main bottleneck for

performance and the reason for the existing gap
with state-of-the-art models for ICD coding.

One of the main advantages of transformer mod-
els over CNNs and RNNs is that they can handle
long-range dependencies. Hence, if longer text
could be fed at once into a BERT encoder it would
be possible to find relationships and patterns over
longer spans of text. It is therefore likely that ad-
vances either in terms of hardware, i.e., larger GPU
memories allowing for longer pieces of text to be
processed at once; or in compressing BERT-like
models, e.g., distillation, will progressively close
the gap with the state-of-the-art, following the same
trend of other areas of NLP. On top of that, we con-
sider that the two most promising directions for
future research on BERT-based ICD coding are: 1)
devising strategies to fine-tune the encoder over
longer spans of text, e.g., building an ensemble
of models where each of them is trained on one
section of the text; 2) improving the methods to
aggregate encodings from different parts of the
document.

Finally, to deploy automatic ICD coding sys-
tems in the real world, it is important that their
decisions can be explained. Explaining trans-
former models is currently a field of active re-
search, and although there exist important con-
cerns about the interpretability of attention distribu-
tions in transformers (Brunner et al., 2019; Pruthi
et al., 2020), methods based on gradient attribu-
tion (Pascual et al., 2020) or on attention flow (Ab-
nar and Zuidema, 2020) can provide insights on
their decision-making. A BERT-based ICD cod-
ing system could directly benefit from this field
of research and eventually provide explanations
together with its ICD code predictions.

8 Conclusion

Contrary to what is common in most NLP tasks, the
transformer architecture is not the state-of-the-art
in assigning ICD codes to discharge summaries. In
this work, we have presented a thorough study of
the performance of BERT-based models on this task
and we have identified the length of the discharge
summaries as the main obstacle holding back their
performance. Our work sets a solid foundation for
further research on ICD coding and suggests that
overcoming the exposed limitations of BERT-based
models is likely to lead to a new state-of-the-art.
Furthermore, we believe that the interpretability
of ICD coding models is an interesting avenue for
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future work, which can benefit from a large body
of existing research.
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Abstract

We present emrKBQA, a dataset for answer-
ing physician questions from a structured pa-
tient record. It consists of questions, logical
forms and answers. The questions and logical
forms are generated based on real-world physi-
cian questions and are slot-filled and answered
from patients in the MIMIC-III KB (Johnson
et al., 2016) through a semi-automated pro-
cess. This community-shared release consists
of over 940000 question, logical form and an-
swer triplets with 389 types of questions and
≈7.5 paraphrases per question type. We per-
form experiments to validate the quality of the
dataset and set benchmarks for question to log-
ical form learning that helps answer questions
on this dataset.

1 Introduction

The last decade has seen widespread adoption of
electronic health records (EHRs) across hospitals
and clinics in the US (Jha et al., 2006; Evans, 2016).
Physicians often seek answers to questions from a
patient’s EHR to support clinical decision-making
(Demner-Fushman et al., 2009). It is not too hard
to imagine a future where a physician interacts with
an EHR system and asks it complex questions and
expects precise answers, with adequate context,
from a patient’s record (Pampari et al., 2018). Cen-
tral to such a world is a medical question answering
system that processes natural language questions
asked by physicians and finds answers to the ques-
tions in structured and unstructured sources in the
patient’s record.

However, the longitudinal, domain specific na-
ture of patient records along with privacy concerns
makes it difficult to develop large-scale annotated
datasets for training machine learning models. This
motivated Pampari et al. (2018) to develop the first
community-shared patient QA dataset, emrQA, us-
ing a semi-automated process and create a large-

Question paraphrases

Have this patient’s bilirubin changed over time?
What are the recent bilirubin results?
Has the patient had bilirubin testing, if so please 
give results?
What has this patient's bilirubin been 
throughout admission?
Does the patient have scanned records for a 
prior bilirubin?

Figure 1: Questions (and paraphrases) with answers
from MIMIC-III

scale dataset with over 1M question-answer and
question-logical form pairs. They templated and
slot-filled physician questions and logical forms on
clinical notes and extracted corresponding answers
from annotations on clinical notes for tasks like
entity extraction and relation learning in the i2b2
challenges (Uzuner et al., 2011).

However, emrQA is restricted to answers within
or across clinical notes. Clinical notes are known
to capture relations between entities (treatments for
problems, side-effects of a drug), signs or symp-
toms (palpitations), temporal and causal events. On
the other hand, structured data in the EHR is consid-
ered more reliable for labs results, prescriptions, vi-
tals and other measurements (Hanauer et al., 2015).
Hence, a complete EHR QA system should con-
sider data across both these sources in answering a
question.

Thus, we propose emrKBQA, a dataset for an-
swering natural language questions from the struc-
tured portion of EHR data by mapping questions
to logical forms. We demonstrate an instance of
using this dataset for question answering using the
MIMIC-III KB (a set of question paraphrases and
answers from MIMIC shown in Figure 1). The re-
sultant dataset consists of 940,713 question answer
pairs from 389 question types (unique instances of
questions, i.e., templates) and 52 question/logical
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forms groups (where questions within the group are
paraphrases) from 100 patients. We benchmark se-
mantic parsing and answering results on this dataset
by learning to map natural language questions to
logical forms and retrieving the answer from a KB
of patient records. The main contributions of this
work are as follows: (1) We develop and release
emrKBQA, the first large-scale community-shared
dataset for patient-specific QA on structured patient
records1. (2) emrKBQA will help train models for
semantic parsing and answering questions from the
structured EHR. This will help us progress towards
answering on the EHR as a whole (in conjunction
with emrQA). (3) We benchmark state of the art
semantic parsing models on the dataset for QA on
structured patient records.

2 Related Work

The question answering (QA) problem is usually
defined over unstructured texts or structured knowl-
edge bases (KB QA). In case of KB QA, questions
are usually mapped to logical forms (or a query
language using SQL, SPARQL, etc.) (Zettlemoyer
and Collins, 2005; Berant and Liang, 2014) that
are then used to retrieve the answer. In the medical
domain, there is limited prior work on answering
patient-specific questions over structured clinical
data.

Roberts and Demner-Fushman (2016, 2015) in-
troduce target logical form definitions and present
a rule based method for converting natural lan-
guage questions over structured data in the EHR
into logical forms. They work with a dataset of
446 questions collected during clinician ICU visits
and propose an approach using question decompo-
sition, concept recognition and normalization, and
rule based semantic parsing. However, the ques-
tions and logical forms were not publicly released.
In contrast, we present a large-scale community-
shared dataset of over 900k generated questions
from 52 unique question templates, logical forms
and answers.

More recently, Wang et al. (2020) create a new
large-scale Question-SQL pair dataset (MIMIC-
SQL) on the MIMIC-III dataset, again using the
generation process as in Pampari et al. (2018).
They propose a deep learning based TRanslate-Edit
Model for Question-to-SQL generation that adapts
the widely used sequence-to-sequence model to

1https://github.com/emrQA/emrKBQA scripts
to generate emrKBQA from MIMIC data.

directly generate the SQL query for a given ques-
tion, and also performs edits using an attentive-
copying mechanism. The questions in the dataset
are always asked over a patient-cohort such as “how
many patients had the diagnosis icd9 code 53190?”.
However, the questions in emrQA are specific to a
patient. This makes a big difference as the corpus
for answering is smaller (limited to the patient’s
record, which may include several admissions), the
answers may be viewed in conjunction with an-
swers from the unstructured record, the type of
questions asked varies, and redundancy and vari-
ability in answers to the same question may affect
model performance.

Park et al. (2020) construct an EHR QA dataset
from MIMIC-III where the question-answer pairs
are represented in SQL (table-based) and SPARQL
(graph-based). Here again, the questions are de-
fined over patient cohorts; e.g., “What number of
married patients suffered from other convulsions?”,
making it inherently different from the emrKBQA
task. They construct a knowledge graph by relating
tables in the database and explore both table-based
and graph-based QA (using SPARQL). emrKBQA
maps questions to logical forms based on a schema
of entities and relations. The tables and columns
in the KB are mapped to the entities and attributes
in the schema. Logical forms capturing the infor-
mation need expressed in the question are then
instantiated from this schema. Thus, emrKBQA
instantiates logical forms from a relational schema
(representing entities and relations typically found
in the EHR) and facilitates a query language/ re-
source independent way of representing questions
and answering them beyond just individual tables
in the KB.

KB-based QA datasets (question semantic pars-
ing) use annotated question and logical form pairs
for supervision where the logical forms (that can be
then easily be mapped to any query language) are
used to retrieve answers from a database (Bordes
et al., 2014; Zettlemoyer and Collins, 2005; Berant
and Liang, 2014). emrKBQA provides a dataset
that can be used to train models to retrieve answers
to natural language questions (by mapping them to
logical forms) from the structured part of the EHR.
The logical forms are instantiated from a schema
that captures domain entities, attributes and rela-
tions proposed in emrQA (Pampari et al., 2018).
We demonstrate the value of the dataset by answer-
ing natural language questions posed by physicians
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as follows. We first train state of the art sequence
models for semantic parsing to map questions to
(query-language agnostic) logical forms. We then
map the learned logical forms to the desired query
language (SQL) using a deterministic process.

3 Dataset Creation

emrKBQA is generated using a process similar to
emrQA. We begin with the same initial question,
logical form and template pool as emrQA. How-
ever, the question template groups, corresponding
logical forms and what constitutes an answer have
all been updated by a medical expert to better re-
flect answering needs.

Questions. emrKBQA contains natural lan-
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Figure 2: Distribution of answer categories against
question template types. Some questions have multiple
categories like medication and therapeutic procedure or
condition and smoking .

guage questions posed by physicians at the Vet-
eran’s Administration (VA), Mayo Clinic and
Cleveland Clinic on patient records (Raghavan
et al., 2018). These questions have been trans-
formed into templates by replacing entities with
entity-type placeholders (same as emrQA). The
dataset consists of 389 such question templates.
The placeholders are then slot-filled with appropri-
ate entities from a KB. For instance, “Is the patient
on lisinopril?” is transformed to: “Is the patient
on |medication|?” The |medication| placeholder is
then slot-filled with different medication names
from a KB. While the slot-filling is done indiscrim-
inately in emrQA, we constrain the slot-filling by
constraining the entity types, wherever possible,
with the help of a medical expert. E.g., we filter
Prescriptions (table) with drug type (table column)
base (column value) in slot-filling medication ques-
tions. We also filter out certain icd codes from the
diagnoses icd table in questions with conditions.
We process the date field (yyyy-mm-dd, hh:mm:ss)

to also insert instances of just month and day, or
date without time when slot-filling (along with us-
ing the original format). Doing so ensures that the
questions are more likely to be naturally asked.

As in this example, the questions are patient-
specific and the expected answer is in the structured
part of the patient record. Each question template
is also assigned one or more question types, which
is a new field (not in emrQA) to further categorize
question templates in emrKBQA. Question type
can take one or more of the following values:

• YesNo = yes/no questions, e.g., “Is |test| value
abnormal”, “Is the patient on |medication|”

• Temp = temporal or when questions, e.g.,
“date last |test|”

• Fact = factual or what questions, e.g., “Range
of |test|”

A side-effect of the generation process (slot-
filling) is that all YesNo questions have a Yes an-
swer. We counter this by also generating questions
where the answer will be No. We do this by slot-
filling |problem|, |test|, |medication|, |treatment|
based on the question and using top 50 most fre-
quently occurring entities in appropriate tables
(based on the entity type). Some of these questions
are now bound to have No as the answer when
applied to our patient set.

The types of questions are a consequence of the
questions provided by the physicians who were
polled for the initial question set. This was inde-
pendent of any underlying data and simply based
on what they would want to know about their own
patients. While several other questions may be an-
swerable on any underlying KB (like MIMIC), we
wanted the question set to reflect what an actual
physician may want to know from a patient record.

Logical Forms. Logical forms are a structured
representation that capture the information need
expressed in the question through entities, relations
and attributes and are generated as a by-product
of the emrQA generation process. They provide
a human-comprehensible symbolic representation,
linking questions to answers, and help build in-
terpretable models critical to the medical domain
(Davis et al., 1977; Vellido et al., 2012). They are
formally defined by Pampari et al. (2018) in em-
rQA. They encapsulate how we are answering a
question (since that can be subjective). They are
instantiated from a schema representing entities
and relations found in the EHR. We use the same
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Events and attributes from emrQA logical forms used in emrKBQA mapped to MIMIC-III schemaVitalEvent

• Test
• VitalName
• Date
• Result
• Status

ProcedureEvent

• Test
• ProcedureName
• Date
• Result
• Status
• AbnormalResultFlag

LabEvent

• Test
• LabName
• Date
• Result
• Status
• AbnormalResultFlag

labevents, d_labitems

d_labitems.label
labevents.charttime
labevents.value & labevents.valueuom

labevents.flag
not available

MedicationEvent

• Medication/Treatment
• MedicationName
• Startdate
• Enddate
• Strength
• Route
• Formulation
• Dosage

prescriptions

prescriptions.drug
prescriptions.startdate
prescriptions.enddate

prescriptions.route
prescriptions.prod_strength

prescriptions.form_unit_disp
not available

ProcedureEvent

• Treatment
• ProcedureName
• Date
• Status

procedureevents_mv, d_items
(ordercategoryname=“Continuous Procedures”, “Peritoneal Dialysis”, or “Ventilation”)

d_items.label
procedureevents_mv.starttime
not available

emrQA question template entities
emrQA logical form attributes
MIMIC-III data tables and fields

SmokingQuitEvent

• QuitDate
• Method

SmokingUseEvent

• IsTobaccoUser
• YearsOfUse
• PackPerDay

chartevents, d_items (itemid=227687 or 225108)

d_items.label: chartevents.value
not available
not available

ConditionEvent

• Problem
• ConditionName
• DiagnosisDate
• Status

diagnoses_icd, 
d_icd_diagnoses, admissions

d_icd_diagnoses.long_title
Prior to admissions.dischtime
not available

chartevents, admissions
(itemid=225059 or 225811)

chartevents.value
Prior to admissions.admittime
not available

OR

Figure 3: Mapping between emrKBQA schema entities, attributes and tables (yellow boxes) and columns in
MIMIC (shown in blue). See MIMIC schema for a description of MIMIC table and column names(Johnson et al.,
2016)

schema as Pampari et al. (2018) and map the tables
and columns in MIMIC to the schema entities and
attributes (see Figure 3).

The schema entities (yellow boxes in Figure 3)
represent entities of interest in patient records. In
emrQA these are derived from the annotated en-
tities in i2b2 (since emrQA was slot-filled from
i2b2 annotations). We use the same entities for em-
rKBQA as our question set is a subset of emrQA.
The structured MIMIC KB does not contain any
semantic relations (relates, conducted/reveals, im-
proves, worsens, causes, given/not given (Pampari
et al., 2018)). Thus, Figure 3 does not show any
of the relations defined in the emrQA schema. An
example of the mapping between a schema entity
and MIMIC table is as follows. The Medication-
Event (entity that corresponds to Medication and
Treatment in our logical form templates) from the
schema maps to the Prescriptions table in MIMIC.
The entity attributes (shown in red) correspond to
the columns in the Prescription table (shown in
blue) as illustrated in the figure.

In our example, the logical form for question
template “Is the patient on |medication|?” would
be annotated as “MedicationEvent |medication|”,
where |medication| would be slot-filled with medi-
cation names from the KB. The logical form helps
identify appropriate tables, entities and values re-
quired from the KB.

Structured data typically factually records lab
values, vitals, conditions on admission, and medica-
tions but rarely records relations between these en-

tities. In case of emrKBQA, none of the questions
that involve resolving relations to answer a ques-
tion in emrQA are answerable from structured data
in MIMIC. However, answering questions about
schema entities and attributes requires querying
and combining information from multiple related
tables in MIMIC.

While logical forms are an outcome of the pro-
cess used to generate emrQA, they are not essential
to answering questions over unstructured data like
clinical notes. The more traditional use of logi-
cal forms is in answering natural language ques-
tions from a structured KB. It is easier to convert
a question to logical form than to SQL (which is
longer and more complex for most questions, of-
ten including multiple nested queries and joins).
They provide a query-language agnostic intermedi-
ate representation that captures information need
expressed in the question using a representation
that is perhaps more annotator friendly. Moreover,
since logical forms are defined over a schema that
captures domain-specific entities and relations, they
are independent of the underlying database type or
query language.

Question Paraphrase Groups. Question para-
phrases are different ways of asking the same thing.
The emrKBQA dataset is paraphrase rich with an
average of 7.5 paraphrases per question. In emrK-
BQA, questions that map to the same logical form
and share the same question type are considered
paraphrases. The dataset has 52 question template
groups where each group maps to the same logical
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form. This is because the answer to a question may
vary based on question type even if they map to the
same logical form. E.g., Consider the questions in
Table 1; the first set of questions are paraphrases
since their question type is Fact and they map to
the same logical form. So the expected answer is
the lab values and date. However, in case of the
last question, where the question type is YesNo, the
expected answer is a Yes or a No along with the lab
values and date. The paraphrases were a natural
outcome of the question collection process, where
the physicians who were polled phrased the same
information need in different ways. Paraphrases
may be syntactic variations (word re-ordering) or
substitution based (word/ phrase substitution) or a
combination of the two.

Paraphrases Ques Type
Previous |test| levels? Fact
What is |test| value? Fact

What is the patient’s |test| levels? Fact
How is his |test| trending? Fact

Show me a trend of his |test|? Fact

Has |test| been measured before YesNo

Table 1: Example question paraphrases that map to the
same logical form LabEvent (|test|) [date=x, result=x,
sortBy(date)] OR VitalEvent (|test|) [date=x, result=x,
sortBy(date)], the first set that also share question type
are considered paraphrases.

Answers. Answers in emrKBQA are cell val-
ues from a table(s) in the KB. Broadly the an-
swer categories in emrKBQA are Test, Medica-
tion, Allergy, Therapeutic Procedures, Conditions
and Smoking. Figure 2 shows the distribution of
questions across different answer categories. Most
questions asking about Test are factual or YesNo
whereas Condition and Medication have more ques-
tions that are Temporal in nature.

As in emrQA, the answers to questions are de-
rived in a semi-automated manner. Each question is
mapped to a logical form that captures the entities
and relations that are required to adequately answer
the question. This mapping is done by a medical
expert. The expert uses an ontology that captures
entities, entity attributes and relations in the patient
record to define the logical form for a question (we
use the same schema as emrQA). The slot-filled log-
ical forms such as, “MedicationEvent|lisinopril|”,
are mapped to an underlying query language us-
ing a deterministic procedure (like SQL) that help

retrieve the answer from the KB. The answer to
this question would be evidence in the structured
data that records the patient taking lisinopril along
with some contextual details about the medication.
“Yes/No, Start date, End date”.

Dataset Generation Process. We use the ques-
tion/logical form templates from emrQA and filter
out templates that cannot be mapped to MIMIC
structured data. We then map entity placeholders
in the templates to MIMIC columns and populate
the placeholders with MIMIC data corresponding
to the placeholder entity type. The mapping be-
tween entity placeholders and the MIMIC tables
and columns2 is shown in Figure 4. Finally, we
extract answers from MIMIC. In the example be-
low, the entity |test| is populated by joining the
labevents table with d labitems (dictionary map-
ping lab itemids to labels) and retrieving the label
field (Hemoglobin), which is used to slot fill the
question template and the logical form template.
The result for this question is a concatenation of
value and valueuom (unit of measurement) from the
labevents table; these are sorted by the charttime
field. Example questions, logical forms, question
type and answer categories are shown in Table 2.

4 Dataset Creation Results

emrKBQA consists of 940,713 question answer
pairs over 100 patients, generated from 389 ques-
tion templates and 52 question type-specific logical
form templates3. emrKBQA contains an average
of 7.5 paraphrases per question type-specific log-
ical form template (ranging from 1 to 55), where
a paraphrase is defined as question templates shar-
ing the same question type that map to the same
logical form template. Of the generated question
answer pairs, 90.9% are test results, 7.8% relate to
medications, 1.2% to conditions, and the remaining
to other topics (e.g., allergies, tobacco use). The
limited size of the medication data can be attributed
to the use of emrQA questions as the starting point.
emrQA questions are based on an outpatient set-
ting where medication data is available while emr-
KBQA is from an ICU setting where prescription
data is available. Thus several questions about ad-
herence, dosage and frequency of medication were
not part of emrKBQA. Only 1% (3,429 rows) of
the generated dataset were condition related results
since fields such as diagnosis time and relationships

2https://mit-lcp.github.io/mimic-schema-spy/
3the process can be applied to any number of patients
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Figure 4: emrKBQA generation process

between treatments and conditions or between med-
ications and conditions are unavailable in MIMIC.

5 Task Definition and Models

Each instance in emrKBQA consists of the follwing
elements - question, question paraphrase group,
question type, logical form, answer - defined in Sec-
tion 3. Our goal is to build a model that when pre-
sented with a test question on the KB, provides an
answer. We achieve this by first modeling the ques-
tion to logical form learning problem as a semantic
parsing task. Here, given an input natural language
question, we predict its logical form. Next, we
map the predicted logical form to a SQL query in a
deterministic manner to retrieve the answer from
the KB. The answer is the set of cell values from
the underlying KB that answer the question. We
detail these two steps in the following sections.

5.1 Semantic Parsing
The task setup for semantic parsing is as follows:
given a question in emrKBQA, predict the logi-
cal form for that question. As emrKBQA contains
several question paraphrases that map to the same
logical form, the learning task can be set up in
two ways, (1) naive splitting scheme, where input
instances are split at random between train and
test data, and (2) paraphrase-level splitting scheme,
where a question paraphrase seen during train time
is not observed in the test set. Thus, the model
is tested on whether it can infer the meaning of
this question only from its paraphrased forms seen
during training. While the paraphrase-level split
is more challenging than the naive one, the set-
ting is more realistic. Since the test instances are

paraphrases of some training instance, the model is
expected to generalize to unseen test instance.

In a previous work, Min et al. (2020) have shown
state-of-the-art performance on model generaliza-
tion for sequence to sequence tasks. They handle
unseen sentential paraphrases at test time by in-
corporating paraphrase detection and generation
as auxiliary tasks. In case of paraphrase genera-
tion (ParaGen), they sample a question paraphrase
during training and learn to generate it along with
the main task of logical form prediction. In the
paraphrase detection model (ParaDetect), they sam-
ple a paraphrase and learn to identify if the sample
and the input question are paraphrases by look-
ing at their embeddings in the auxiliiary task. We
use the best performing model reported in Min
et al. (2020) and perform the following experiments
across both splitting schemes: (1) Naive splitting
scheme with a baseline model - seq2seq model
with copy mechanism (Gu et al., 2016), (2) Para-
phrase splitting scheme with a baseline model -
seq2seq model with copy mechanism, and (3) Para-
phrase splitting scheme with the best-performing
ParaGen+ParaDetect model.

5.2 Predicted Logical form to Answer

Finally, the predicted logical form is now mapped
to a SQL query to retrieve an answer from the KB.
Each question template maps to a logical form tem-
plate and for each logical form template, we have
a corresponding SQL query template. While this
mapping is deterministic, the errors in the predicted
logical forms require us to use approximate match-
ing functions to map the predicted logical form
(template) to the correct logical form template. We
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Question Logical Form QType ACat

What were the results
of abnormal
|test| in |date|?

LabEvent(|test|)
[abnormalResultFlag=Y, date=|date|, result=x]
OR [{LabEvent(|test|)
[date=|date|, abnormalResultFlag=Y]

F Test

What is the patients
|problem| history?

ConditionEvent(|problem|) [diagnosisdate=x]
OR SymptomEvent(|problem|) [onsetdate=x]

F Cond

How long has patient been
on |medication|?

MedicationEvent(|medication|)
[startdate=x, enddate=x]

T Med

Has the patient ever been
diagnosed or
treated for |problem|?

ConditionEvent(|problem|) [diagnosisdate=x]
OR [{MedicationEvent(x) OR
ProcedureEvent(x)}
given ConditionEvent(|problem|)]

YN Cond

Table 2: Example questions and logical forms across question types Fact(F), Temporal(T), YesNo (YN) and answer
categories Test, Condition, Medication

achieve this by matching the by using string simi-
larity measures like edit distance. We then extract
the slot filled entity from the predicted logical form
and slot fill the SQL query. This query is then run
to derive the answer. This answering accuracy is
captured in the denotation accuracy metric.

5.3 Experimental Settings

We split emrKBQA dataset according to our two
splitting schemes, naive and paraphrase-level, and
create two sets of train (70%), dev (10%) and test
(20%) datasets. We evaluate the performance of
our semantic parsing step using Exact Match (EM)
(Min et al., 2020), and our logical form to answer
step using Denotation Accuracy (Lin et al., 2019)
metrics. EM only considers model outputs that are
identical to the labeled ones as correct, while deno-
tation accuracy considers logical forms that return
the label answer from the database as correct. We
utilize Min et al. (2020)’s public implementation4

for executing the experiments. We used the default
hyperparameters.

5.4 Results

Table 3 presents results of the experiments5. The
baseline seq2seq with copy model gives high per-
formance in the naive splitting scheme, however
the performance drops when we evaluate the model
with the paraphrase-level splits. In our experi-
ments, the ParaGen+ParaDetect model provides
similar performance to the baseline seq2seq with
copy model. This may be attributed to a lack of

4https://github.com/jointparalearning/AdvancingSeq2Seq
5Results will vary with different initialization seeds

Splitting
Scheme

Model EM Denotation
Accuracy

Naive Seq2seq with
copy

0.95 0.96

Paraphrase Seq2seq with
copy

0.83 0.84

Paraphrase ParaGen + Pa-
raDetect

0.82 0.82

Table 3: Semantic parsing results on paraphrase splits.

hyperparameter tuning on out emrKBQA dataset.
For error analysis, we randomly sampled 100

error instances from our best performing seq2seq
with copy model predictions. We present the ma-
jor error categories with examples in Table 4. Al-
most half of the errors were attributed to questions
with multiple entities. In the first example, the
two entities “white blood cells” and date “2139-
04-01 06:23:00” are merged to “white 06:23:00”
in the predicted logical form, leading to an error.
Another big chunk of errors can be attributed to
incorrect recognition of the entity types present in
the question, e.g., whether the entity is of type lab
or procedure, or condition or symptom (example
2). To resolve this error, pretraining the model with
a named entity recognition objective might be use-
ful. A next set of errors are due to identification of
incorrect span of entities (example 3). This error
can be attributed to the fact that the the model has
not seen the question form in train data (due to
paraphrase-level splits). For the remaining error
categories, 7% are caused due to attribute errors
like min, max, and finally 4% of the errors are
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Question
Form

Predicted LF GT Logical Form Error
category

Perc

what were
the results
of the abnor-
mal white
blood cells in
2139-04-01
06:23:00

labevent (white blood cells) [ab-
normalresultflag=y, date=2139-
04-01 06:23:00, result=x] or
procedureevent(white blood
cells) [abnormalresultflag=y,
date=2139-04-01 06:23:00,re-
sult=x] or vitalevent(white blood
cells) [date=white 06:23:00
(result=x)>vital.refhigh] or......

labevent (white blood cells) [ab-
normalresultflag=y, date=2139-
04-01 06:23:00, result=x]
or procedureevent(white
blood cells) [abnormalre-
sultflag=y, date=2139-04-01
06:23:00,result=x] or vi-
talevent(white blood cells)
[date=2139-04-01 06:23:00,
(result=x)>vital.refhigh] or .....

multiple
entities

47%

has the patient
had a previous
intracerebral
hemorrhage

labevent (intracerebral hemor-
rhage) [date=x] or procedureevent
(intracerebral hemorrhage)
[date=x]

conditionevent (intracerebral
hemorrhage) [diagnosisdate=x]
or symptomevent (intracerebral
hemorrhage) [onsetdate=x]

confusion
between
the entity
type

28%

has this pa-
tient ever had
a documented
chest x-ray at
another va

labevent (documented chest)
[date=x] or procedureevent
(documented chest) [date=x] or
vitalevent (documented chest)
[date=x]

labevent (chest x-ray) [date=x]
or procedureevent (chest x-ray)
[ date=x ] or vitalevent (chest x-
ray) [date=x]

wrong
entity
span
(para-
phrase
split)

12%

date of acute
bronchitis

conditionevent (acute bronchitis)
[min(diagnosisdate=x)] or symp-
tomevent (acute bronchitis)

conditionevent (acute bronchi-
tis) [diagnosisdate=x] or symp-
tomevent (acute bronchitis) [on-
setdate=x]

attribute
error

7%

has the patient
had a previous
unspecified
viral hepati-
tis c without
hepatic coma

conditionevent (unspecified hep-
atitis c without hepatic coma) [di-
agnosisdate=x] or symptomevent
(unspecified viral hepatitis c with-
out hepatic coma) [onsetdate=x]
]

conditionevent (unspecified hep-
atitis c without hepatic coma) [di-
agnosisdate=x] or symptomevent
(unspecified viral hepatitis c with-
out hepatic coma) [onsetdate=x]

semantic
errors
(extra
brackets)

4%

Table 4: Error analysis of randomly chosen 100 error instances in the semantic parsing model.

caused due to a long tail of semantic errors like
extra brackets, etc.

6 Discussion

Advantages of emrKBQA. emrKBQA is the first
large-scale community shared patient-specific QA
dataset for answering physician questions from
structured patient records. It follows a semi-
automated process similar to emrQA (which re-
leases QA pairs on clinical notes), where logical
forms are the only expert-provided input. These
logical forms lend credibility to the dataset as they
capture entities, attributes, and relations required
to answer a question and enable slot filling and
answer generation. Some highlights of emrKBQA
are (1) Question Quality. Unlike emrQA, emrK-

BQA slot-fills entities with discretion by filtering
out certain entities based on their attributes (like
certain diagnoses based on ICD codes, medications
based on drug type). This results in more realis-
tic realization of question instances. (2) Question
Diversity. The dataset is rich in paraphrases (para-
phrase groups have been updated from emrQA) (3)
Dataset Difficulty. We provide paraphrase-level
splits that helps train models that can generalize
to unseen paraphrases of the train questions at test
time. This is useful in practical settings. As de-
scribed in the error analysis, in learning to map
questions to logical forms, the challenges include
recognizing the correct entity spans and types from
the question, learning to predict long logical forms,
and generating multiple attributes and constraints
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in the logical form. (4) Logical forms generated
from the same schema as emrQA, allowing the
schema to be a unifying factor across structured and
unstructured QA. This allows for future updates in
a uniform manner.

Limitations of emrKBQA. (1) Since we
wanted the question set to comprise of actual ques-
tions asked by physicians, the question set is lim-
ited to the initial pool collected from the polled
physicians. (2) The dataset is generated in a semi-
automated manner that leads to some slot-filled
questions that are unlikely to be asked in a real
setting. (3) Redundancy of “question form” due to
slot filling. Several instances of the same template
with different slot-filled entities.

In future versions of the dataset, some of the
planned updates include the following: increas-
ing the range of question types, the granularity of
questions asked, infuse the need for domain knowl-
edge in understanding a question (using word/
phrase synonyms in slot-filling), better classifi-
cation of temporal questions based on TimeML,
(Pustejovsky et al., 2003), generating more ques-
tion paraphrases using automated methods (Soni
and Roberts, 2019; Min et al., 2020; Neuraz et al.,
2018; Dong et al., 2017). While this version of
the dataset is generated on randomly sampled 100
patients, we could apply the dataset generation pro-
cess to any number of patients in MIMIC. It may be
interesting to include patient’s chosen as per some
criteria and contrast answers to similar questions
across the chosen cohort.

Differences between emrQA and emrKBQA.
emrKBQA is best suited for answering factoid
questions such as test results as seen from the re-
sults discussed; 87% of emrKBQA (vs 11% of
emrQA) comprises test results since test value
columns are rarely null. Also, emrKBQA is not
limited by annotated clinical notes, which may be
a problem if there are very few sources to obtain
them. The benefit of emrQA is that it includes ques-
tions and answers about medications for problems,
response to treatments, temporal constraints and
etiology, all of which are unavailable in emrKBQA.

The benefit of a structured dataset such as
MIMIC is that explicit values are captured well
in tables. Unstructured data may have the answer
implicitly stated and may have to be inferred. It
also might be incomplete in terms of certain types
of crucial information like dates. The limitation of
structured data is that it may not capture all types of

information. Typically, structured data is unlikely
to store symptoms, relations between conditions
and symptoms or relations between conditions and
treatments. These relations are more likely to be
captured by unstructured data.

Question Answering on the entire EHR. em-
rKBQA is a step in the direction of being able to
answer a question anywhere in the EHR, since it
utilizes the same schema as emrQA that is used
to instantiate logical forms that capture informa-
tion needs expressed in natural language questions.
The answer could now be derived from the struc-
tured KB, clinical notes or from both sources in a
complementary manner.

7 Conclusion

We create a new large-scale dataset, emrKBQA,
for answering patient-specific physician questions
from structured patient records. This community-
shared release is created in a semi-automated man-
ner and consists of over 900k question-logical form-
answer triples, 389 question types (templates), with
≈7.5 paraphrases per question type. We benchmark
the dataset and quantify its usefulness in answering
questions by training models for semantic parsing
of questions to logical forms.
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Abstract

The MEDIQA 2021 shared tasks at the
BioNLP 2021 workshop addressed three tasks
on summarization for medical text: (i) a
question summarization task aimed at explor-
ing new approaches to understanding com-
plex real-world consumer health queries, (ii) a
multi-answer summarization task that targeted
aggregation of multiple relevant answers to a
biomedical question into one concise and rel-
evant answer, and (iii) a radiology report sum-
marization task addressing the development
of clinically relevant impressions from radiol-
ogy report findings. Thirty-five teams partici-
pated in these shared tasks with sixteen work-
ing notes submitted (fifteen accepted) describ-
ing a wide variety of models developed and
tested on the shared and external datasets. In
this paper, we describe the tasks, the datasets,
the models and techniques developed by vari-
ous teams, the results of the evaluation, and a
study of correlations among various summa-
rization evaluation measures. We hope that
these shared tasks will bring new research and
insights in biomedical text summarization and
evaluation.

1 Introduction

Text summarization aims to create natural lan-
guage summaries that represent the most impor-
tant information in a given text. Extractive sum-
marization approaches tackle the task by selecting
content from the original text without any modifi-
cation (Nallapati et al., 2017; Xiao and Carenini,
2019; Zhong et al., 2020), while abstractive ap-
proaches extend the summaries’ vocabulary to
out-of-text words (Rush et al., 2015; Gehrmann
et al., 2018; Chen and Bansal, 2018).

Several past challenges and shared tasks have
focused on summarization. The Document Un-
derstanding Conference1 (DUC) organized seven

1www-nlpir.nist.gov/projects/duc

challenges from 2000 to 2007 and the Text Anal-
ysis Conference2 (TAC) ran four shared tasks
(2008-2011) on news summarization. The last
TAC 2014 summarization task tackled biomedi-
cal article summarization with referring sentences
from external citations. Recent efforts in sum-
marization have focused on neural methods (See
et al., 2017; Gehrmann et al., 2018) using bench-
mark datasets compiled from news articles, such
as the CNN-DailyMail dataset (CNN-DM) (Her-
mann et al., 2015). However, despite its impor-
tance, fewer efforts have tackled text summariza-
tion in the biomedical domain for both consumer
and clinical text and its applications in Question
Answering (QA) (Afantenos et al., 2005; Mishra
et al., 2014; Afzal et al., 2020).

While the 2019 BioNLP-MEDIQA3 edition fo-
cused on question entailment and textual infer-
ence and their applications in medical Question
Answering (Ben Abacha et al., 2019), MEDIQA
20214 addresses the gap in medical text summa-
rization by promoting research on summarization
for consumer health QA and clinical text. Three
shared tasks are proposed for the summarization
of (i) consumer health questions, (ii) multiple an-
swers extracted from reliable medical sources to
create one answer for each question, and (iii) tex-
tual clinical findings in radiology reports to gener-
ate radiology impression statements.

For the first two tasks, we created new test sets
for the official evaluation using consumer health
questions received by the U.S. National Library of
Medicine (NLM) and answers retrieved from re-
liable sources using the Consumer Health Ques-
tion Answering system CHiQA5. For the third
task, we created a new test set by combining
public radiology reports in the Indiana Univer-

2tac.nist.gov/tracks
3sites.google.com/view/mediqa2019
4sites.google.com/view/mediqa2021
5chiqa.nlm.nih.gov
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sity dataset (Demner-Fushman et al., 2016) and
newly released chest x-ray reports from the Stan-
ford Health Care.

Through these tasks, we focus on studying:

• The best approaches according to the
summarization task objective and the
language/vocabulary (consumers’ ques-
tions, patient-oriented medical text, and
professional clinical reports);

• The impact of medical data scarcity on the
development and performance of summa-
rization methods in comparison with open-
domain summarization;

• The effects of different summary evaluation
measures including lexical metrics such as
ROUGE (Lin, 2004), embedding-based met-
rics such as BERTScore (Zhang et al., 2019),
and hybrid ensemble-oriented metrics such
as HOLMS (Mrabet and Demner-Fushman,
2020).

2 MEDIQA 2021 Task Descriptions

2.1 Consumer Health Question
Summarization (QS)

Consumer health questions tend to contain pe-
ripheral information that hinders automatic Ques-
tion Answering (QA). Empirical studies based on
manual expert summarization of these questions
showed a substantial improvement of 58% in QA
performance (Ben Abacha and Demner-Fushman,
2019a). Effective automatic summarization meth-
ods for consumer health questions could therefore
play a key role in enhancing medical question an-
swering. The goal of this task is to promote the de-
velopment of new summarization approaches that
address specifically the challenges of long and po-
tentially complex consumer health questions. Rel-
evant approaches should be able to generate a con-
densed question expressing the minimum informa-
tion required to find correct answers to the origi-
nal question (Ben Abacha and Demner-Fushman,
2019b).

2.2 Multi-Answer Summarization (MAS)
Different answers can bring complementary per-
spectives that are likely to benefit the users of QA
systems. The goal of this task is to promote the
development of multi-answer summarization ap-
proaches that could solve simultaneously the ag-
gregation and summarization problems posed by

multiple relevant answers to a medical question
(Savery et al., 2020).

2.3 Radiology Report Summarization (RRS)

The task of radiology report summarization aims
to promote the development of clinical summa-
rization models that are able to generate the con-
cise impression section (i.e., summary) of a radi-
ology report conditioned on the free-text findings
and background sections (Zhang et al., 2018). The
resulting systems have significant potential to im-
prove the efficiency of clinical communications
and accelerate the radiology workflow. While
state-of-the-art techniques in language generation
have enabled the generation of fluent summaries,
these models occasionally generate spurious facts
limiting the clinical validity of the generated sum-
maries (Zhang et al., 2020b). It is therefore impor-
tant to develop systems that are able to summarize
the radiology findings in a consistent manner.

3 Data Description

3.1 QS Datasets

The MeQSum dataset of consumer health ques-
tions and their summaries (Ben Abacha and
Demner-Fushman, 2019b) was suggested as a
training dataset. It consists of 1,000 consumer
health questions and their associated summaries.
Participants were encouraged to use available ex-
ternal resources including, but not limited to, med-
ical QA datasets and question focus and type
recognition datasets. For instance, the Consumer
Health Questions dataset (Kilicoglu et al., 2018)
contains annotations of medical entities, focus,
and type of the MeQSum questions and additional
NLM questions6.

The new QS validation and test sets7 cover a
wide range of topics and question types such as
Treatment, Information, Side effects, Cause, Ef-
fect, Person-Organization, Diet-Lifestyle, Compli-
cations, Contraindications, Diagnosis, Usage, In-
teraction, Ingredients, Prognosis, Susceptibility,
Transmission, and Toxicity. They consist of man-
ually de-identified consumer health questions re-
ceived by the U.S. National Library of Medicine
and gold summaries created by medical experts.
The validation set includes 50 NLM questions and

6https://bionlp.nlm.nih.gov/
CHIQAcollections/CHQA-Corpus-1.0.zip

7https://github.com/abachaa/
MEDIQA2021/tree/main/Task1
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Example 1 (QID: 139)
NLM Question: did anyone have this and does it re-
quire surgery? my mri says forminal stenosis from bone
spurs c4,5,6. my nerve test shows severe nerve com-
pression c7,8. i’m in so much pain, mostly my arm and
shoulder and leg. waiting to see the pain specialist to
see what’s next. would love to know what you guys think
is required.
Question Summary: How can I get rid of pain caused
by foraminal stenosis and nerve compression?
Example 2 (QID: 111)
NLM Question:
covid-19 how long to quarantine after being positive
how long are you contagious if i tested positive for
covid-19. how long before i can safely return to work
after a positive covid 19 test
Question Summary: How long will I remain conta-
gious after testing positive for COVID-19?

Table 1: Test set examples for the QS task.

their summaries with additional annotations of the
question focus and type. The test set contains 80
consumer health questions. Table 1 presents two
examples from the QS test set.

3.2 MAS Datasets

The MEDIQA-AnS dataset (Savery et al., 2020)
was suggested as a training set for the MAS task.
Participants were allowed to use available exter-
nal resources (e.g. existing medical QA datasets)
as well as data creation, selection, and augmenta-
tion methods. To create the MAS validation and
test sets8, we used 130 consumer health questions
received by NLM. In order to retrieve more ac-
curate answers, we created question summaries
that we used to query the medical QA system
CHiQA that searches for answers from only trust-
worthy medical information sources (Ben Abacha
and Demner-Fushman, 2019c; Demner-Fushman
et al., 2020).

The answer summaries were manually created
by medical experts. We provided both extractive
and abstractive gold summaries, and encouraged
the use of all types of summarization approaches
(extractive, abstractive, and hybrid). The MAS
validation set contains 192 answers to 50 medi-
cal questions. The test set contains 303 answers to
80 medical questions. Each question has at least
two answers, one extractive multi-answer sum-
mary, and one abstractive multi-answer summary.
Table 2 presents an example from the test set.

8https://github.com/abachaa/
MEDIQA2021/tree/main/Task2

Original NLM question: I have dementia like symp-
toms and wanted to know where is the best source to
be tested for diagnosis? I have been prescribed An-
ticholinergic medicine since 2008...since I have been
diagnosed with, Celiac disease and Obstructive Sleep
Apnea. I think I have Frontal Temporal lobe atrophy.
I’m going to try to get tested...any references on which
process is easiest would be much appreciated. I can’t
take my Nasalcrom allergy spay any more nor, valium
or prozac, benadryl and glutamate additives in meats
because it sends me straight into cognitive emergency
state and irrational thinking
Question summary used in answer retrieval:
What tests are used to diagnose dementia?
CHiQA’s Answer #1: Dementia is not a specific dis-
ease. It is a descriptive term for a collection of symp-
toms that can be caused by a number of disorders that
affect the brain. People with dementia have signifi-
cantly impaired intellectual functioning that interferes
with normal activities and relationships. They also lose
their ability to solve problems and maintain emotional
control, and they may experience personality changes
and behavioral problems, such as agitation, delusions,
and hallucinations (...).
CHiQA’s Answer #2: To diagnose dementia, doctors
first assess whether a person has an underlying treat-
able condition such as depression, abnormal thyroid
function, normal pressure hydrocephalus, or vitamin
B12 deficiency. Early diagnosis is important, as some
causes for symptoms can be treated. In many cases, the
specific type of dementia a person has may not be con-
firmed until after the person has died and the brain is
examined.A medical assessment for dementia generally
includes:- Patient history (...) - Physical exam (...) -
Neurological tests (...).
Reference Extractive Summary: Dementia is not a
specific disease. It is a descriptive term for a collection
of symptoms that can be caused by a number of disor-
ders that affect the brain. Doctors diagnose dementia
only if two or more brain functions - such as memory
and language skills – are significantly impaired without
loss of consciousness. To diagnose dementia, doctors
first assess whether a person has an underlying treat-
able condition such as depression, abnormal thyroid
function, normal pressure hydrocephalus, or vitamin
B12 deficiency. Early diagnosis is important, as some
causes for symptoms can be treated. In many cases, the
specific type of dementia a person has may not be con-
firmed until after the person has died and the brain is
examined.A medical assessment for dementia generally
includes:- Patient history (...) - Physical exam (...) -
Neurological tests (...).
Reference Abstractive Summary: Dementia could be
caused by many different diseases of the brain. it is di-
agnosed if at least two brain functions are effected, for
example, if people experience memory loss and changes
in behavior and personality. Diagnostic tests for de-
mentia include family history, physical examination,
and neurological tests to asses balance, sensory func-
tions, reflexes, vision, eye movements, and cognitive
functions. In many cases, the type of dementia is con-
firmed after the person dies.

Table 2: Test set example for the MAS task (QID:105).
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3.3 RRS Datasets
We focus on the summarization of chest radiogra-
phy reports for the RRS task, since chest radiog-
raphy represents the most common study type in
radiology, and public resources for chest studies
are easily accessible. For training, we sampled
a collection of 91,544 reports from the MIMIC-
CXR chest X-ray report dataset9 based on simple
criteria such as the acceptable length of each sec-
tion. For validation, we combined another 2,000
reports from the MIMIC-CXR dataset and 2,000
reports from the Indiana University chest X-ray
dataset10(Demner-Fushman et al., 2016). We sam-
pled the reports such that there is no overlapping
patients in the validation and training sets.

For the official test set, we used a combination
of 300 reports from the Indiana dataset and 300
newly released chest X-ray reports drawn from the
Stanford Health Care system. We intentionally de-
signed the test set to be partially from a hospi-
tal system different from the training set (out-of-
domain) to test the generalizability of the partici-
pating systems.

4 Evaluation

4.1 Evaluation Measures
Several new metrics for evaluating text genera-
tion systems were studied in recent years (Mao
et al., 2020; Bhandari et al., 2020a,b; Zhang et al.,
2019; Sellam et al., 2020), with a focus on eval-
uating text generation based on deep and contex-
tualized representations. To understand these met-
rics in the context of summarization, Fabbri et al.
(2020) have compared 34 traditional and recent
model-based metrics on a manually annotated sub-
set from the CNN-DM dataset. Although the study
relied only on one correlation factor (Kendall’s
Tau) and one dataset, it highlighted the (contin-
ued) general relevance of ROUGE variants (Lin,
2004) and the challenge of designing or determin-
ing the best measure to use. Specifically, the study
found that a different measure obtained the best
score in each of the four considered evaluation
dimensions: coherence, consistency, fluency, and
relevance, with substantial discrepancies in rank-
ings.

In parallel, HOLMS was recently proposed as
an ensemble measure combining both contextual-

9https://physionet.org/content/
mimic-cxr/2.0.0/

10openi.nlm.nih.gov/faq#collection

ized similarity and a lexical ROUGE component
through a multi-dimensional Gaussian function
(Mrabet and Demner-Fushman, 2020). HOLMS
was evaluated on multiple DUC and TAC datasets,
and three correlation factors (Pearson’s, Spear-
man’s, and Kendall’s), and was shown to ben-
efit from the complementary strengths of lexi-
cal and language model-based similarity measure-
ments for evaluating summarization systems.

In this shared task, we chose ROUGE-2 as our
official ranking metric following its superiority
observed by Owczarzak et al. (2012) on multi-
ple TAC summarization datasets, and by Bhandari
et al. (2020c) on the CNN-DM dataset.

We chose two additional metrics for the three
tasks: (1) BERTScore for its wider adoption as a
language model-based text generation metric, and
(2) HOLMS for its hybrid and ensemble-oriented
approach. For the RRS task we also considered
an additional evaluation metric based on the ham-
ming similarity on the labels produced by the
CheXbert labeler (Smit et al., 2020) when applied
to both the system and reference summaries, sim-
ilar to the approach by Zhang et al. (2020b).

4.2 Baseline Systems

Our baseline system for the QS task relied on a
distilled PEGASUS model (Zhang et al., 2020a)
trained on the CNN-DM dataset and fine-tuned on
a combination of biomedical answer-to-question
data and question summarization data from MeQ-
Sum, LiveQA-Med data (Ben Abacha et al.,
2017), a collection of clinical questions (Ely et al.,
2000), and Quora question pairs dataset (Iyer
et al., 2017). For the Quora and clinical questions
datasets, we extracted only the question pairs with
a minimum token reduction ratio of 33%.

Our extractive baseline for the MAS task relied
on sentence clustering and selection. We used our
fine-tuned question summarization model to gen-
erate a short question from each sentence, and then
clustered the sentences using a word-based cosine
distance between the generated questions and a
distance threshold set to 0.7. Intersecting clusters
were merged. For each cluster, we selected the
sentence that was the best cumulative TF-IDF an-
swer to all other sentences as a representative.

For the RRS task, we prepared three baselines:
a base pointer-generator model without modeling
the background section of a radiology report, a full
pointer-generator model with background model-
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ing (Zhang et al., 2018), and a zero-shot T5-base
summarization model (Raffel et al., 2020).

5 Official Results

We published three AIcrowd projects (one for each
task) to release the datasets and manage team reg-
istration, submission, and leaderboard ranking11.

5.1 Participating Teams

In total, 35 teams participated in the MEDIQA
shared tasks and submitted 310 individual runs
(with a limit of ten runs per team per task). Ta-
ble 3 presents the participating teams with ac-
cepted working notes papers. The results of all
35 teams are available on AIcrowd and on the
MEDIQA 2021 website.

5.2 Summarization Approaches & Results

A vast majority of the approaches submitted to
the QS and RRS tasks were abstractive and relied
on fine-tuning of pre-trained generative language
models and encoders-decoders architectures. For
the MAS task, most submitted approaches were
extractive and used a wide spectrum of sentence
selection techniques.
Question Summarization. Table 4 presents the
official results of the teams with accepted working
notes papers from the 22 teams that participated in
the QS task.

All approaches submitted to the question sum-
marization task were abstractive methods relying
on the fine-tuning of pretrained transformer mod-
els (Vaswani et al., 2017). A wide variety of fine
tuning, knowledge-based, and ensemble methods
was investigated by the participating teams to
achieve higher performance (Mrini et al., 2021; Xu
et al., 2021; Zhu et al., 2021; Sänger et al., 2021;
Lee et al., 2021b; Balumuri et al., 2021; Yadav
et al., 2021; He et al., 2021; Lee et al., 2021a).
A first interesting insight from the overview is
that building ensemble models with deep neural
networks such as discriminators is not a trivial
task, and achieves results that stay on par with
the best single model (Sänger et al., 2021). In
contrast, heuristic, downstream ensembles of the
models outputs led to substantial improvements
when compared to its components/single models
(He et al., 2021). The best performing approach
relied on such an ensemble by ranking the outputs

11www.aicrowd.com/challenges/
mediqa-2021

of PEGASUS, T5, and BART models according to
hand-picked features based on the contents of the
input question and lengths of the outputs. Spell
checking was also a performance boost factor in
the question summarization task with some teams
using a knowledge base to correct misspelling er-
rors in the original long questions (He et al., 2021),
and others relying on third party tools such as
CSpell (Yadav et al., 2021; Lu et al., 2019). The
datasets used for transfer learning or fine-tuning
also played a major role in the achieved perfor-
mance as demonstrated, for instance, by the com-
bination of datasets from HealthCareMagic, ques-
tion entailment recognition and question summa-
rization in (Mrini et al., 2021). Moving forward,
we think that the overview of the question sum-
marization task revealed two key challenges that
need to be addressed to enhance the relevance and
performance of existing systems:

1. a relevant learning-based ensemble method
that could rely either on the textual outputs
or the logits of single models.

2. a more systemic way to select the most rel-
evant datasets for both pretraining and fine
tuning.

Multi-Answer Summarization. Both extractive
and abstractive approaches were used by the 17
teams that submitted runs to MAS task (Zhu et al.,
2021; Can et al., 2021; Xu et al., 2021; Mrini et al.,
2021; Yadav et al., 2021; Le et al., 2021; Lee et al.,
2021a). Table 5 and Table 6 present official results
of the teams with extractive and abstractive sys-
tems when evaluated, respectively, on extractive
gold summaries and abstractive gold summaries.

The best MAS run (Zhu et al., 2021) relied on
an ensemble method and a recent multi-document
summarization approach (Xu and Lapata, 2020)
using a Roberta model to rank locally the can-
didate sentences and a Markov chain to evaluate
them globally. A similar approach was also used
by the ChicHealth team (Xu et al., 2021) with-
out a downstream ensemble method. Participat-
ing teams used transfer learning (e.g. (Mrini et al.,
2021)) as well as answer sentence selection meth-
ods. Sentence selection was used in building ex-
tractive summaries (e.g. (Can et al., 2021)) and as
an intermediate step in abstractive summarization
to provide more concise inputs to generative mod-
els (e.g. (Le et al., 2021)). Different models, such
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Team Institution QS MAS RRS
BDKG (Dai et al., 2021) Baidu, Inc X
ChicHealth (Xu et al., 2021) Chic Health X X
damo nlp (He et al., 2021) Alibaba Group X X
IBMResearch (Mahajan et al., 2021) IBM Research X
MNLP (Lee et al., 2021a) George Mason University X X
NCUEE-NLP (Lee et al., 2021b) National Central University X
NLM (Yadav et al., 2021) U.S. National Library of Medicine X X
optumize (Kondadadi et al., 2021) Optum X
paht nlp (Zhu et al., 2021) ECNU & Pingan Health Tech X X X
QIAI (Delbrouck et al., 2021) Stanford University X X
SB NITK (Balumuri et al., 2021) National Institute of Technology Karnataka X
UCSD-Adobe (Mrini et al., 2021) UC San Diego & Adobe Research X X
UETfishes (Le et al., 2021) VNU University of Engineering and Technology X
UETrice (Can et al., 2021) VNU University of Engineering and Technology X
WBI (Sänger et al., 2021) Humboldt University of Berlin X

Table 3: Participating teams with accepted working notes papers at BioNLP-MEDIQA 2021

Rank Team ROUGE-2 ROUGE-1 ROUGE-L HOLMS BERTScore
1 damo nlp 0.1608 0.3514 0.3131 0.5677 0.6898
2 WBI 0.1599 0.3340 0.3149 0.5767 0.6996
3 NCUEE-NLP 0.1597 0.3352 0.3090 0.5787 0.6960
4 NLM 0.1514 0.3556 0.3110 0.5649 0.6892
5 UCSD-Adobe 0.1414 0.3463 0.3065 0.5586 0.6942
6 ChicHealth 0.1398 0.3403 0.2962 0.5551 0.6810
7 SB NITK 0.1393 0.3331 0.3077 0.5663 0.7025
– QS Baseline 0.1373 0.3203 0.2962 0.5672 0.6277
8 MNLP 0.1114 0.2840 0.2587 0.5455 0.6732
9 paht nlp 0.0935 0.2486 0.2331 0.5428 0.6591
10 QIAI 0.0385 0.1514 0.1356 0.4898 0.5101

Table 4: Official results of the MEDIQA-QS task.

Rank Team ROUGE-2 ROUGE-1 ROUGE-L HOLMS BERTScore
1 paht nlp 0.5076 0.5848 0.4354 0.7047 0.8038
2 UETrice 0.5040 0.6110 0.4412 0.7383 0.7958
3 ChicHealth 0.4893 0.5776 0.4261 0.7033 0.7916
4 UCSD-Adobe 0.4720 0.6073 0.4289 0.7612 0.7753
5 NLM 0.4677 0.5470 0.3276 0.6575 0.7645

Table 5: Official results of the MEDIQA-MAS task (1): Extractive Approaches.

Team Rank ROUGE-2 ROUGE-1 ROUGE-L HOLMS BERTScore
paht nlp 1 0.5076 0.5848 0.4354 0.7047 0.8038

(1) 0.1621 0.3215 0.1910 0.4220 0.6528
UETfishes 2 0.4698 0.5720 0.4001 0.6970 0.7821

(3) 0.1495 0.3124 0.1885 0.4213 0.6466
UCSD-Adobe 3 0.4595 0.5921 0.4170 0.7502 0.7689

(2) 0.1604 0.3843 0.2117 0.4937 0.6326
MNLP 4 0.2594 0.4220 0.2954 0.6568 0.6479

(4) 0.1167 0.3490 0.2047 0.5269 0.5763

Table 6: Official results of the MEDIQA-MAS task (2): Abstractive Approaches. Ranks in bold and in parenthe-
sis correspond to evaluation on extractive gold summaries and on abstractive gold summaries, respectively.
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Rank Team R-2 R-1 R-L HOLMS BERTScore CheXbert
1 BDKG 0.4362 0.5572 0.5365 0.7402 0.7184 0.6927
2 IBMResearch 0.4082 0.5328 0.5134 0.7185 0.7115 0.6774
3 optumize 0.3918 0.5185 0.4957 0.7087 0.6975 0.6773
4 QIAI 0.3778 0.4954 0.4793 0.7132 0.5328 0.5565
5 ChicHealth 0.3236 0.4606 0.4410 0.6822 0.6768 0.6261
6 damo nlp 0.2763 0.4329 0.4115 0.6604 0.6576 0.6343
– baseline (PG-full) 0.2734 0.4182 0.4041 0.6647 0.6194 0.6014
– baseline (PG-base) 0.2639 0.4026 0.3885 0.6553 0.6103 0.5537
7 paht nlp 0.1987 0.3400 0.3053 0.5915 0.5985 0.6705
– baseline (T5) 0.0945 0.2108 0.1831 0.4432 0.4921 0.5245

Table 7: Official results of the MEDIQA-RRS task on the full test set.

Rank Team ROUGE-2 CheXbert
Stanford Indiana Stanford Indiana

1 BDKG 0.2768 0.5955 0.6547 0.7052
2 ChicHealth 0.2690 0.3781 0.6291 0.5873
3 damo nlp 0.2687 0.2839 0.6645 0.5517
4 optumize 0.2654 0.5182 0.6474 0.6592
5 QIAI 0.2516 0.5039 0.5508 0.4970
6 paht nlp 0.2491 0.1483 0.6834 0.6148
– baseline (PG-full) 0.2414 0.3054 0.6216 0.5466
– baseline (PG-base) 0.2408 0.2870 0.5892 0.4754
7 IBMResearch 0.2283 0.5880 0.6472 0.6937
– baseline (T5) 0.1280 0.0610 0.5067 0.5609

Table 8: Official results of the MEDIQA-RRS task on the Stanford and Indiana test splits.

as BART and T5, and datasets (e.g. MEDIQA-
AnS, MSMARCO, MEDIQA-2019) have been
used for single and multiple answer summariza-
tion (Yadav et al., 2021; Mrini et al., 2021; Zhu
et al., 2021; Can et al., 2021).
Radiology Report Summarization. 14 teams
participated in the RRS task. Table 7 presents the
official results of the teams (with accepted papers)
on the full test set, and Table 8 presents the results
on the Stanford and Indiana subsets of the test set.

Similar to the previous tasks, participating
teams for the RRS task have extensively used pre-
trained transformer models: out of the 7 teams that
submitted papers describing their systems, 6 re-
ported the use of pretrained language models such
as BART or PEGASUS in their submissions (Xu
et al., 2021; Zhu et al., 2021; Kondadadi et al.,
2021; Dai et al., 2021; Mahajan et al., 2021; He
et al., 2021). Among them, Xu et al. (2021); Zhu
et al. (2021); Dai et al. (2021) reported that best
results were achieved with pretrained PEGASUS
models, while Kondadadi et al. (2021) reported
better results from BART. Xu et al. (2021) and

Zhu et al. (2021) reported that using PEGASUS
models pretrained on the PubMed corpus yielded
worse results than using the general PEGASUS
models, potentially due to the domain difference
of the RRS task with the PubMed text.

In addition to the use of pretrained models,
the highest-ranked systems from Dai et al. (2021)
made effective use of a dedicated domain adapta-
tion module, an ensemble module, and text nor-
malization heuristics. Zhu et al. (2021) reported
that freezing the embedding layer in the pre-
trained models helps the model generalize at test
time. Kondadadi et al. (2021) reported that adding
the background section as input improves perfor-
mance at validation time, but not test time, sug-
gesting that the model performance is sensitive to
the different text styles of the background sections
from different splits. Mahajan et al. (2021) fo-
cused their study on the factual consistency of gen-
erated summaries, and proposed a specialized fact-
aware re-ranking approach based on the predicted
disease values from the findings section with a
transformer model. As a result, their submissions
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achieved competitive rankings under the CheXbert
metric. Lastly, Delbrouck et al. (2021) studied the
use of image features for the RSS task: they re-
trieved and linked images for each study to the re-
port at training and validation time, and combined
a visual encoder with a text encoder for the sum-
marization task. They found that at validation time
the multi-modal setting is beneficial to the summa-
rization of MIMIC reports, but not to the Indiana
reports, potentially due to the distribution shift in
the images.

6 Correlations among the Evaluation
Measures

In this section, we discuss correlations between
the different evaluation metrics that we used in
the challenge. Table 9 shows Pearson correla-
tions between the F1 scores of the three lexical
measures (ROUGE-1, ROUGE-2, and ROUGE-L)
and the two language model-based and ensemble-
based measures (i.e., HOLMS and BERTScore).

Over all three tasks the HOLMS metric had a
better Pearson correlation with ROUGE, ranging
from 0.734 to 0.755, while also maintaining a high
correlation of 0.736 with BERTScore. This obser-
vation supports the findings from the experiments
in (Mrabet and Demner-Fushman, 2020), which
suggested that lexical measures such as ROUGE
and language model-based measures bring differ-
ent and complementary perspectives to summary-
evaluation.

Table 10 shows Pearson correlations for the
RRS task. HOLMS is substantially closer than
CheXbert and BERTScore in its correlation with
ROUGE for the RRS task, while maintaining high
correlation of respectively 0.645 and 0.702 with
CheXbert and BERTScore.

In contrast, BERTScore is substantially closer
than HOLMS in its correlation with the ROUGE
metrics for both the MAS task (cf. table 11) and
the QS task (see Table 12). Two factors that could
explain these correlations are (i) the predominance
of extractive runs in the MAS task and (ii) the se-
quential n-gram-based modeling in HOLMS that
takes into account the order of the n-grams, while
BERTScore relies on a cosine distance between
two given sets of token embeddings.

Both language model-based measures had pos-
itive correlations with ROUGE for the QS task,
but the level of correlation was substantially lower
when compared to the MAS and RRS tasks, going

from a Pearson coefficient range between 0.663
and 0.958 to a range between 0.193 and 0.372. As
all submitted QS runs were described as abstrac-
tive or hybrid approaches, this discrepancy might
be due to a stronger disagreement on summary as-
sessment due to semantically-close but lexically
distant summaries. It is also likely that the lex-
ical distance between paraphrases was more pro-
nounced due to the lengths of the question sum-
maries, which are shorter than the summaries in
the MAS task.

7 Conclusion

We presented an overview of the MEDIQA 2021
shared tasks on summarization in the medical do-
main. We presented the results for the three
tasks on Question Summarization, Multi-Answer
Summarization and Radiology Reports Summa-
rization, and discussed the impact of summariza-
tion approaches and automatic evaluation meth-
ods. We find that pre-trained transformer mod-
els, fine-tuning on the carefully selected domain-
specific text and ensemble methods worked well
for all three summarization tasks. The results en-
courage future research to include in-depth ex-
ploration of ensemble methods, systematic ap-
proaches to selection of datasets for pre-training
and fine-tuning, as well as a thorough assessment
of the quality and relevance of different evaluation
measures for summarization. We hope that the
MEDIQA 2021 shared tasks will encourage fur-
ther research efforts in medical text summarization
and evaluation.
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Abstract

This paper describes our contribution for the
MEDIQA-2021 Task 1 question summariza-
tion competition. We model the task as con-
ditional generation problem. Our concrete
pipeline performs a finetuning of the large
pretrained generative transformers PEGA-
SUS (Zhang et al., 2020a) and BART (Lewis
et al., 2020). We used the resulting mod-
els as strong baselines and experimented with
(i) integrating structured knowledge via entity
embeddings, (ii) ensembling multiple genera-
tive models with the generator-discriminator
framework and (iii) disentangling summariza-
tion and interrogative prediction to achieve
further improvements. Our best perform-
ing model, a fine-tuned vanilla PEGASUS,
reached the second place in the competition
with an ROUGE-2-F1 score of 15.99. We
observed that all of our additional measures
hurt performance (up to 5.2 pp) on the offi-
cial test set. In course of a post-hoc exper-
imental analysis which uses a larger valida-
tion set results indicate slight performance im-
provements through the proposed extensions.
However, further analysis is need to provide
stronger evidence.

1 Introduction

The internet provides a wealth of information on
health topics through specialised websites, forums,
blogs and social networks. Increasingly, consumers
are using these information sources to answer their
medical and health-related questions. In the course
of this development, also the consumers’ expecta-
tions regarding search engine functionalities have
become much more demanding. Instead of reading
through a list of relevant articles returned by a clas-
sical search engine, short and precise passages are
now expected to answer questions. This transfor-
mation also has an impact on the technologies used

∗ These authors contributed equally. Author order was
determined by coin flip.

to fulfill the user’s information needs. In particular,
approaches for automatic questions answering as
well as automatic summarization and simplification
of (long) articles has received a lot of attention by
researchers in recent years (Allahyari et al., 2017;
Kwiatkowski et al., 2019; Narayan et al., 2018b;
See et al., 2017; Weber et al., 2019). This trend
is also addressed by Task 1 of the MEDIQA 2021
shared task (Ben Abacha et al., 2021) through in-
vestigating consumer health-questions asked on the
(experimental) medical question answering system
CHiQA1. As we participated only in this task, we
refer to it as Shared Task (ST) in the following.

The goal of Task 1 was to foster the development
of new summarization approaches, specifically de-
signed for the challenges of long and potentially
complex consumer health questions. One major
challenge of CHiQA is the extraction of the user’s
main concern from the question text. The given
questions are often lengthy and contain a lot of pe-
ripheral information, which makes automatic pro-
cessing and answering (much more) difficult. Re-
cent studies highlight that expert-based summariza-
tions of such questions can lead to significant en-
hancements of the overall QA process (Ben Abacha
and Demner-Fushman, 2019). Effective automatic
summarization methods could therefore play a key
role for improving medical question answering.

We contribute to this task by first building a base-
line using the general conditional generation frame-
work and then investigating three modifications to
summarize the consumer health questions. Our
baseline relies on finetuning the large pretrained
generative transformers PEGASUS (Zhang et al.,
2020a) and BART (Lewis et al., 2020). We ex-
plore three different strategies to improve the per-
formance of these baseline models, i.e. (i) integrat-
ing structured knowledge via entity embeddings,
(ii) ensembling multiple generative models with
the generator-discriminator framework and (iii) dis-

1https://chiqa.nlm.nih.gov/

86



entangling summarization and question word pre-
diction. Our best performing model, a fine-tuned
vanilla PEGASUS, reached the second place in the
competition. We observed that all measures hurt
performance (up to 5.2 pp) on the evaluation set.
However, a post-hoc experimental analysis (see
Section 3), using a larger validation set, indicates
slight improvements through the model extensions.

The remainder of the paper is organized as fol-
lows: the next section introduces our baseline and
the three extension strategies in detail. Section 3
highlights and discusses the experiments and re-
sults we obtained in our own evaluation as well
as in the official assessment. The paper concludes
which a summary of the main findings.

2 Methods

2.1 Data & Baselines

The shared task provides only an official validation
and test set as data. For training data, we follow the
tasks’ organizers suggestion to use the MeQSum
corpus which consists of 1,000 consumer health
questions and their summaries.

We model the summarization task as conditional
generation, in which a model is prompted with
the original question and then generates the sum-
mary in an autoregressive fashion. We base our
implementation2 on the huggingface transformers
library (Wolf et al., 2020) and experiment with the
included pretrained generative transformers bart-
base3, bart-large4, pegasus-large5 and pegasus-
xsum6. pegasus-xsum is a version of PEGASUS
that was already finetuned for summarization on
the Xsum dataset (Narayan et al., 2018a). For all
models, we use a learning rate of 3e− 5 and train
for 10 epochs. We use beam search for decoding
and tune the search parameters on the validation set.
We independently evaluated {1, 10} as the number
of beams and the {0.7, 0.8, 0.9, 1.0} for the length
penalty and found 10 and 0.8 to be optimal.

2Our code is publicly available under https://
github.com/leonweber/bionlp21_summarize

3https://huggingface.co/facebook/
bart-base

4https://huggingface.co/facebook/
bart-large

5https://huggingface.co/google/
pegasus-large

6https://huggingface.co/google/
pegasus-xsum

2.2 Integration of structured knowledge via
entity embeddings

In initial analyses, we noticed that most question
summaries revolve around a few central entities
such as specific diseases or medications which are
almost always mentioned in the source text. Fur-
thermore, all of the generative transformers that
we used were trained on texts from the general do-
main, in which such entities presumably are rare.
We conjectured that it could be beneficial to explic-
itly provide entity information to the model. We
approach this by first applying a domain-specific
NER model to the source text and then enriching
the input embeddings of the transformer with the
found entities. Formally, we extend the computa-
tion of the i’th input embedding in the transformer
to:

ei = wi + pi + si + ni, (1)

where wi, pi, si are the standard subword, position
and sequence type embeddings which are initial-
ized with the weights of the pretrained transformer.
ni is a randomly initialized embedding, which rep-
resents the type of the named entity to which the to-
ken i belongs (including None) and has the same di-
mensionality as the other transformer embeddings.
Note, that si is set to zero for transformers which do
not use sequence type embeddings such as BART.

We experiment with two different NER models:
(i) HunFlair (Weber et al., 2021), a state-of-the-
art BioNER tagger and (ii) a custom Flair (Ak-
bik et al., 2019) model trained on the CHQA cor-
pus (Kilicoglu et al., 2018) consisting of manual
annotations for the central entities of consumer
health questions. Specifically, we use the Dis-
ease and Chemical models of HunFlair and the
PC-harmonization of the CHQA corpus.

2.3 Ensembling multiple generative
transformers

In preliminary experiments, we found that ensem-
bling generative transformers by simply averaging
the logits of different models hurt performance.
Thus, we investigate a different strategy for en-
sembling generative models. We first use each
model m of the ensemble to generate n summaries
{sm1, . . . , smn} conditioned on the original ques-
tion q and then use a discriminative model to select
the question-summary pair with the highest prob-
ability. The n different summaries are generated
by simply taking the final generations of the top-n
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scoring beams. We implement the discriminator as
a BERT (Devlin et al., 2019) model that receives
both the original question q and a question sum-
mary s produced by one of the ensembled models
and predicts the ROUGE-L-F1 score between both
ROUGE-L-F1(s, q) using a tanh output layer. The
model is trained via an L2-loss. More formally,

h = BERT[CLS](s, q) (2)

o = 0.5 · tanh(W · h + b) (3)

L = ‖ROUGE-L-F1(s, q)− o‖2, (4)

where BERT[CLS] is the BERT-embedding of
the special [CLS] token, W and b are trainable
parameters and L is the loss value.

For training the discriminator, we require gen-
erated summaries that are close to the generated
summaries on the test data. We cannot simply use
the training data of the generators to create the
training data for the discriminator, because we ex-
pect the distributions of the generated summaries
for seen and unseen data to be significantly differ-
ent. Thus, we split MeQSum training data in a
75% / 25% fashion and use the first chunk for train-
ing the generators and the combination of both to
train the discriminators. The full training process
is illustrated in Figure 1a.

2.4 Disentangling summarization and
interrogative prediction

We observed that the consumer questions cover
different categories of health-related issues in the
ST data, e.g. possible side-effects of certain drugs,
suitable treatments for specific diseases or food-
related questions. We conjectured that providing
the putative category of the question to the summa-
rization model could guide the generator towards a
better summary. Moreover, we recognized that the
different categories are aligned to some extent with
the interrogative of the target questions summaries.
Based on these two observations, we designed a
third modification by creating a separate model to
predict the putative interrogative, which acts as a
surrogate for the different question categories.

To this end, we implement a BERT-based classi-
fication model which gets the original user question
as input and predicts the interrogative of the target
question summary. We combine the classification
model with the output of our baseline method us-
ing a three-step approach: (i) we generate m ques-
tion summaries using a generative transformer, (ii)

we predict the interrogative given the original user
question based on the trained classification model
and (iii) selected the highest ranked candidate ques-
tions which starts with the predicted interrogative
as target summary. The process is illustrated in
Figure 1b. To train the classification models we
use the data from the MeQSum corpus but just take
the first word of the summaries as goldstandard
interrogative. Because in this model there is no
dependency between generative and classification
models (as opposed to our generator-discriminator
framework), the classification model can be trained
on the complete training data.

3 Results

3.1 Evaluation setting

We evaluate our models in two different settings.

Setting 1 For our ten submissions to the shared
task, we typically use some combination of MeQ-
Sum and the validation data for training. For model
selection and evaluation of our modifications, we
use the official validation set of the shared task. Fi-
nally, we report scores of our models on the shared
tasks’ hidden test set.

Setting 2 While preparing our runs, we noticed
that the variance of the results on the validation
and test set is rather high, which probably has to do
with the small amount of validation and test data
(50 and 100 questions respectively). To evaluate
the performance impact of our modifications in a
more stable manner, we devised a second evalua-
tion setting after the ST submissions were closed.
For this, we combine the MeQSum data and the
shared task validation data in a single dataset and
then split it into a train and validation set, reserv-
ing 200 questions for validation, which leaves 850
questions for training. We ensure that for each split
the ratio of original MeQSum and validation data is
equal. For each result, we compute three different
runs with different random seeds and report the
average and standard deviation.

Table 1 highlights the used splits of the two dif-
ferent data settings and provides basic statistics for
them. The results for both settings differ signifi-
cantly and thus, we report results for both settings
in the following sections. In the official evalua-
tion of the shared task, the approaches were ranked
according to the achieved ROUGE-2-F1 score.
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Figure 1: (a) Training an ensemble of multiple generators together with a discriminator. Resources are depicted as
yellow rectangles and trained models as green ellipses. (b) Predicting summaries with the interrogative predictor.
Resources are drawn as yellow rectangles and models as green ellipses.

Setting Split Questions
Tokens / Question Tokens / Summary

Mean Min Max Mean Min Max

Setting 1 Training (MeQSum) 1000 60.78 5 378 10.04 3 26
Validation 50 64.16 9 234 9.34 4 19

Setting 2 Training 850 59.60 8 348 9.70 3 26
Validation 200 66.64 5 378 10.18 3 26

Table 1: Overview about the data sets and splits used for training and evaluation in Setting 1 and 2. For Setting 2,
we use all instances from the official training data (MeQSum) and validation data and randomly assign them to the
two splits. We ensure that for each split the ratio of original training and validation data is equal.

89



3.2 Final evaluation results

Our best performing model achieved a ROUGE-2-
F1 score of 15.99% on the hidden test set, leading
to a second place in the competition. However, all
top-5 models achieve results that are very close,
and ranks change when different metrics are used.
The top five of the official leaderboard is repro-
duced in Table 2. This best performing model is
one of our baselines based on pegasus-large fine-
tuned on the combination of MeQSum and the ST
validation set. The results of our ten runs on the
official hidden test set together with a description
of each run can be found in Table 5.

3.3 Baseline results

In preliminary experiments on the ST validation set,
we found that pegasus-large works better than bart-
large when the model is fine-tuned on MeQSum
and evaluated on the ST validation set (ROUGE-
L-F1 of 33.32 vs. 32.82). Based on this result, we
opted to select pegasus-large as baseline model for
our submissions (refer to Section 3.7 for a discus-
sion of challenges in model selection). In the offi-
cial evaluation (i.e. Setting 1) the vanilla pegasus-
large model achieves the best performance of all
our submitted runs with an ROUGE-2-F1 score of
15.99 (see Run 1 in Table 5). In a post-hoc anal-
ysis, we noticed that in the consumer questions
spelling errors for crucial pieces of information
such as diseases are common and that the models
tend to copy those spelling errors into the summary
of the question. Thus, our approach probably could
have benefited from incorporating a spell-checking
tool that corrects the spelling errors in the health
questions.

Setting 2 uses the same basic models, but re-
lies on a different training setup. Table 3 shows
the performance scores. The best performance is
achieved by bart-large with ROUGE-1-, ROUGE-
2 and ROUGE-L-F1 scores of 52.91, 34.06 and
49.88. This represents an improvement of 0.55pp
concerning ROUGE-2-F1 to the next best model
(bart-base). In this setting, the BART-based models
achieve better results than the PEGASUS models.

3.4 Entity embedding results

We evaluate the addition of entity embeddings to a
generative transformer using bart-base. For detect-
ing entities, we experiment with the two different
NER models HunFlair and a custom Flair model
trained on the PC-harmonization (Passonneau and

Carpenter, 2014) of the CHQA corpus. The results
for Setting 2 can be found in Table 3. Adding entity
embeddings to the input representation improves
results consistently, leading to a gain of 0.3pp and
1.01pp in ROUGE-2-F1 over our bart-base base-
line. However, we did not observe any gains in our
preliminary experiments on the ST validation set
and thus did not evaluate the models with entity
embeddings in Setting 1. The submission of new
runs was not possible at the time of writing.

3.5 Ensemble results

All results for the generator-discriminator ensem-
bles in Setting 1 (on the hidden test set) can be
found in Table 5, where each row with Type ’GD’
corresponds to one configuration of a generator-
discriminator ensemble. Considering ROUGE-2-
F1, the best generator-discriminator result (run 7)
still performs 1.4 pp worse than our best baseline
model. This run used only one generator based
on pegasus-large to produce ten candidates per
question and a bert-large discriminator to select
the most promising summary. The only setting
in which a generator-discriminator model outper-
forms our strongest baseline on the hidden test set
is run 8 which gains 0.2 pp under the BERTScore
metric (Zhang et al., 2020b), making it the overall
top ranking run of the ST under this metric. This
run uses a single pegasus-large generator proposing
ten candidate summaries per question and an en-
semble of three different bert-large discriminators.

In Setting 2, we observed considerable gains by
using an ensemble of bart-base, bart-large, pegasus-
large and pegasus-xsum, while using a single bert-
base as the discriminator, using only the most prob-
able output sequence per model as candidate. Com-
pared to pegasus-large, this configuration leads to
an improvement of 2.16pp in ROUGE-1-F1, 1.46pp
in ROUGE-2-F1 and 2.27pp in ROUGE-L-F1.

We also investigated the performance ceiling for
our ensembling approach by evaluating the ensem-
ble under a perfect discriminator, which always
selects the summary yielding the highest Rouge-L-
F1 score. Under this setting, our ensemble achieved
a Rouge-2-F1 score of 44.87 which is an improve-
ment of 10.9 pp. This shows the promise of our en-
sembling approach and suggests that a worthwhile
path to obtain better results would be to improve
the discriminator.
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Rank Team name ROUGE-1-F1 ROUGE-2-F1 ROUGE-L-F1 HOLMS BERTScore-F1

1 damo_nlp (summc) 35.14 16.08 31.31 56.77 68.98
2 WBI 33.40 15.99 31.49 57.67 69.96
3 NCUEE-NLP 33.52 15.97 30.90 57.87 69.60
4 yamr 32.80 15.25 30.38 57.86 68.77
5 Saama 33.33 15.18 29.50 57.72 69.38

Table 2: Top five of the official results for subtask one (ranked by ROUGE-2-F1). All scores are given in percent.
In total 23 teams participated in this subtask. Our contribution is displayed in bold. These numbers correspond to
our evaluation Setting 2.

Model type Gen. model(s) Add-on ROUGE-1-F1 ROUGE-2-F1 ROUGE-L-F1

Baseline bart-large - 52.91 (± 0.91) 34.06 (± 1.01) 49.88 (± 0.66)
bart-base - 52.17 (± 0.14) 33.49 (± 0.84) 49.36 (± 0.32)

pegasus-large - 51.06 (± 0.78) 32.51 (± 0.72) 48.28 (± 0.68)
pegasus-xsum - 51.47 (± 0.28) 32.65 (± 0.58) 48.90 (± 0.30)

Entity bart-base HunFlair 52.16 (± 0.45) 33.79 (± 0.46) 49.24 (± 0.27)
embeddings bart-base CHQA flair model 53.17 (± 1.58) 34.5 (± 1.30) 50.22 (± 1.43)

Generator-
discriminator

bart-base
bart-large

pegasus-large
pegasus-xsum

bert-base 53.22 (± 1.81) 33.97 (± 1.40) 50.55 (± 1.75)

Interrogative pegasus-large bert-base 52.11 (± 0.36) 33.71 (± 0.85) 49.21 (± 0.66)
prediction pegasus-large bio-bert 52.22 (± 0.60) 33.42 (± 0.70) 49.26 (± 0.53)

pegasus-large biomed-roberta 52.66 (± 0.67) 33.71 (± 0.81) 49.58 (± 0.85)

pegasus-large
bio-bert

biomed-roberta
52.28 (± 0.58) 33.47 (± 0.69) 49.40 (± 0.67)

Table 3: Overview of Setting 2 evaluation results. For each experiment, we list the used generative transformer(s)
and (if applicable) utilized complementary models (Add-on). For entity embeddings add-on models are named
entity recognition models. In case of the generator-discriminator framework it’s the discriminator model and
regarding interrogative prediction it defines the applied classification model(s). For each experiment, we compute
three different runs with different random seeds and report the average and standard deviation.
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3.6 Interrogative-predictor results

For evaluating our interrogative prediction ap-
proach we experimented with different transformer-
based models, pre-trained on either general
domain or biomedical data, for classification:
BERT7, BioBERT (Lee et al., 2020)8, BioMed-
RoBERTa (Gururangan et al., 2020)9 and multiple
of these models arranged in an ensemble. All mod-
els are learned on the training portion (for each
evaluation setting). For all models we use pegasus-
large as generative model and produce 10 candidate
summaries per user question.

As shown in Table 3 we observe clear perfor-
mance improvements of this approach compared to
the baseline when evaluated in Setting 2. Here,
the best results are achieved with the BioMed-
RoBERTa model. In this configuration, the model
achieves a ROUGE-2-F1 score of 33.71 which rep-
resents an increase of 1.20 pp compared to the
vanilla pegasus-large result. Again, the results
achieved in the official evaluation (Setting 1) show
a different picture. In this setting, the usage of an
ensemble of three interrogative classification mod-
els lowers the performance by 2.6 pp (see Run 3 in
Table 5).

We also investigated the accuracy of the inter-
rogative prediction models. Table 4 highlights the
achieved accuracy and macro F1-scores of the
three models. All models predict the correct in-
terrogative for only half of the consumer questions.
An analysis of the predictions showed that all mod-
els are biased towards the majority classes, i.e. in-
terrogatives with a high support in the training data.

Like in the generative ensemble setting, we fur-
ther checked the potential performance gains of
the interrogative prediction using a perfect classi-
fier. For this, we took the gold standard interroga-
tive and use the first generated summary candidate
which starts with this interrogative as prediction. If
no generated summary starts with the gold interrog-
ative we use the highest ranked candidate. Using
this selection scheme we reached an ROUGE-2-F1
score of 39.72 in Setting 2 which represents an in-
crease by 7.21 pp over the baseline pegasus-large
model. Again, this accentuates the suitability of
the proposed approach.

7https://huggingface.co/
bert-base-cased

8https://huggingface.co/dmis-lab/
biobert-v1.1

9https://huggingface.co/allenai/
biomed_roberta_base

Model Accuracy F1

bert-base 0.530 0.103
bio-bert 0.525 0.095
biomed-roberta 0.555 0.228

Table 4: Overview of the performance of the three in-
terrogative classification models. For each model we
report accuracy and macro F1 score. Bold figures high-
light the highest value per column.

3.7 Discussion of result differences between
Setting 1 and Setting 2

Tables 2 and 3 reveal enormous performance dif-
ferences between Setting 1 (the official evaluation
results) and Setting 2 (our post-hoc experimental
analysis). In Setting 1, none of our proposed exten-
sions leads to consistent quantitative improvements
of the results and the best performance is achieved
by an vanilla generative transformer. In contrast in
Setting 2, we see (at least) slight benefits from all
three strategies.

Explaining these results and differences is diffi-
cult for several reasons. Concerning Setting 2, the
high variance of the results (see Table 3) prevents
a clear conclusion. Results of the methods vary
with different random initializations and are also
quite sensitive to hyperparameter settings. Often
the differences of the methods lie within the range
of the standard deviation making it unclear whether
the findings would hold up in further analysis or
other contexts.

Regarding Setting 1, the small size of the eval-
uation data (only 100 instances) puts any conclu-
sions about the quality of the proposed methods
into question. In Setting 2, we tried to mitigate the
problem of small test data by increasing the num-
ber of test instances, however the results remain
unstable. Furthermore, weaknesses of the ROUGE
metric, e.g. handling of synonyms, abbreviations
or enumerations, must be taken into account in the
result interpretation (Schluter, 2017; Kané et al.,
2019). The automatic evaluation of generated sum-
maries remains a research field in itself (Zhang
et al., 2020b). In summary, we neither believe that
the results from Setting 1 provide strong evidence
of the extension’s inappropriateness, nor that the
results from Setting 2 allow a convincing statement
about their positive effects. To this end, further in-
vestigation is necessary in order to draw definitive
conclusions about our proposed modifications.
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Run Type Description ROUGE-2 HOLMS BERTScore-F1

1 B pegasus-large finetuned on MeQSum and validation
data

16.0 57.7 70.0

2 B pegasus-large first finetuned on MeQSum and then on
validation data

12.4 55.5 69.3

3 IP pegasus-large finetuned on MeQSum and validation
data with ensemble of interrogative predictors consist-
ing of two biobert and one biomed-roberta model

13.4 56.4 69.0

4 GD Generator ensemble of bart-base, bart-large, pegasus-
large and pegasus-xsum with one candidate summary
per model and bert-base as discriminator

11.8 55.5 68.4

5 B pegasus-xsum finetuned on MeQSum and validation
data

12.4 55.5 68.7

6 GD Same configuration as in run 4 but with an ensemble of
discriminators consisting of bert-base, roberta-base and
biobert

11.4 55.4 68.2

7 GD pegasus-large trained on MeQSum with ten candidate
summaries and a bert-large discriminator trained on
MeQSum to select the best one

14.6 57.3 69.8

8 GD Same configuration as in run 7 but with an ensemble
of three different bert-large discriminators trained on
MeQSum

14.2 57.0 70.2

9 GD Same configuration as in run 7 but the bert-large dis-
criminator is trained on MeQSum and validation data

12.0 55.4 68.9

10 GD Same configuration as in run 8 but the the discriminators
are trained on MeQSum and validation data

12.0 55.4 69.5

Table 5: Official results for our submitted runs for subtask one. In total we submitted 10 runs. The runs can
be categorized according to their type into baseline models (B), models using interrogative prediction (IP) or the
generator-discriminator framework (GD). The highest value per metric is highlighted in bold. This corresponds to
our evaluation Setting 1.
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4 Conclusion

In this work we investigate the large-scale pre-
trained generative transformers PEGASUS and
BART for the task of health-related consumer ques-
tion summarization in the context of the MEDIQA
2021 shared task (Task 1). We propose and evalu-
ate three different strategies, i.e. integrating struc-
tured knowledge via entity embeddings, utilizing
a generator-discriminator framework and apply-
ing interrogative prediction, to extend these strong
baseline models. Our best performing model, a
fine-tuned pegasus-large transformer, reaches an
ROUGE-2-F1 score of 15.99 and is ranked second
place in the competition. Experimental results for
our proposed extensions show a mixed picture and
further analysis is needed to assess the quality of
these extensions.
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Abstract
In this article, we describe our systems for the
MEDIQA 2021 Shared Tasks. First, we will
describe our method for the second task, Multi-
Answer Summarization (MAS). For extractive
summarization, two series of methods are ap-
plied. The first one follows Xu and Lapata
(2020). First a RoBERTa model is first applied
to give a local ranking of the candidate sen-
tences. Then a Markov Chain model is applied
to evaluate the sentences globally. The second
method applies cross-sentence contextualiza-
tion to improve the local ranking and discard
the global ranking step. Our methods achieve
the 1st Place in the MAS task. For the ques-
tion summarization (QS) and radiology report
summarization (RRS) tasks, we explore how
end-to-end pre-trained seq2seq model perform.
A series of tricks for improving the fine-tuning
performances are validated.

1 Introduction

Automatic summarization is an essential task in the
medical domain. It is time consuming for users
to read a lot of medical documents when they use
a search engine like Google, Medline, etc, about
some topic and obtain a list of documents which are
potential answers. First, the contents might be too
specialized for layman to understand. Second, one
document may not answer the query completely,
and the users might have to summarize the conclu-
sions across multiple documents, which may lead
to waste of time or misunderstanding. In order to
improve the users’ experiences when using medical
applications, automatic summarization techniques
are required.

The MEDIQA 2021 shared tasks are held to in-
vestigate the current state of the art summarization
models, especially how they perform in the med-
ical domains. Three tasks are held. The first one
is Question Summarization (QS), which summa-
rizes long and potentially complex consumer health

∗Contact: 52205901018@stu.ecnu.edu.cn.

questions into simple ones, which are proven to be
beneficial for automatic question answering. Em-
pirical QA studies based on manual expert sum-
marization of these questions showed a substan-
tial improvement of 58% in performance (Abacha
and Demner-Fushman, 2019). The second task
is Multi-Answer Summarization (MAS) (Savery
et al., 2020). Different answers can bring comple-
mentary perspectives that are likely to benefit the
users of QA systems. The goal of this task is to
develop a system that can aggregate and summa-
rize the answers scattered in multiple documents.
The third task is Radiology Reports Summariza-
tion (RRS) (Zhang et al., 2018, 2020b), which is to
generate radiology impression statements by sum-
marizing textual findings written by radiologists.
which have several applications. First, it can speed
up the technicians’ workflow. Second, a system can
extract the information in the reports and summa-
rize into sentences that a layman can understand.

In the MAS task, we improve upon (Xu and La-
pata, 2020) via three methods. First, during the
coarse ranking of a sentence in one of the given
documents, we also add the surrounding sentences
as input and use two special tokens marking the po-
sitions of the sentence. This modification improves
the coarse ranking with a large margin. Second,
during fine-grained re-ranking, instead of incor-
porating a inverse sentence frequency (IFS) score
based similarity matrix between sentences in the
Markov chain model, we find that directly using
semantic similarity scores to form the similarity
matrix performs better. Third, due to the low re-
source settings of this task, we find that applying a
RoBERTa (Liu et al., 2019) model which is already
fine-tuned on the MS-MACRO task (Campos et al.,
2016) can be beneficial.

For the other two tasks, we mainly explore how
the pre-trained seq2seq model like BART (Lewis
et al., 2020), PEGASUS (Zhang et al., 2020a), etc,
can perform in these tasks. Two take-aways can

96



be made. First, for tasks with small dataset size,
freezing a part of the transformer blocks can be
beneficial. Second, for the RRS task, we find that
controlling the maximum output sequence length
can improve the ROUGE score on the test set.

Our team PAHT_NLP participate in all the three
tasks, and won the 1st place in the MAS task. Ex-
periments will show that our modifications are ben-
eficial for both stage of the MAS task. We also
report extensive experiments for task 1 and task 3.

2 Multi-grained Multi-Answer
Summarization

2.1 problem formulation
Let Q denote a query, and D = {d1, d2, ..., dM} a
set of documents returned by the search engine or
a question answering system (e.g., the ChiQA sys-
tem ((Demner-Fushman et al., 2020))). It is often
assumed (e.g., in our MAS task) that Q consists of
a short question (e.g., Will influenza be the next
pandemic?).

We implement the multi-grained MDS follow-
ing Xu and Lapata (2020). We first decompose
documents into segments, i.e., sentences. Then, a
trained RoBERTa model quantifies the semantic
similarities between a selected sentence and the
query, which give importance estimations of the
sentences based the sentence itself or their local
contexts (Local Estimator). Third, to give a global
estimations of the importance of the segments to
the summary, we apply a Markov Chain (Erkan and
Radev, 2004) based estimator (Global Estimator).

2.2 Local Estimator
We leverage fine-tuned pretrained language mod-
els as our evidence estimator, and use the trained
estimators to rank the answer candidates.

Let Q denote a query sequence and
{S1, S2, ..., SN} the set of candidate answers. Our
training objective is to find the correct answers
within this set. We leverage RoBERTa as our
sequence encoder. We concatenate query Q and
candidate sentence S into a sequence < s >, Q,
< /s >, < /s >, S, < /s > as the input to the
RoBERTa encoder (we pad each sequence in a
mini-batch of L tokens). The starting < s >
token’s vector representations t serves as input
to a single layer feed forward layer to obtain the
distribution over positive and negative classes:

pk =
1

Z
exp (tTW:,k), (1)

where k = 0, 1, 1 denoting that a sentence contains
the answer and 0 otherwise. Z is the normalizing
factor, and matrix W = [W:,0;W:,1] ∈ Rd×2 is a
learn-able parameter. We use a cross entropy loss
as the training objective:

L = −
N∑

i=1

(y log pi1 + (1− y) log pi0). (2)

After finetuning, the probability of the positive
class is regarded as the local evidence score and we
will use it to rank all the sentences for each query.

2.3 Global Estimator
Although our local estimator measures the semantic
relevance between the query and the candidate seg-
ments, these estimation is done locally. To obtain
a global estimation of the scores for each segment,
we apply a Global Estimator following (Xu and La-
pata, 2020). The centrality estimator essentially is
an extension of the well-known LexRank algorithm
(Erkan and Radev, 2004).

For each document cluster, i.e., the collections
of documents for each query in our tasks, LexRank
builds a graph G = (V ;E) with nodes V cor-
responding to sentences and undirected edges E
whose weights are computed based on a certain
similarity metric. The original LexRank algorithm
uses TF-IDF (Term Frequency Inverse Document
Frequency). (Xu and Lapata, 2020) proposes to
use TF-ISF (Term Frequency Inverse Sentence Fre-
quency), which is similar to TF-IDF but operates
at the sentence level.

Following ((Xu and Lapata, 2020)), we integrate
our evidence estimator into the similarity matrix E,
that is,

Ẽ = w ∗ [q̃; ...; q̃] + (1− w) ∗ E, (3)

where w ∈ (0, 1) controls the extent to which the
evidence estimator can influence the final summa-
rization, and q̃ is obtained by normalizing the evi-
dence scores,

q̃ =
q

∑|V |
v qv

. (4)

Note the similarity matrix E can be seen as the
transition probabilities. If the similarity score Ei,j

between sentence i and j is higher, it is more likely
that sentence i and j are both selected in the finally
summary or are discarded at the same time. We
can see selecting the sentences into summaries as
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a Markov chain process, and we will leverage the
final stationary distribution q̃∗ of this Markov chain
as the final scores of each segment. q̃∗ is obtained
by solving this equation:

q̃∗ = q̃∗Ẽ (5)

Note that with our evidence estimator and cen-
trality estimator, q̃∗ can simultaneously expresses
the importance of a sentence in the document and
its semantic relation to the query. Thus, to formu-
late the final summary, we rank the sentences based
on q̃∗ and select the top ksum ones.

3 Contextualized evidence estimation

The previous section describe a two-step method
for extractive MDS. However, it does not fully
exploit the advantages of pretrained sentence en-
coders, since it only compares the query to single
sentences which suffers from losing the contexts.
In this section, we provide a simple method to con-
duct extractive MDS in one step, and promote the
performances.

Let Q denote a query sequence and
{S1, S2, ..., SN} the set of candidate answers. And
we put each sentence Si back into its contexts by
concatenating the sentences surrounding it. Denote
the Si with its contexts as Ci = [NL

i ;Si;N
R
i ].

For implementation, we limit the sequence length
of Ni by Lmax, which is 512 for RoBERTa. For
formulating the input of RoBERTa, we concatenate
Ci following its sequential order, so that its
contexts is not corrupted. Thus the sequence input
should be like < s >, Q, < /s >, < s >, NL

i ,
< /s >, < s >, Si, < /s >, < s >, NR

i , < /s >.
The above operation adds the contextual informa-

tion of Si, but the position of Si is not emphasized,
and the model might focus on NR

i or NL
i instead

of Si. Thus, we add a pair of special tokens before
and after Si to address the position of the sentence
we are concerning. Thus, the input sequence be-
comes < s >, Q, < /s >, < s >, NL

i , < /s >,
< s >, < t1 >, Si, < t2 >, < /s >, < s >, NR

i ,
< /s >.

The RoBERTa will encode the above sequence
and outputs the semantic relevance score, which we
will use as the final semantic score of the sentence
regarding summarization.

4 End-to-end abstractive summarization

Pre-trained models. In this section, we experi-
ment on applying pretrained Seq2Seq models to

obtain abstractive summarizations, after finetuning
their on our datasets. We mainly investigate two
types of models, BART ((Lewis et al., 2020)) and
PEGASUS ((Zhang et al., 2020a)).

In terms of architecture, BART adopts a standard
transformer seq2seq architecture ((Vaswani et al.,
2017)) with some small changes. It uses GeLU
(xxx, ) rather than ReLU (xxx, ) as activation func-
tion and initiates paramaters with normal distribu-
tion. For pre-training tasks, BART allows arbitrary
noising transformations of input texts and learns a
model to rebuild original text. BART achieves the
state-of-the-art (SOTA) results on a wide range of
tasks, including summarization and machine trans-
lation.

PEGASUS uses pre-training objectives tailored
for abstractive text summarization. During pre-
training, the text inputs are documents with several
important missing sentences and the output is the
predicted missing sentence sequences. PEGASUS
can perform quite well on summarization tasks
with low resources, e.g., when the training sets
only contains only hundreds of samples.

Finetuning techniques. For finetuning the pre-
trained seq2seq models, we experiment a few meth-
ods/techniques which can improve the downstream
task performances:

• Freezing parameters. For tasks like QS and
MAS, the training dataset is quite small and
the large pre-trained models can be easily
overfitting. We alleviate the overfitting prob-
lem by freezing the lower layers of the mod-
els.

• We use the advarsarial training method, i.e.,
Projected Gradient Descent (PGD, (Madry
et al., 2018)) for more robust fine-tuning.

• Back translation from English to Chinese, and
Chinese to English is applied for data augmen-
tation.

5 Experiments on MAS

In task 2, We used two methods to deal with the
problem of low resource data. The first method is
to add muti-ext-summary and single-ext-summary
as targets to the training data. Since some sentences
in the summary are not exactly the same as the sen-
tences in the article, the Jaccard similarity is used
to align the sentences in article to the sentences
in the extractive summary. Because the final tar-
get is multi-text-summary, in order to increase its
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model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
dev set

roberta-large 56.95 48.11 41.36 56.29
+marco 57.08 48.15 42.10 56.33

+marco+reverse 57.62 49.47 41.90 56.99
+marco+lexrank 57.06 48.31 42.04 56.07
+marco+context 57.57 48.62 42.06 56.75

electra-large+marco 58.53 49.46 42.35 57.84
ensemble-model 59.29 51.09 43.80 58.88

test set
ensemble-model 58.5 50.8 43.5 -

Table 1: Comparison of different models on dev set in Task 2. Marco means using ms-marco data pretrain model,
reverse means inverting Q and S on the input refer to (Su et al., 2020) , lexrank means using lexrank to get the global
score of the sentence described in section 2.3, context means adding Contextual information described in section 3

weight, we repeatedly sampled sentences in multi-
ext-summary and added it to the training set. The
second method, public dataset ms-marco is used to
pre-train the RoBERTa model.

Finally, the top 20 sentences based on the model
score are selected and we restore their relative po-
sitions by recording the position of each sentence
in the article in advance as the target. The result
is shown in Table 1. As roberta-large as a base-
line model, both resampling and pretraining by
ms-marco have slightly improved the result of the
model because of the increasing of training set. Al-
though the lexRank method described in section
2.3 has made a improvement, the weight of model
score must be a large value compared to the TF-
ISF, for example 0.99 in our model. For contextu-
alized evidence estimation described in section 3,
we selected the two sentences before and after as
the context and this method greatly improves the
model. Referring to (Su et al., 2020), we tried to
concat the question and the sentence like <s>, S,
</s>,</s>,Q,</s>, this method has achieved com-
petitive results in validation set, but the result in
test set has slightly decreased. In addition, we
also tried the ELECTRA (Clark et al., 2020) model
and achieved a competitive results in validation set
compared to RoBERTa. Ensemble model uses all
models mentioned above, and weighted sum all
scores of model for one sentence based on the re-
sults normalized ROUGE-2 score in validation set.
The ensemble model achieves the best results on
the validation set.

Our model is optimized with Adam on one Tesla
V100 GPU using the following parameters: learn-
ing rate = 1e-5 batch size = 16, maximum length =

128. The learning rate is warmed up over the first 1
epoch. Early stopping strategy for 5 epoch is used
to select the optimal model

In the end, we submitted the results of ensemble
model and achieved the first place, as shown in
Table 1

6 Experiments on QS

At first, we compare the end-to-end abstractive
methods on an 8:2 split at the train set, shown in
Table 2. The result shows that the PEGASUS-large
model with 3-freezed-layer encoder and 3-freezed-
layer decoder gains the highest score. Training
on the whole training set and evaluating on the
official validation set, the model performs shown
in Table 3, without the question type nor question
focus given. We try to do data augmentation, like
translating the train data to Chinese and German
and then translating back to English, but have failed
to improve the result. When concatenating the two
kinds of information with the original message, we
find that the result has been improved (Table 3).

Over CHQA datasets, we train a span predic-
tion model based on the pointer networks and a
question type classification model to predict the
question focus and question type, respectively.
The span prediction model obtains the perfor-
mance of 83% exact match F1, and the ques-
tion type classification model achieves 78% F1.
Based on those two models, we process train,
valid and test set to the same pattern as the in-
put: "SUBJECT:{question_focus};{question_type}
MESSAGE:{message}". Table 4 indicates the re-
sults with different parameters.

By checking the generated sentences, we find
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model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
BART-base 52.33 34.93 49.91 49.90
BART-large 54.25 36.28 51.56 51.51

PEGASUS-large 51.30 34.28 49.33 49.37
PEGASUS-large(freeze=3) 56.97 38.74 54.03 54.07

Table 2: Comparison of different end-to-end models on 80% train set in Task 1

valid set ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
NO type&focus(baseline) 36.17 16.39 35.23 35.32

data augmentation 34.50 13.73 34.03 33.85
WITH type&focus 38.58 12.47 38.42 38.42

Table 3: Results of PEGASUS-large model on valid set in Task 1

the questions are highly like to be predicted as two
sentence patterns: "what the treatments for . . . "
and "where can I find information on . . . ". We
find these patterns appear more than 300 of 1000
train data, so we do the re-sampling for train data
according to the frequency of the first four word of
target questions. We train model on this re-sampled
train set and get the result on valid set (Table 5).
Although the score on valid set has decreased but
the final score in the test set has increased. We
conclude that the improvement are due to the higher
diversity of the sentence patterns.

7 Experiments on RRS

Table 6 reports the main results on 80% training
set with the most popular end-to-end models for
summarization task currently. When using a 8:2
split at official training set, we find that PEGASUS-
large model outperforms all other models with a 2%
difference of ROUGE-1. We also test PEGASUS-
pubmed but find suprising low performances, indi-
cating that pubmed corpus does not fit to our tasks.

Table 7 analyses how different freezing strate-
gies influence model performances. We consider
freezing two different kinds of layers in structure:
embedding layers and encoder layers. So, there
are four combinations of strategies. As for BART-
base model, we can see that models with frozen
encoder layers fall far behind models freezing none
of encoder layers, indicating that encoder layers
are more important than embedding layers. It is in-
teresting that freezing embeding layers sometimes
helps BART models perform better while other
models worse. As a result, We than use stratgies of
freezing embedding layers or freezing no layers to
our subsequent trainging settings.

According to the results of table1, we choose
PEGASUS as our best model. PEGASUS mod-
els stand out from other popular models due to
their specially designed pretrain tasks. We test how
different optimizers influence performances. Ta-
ble 8 also reveals that using adafactor will raise the
ROUGE-2 metric by 2%. From the data we have,
private information of patients will be replaced by
token "___", which absolutely will not appear in
the vocabulary of PEGASUS. Considering the fact
that summaries also contain this special token, we
test whether adding this to vocabulary will help
models perform better. The results show that this
operation decreases the performance a little bit,
possibly because of not having a good initial value
for the added token in embedding space.

By analysing data carefully, we find that almost
half of the summaries start with pattern like "No
acute ..." or "No evidence of ...". A simple idea
is that we can separate the data according to the
pattern into two kinds, one with pattern of start-
ing from "No", one with other patterns, and train
models separately. When predicting, we also need
a classifier to classify samples and send samples
into according models. We label samples of which
summaries start with "No ..." as label 1, and label
other samples as label 0. We than train PEGASUS-
large models to generate summaries and BERT-
base model to classify. The results are shown on
Table 9.

Considering our classifier does make mistakes
when predicting, we set a threshold of 0.75. Only
when the classifier give samples probabilities
higher than this, will we use the separately trained
models. Otherwise, we will use the wholly trained
model to predict.
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model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
PEGASUS-large(freeze=3) 42.83 23.50 41.47 41.33
PEGASUS-large(freeze=0) 42.97 23.93 41.73 41.57

Table 4: Results of PEGASUS-large model on valid set with question type and focus in Task 1

model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
PEGASUS-large(freeze=0) 38.30 19.68 36.68 36.94

Table 5: Results of PEGASUS-large model fine-tuned on re-sampled data in Task 1

model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
BERT-abs 49.79 35.51 46.68 46.72

BART-base 61.90 49.39 58.86 60.29
BART-large(freeze) 60.10 47.38 57.01 58.55

PEGASUS-large 63.61 51.86 60.51 62.28
PEGASUS-pubmed 30.61 19.28 26.91 29.12

T5-small 57.08 45.13 54.65 55.47
T5-base 61.77 49.30 58.72 60.34
T5-large 61.85 50.81 59.19 60.56

Table 6: a comparison of different end-to-end models on 80% training set in Task 3.

model
freeze

encoder
freeze

embedding
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum

BART-base yes yes 48.68 33.78 45.88 47.37
BART-base no yes 61.90 49.39 58.86 60.29
BART-base yes no 57.48 45.57 54.75 56.10
BART-base no no 61.30 49.31 58.45 60.01

PEGASUS-large no yes 53.68 42.58 51.57 52.45
PEGASUS-large no no 63.61 51.86 60.51 62.28

PEGASUS-pubmed no yes 26.83 15.83 23.79 24.41
PEGASUS-pubmed no no 30.61 19.28 26.91 29.12

Table 7: a comparison of same models using different freezing strategies

model optimizer
add

vocab
ROUGE

-1
ROUGE

-2
ROUGE

-L
ROUGE
-Lsum

PEGASUS-large adam no 62.29 49.15 59.30 60.62
PEGASUS-large adafactor no 63.07 51.18 60.06 61.42
PEGASUS-large adafactor yes 62.99 51.10 59.97 61.34

Table 8: a comparison of PEGASUS using different optimizer and adding special token in Task 3.

pipeline part model acc ROUGE-1 ROUGE-2
classification BERT-base 88.2

label 0 PEGASUS-large 54.02 37.34
label 1 PEGASUS-large 76.81 69.73

ensemble 61.97 50.02

Table 9: pipeline results on task3
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8 Conclusion

In this work, we elaborate on the methods we em-
ployed for the three tasks in the MEDIQA 2021
shared tasks. For the extractive summarization of
MAS task, we build upon Xu and Lapata (2020),
and achieve improvements by adding contexts and
sentence position markers. For generating ab-
stractive summaries, we leverage the pre-trained
seq2seq models. To improve the fine-tuning per-
formances on the downstream tasks, we implement
a few techniques, like freezing part of the models,
adversarial training and back-translation. Our team
achieves the 1st place for the MAS task.
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Abstract

This paper presents our winning system at the
Radiology Report Summarization track of the
MEDIQA 2021 shared task. Radiology report
summarization automatically summarizes radi-
ology findings into free-text impressions. This
year’s task emphasizes the generalization and
transfer ability of participating systems. Our
system is built upon a pre-trained Transformer
encoder-decoder architecture, i.e., PEGASUS,
deployed with an additional domain adaptation
module to particularly handle the transfer and
generalization issue. Heuristics like ensemble
and text normalization are also used. Our sys-
tem is conceptually simple yet highly effective,
achieving a ROUGE-2 score of 0.436 on test
set and ranked the 1st place among all partici-
pating systems.

1 Introduction

Radiology reports are documents that record and
interpret radiological examinations. A typical radi-
ology report usually consists of three sections: (1)
a background section that describes general infor-
mation about the patient and exam, (2) a findings
section that presents details of the examination, and
(3) an impression section that summarizes the find-
ings against the background (Kahn Jr et al., 2009).
Figure 1 provides an example of such a radiology
report. In a standard radiology reporting process, a
radiologist first dictates detailed findings into the
report, and then summarizes the findings into a con-
cise impression based also on general background
of the patient (Zhang et al., 2018). The impression
section, which provides the most valuable informa-
tion to make clinical decisions, is the most crucial
part of a radiology report for both doctors and pa-
tients. However, manually summarizing radiology
findings into impressions are time-consuming and
error-prone (Gershanik et al., 2011), which necessi-
tates the need to automatically generate radiology
impressions.

Background: Examination: chest (portable
AP) indication: history: ___m with acute coro-
nary syndrome technique: upright AP view of
the chest comparison: chest radiograph ___
Findings: Patient is status post median ster-
notomy and CABG. Heart size remains mildly
enlarged. The aorta is tortuous. Mild pul-
monary edema is new in the interval. Small
bilateral pleural effusions are present. Patchy
bibasilar airspace opacities likely reflect areas
of atelectasis ...
Impression: Mild pulmonary edema and trace
bilateral pleural effusions.

Figure 1: A radiology report sampled from MEDIQA
2021 training set, where the impression is a summariza-
tion of the findings taking the background into account.

The MEDIQA 2021 shared task (Abacha et al.,
2021) at the NAACL-BioNLP workshop sets up a
Radiology Report Summarization subtask, the aim
of which is to build advanced systems to automat-
ically summarize radiology findings (along with
the background) into concise impressions. A key
feature of this task is that radiology reports used for
training and evaluation are collected from different
sources, e.g., training instances are sampled from
the MIMIC-CXR database (Johnson et al., 2019)
and some evaluation instances come from the Indi-
ana chest X-ray collection (Demner-Fushman et al.,
2016). This inevitably results in significant discrep-
ancies between training and evaluation, posing new
challenges to the generalization and transfer ability
of participating systems.

Zhang et al. (2018) presented the first sequence-
to-sequence attempt at automatic summarization
of radiology findings into natural language impres-
sions. After that, several extensions and improve-
ments have been proposed, e.g., to take into account
the factual correctness (Zhang et al., 2019) or the
ontologies (MacAvaney et al., 2019; Gharebagh
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Figure 2: An overview of our system, which consists of (1) a Transformer encoder-decoder tuning module, (2) a
domain adaptation module, (3) an ensemble module, (4) a negative impression normalization module. The domain
adaptation module is activated only for test instances in the Indiana subset, and the final normalization module is
activated only for test instances in the Stanford subset.

et al., 2020). These prior studies, however, are all
based on traditional sequence-to-sequence models
like RNN, BiLSTM, as well as pointer-generator
network (See et al., 2017), and none of them actu-
ally touches the generalization or transfer issue.

In the past few years, pre-training Transformer-
based encoder-decoder architectures from large-
scale text corpora has been proposed and quickly
received massive attention (Radford et al., 2018;
Dong et al., 2019; Xiao et al., 2020). Quite a num-
ber of such pre-trained models, e.g., MASS (Song
et al., 2019), BART (Lewis et al., 2020), and T5
(Raffel et al., 2020), have been devised and proved
extremely effective in various language generation
tasks. Against this background, we choose PEGA-
SUS (Zhang et al., 2020), a pre-trained model that
reports state-of-the-art performance on abstractive
text summarization, as the backbone of our system.
Since radiology report summarization is a special
form of abstractive text summarization, we expect
this choice to yield optimal performance. Besides,
we employ a simple yet effective domain adaptation
strategy, by further fine-tuning on a small amount
of in-domain data to improve generalization and
transfer abilities. We also use model ensemble and
negative impression normalization strategies to fur-
ther enhance the performance. Figure 2 provides
an overview of our system.

With all these strategies, our system achieves an
overall ROUGE-2 score of 0.436 on the whole test

set, ranked at the 1st place among all participating
systems. We will discuss later in the experimental
section the performance of different pre-trained
models and the effect of each individual strategy.

2 Task Description

This section gives a formal definition of the radiol-
ogy report summarization task, and introduces data
and evaluation metrics used for the task.

2.1 Task Definition

The MEDIQA 2021 Radiology Report Summariza-
tion task aims to automatically summarize radiol-
ogy findings into natural language impression state-
ments. Figure 1 provides an example of a standard
radiology report, which consists of a background,
findings, and impression section, detailed as below:

• Background: This section provides general
information about the patient and exam, e.g.,
clinical history of the patient, type of the exam,
and examination techniques. This kind of in-
formation helps diagnose diseases when com-
bined with specific findings.

• Findings: This section records notable details
in each part of the body observed in the exam,
after reading an X-ray image. It describes the
normality and abnormality a radiologist found
in each part of the body. If a specific part was
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examined but not mentioned, there is probably
no obvious abnormality found in that part.

• Impression: This section is a concise summa-
rization of the findings written by a radiologist.
It lists the patient’s symptoms and sometimes
with suggested diagnoses. This section is the
most crucial part of a radiology report, provid-
ing valuable information for doctors to make
clinical decisions.

Radiology Report Summarization is to generate
the impression given the background and findings.
Formally, given a passage of findings represented
as a sequence of tokens x={x1, x2, · · ·, xL} along
with the background represented as a sequence of
tokens y={y1, y2, · · ·, yM}, the goal is to generate
another sequence of tokens z = {z1, z2, · · ·, zN}
that best summarizes salient and clinically signifi-
cant findings in x. Here, L,M,N are the lengths
of the findings, the background, and the impression,
respectively.

2.2 Official Data
The official data consists of a training split, two
validation splits, and two test splits collected from
different sources, detailed as follows:

• Training split: The training split is composed
of 91,544 chest radiology reports picked from
MIMIC-CXR database (Johnson et al., 2019).
These reports are collected from patients pre-
senting to the Beth Israel Deaconess Medical
Center Emergency Department between 2011
and 2016.

• Validation split I: The first validation split
consists of 2,000 chest radiology reports sam-
pled also from MIMIC-CXR. It therefore has
the same distribution with the training split.

• Validation split II: The second validation
split consists of 2,000 radiology reports sam-
pled from the Indiana chest X-ray collection
(Demner-Fushman et al., 2016). These reports
are collected from the Indiana Network for Pa-
tient Care, thus bearing a risk of inconsistency
with the training split.

• Test split I: The first test split is also extracted
from the Indiana chest X-ray collection, com-
posed of 300 radiology reports in total.

• Test split II: The second test split comprises
another 300 chest radiology reports collected

Split # Reports Source
Training 91,544 MIMIC-CXR database
Validation I 2,000 MIMIC-CXR database
Validation II 2,000 Indiana collection
Test I 300 Indiana collection
Test II 300 Stanford collection

Table 1: Statistics and sources of the official data.

from the picture archiving and communication
system at the Stanford Hospital.

The statistics and sources of the data splits are sum-
marized in Table 1. As we can see, both test splits
come from different sources with the training split.
This poses significant challenges to the generaliza-
tion and transfer ability of participating systems.

2.3 Evaluation Metrics

The task uses ROUGE (Lin, 2004) to evaluate the
performance of participating systems. F1 scores for
ROUGE-1, ROUGE-2 and ROUGE-L are reported
on the whole test set, and also on the Indiana and
Stanford splits. The metrics measure the word-level
unigram-overlap, bigram-overlap and the longest
common sequence between reference summaries
and system predicted summaries respectively. The
overall ROUGE-2 on the whole test set is selected
as the primary metric to rank participating systems.

3 Our Approach

We employ a Transformer-based encoder-decoder
architecture for radiology report summarization.
Our system, as illustrated in Figure 2, consists of
four consecutive modules:

• a Transformer encoder-decoder training mod-
ule that fine-tunes a pre-trained language gen-
eration model, e.g., PEGASUS (Zhang et al.,
2020), on the training split;

• a domain adaptation module that further fine-
tunes the model on a small amount of valida-
tion data coming from the same source with
the test split, designed specifically to enhance
generalization and transfer ability to unseen
data;

• an ensemble module that combines diverse
predictions from multiple models to generate
robust summarization;
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• a final normalization module that normalizes
system predicted negative impressions into a
specific form.

Our system is simple yet highly effective, ranked
at the 1st place among all participating systems. In
the rest of this section, we detail key modules of
the system.

3.1 Transformer Encoder-Decoder Training
Transformer-based encoder-decoder architectures
pre-trained from large-scale text corpora have re-
cently stood out as the most promising techniques
for natural language generation, outperforming the
traditional RNN- or LSTM-based opponents in a
wide range of language generation tasks (Radford
et al., 2018; Raffel et al., 2020). We thereby choose
a pre-trained Transformer encoder-decoder model
as the backbone of our system, and fine-tunes the
model on the training split.

During the fine-tuning process, for each training
radiology report, we concatenate the findings x and
background y into a single sequence, and pair that
sequence with the impression z, i.e.,

• Source: x1, x2, · · ·, xL, [SEP], y1, y2, · · ·, yM
• Target: z1, z2, · · · , zN

where [SEP] is a special token separating the find-
ings and the background. The source sequence is
fed into the encoder, and the decoder autoregres-
sively decodes the next token conditioned on the
encoder output and previous tokens.

We are free to use any pre-trained Transformer
encoder-decoder models. We investigate three rep-
resentatives: BART, ERNIE-GEN, and PEGASUS,
detailed as below.

• BART (Lewis et al., 2020) is a denoising au-
toencoder for sequence-to-sequence learning.
It is trained by corrupting text with a noising
function, and learning a model to reconstruct
the original text. It achieves promising results
on a range of abstractive dialogue, question
answering, and summarization tasks.

• ERNIE-GEN (Xiao et al., 2020) is a multi-
flow sequence-to-sequence model that miti-
gates exposure bias with an infilling genera-
tion mechanism and a noise-aware generation
method. It achieves comparable results with a
smaller number of parameters on several ab-
stractive summarization, question generation,
and dialogue response generation tasks.

Model # Parameters Corpus Size
BART 400M 160GB
ERNIE-GEN 340M 430GB
PEGASUS 568M 3.8TB + 750GB

Table 2: Number of parameters and size of pre-training
corpus of the three models.

• PEGASUS (Zhang et al., 2020) is a Trans-
former encoder-decoder model specifically de-
signed for abstractive text summarization. It
is trained by masking out important sentences
from an input document and generating the
masked sentences together from the remaining
sentences, similar to an extractive summary.
It achieves state-of-the-art performance on 12
summarization tasks spanning across news,
science, stories, instructions, emails, patents,
and legislative bills.

Table 2 compares number of parameters and size of
pre-training corpus of the three models. PEGASUS
gets the largest number of parameters and is trained
on the largest amount of data.

3.2 Domain Adaptation

As the test splits (Indiana and Stanford) are col-
lected from different sources with the training split
(MIMIC-CXR), participating systems need to ad-
dress the generalization and transfer issue. Inspired
by (Gururangan et al., 2020), we employ a domain
adaptation strategy. Specifically, after fine-tuning a
pre-trained model on the MIMIC-CXR training set,
we further fine-tune the model on a small amount
of data similar to the test splits. In this way, we can
effectively adapt the model trained from MIMIC-
CXR to target test domains.

For the Indiana test split where there is a valida-
tion split sampled from the same source, we simply
use this validation split for further fine-tuning. Af-
ter a few epochs over the Indiana validation split,
we use the resultant model to make predictions for
reports in this test split. As we will show later in
the experiments, this adaptation strategy, though
conceptually simple, is highly effective, leading to
a remarkable boost in ROUGE-2 on this test split.

For the Stanford test split, there is no validation
split sampled from the same source. Therefore we
construct a subset from the training split to conduct
domain adaptation. For each case in this test split
(a radiology report without impression), we exploit
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Negative Impression Indiana Freq. MIMIC-CXR Freq. Overall Freq.
No acute cardiopulmonary abnormality. 14.2% 4.9% 9.6%
No acute cardiopulmonary process. 3.0% 15.0% 9.0%
No acute cardiopulmonary findings. 6.0% 0.1% 3.1%
No acute cardiopulmonary disease. 0.2% 4.9% 2.6%
No acute cardiopulmonary abnormalities. 4.9% 0.1% 2.5%

Table 3: Top 5 frequent negative impressions and their frequencies on the validation splits.

ElasticSearch1 to retrieve the top 10 reports from
the MIMIC-CXR training split that share the most
similar findings. We obtain 2,618 such radiology
reports in total after removing duplicates. Then we
conduct further fine-tuning on these reports, which,
however, downgrades the performance. So we just
use the model trained from training split to predict
for reports in this test split.

3.3 Model Ensemble
We further employ ensemble that combines diverse
predictions from multiple models for robust sum-
marization. Suppose we have T candidate models,
e.g., multiple runs with different seeds, each pro-
ducing a predicted impression ẑi (1≤ i≤T ) for the
given findings along with the background. We first
compute the mutual similarity score Sim(ẑi, ẑj) be-
tween each pair of predictions, and aggregate these
scores to measure the overall similarity of a specific
prediction against all the other predictions:

s(x̂i) =
∑

j 6=i

Sim(ẑi,ẑj), i = 1, · · · , T.

Then we select the prediction ẑi with the highest
overall similarity s(x̂i) as our final prediction. Fig-
ure 2 visualizes this ensemble process. We have
tried various similarity scoring functions Sim(·, ·),
e.g., ROUGE-1, ROUGE-2, ROUGE-L, and token-
level F1, but observed no significant differences be-
tween their performance. We finally use ROUGE-1
as the similarity scoring function.

3.4 Negative Impression Normalization
The final normalization module normalizes system
predicted negative impressions into a specific form.
Roughly speaking, the impression of a radiology
report can be divided into two categories: positive
or negative. A positive impression typically reveals
symptoms observed during the exam, e.g., “Mild
pulmonary edema and tracebilateral pleural effu-
sions”, whereas a negative impression indicates no

1https://www.elastic.co

symptoms at all, e.g., “No acute cardiopulmonary
abnormality”. Unlike positive impressions which
vary drastically w.r.t. input findings, negative im-
pressions tend to be expressed in specific forms.
Table 3 presents the top 5 frequent negative impres-
sions and their frequencies on the validation splits.
Though expressed in different forms, these nega-
tive impressions are all of the same meaning. The
choice of a particular form is just a matter of writ-
ing style. As the writing style usually varies across
organizations, predicting negative impressions by a
complex model trained from another organization
is prone to over-fitting and may not work well. In
contrast, simple heuristics based on basic statistics
may lead to less over-fitting and perform better.

Based on this observation, we introduce a heuris-
tic strategy, i.e., for any negative prediction starting
with “No acute”, we normalize it into “No acute
cardiopulmonary abnormality”, which is the most
frequent negative impression in the validation sets.
This normalization process is carried out only for
the Stanford test split, for which there is no training
or validation set from same organization.

4 Experiments and Results

This section presents experiments and results of
our system on the official data.

4.1 Experimental Setups

Our system is built upon a pre-trained Transformer
encoder-decoder architecture, PEGASUS (Zhang
et al., 2020). The maximum lengths of source and
target sequences are restricted to 512 and 128 re-
spectively, covering 99% of the cases in the training
and validation splits. Throughout all experiments,
we employ a decoding process with beam size of 5,
length penalty of 0.8, and early stopping.

Fine-tuning Setup We first fine-tune PEGASUS-
large2 on the MIMIC-CXR training split. We tune

2https://huggingface.co/google/
pegasus-large
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All Test Set Indiana Test Set Stanford Test Set
Rank Team ROUGE-1/-2/-L ROUGE-1/-2/-L ROUGE-1/-2/-L
1 BDKG (Ours) .5573 .4362 .5366 .6834 .5956 .6717 .4312 .2769 .4014
2 IBMResearch .5328 .4082 .5134 .6772 .5881 .6657 .3884 .2284 .3611
3 optumize .5186 .3918 .4957 .6188 .5182 .6050 .4183 .2655 .3864
4 JB .4955 .3778 .4794 .5895 .5039 .5824 .4015 .2517 .3763
5 low_rank_AI .4716 .3311 .4487 .5129 .3846 .5026 .4302 .2777 .3948
6 med_qa_group .4642 .3265 .4440 .5051 .3774 .4965 .4233 .2757 .3916
7 ChicHealth .4606 .3236 .4411 .5070 .3782 .4984 .4143 .2690 .3838
8 hEALTHai .4481 .3084 .4273 .4845 .3527 .4752 .4118 .2641 .3794
9 DAMO_ali .4330 .2763 .4116 .4371 .2839 .4278 .4289 .2687 .3954
10 I_have_no_flash .4303 .2743 .4092 .4351 .2826 .4258 .4256 .2661 .3926

Table 4: Official results of top 10 systems on the test splits. Systems ranked by ROUGE-2 on the whole test set.

the initial learning rate∈ {1e−5, 3e−5, 6e−5, 1e−4},
batch size ∈ {8, 16, 32}, and number of epochs ∈
{5, 10, 15, 25}. Other hyper-parameters are fixed
to their default values. The optimal configuration is
determined by ROUGE-2 on the whole validation
set (a combination of the MIMIC-CXR and Indiana
splits), which is learning rate = 6e−5, batch size
= 8, and number of epochs = 15.

Domain Adaptation Setup We further fine-tune
the model derived above on the Indiana validation
split, so as to adapt the model from MIMIC-CXR
to our target test domain. Specifically, we split the
Indiana validation set into 1700 : 300 subsets. We
tune the model with initial learning rate ∈ {1e−
4, 2e−4, 4e−4}, batch size ∈ {8, 16}, and number
of epochs ∈ {10, 20, 50, 100} on the former, and
determine the optimal configuration on the latter
(by ROUGE-2). The optimal configuration is initial
learning rate = 2e−4, batch size = 8, and number
of epochs = 100, with other hyper-parameters set,
again, to their default values. After determining the
optimal configuration, we re-tune the model on the
whole Indiana validation set.

Ensemble Setup We ensemble 16 models fur-
ther fine-tuned with in-domain data for the Indiana
test split. These models are obtained with the same
optimal configuration determined during domain
adaptation, but different random seeds. We ensem-
ble another 15 models trained from MIMIC-CXR
training split for the Stanford test split. These mod-
els are obtained, again, with the same configuration
but different seeds.

4.2 MEDIQA 2021 Official Results

Table 4 shows the official results of top 10 partici-
pating systems on the test splits, where systems are
ranked by ROUGE-2 score on the whole test set.
Our system, though conceptually simple, is highly
effective, ranked the 1st place among participating
systems. Notably, it consistently outperforms the
other systems across all three test splits and almost
in all metrics.

4.3 Further Analyses

This section provides in-depth analyses to show the
effect of each individual module in our system.

Effect of Pre-trained Models We first examine
the effect of different pre-trained models. Specifi-
cally, besides PEGASUS-large, we consider other
pre-trained models including BART3, DistilBART4,
ERNIE-GEN5, and PEGASUS-xsum6, all in the
“large” setting. We tune their hyper-parameters in
the same ranges as in PEGASUS-large, and report
optimal results on the validation splits. The results
are summarized in Table 5, where (S) scores denote
results for single models averaged over five runs.
Among these models, the two PEGASUS variants
(-large and -xsum), which are designed specifically
for abstractive text summarization, consistently per-
form better. And the -large variant performs even
better than the -xsum one. The reason may be that
the -xsum variant has been further tuned on XSum

3https://huggingface.co/facebook/
bart-large

4https://huggingface.co/sshleifer/
distilbart-xsum-12-6

5https://github.com/PaddlePaddle/
ERNIE/tree/repro/ernie-gen

6https://huggingface.co/google/
pegasus-xsum
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All Valid Set MIMC-CXR Valid Set Indiana Valid Set
Model ROUGE-1/-2/-L ROUGE-1/-2/-L ROUGE-1/-2/-L
BART (S) .5352 .3871 .5103 .6209 .4902 .5865 .4495 .2840 .4340
BART (E) .5535 .4057 .5284 .6425 .5125 .6077 .4644 .2989 .4491
DistilBART (S) .5456 .3987 .5214 .6385 .5109 .6055 .4526 .2865 .4372
DistilBART (E) .5604 .4144 .5360 .6516 .5244 .6189 .4691 .3043 .4531
ERNIE-GEN (S) .5385 .3951 .5167 .6237 .4996 .5926 .4532 .2905 .4409
ERNIE-GEN (E) .5476 .4035 .5229 .6313 .5070 .6002 .4638 .3000 .4515
PEGASUS-xsum (S) .5506 .4107 .5303 .6413 .5233 .6117 .4600 .2981 .4489
PEGASUS-xsum (E) .5566 .4172 .5361 .6441 .5266 .6141 .4691 .3078 .4581
PEGASUS-large (S) .5559 .4129 .5330 .6511 .5290 .6188 .4608 .2968 .4471
PEGASUS-large (E) .5649 .4224 .5413 .6572 .5329 .6235 .4725 .3088 .4591

Table 5: Results of different pre-trained models on validation splits. We run each model five times with different
seeds under its optimal configuration. (S)/(E) respectively denotes the averaged/ensemble results of the five runs.

All Test Set Indiana Test Set Stanford Test Set
Ablation ROUGE-1/-2/-L ROUGE-1/-2/-L ROUGE-1/-2/-L
Full Model .5573 .4362 .5366 .6834 .5956 .6717 .4312 .2769 .4014
− Domain Adaptation .4539 .2916 .4333 .4766 .3062 .4652 .4312 .2769 .4014
− Normalization .5487 .4221 .5281 .6834 .5956 .6717 .4139 .2486 .3844

Table 6: Ablation results of domain adaptation and negative impression normalization on test splits.

(Narayan et al., 2018), which consists of articles
from the British Broadcasting Corporation and ex-
hibits drastic distinctions from radiology reports.
This thereby may result in catastrophic forgetting.

Effect of Ensemble We further investigate the
effect of model ensemble. To this end, for each of
the pre-trained models considered above, we run
the model five times with its optimal configuration
but different seeds. We then compare performance
of the single model (S) and the ensemble (E) on the
validation splits, and report the results in Table 5.
We can see that ensemble is a generally effective
strategy, leading to about 1% to 2% gains across
all data splits and metrics, not matter which pre-
trained model is used.

Effect of Domain Adaptation We then evaluate
the effect of our domain adaptation module, which
is applied solely to the Indiana test split. We con-
sider an ablation that uses the model trained from
MIMIC-CXR to predict on both Indiana and Stan-
ford test splits, without further fine-tuning on the in-
domain Indiana validation split. Table 6 reports the
performance of this ablation on the test splits, and
makes comparisons to the full model. We can see
that the adaptation module, though conceptually
simple, is extremely useful, pushing the ROUGE-2
score drastically from 0.3062 to 0.5956 on Indiana

test split.

Effect of Normalization We finally evaluate the
effect of negative impression normalization, which
is applied solely to the Stanford test split. Table 6
compares performance with and without this final
normalization strategy on the test splits. We can see
that this simple strategy brings meaningful gains,
pushing the ROUGE-2 score from 0.2486 to 0.2769
on Stanford test split.

5 Conclusion

This paper presents our winning system at the Radi-
ology Report Summarization track of the MEDIQA
2021 shared task. Participating systems in this track
are required to summarize radiology findings into
natural language impressions, and be able to gener-
alize or transfer to reports collected from previously
unseen hospitals. We build our system on the basis
of a pre-trained Transformer encoder-decoder ar-
chitecture, namely PEGASUS. We further employ
a domain adaptation module to enhance general-
ization and transfer ability. Heuristics such as en-
semble and negative impression normalization are
also used. Our system finally achieves a ROUGE-2
score of 0.436 on the test set, ranked the 1st place
among all participating systems.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of ACL.

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz,
Nathaniel R Greenbaum, Matthew P Lungren, Chih-
ying Deng, Roger G Mark, and Steven Horng.
2019. MIMIC-CXR, a de-identified publicly avail-
able database of chest radiographs with free-text re-
ports. Scientific Data, 6(1):1–8.

Charles E Kahn Jr, Curtis P Langlotz, Elizabeth S Burn-
side, John A Carrino, David S Channin, David M
Hovsepian, and Daniel L Rubin. 2009. Toward
best practices in radiology reporting. Radiology,
252(3):852–856.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81.

Sean MacAvaney, Sajad Sotudeh, Arman Cohan, Na-
zli Goharian, Ish Talati, and Ross W Filice. 2019.
Ontology-aware clinical abstractive summarization.
In Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 1013–1016.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In EMNLP, pages 1797–
1807.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. Technical re-
port, Technical report, OpenAI.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, pages 1073–1083.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked sequence to se-
quence pre-training for language generation. In Pro-
ceedings of the 36th International Conference on
Machine Learning, pages 5926–5936.

Dongling Xiao, Han Zhang, Yukun Li, Yu Sun, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. ERNIE-
GEN: An enhanced multi-flow pre-training and fine-
tuning framework for natural language generation.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, pages
3997–4003.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. 2020. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, pages 11328–11339.

110



Yuhao Zhang, Daisy Yi Ding, Tianpei Qian, Christo-
pher D Manning, and Curtis P Langlotz. 2018.
Learning to summarize radiology findings. In Pro-
ceedings of the Ninth International Workshop on
Health Text Mining and Information Analysis, pages
204–213.

Yuhao Zhang, Derek Merck, Emily Bao Tsai, Christo-
pher D Manning, and Curtis P Langlotz. 2019. Op-
timizing the factual correctness of a summary: A
study of summarizing radiology reports. arXiv
preprint arXiv:1911.02541.

111



Proceedings of the BioNLP 2021 workshop, pages 112–118
June 11, 2021. ©2021 Association for Computational Linguistics

damo_nlp at MEDIQA 2021: Knowledge-based Preprocessing and
Coverage-oriented Reranking for Medical Question Summarization

Yifan He and Mosha Chen and Songfang Huang
Alibaba Group

{y.he, chenmosha.cms, songfang.hsf}@alibaba-inc.com

Abstract
Medical question summarization is an impor-
tant but difficult task, where the input is often
complex and erroneous while annotated data is
expensive to acquire.

We report our participation in the MEDIQA
2021 question summarization task in which we
are required to address these challenges. We
start from pre-trained conditional generative
language models, use knowledge bases to help
correct input errors, and rerank single system
outputs to boost coverage. Experimental re-
sults show significant improvement in string-
based metrics.

1 Introduction

Question summarization for medical forum is im-
portant for medical knowledge discovery and re-
trieval and facilitates downstream tasks such as
biomedical question answering (Jin et al., 2021).
Medical questions are often complex, scattered
with non-medical information, and can sometimes
be erroneous because forum users are not domain
experts (Ben Abacha and Demner-Fushman, 2019).
In addition, annotation in the medical domain is
harder to acquire than in the general domain. These
challenges make medical question summarization
an important and difficult task where annotation is
often scarce.

The MEDIQA 2021 shared task 1 (Ben Abacha
et al., 2021), medical question summarization, re-
quires participants to build summarization systems
for noisy medical forum texts with limited anno-
tation data. The official training set of the task is
the MeQSum dataset (Ben Abacha and Demner-
Fushman, 2019), which is composed of 1,000 med-
ical questions and their corresponding summaries.
The validation and test sets consist of 50 and 100
questions respectively and topic words are some-
times misspelled.

Scarcity of data, noisy input, and complexity and
redundancy of text all pose challenges for ques-

tion summarization systems. We try to address
these challenges using a combination of knowledge-
based error correction, pre-trained generative lan-
guage models, and output reranking.

Knowledge-based error correction leverages
multiple levels of lexical resources and a high cov-
erage knowledge base to correct errors in input.
Our experiments show that knowledge-based error
correction helps downstream summarization per-
formance according to the Rouge metric.

Pre-trained generative language models are
transformer-based language models trained with
loss functions that facilitate sequence to sequence
generation. Models such as Pegasus (Zhang et al.,
2020a), BART (Lewis et al., 2020), and T5 (Raffel
et al., 2020) achieve state-of-the-art performance
on various text generation tasks and are shown
to perform well on few-shot generation scenar-
ios (Goodwin et al., 2020). We finetune pre-trained
language models to obtain baseline systems with
limited amount of training data.

Output reranking picks the best output among
multiple systems. The availability of different lan-
guage models offers a diverse set of summaries to
choose from. We observe difference in summariza-
tion styles between the training and the validation
set and devise a simple heuristic to pick the best
output based on this observation.

In the rest of the paper, we describe these compo-
nents and report evaluation results on the validation
and the test set.

2 Task and Architecture Overview

The MEDIQA question summarization task re-
quires participants to summarize user generated
medical queries into shorter, more focused ques-
tions. We present an example from the MEDIQA
2021 task 1 validation set in Figure 1 (a). We note
that the name of the disease “folliculitis” is spelled
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Hi, Please can you help - I am writing from South Africa. My daughter suffers 
with acute folliculitus, and has been since the age of 13. She is now 20 and is in 
so much distress as nothing seems to alleviate the itching and soreness... I am 
writing to you for any help you could give me to try and assist her. Could you 
recommend a specialist and someone who could help us with research? Please 
could you point us in the right direction? I am happy to send through her lab 
tests - please let me know. Thanks

How can we find a specialist or clinical trial for chronic folliculitis?

Question

Summary

Question
Input

Error
Correction

Pegasus
Summarizer

BART
Summarizer

T5
Summarizer

Generative LMs

Reranker Summary
Output

(a) Example from MEDIQA 2021 Task 1 Validation Set

(b) Architecture of our submission

Figure 1: Question-summarization example and sys-
tem architecture

incorrectly in the input question and the question
contains a lot of irrelevant information. We attempt
to correct misspellings with a dedicated module in
our system. As useful information is often scat-
tered in different sentences in the input, abstractive
summarization suits this task better than extractive
summarization. We perform abstractive summa-
rization with pre-trained language models.

We illustrate the architecture of our submission
in Figure 1 (b): we first try to correct spell errors
in the input; then summarize each question with
three generative LMs: Pegasus, BART, and T5;
finally, for each question, we pick the best output
with a feature-based reranker and the best output is
chosen as the summarization of the question.

3 Knowledge-based Error Correction

Misspellings are prevalent in medical forums,
where non-expert users discuss highly specialized
medical topics. Uncorrected misspellings can lead
to mismatch between the source text and the sum-
mary during training and cause errors if copied
verbatim during prediction. These errors are penal-
ized heavily by string matching-based metrics like
Rouge as they break n-grams.

In this shared task, we conservatively correct
misspelled words in input by reusing a cascade
of candidate generation modules from an entity
linking system. Entity linking is the task to link
entity mentions in text to entities in a knowledge
base (KB). Candidate generation is an intermediate
step in entity linking to generate candidate KB
entities from potentially abbreviated, misspelled,

or alias text mentions (see e.g. (Charton et al.,
2014)). Our method is also comparable to previous
work on Levenshtein distance-based (Levenshtein,
1966) medical query correction (Soualmia et al.,
2012), but we augment that approach with cascaded
knowledge sources and an alias table.

Error correction can be implemented easier and
with possibly higher quality if search suggestions
from online search engines (Zhou et al., 2015) are
utilized. We use in-house error correction to keep
the submission offline.

3.1 Resources
The error correction module relies on the following
resources:

• Medical word list. We collect tokens from
the English side of ~20K bilingual medical
phrases collected from dictionaries and drug
names.

• Wikipedia dump. We use a 20210101 dump
of the English Wikipedia as the knowledge
base and alias table.

• High frequency word list. We use the top
10,000 words in the Google 1T corpus 1.

We use Wikipedia instead of a medical KB be-
cause of its broad coverage. Edges (redirects, links
etc.) in the Wikipedia KB can be used as an alias
table to capture common misspellings and aliases.

Wiki IndexMed
Terms

Freq
Words

Spell
Checker

Wiki
Matcher

Med
Searcher

Freq
Searcher

Wiki
Searcherfolliculitus

pigmentousim
furhter
ureatha

Name
Resolution

folliculitis

pigmentosum further ureathra

Name
Resolution

urethra

Queries

Index
Construction

Figure 2: Example of error correction

3.2 Error correction steps
During error correction, we handle tokens com-
posed entirely of alphabetical characters and allow
at most 2 edits in similarity searches. We only con-
sider tokens that share 3-prefix or 3-suffix with the
query to limit search space.

1https://books.google.com/ngrams/info
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Error correction consists of the following steps:

• Index construction. We build a token index
of Wikipedia. We only index titles with no
more than two tokens and tokens more than
5 characters long. We use the first token to
represent the title. When a token can map to
more than one titles, we map it to the title with
the lowest id.

• Spell checking. We pass the text through a
spell checker with medical terms2 to detect
potential errors. The flagged tokens are the
query words for the error correction pipeline.

• Wikipedia match. If the query has an exact
match in the Wikipedia token index, we link
the query to the token and its corresponding
Wikipedia title. Note that a title can either be
an entity or an alias, which we resolve later in
the name resolution step.

• Medical word search. We search the medi-
cal word list to find medical terms that spell
similarly to the query. We choose the medical
term if a result is found.

• Frequent word search. We search the high
frequency word list to recall common English
words that spell similarly to the query. We
choose the word if a result is found.

• Wikipedia search. We search the Wikipedia
token index for queries longer than 5. To fur-
ther constrain search space, we only consider
tokens that share 5-prefix, 5-suffix, or all con-
sonants with the query. We choose the token
with the highest sequence matching ratio3.

• Name resolution. For corrected tokens re-
trieved from the medical word list and the
Wikipedia, we search the Wikipedia dump to
check if it is an alias of another entity and
maps it to its canonical form.

Consider the example in Figure 2. Input queries
of the error correction pipeline are the misspelled
words identified by the spell checker. Wikipedia
match catches the common misspelling *folliculi-
tus and recovers its canonical form folliculitis.
Medical word search recovers pigmentosum from

2https://github.com/glutanimate/
hunspell-en-med-glut

3https://docs.python.org/3/library/
difflib.html

the medical dictionary. Frequent word search re-
covers misspellings of popular words, avoid send-
ing them to the noisy Wikipedia search. Finally,
Wikipedia search first map *ureatha to its closest
alias ureathra in Wikipedia and then maps ureathra
to the canonical form urethra.

On the validation set, the process is unable to
recover the word *preagnet (pregnant). We are
able to recover most other errors on the validation
set. Impact of error correction is evaluated in Sec-
tion 6.2.1.

4 Summarization with Pre-trained
Conditional Generative Language
Models

Pre-trained conditional generative language mod-
els have become the dominating paradigm for text
generation and especially summarization, with re-
cent models such as Pegasus (Zhang et al., 2020a),
BART (Lewis et al., 2020), T5 (Raffel et al.,
2020), and PALM (Bi et al., 2020) achieving state-
of-the-art results on standard benchmarks CNN-
Dailymail (See et al., 2017) and XSUM (Narayan
et al., 2018). Recent work has also shown that these
models achieve good performance in few-shot med-
ical summarization settings (Goodwin et al., 2020).

Following (Goodwin et al., 2020), we use Pega-
sus, BART, and T5 single systems as our baselines.

• Pegasus (Zhang et al., 2020a) is a condi-
tional language model designed specifically
for abstractive summarization and is pre-
trained with a self-supervised gap-sentence-
generation objective, where the model is pre-
trained to predict entire masked sentences
from the document.

• BART (Lewis et al., 2020) is a model combin-
ing bi-directional and auto-regressive trans-
formers, trained to both denoise and recon-
struct corrupted texts.

• T5 (Raffel et al., 2020) is pre-trained on multi-
ple objectives, including masking, translation,
classification, machine reading comprehen-
sion (MRC) and summarization, all formu-
lated as conditional generation tasks.

We use Pegasus-large, BART-large,
and T5-base respectively in our experiments.
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5 Output Reranking

Following previous work on reranking generative
LM outputs (Mi et al., 2021), we pick the best
summary for each question using the following
linear model from outputs of three heterogeneous
generative LMs,

T ∗ = argmax
T ′

∑

i

ψi(T, T
′, S)wi (1)

where T ′ is output of a single system, T is the set
of outputs of all single systems, and S is the input
text. T ∗ is the ensemble output, which is picked
from single system outputs by highest score.

The feature function ψ(T, T ′, S) is a function to
estimate the quality of T ′ using information from T
and S. wi is a weight of ψ(T, T ′, S). In sequence
generation tasks such as machine translation (Ku-
mar and Byrne, 2004), ψ is usually a combina-
tion of consensus and linguistic features and wi

can be tuned by optimization algorithms such as
MERT (Och, 2003) towards an automatic evalua-
tion metric.

Our approach. We use a simple and coverage-
oriented approach for reranking, based on the size
and characteristics of the validation data. We no-
tice that the writing style of the validation set is
different from the MeQSum data set which we use
for training: in MeQSum 18.5% sentences start
with “What are the treatments for”, 14.6% start
with “Where can I find”, and 2.5% start with “What
are the causes of ”. A model trained on MeQSum
tends to generate these topic-based boilerplates that
are not mentioned in the source text. But in the vali-
dation set, summaries do not have these boilerplate
texts and resemble the content of the source text
more closely, which inspires us to pick the output
with high coverage of the source.

We consider the validation set (50 sentences) too
small for automatic tuning, so we design a minimal
set of features and set the weights wi manually.

Features. We use fidelity, length, consensus and
wellformedness features:

• Fidelity (wf ). We calculate the Rouge-2
score between the input and the prediction.
A higher score indicate a high-coverage sum-
mary.

• Length (wl). The length ratio between the
prediction and the input.

Rouge-2 Rouge-L
Pegasus 0.187 0.333

Pegasus EC 0.206 0.344
BART 0.220 0.342

BART EC 0.227 0.342
T5 0.213 0.353

T5 EC 0.208 0.354

Table 1: Single system results on validation set. EC:
Input error correction

Rouge-2 Rouge-L
Best Single 0.220 0.342
Reranked 0.217 0.361

Best Single EC 0.227 0.342
Reranked EC 0.230 0.364

Table 2: Reranking results on validation set. EC: Input
error correction

• Consensus (wc). 1 if T ′ shares any bigram
with T− T ′, 0 otherwise.

• Wellformedness (ww). 1 if T ′ has less than
three subsentences and starts with one ques-
tion marker, 0 otherwise.

For our experiments on the validation set and
Rouge-2 experiments on the test set, we setwf = 1,
wl = 0.01, wc = 10, ww = 10. The idea is to
select the summary that has highest coverage of the
source that is a one sentence question, with at least
one bi-gram in common with other summaries.

The choice to favor high coverage summary is
based on this particular pair of training and valida-
tion data, rather than general ensemble principles
for text generation. We switch the weights for wf

and wl for length reranking experiments on the
test set. Impact of reranking is evaluated in Sec-
tion 6.2.2.

6 Experiments

6.1 Experimental settings

Our systems are based on the Transformers (Wolf
et al., 2020) package. We finetune baseline mod-
els on the MeQSum (Ben Abacha and Demner-
Fushman, 2019) dataset for 50 epochs, with batch
size 8 and learning rate 2e-5 with the AdamW
optimizer on Nvidia P100 GPUs. Finetuning
is indispensable for this task: without finetun-
ing, BART-large scores 0.06 Rouge-2 and 0.15
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ID R1 R2 P R2 R R2 F1 R-L HOLMS BERTScore
Single Systems

1 T5 0.296 0.122 0.109 0.107 0.267 0.541 0.673
2 BART 0.286 0.120 0.090 0.098 0.258 0.550 0.667
3 Pegasus 0.312 0.130 0.123 0.118 0.281 0.547 0.684

Length rerank
4 3 Sys 0.342 0.149 0.166 0.148 0.299 0.561 0.689
5 3 Sys EC 0.351 0.157 0.175 0.155 0.307 0.566 0.688
6 4 Sys EC 0.358 0.160 0.181 0.159 0.310 0.565 0.689

Coverage rerank
7 3’ Sys EC 0.350 0.177 0.169 0.161 0.313 0.571 0.691
8 4 Sys EC 0.351 0.173 0.173 0.161 0.313 0.568 0.689
- Best team 0.351 0.185 0.173 0.161 0.315 0.579 0.703

Table 3: Results on the test set. EC: Input error correction; R1/2/L: Rouge-1/2/L; P: Precision, R: Recall; Best
team: Best score among all teams; Scores in bold when our system achieves the best score.

Rouge-L on the validation set in preliminary exper-
iments.

For experiments on the test set, models for en-
semble are further finetuned for 50 epochs on the
validation set. Models for error-corrected input are
finetuned on an automatically corrected version of
the validation set.

6.2 Validation set experiments

We report single and reranking system performance
in Tables 1 and 2 respectively. Results are evaluated
by Rouge (Lin, 2004), which is based on n-gram
or longest common sequence (LCS) matching of
strings.

6.2.1 Single systems and error correction
Among the pre-trained LMs in Table 1, BART
performs the best on the validation set. Compar-
ing error-corrected (Pegasus/BART/T5 EC) and
original (Pegasus/BART/T5) inputs, we note that
error-corrected input significantly boosts the perfor-
mance of Pegasus. In addition to corrected entity
names, the fixed input also leads Pegasus to gener-
ate 5% longer output and results in a much higher
Rouge-2 score in this small dataset. This trend is
less significant on BART and T5, but adding error
correction has a positive impact in general.

6.2.2 Reranking
We compare the reranked systems against baselines,
with or without error-corrected input in Table 2.
In both cases, reranking does not have significant
effect on Rouge-2, but helps Rouge-L significantly.
We suspect that reranking does improve word and

style choice, but the room for increasing 2-gram
matches is small on the validation set.

6.3 Test set experiments

We run three sets of experiments on the test set and
report results in Table 3: single systems are the
same systems tested on the validation set and en-
sembles are reranked outputs from systems further
finetuned on the validation set.

In addition to string-based Rouge (Lin, 2004),
test set results are also evaluated by pre-trained
language model-based BERTScore (Zhang et al.,
2020b) and HOLMS (Mrabet and Demner-
Fushman, 2020) metrics:

• BERTScore (Zhang et al., 2020b) leverages
the pre-trained contextual embeddings from
BERT and matches words in candidate and ref-
erence sentences by cosine similarity, where
matching is performed greedily for each word
by choosing the most similar word in the other
sentence.

• HOLMS (Mrabet and Demner-Fushman,
2020) combines soft matching of contextual
embeddings derived from pre-trained LMs
and a string-based metric (Rouge-1 recall in
practice).

String-based and pre-trained language model-
based metrics rank summaries differently. We dis-
cuss the impact of the choice of metrics in Section
6.4.

We run two other experiments validating post-
processing and the UniLM language model (Dong

116



et al., 2019), they perform inferior to their respec-
tive baselines and are not reported in Table 3.

We notice in single system experiments that the
characteristics of the test set is still different from
the validation set: all systems suffer from low re-
call, which leads us to perform more aggressive
length-based reranking.

Length reranking. We experiment with a base-
line approach that explicitly picks the longest out-
put sentence by switching the weight of length and
fidelity features in (1). The 3 systems in runs 4 and
5 are Pegasus and T5 finetuned on the validation
set and the Pegasus system in run 3. Run 6 adds
BART finetuned on the validation set.

We observe that this simple heuristic, together
with further finetuning on the validation set, leads
to significantly higher Rouge scores between runs
3 and 4 in Table 3. This change also improves
HOLMS and BERTScore, suggesting that recall /
coverage-based sentence selection does correlate
to summarization quality in this scenario. Rouge is
further improved by adding BART to the combina-
tion between runs 5 and 6.

Correcting input errors between runs 4 and 5
also helps Rouge significantly. BERTScore, which
is based on word matching and utilizes BERT em-
beddings, is much less sensitive to small spelling
errors and changes negatively. HOLMS changes
positively as it has a Rouge component.

The negative change of BERTScore also sug-
gests that we should be more cautious applying in-
put error correction to summarization: mistakes in
error correction might not hurt string-based metrics
(the word is often misspelled already), but they can
change the meaning of the sentence and degrade
summarization quality.

Coverage reranking. In runs 7 and 8, we exper-
iment with the the same setting as in Table 2. 3 sys-
tems are Pegasus, BART, and T5 finetuned on the
validation set. These runs achieve balanced Rouge
precision and recall, and the highest Rouge-2 score
across all runs. There are small improvement on all
metrics, which is expected, as Rouge-2 is a better
indicator of summarization coverage than length.

According to BERT-based metrics, coverage-
based reranking also leads to more steady improve-
ment than length-based reranking. The overall im-
provement in all metrics suggests that coverage-
based reranking does improve summarization qual-
ity in this task.

6.4 Lessons learned

In this shared task, we experimented with
knowledge-based input error correction and
coverage-oriented system reranking. These meth-
ods are effective in boosting string matching be-
tween the prediction and the reference summaries.
According to Rouge metrics, our submissiong
ranks first according to Rouge-1/2 metrics and
ranks second according to the Rouge-L metric.

According to BERT-based metrics, however,
reranking has a smaller impact on summarization
quality and error correction has little to no effect:
we are about 1 point below the best submission
according to BERTScore and HOLMS, which are
shown to often have higher correlation with hu-
man judgement (Zhang et al., 2020b; Mrabet and
Demner-Fushman, 2020).

The discrepancy between the string-based and
LM-based metrics makes the real improvement of
summarization quality hard to measure. It is ar-
guable that by focusing on misspellings and using
coverage as surrogate for summarization quality,
we might be optimizing more for the writing style
and spelling, rather than the content of the sum-
mary. This shows the need of an efficient, op-
timizable summarization evaluation metric with
high correlation with human judgement that our
field agrees upon. We plan to look more into the
choice of metric and optimization objectives for
summarzation tasks in future work.

7 Conclusion

We reported our experiments in MEDIQA 2021
shared task 1. We used knowledge-based error cor-
rection and coverage-oriented reranking improve
summarization. Our system performed well on
string-based Rouge metrics, but less so on BERT-
based semantic metrics. We plan to investigate
methods that improve summarization according to
human judgement.
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Abstract

The success of pretrained word embeddings
has motivated their use in the biomedical do-
main, with contextualized embeddings yield-
ing remarkable results in several biomedical
NLP tasks. However, there is a lack of re-
search on quantifying their behavior under se-
vere “stress” scenarios. In this work, we
systematically evaluate three language models
with adversarial examples – automatically con-
structed tests that allow us to examine how ro-
bust the models are. We propose two types
of stress scenarios focused on the biomedical
named entity recognition (NER) task, one in-
spired by spelling errors and another based on
the use of synonyms for medical terms. Our
experiments with three benchmarks show that
the performance of the original models de-
creases considerably, in addition to revealing
their weaknesses and strengths. Finally, we
show that adversarial training causes the mod-
els to improve their robustness and even to ex-
ceed the original performance in some cases.

1 Introduction

Biomedical NLP (BioNLP) is the field concerned
with developing NLP tools and methods for the
life sciences domain. Some applications of these
techniques include e.g., discovery of gene-disease
interactions (Pletscher-Frankild et al., 2015), de-
velopment of new drugs (Tari et al., 2010), or au-
tomatic screening of biomedical documents (Car-
vallo et al., 2020). With the exponential growth
of digital biomedical literature, the importance of
BioNLP has become especially relevant as a tool
to extract relevant knowledge for making decisions
in clinical settings as well as in public health. In
order to encourage the development of this area,
public datasets and challenges have been shared
with the community to solve these tasks, such as
BioSSES (Soğancıoğlu et al., 2017), HOC (Hana-
han and Weinberg, 2000), ChemProt (Kringelum
et al., 2016) and BC5CDR (Li et al., 2016), among

others. At the same time, neural language models
have shown significant progress since the intro-
duction of models such as W2V (Mikolov et al.,
2013), and more recent models like ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019).
These models, trained over large corpora (MED-
LINE and PubMed in the biomedical domain) have
obtained remarkable results in most NLP tasks, in-
cluding BioNLP benchmarks (Peng et al., 2019).
However, they have not been systematically eval-
uated under severe stress conditions to test their
robustness to specific linguistic phenomena. For
this reason, the objective of this paper is to evaluate
three well-known neural language models under
stress conditions. As a case study, we evaluate
NER benchmarks since it a key BioNLP informa-
tion extraction task.

Our stress test evaluation is inspired by the work
of Naik et al. (2018), which proposes the use of ad-
versarial evaluation for natural language inference
by adding distractions in sentences, and evaluating
models on this test set. We propose an adversarial
evaluation black-box methodology, which does not
require access to the inner workings of the models
in order to generate adversarial examples (Zhang
et al., 2019). Specifically, we make perturbations to
the input data, also known as edit adversaries, that
could cause the models to fall into erroneous pre-
dictions. Additionally, we train the models with the
proposed adversarial examples, which is a method-
ology used in previous works (Belinkov and Bisk,
2018; Jia and Liang, 2017) to strengthen the neural
language models during the training process. We
hope that our work will motivate the development
and use of adversarial examples to evaluate models
and obtain more robust biomedical embeddings.

2 Related Work

Adversarial Evaluation of NLP Models One
way to test NLP models is by using adversarial
tests, which consist of applying intentional distur-
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Original (O) Linoleic acid autoxidation inhibitions on all fractions were higher than that on alpha-tocopherol.
Keyboard (K) Linoleic avid autoxidatiob inh9bitions on all fractjons were higher than that on zlpha-toclpherol.
Swap (W) Linoleic aicd autoxidtaion inhibtiions on all fractoins were higher than that on aplha-tocohperol.
Synonymy (S) Linoleic acid autoxidation inhibitions on all fractions were higher than that on vitamin E.

Table 1: Examples of sentences of the stress tests.

bances to a gold standard, to test whether the attack
leads the models into incorrect predictions. Previ-
ous works on adversarial attacks have demonstrated
how dangerous it can be to use machine learning
systems in real-world applications (Szegedy et al.,
2014; Goodfellow et al., 2014). Indeed, it is known
that even small amounts of noise can cause severe
failures in neural computer vision models (Akhtar
and Mian, 2018). However, such failures can be
mitigated through adversarial training (Goodfel-
low et al., 2014). These properties have in turn
motivated novel adversarial strategies designed for
various NLP tasks (Zhang et al., 2019), as well as
work on adversarial attacks focused on recurrent
and transformer networks applied to generic NLP
benchmarks (Aspillaga et al., 2020).

Evaluation of Biomedical Models Models used
in BioNLP tasks elicit particular interest in this con-
text because an erroneous prediction can potentially
be very harmful in practice – e.g., put at risk the
health of patients (Sun et al., 2018). Although ad-
versarial attacks have been widely studied in tasks
related to image analysis (Paschali et al., 2018; Fin-
layson et al., 2019; Ma et al., 2019), to the best of
our knowledge, a gap still exists regarding BioNLP
models and tasks (Araujo et al., 2020).

3 Methodology

We follow a black-box attack methodology (Zhang
et al., 2019), which consists of making alterations
in the input data to cause erroneous predictions in
the models. The following subsections describe
each of the adversarial sets, and their construction1.
We show examples of the stress tests in Table 1.

Noise Adversaries These adversaries test the ro-
bustness of models to spelling errors. Inspired
by (Belinkov and Bisk, 2018), we constructed ad-
versarial examples that try to emulate spelling er-
rors made by human beings. We used SpaCy mod-
els (Neumann et al., 2019) to retrieve the medical
words of each corpus and add noise to them. We
used two types of alterations: i) Keyboard typo
noise (K) involves replacing a random character in

1All stress tests available at https://github.com/ialab-
puc/BioNLP-StressTest.

each relevant word with an adjacent character on
QWERTY English keyboards. This methodology
could be adapted to keyboards with other designs
or languages. ii) Swap noise (W) consists of se-
lecting a random pair of consecutive characters in
each relevant word and then swapping them.

Synonymy Adversaries (S) These adversaries
test if a model can understand synonymy rela-
tions. Unlike the noise adversaries, this set focuses
on modifying chemical and disease words (enti-
ties). We used PyMedTermino (Jean-Baptiste et al.,
2015), which uses the vocabulary of UMLS (Bo-
denreider, 2004), to find the most similar or related
term (synonym) to a certain word. If a synonym is
retrieved, the original word is replaced; otherwise,
it remains the same. In some cases, this method
changes a simple entity (one word) to a composite
one (multiple words), so the gold labels are also
adjusted to avoid a mismatch in the dataset.

Task and Datasets Biomedical NER is the task
that aims at detecting biomedical entities of interest
such as proteins, cell types, chemicals, or diseases
in biomedical documents. We conducted our evalu-
ation on three biomedical NER benchmarks using
the IOB2 tag format (Ramshaw and Marcus, 1999).
The BC5CDR corpus (Li et al., 2016) is composed
of mentions of chemicals and diseases found in
1,500 PubMed articles. The BC4CHEMD corpus
(Krallinger et al., 2015) contains mentions of chem-
icals and drugs from 10,000 MEDLINE abstracts.
The NCBI-Disease corpus (Doğan et al., 2014)
consists of 793 PubMed abstracts annotated with
disease mentions. Table 2 lists the datasets used in
this work along with their most relevant statistics.

Embeddings and NER Models We evaluated
both word (W2V) and contextualized embeddings.
On the one hand, we assessed BioMedical W2V
(Pyysalo et al., 2013) and ChemPatent W2V (Zhai
et al., 2019). The ChemPatent embeddings were
trained on a 1.1 billion word corpus of chemical
patents from 7 patent offices, whereas all the other
embeddings were trained on the PubMed corpus.
On the other hand, we evaluated BioBERT v1.1
(Lee et al., 2019) and BlueBERT (P) (Peng et al.,
2019), both in their base version for convenience.
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Train / Test Entity # of sentences (annotated) # of tokens % K % W % S
BC5CDR Chemical 4560 (1609) / 4797 (1706) 122730 /129547 36.3 / 36.1 33.7 / 33.2 6.8 / 6.5
BC5CDR Disease 4560 (1902) / 4797 (1955) 122730 /129547 36.3 / 36.1 33.7 / 33.2 10.6 / 9.9
BC4CHEMD Chemical 30681 (16175) / 26363 (13935) 922609 / 792369 37.8 / 37.6 33.9 / 33.9 5.2 / 5.3
NCBI-Disease Disease 5423 (2501) / 939 (401) 141092 / 25397 37.4 / 37.5 33.4 / 33.3 9.2 / 8.6

Table 2: Details of the datasets used. The last three columns present the percentage of tokens modified for each of
the adversarial datasets. The slash separates the values belonging to the training and the test set.

Model BC5CDR-Chemical BC5CDR-Disease BC4CHEMD NCBI-Disease
O K W S O K W S O K W S O K W S

BioBERT .937 .745 .635 .770 .863 .407 .473 .366 .919 .585 .675 .678 .887 .483 .628 .683
±.004 ±.006 ±.008 ±.011 ±.004 ±.008 ±.010 ±.007 ±.004 ±.005 ±.007 ±.009 ±.004 ±.007 ±.011 ±.006

BlueBERT .901 .583 .708 .739 .838 .368 .441 .362 .820 .472 .570 .607 .773 .332 .438 .615
±.003 ±.005 ±.008 ±.010 ±.004 ±.007 ±.011 ±.007 ±.003 ±.004 ±.009 ±.010 ±.003 ±.006 ±.009 ±.006

BERT .887 .563 .684 .738 .816 .356 .431 .336 .808 .443 .509 .598 .771 .305 .433 .583
±.004 ±.007 ±.010 ±.015 ±.006 ±.009 ±.013 ±.008 ±.004 ±.006 ±.008 ±.013 ±.005 ±.008 ±.014 ±.007

BioELMo .923 .838 .726 .757 .845 .656 .482 .408 .915 .770 .634 .668 .869 .711 .543 .677
±.001 ±.003 ±.010 ±.032 ±.002 ±.018 ±.025 ±.013 ±.001 ±.003 ±.004 ±.004 ±.005 ±.017 ±.026 ±.012

ChemPatent
ELMo

.910 .822 .745 .757 .824 .637 .508 .380 .898 .766 .662 .642 .863 .693 .586 .655
±.001 ±.004 ±.005 ±.016 ±.001 ±.013 ±.013 ±.017 ±.001 ±.003 ±.005 ±.005 ±.004 ±.018 ±.020 ±.009

ELMo .879 .702 .637 .720 .800 .461 .373 .378 .866 .612 .507 .611 .848 .575 .495 .643
±.002 ±.010 ±.017 ±.018 ±.003 ±.023 ±.020 ±.014 ±.001 ±.007 ±.011 ±.005 ±.004 ±.034 ±.023 ±.008

BioMedical
W2V

.873 .231 .238 .719 .788 .132 .133 .351 .846 .233 .244 .589 .827 .284 .292 .596
±.004 ±.012 ±.021 ±.016 ±.008 ±.009 ±.011 ±.015 ±.005 ±.008 ±.013 ±.012 ±.005 ±.014 ±.019 ±.021

ChemPatent
W2V

.871 .224 .221 .715 .772 .127 .122 .347 .828 .253 .260 .584 .816 .269 .252 .582
±.003 ±.011 ±.012 ±.015 ±.007 ±.005 ±.009 ±.016 ±.007 ±.009 ±.010 ±.012 ±.007 ±.021 ±.019 ±.013

W2V .818 .237 .227 .641 .760 .120 .120 .341 .766 .264 .260 .513 .785 .281 .271 .526
±.004 ±.013 ±.013 ±.017 ±.003 ±.008 ±.009 ±.013 ±.007 ±.011 ±.012 ±.008 ±.005 ±.022 ±.019 ±.009

Table 3: Stress test evaluation results in terms of terms F1-score for each model and dataset. We report means and
standard deviations by training and evaluating ten times with different seeds.

BioBERT embeddings were trained on PubMed
abstracts and full-text corpora consisting of 4.3 bil-
lion and 13.5 billion words each. BlueBERT was
trained on 4 billion words from PubMed abstracts.
We used the implementation provided by Peng et al.
(2019) for NER with default hyperparameters.2 Fi-
nally, we evaluate BioELMo (Jin et al., 2019) and
ChemPatent ELMo (Zhai et al., 2019). As NER
models we either (a) fine-tuned BERT as proposed
by Peng et al. (2019) or (b) used AllenNLP’s ba-
sic biLSTM-CRF implementation3, with no hyper-
parameter tuning other than changing the initial
embedding layer with one of the ELMo or W2V
embeddings. For comparison purposes, we also
include the “vanilla” version of the models men-
tioned above, which are pretrained with general
corpora. We trained each model 10 times using dif-
ferent random seeds, for 15 epochs every time. We
use CoNLL evaluation (Agirre and Soroa, 2007),
reporting the F1 score for all datasets.

4 Experiments

In this section we report the results of our experi-
ments. Note that all percentage drops or increases

2https://github.com/ncbi-nlp/bluebert
3https://github.com/allenai/allennlp-models

are expressed relative to the original score, not as
percentage points.

Adversarial Evaluation Results Table 3 shows
the evaluation results on the original (O) and adver-
sarial test sets (K, W, and S). In general, the per-
formance of models drops across all adversarial at-
tacks. For BERT-based models, we observe that K
attacks decrease performance by on average 43.1%,
W by 34.3% and S by 30.8%. BioBERT has the
smallest decrease in performance, 34.4%, followed
by BlueBERT, with a 37.9% decrease. We hy-
pothesize that BioBERT is more robust than Blue-
BERT since the former was trained on a larger and
more varied corpus. Furthermore, when comparing
the performance across all datasets, we see that
BC5CDR-Disease is the most affected in all stress
tests, with a 37.7% performance drop, and the least
affected is BC5CDR-Chemical, with 16.1%.

The performance reduction of ELMo-based mod-
els is similar to those of BERT-based models. An
exception is when subject to W and S noise, where
they showed increased robustness with respect to
BERT and W2V models (W: 55.3% better, S: 6.9%
better). In almost all the tests, BioELMo performed
better than ChemPatent ELMo, except under W
noise, where ChemPatent ELMo performed con-
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Model Training BC5CDR-Chemical BC5CDR-Disease BC4CHEMD NCBI-Disease
O + K .934 (O) .888 (K) .863 (O) .755 (K) .920 (O) .874 (K) .886 (O) .820 (K)

BioBERT O + W .931 (O) .899 (W) .865 (O) .781 (W) .922 (O) .892 (W) .872 (O) .848 (W)
O + S .933 (O) .910 (S) .840 (O) .819 (S) .919 (O) .923 (S) .874 (O) .875 (S)
O + K .898 (O) .820 (K) .844 (O) .717 (K) .819 (O) .750 (K) .789 (O) .668 (K)

BlueBERT O + W .896 (O) .656 (W) .841 (O) .759 (W) .818 (O) .785 (W) .784 (O) .729 (W)
O + S .900 (O) .890 (S) .818 (O) .814 (S) .820 (O) .788 (S) .773 (O) .804 (S)
O + K .923 (O) .870 (K) .833 (O) .732 (K) .912 (O) .837 (K) .864 (O) .820 (K)

BioELMo O + W .922 (O) .825 (W) .838 (O) .654 (W) .913 (O) .820 (W) .875 (O) .777 (W)
O + S .919 (O) .901 (S) .826 (O) .799 (S) .912 (O) .901 (S) .871 (O) .848 (S)
O + K .910 (O) .859 (K) .823 (O) .713 (K) .898 (O) .828 (K) .860 (O) .793 (K)

ChemPatent ELMo O + W .907 (O) .835 (W) .813 (O) .682 (W) .899 (O) .824 (W) .863 (O) .804 (W)
O + S .904 (O) .895 (S) .813 (O) .757 (S) .895 (O) .874 (S) .848 (O) .819 (S)
O + K .888 (O) .467 (K) .773 (O) .303 (K) .832 (O) .486 (K) .820 (O) .543 (K)

BioMedical W2V O + W .873 (O) .598 (W) .796 (O) .482 (W) .836 (O) .609 (W) .819 (O) .639 (W)
O + S .867 (O) .883 (S) .781 (O) .787 (S) .837 (O) .852 (S) .836 (O) .804 (S)
O + K .867 (O) .454 (K) .768 (O) .307 (K) .817 (O) .482 (K) .822 (O) .548 (K)

ChemPatent W2V O + W .785 (O) .619 (W) .765 (O) .477 (W) .819 (O) .626 (W) .792 (O) .663 (W)
O + S .868 (O) .864 (S) .738 (O) .779 (S) .818 (O) .835 (S) .797 (O) .801 (S)

Table 4: Adversarial training results in terms of F1-score for each model and dataset. The training column shows
the O set merged with K, W, or S. The test set is shown in parentheses for each scenario.

sistently better, by 5.1% on average. We hypoth-
esize that these results are due to ELMo using a
character-based input representation, which would
allow handling of swap characters inside the words.

W2V-based models were the most brittle but
showed similar patterns to the previous models.
Adversaries examples produced performance drops
ranging from 53.8% on NCBI-Disease to 74.1%
on BC5CDR-Disease. In the case of S adversaries,
W2V-based showed performance drops ranging
from 17.8% on BC5CDR-Chemical to 55.3% on
BC5CDR-Disease.

Regarding the “vanilla” models, we see that they
are all the worst in the original dataset (O) com-
pared to their biomedical counterparts. In the same
way, they are more fragile to adversary attacks in
the biomedical scenario. In average, BERT has a
decrease in performance of 39.6%, ELMo of 34.4%
and W2V of 59.6% across all datasets.

Even though the BC5CDR dataset covers both
chemicals and diseases, the disease task is more
affected by S adversaries. We believe this is due to
the higher number of words affected by the attacks
compared to the other benchmarks (Table 2). An-
other possible cause is the kind of synonyms used
to replace the entities, which tend to be both su-
perficially dissimilar and more extensive than their
originals, e.g., arrhythmia is replaced by heart con-
duction disorder. By contrast, chemical synonyms
often include terms derived from the original, e.g.,
morphine is changed to morphine sulfate.

Training on Adversarial Examples Addition-
ally, we subjected the training sets to adversar-

ial attacks, and evaluated the models both against
the original test sets and their noisy counterparts.
When training with K noise, we observed perfor-
mance decreases by 21.2%, followed by W, 15.8%,
and S with a slight decline of 0.8%, compared to
44.4%, 46.3% and 31.3% respectively in the Ad-
versarial Evaluation setting. Besides, and inter-
estingly, training with S improves performance in
some cases, by up to 5.5% compared to the origi-
nal S test set. We hypothesize that this is because
the introduced adversarial samples work as a data
augmentation mechanism. In terms of datasets, we
see that BC5CDR-Disease is the most affected by
adversaries, with an average 17.5% drop, and the
least affected is NCBI-Disease, with an average
9.7% drop compared to the non-adversarial test set.
When comparing the three architectures we see
that BERT is affected by 6.3%, ELMo by 7.6% and
W2V by 24.0% on average compared to the origi-
nal test set. This result stands in line with findings
on other NLP tasks, where BERT comes up first,
followed by ELMo and W2V (Peng et al., 2019).
This is because BERT uses recent methods and
techniques like Transformer (Vaswani et al., 2017)
and WordPiece tokenizer (Schuster and Nakajima,
2012) that allow it to learn better representations.

BioBERT Error Analysis This section seeks to
understand how the most robust model – BioBERT
– behaves under adversarial evaluation. To this end,
we analyzed NER model confusions with respect
to the original datasets, synonym (S), swap (W),
and keyboard (K) perturbations on the BC5CDR
chemical and disease dataset(s).

In the original dataset (Figure 1(a)), we see that
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(a)
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Figure 1: Normalized confusion matrices for test re-
sults with (a) original (O), (b) keyboard (K), (c) swap
(S) and (d) synonym (S) BC5CDR-Disease and Chem-
ical datasets on average.

most of the errors come from confusing I and O
labels (32% of the cases). Under adversarial at-
tacks, this type of error spreads to other IOB labels.
For keyboard (K) errors (Figure 1(b)), the most fre-
quent mistake is to confuse B with O, with 16.6%
of these cases. The same goes for swap (W) pertur-
bations (Figure 1(c)), where this error is repeated
15% of the time. When using synonyms (S) (Fig-
ure 1(d)), error rates become by contrast globally
low compared to K and W. We believe that this
happens because entities are converted into simi-
lar ones. For instance, “stomach neoplasm” gets
transformed into “stomach tumor”.

Lastly, regardless of the adversaries, there are
confusions with numbers and special character se-
quences that the model classifies as I (i.e., lie inside
an entity span) but whose ground truth label is O
(i.e., lie outside an entity span).

5 Conclusions

In this work, we have investigated whether large
scale biomedical word (W2V) and contextualized
word embeddings (BERT and ELMo) are robust
with respect to black-box adversarial attacks in the
biomedical NER task. Our experimental results
show different sensitivities of the models to mis-
spellings and synonyms. Among the main findings,
we show that BERT-based models are generally
better prepared for adversarial attacks, but they
are still fragile, leaving room for future improve-
ment in the field. ELMo-based models show lower
robustness in most cases but consistently outper-
formed BERT in some specific scenarios. W2V
proves to be more brittle but shows similar patterns
in terms of relative performance drops. We also
demonstrate that by training with adversaries, we
can considerably decrease the drop in performance
and even improve the models’ original performance
when trained with synonyms, as they act as a form
of regularization and augmentation of data.
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Abstract

NLP has emerged as an essential tool to extract
knowledge from the exponentially increasing
volumes of biomedical texts. Many NLP tasks,
such as named entity recognition and named
entity normalization, are especially challeng-
ing in the biomedical domain partly because
of the prolific use of acronyms. Long names
for diseases, bacteria, and chemicals are often
replaced by acronyms. We propose Biomedi-
cal Local Acronym Resolver (BLAR), a high-
performing acronym resolver that leverages
state-of-the-art (SOTA) pre-trained language
models to accurately resolve local acronyms
in biomedical texts. We test BLAR on the
Ab3P corpus and achieve state-of-the-art re-
sults compared to the current best-performing
local acronym resolution algorithms and mod-
els.

1 Introduction

In the past decade, natural language processing
(NLP) has greatly advanced in the biomedical do-
main. Given the troves of biomedical texts, NLP
has emerged as a critical tool for knowledge extrac-
tion. NLP has been used to automatically analyze
clinical notes, electronic medical records, biolog-
ical literature, and other biomedical texts in the
hopes of unearthing new knowledge and deeper
insights.

Acronyms are especially common in science and
even more so in biomedical publications, as authors
regularly seek to shorten the long names for dis-
eases, bacteria, and chemicals. Barnett and Double-
day (2020) documented acronym use in more than
24 million scientific article titles and 18 million sci-
entific articles published between 1950 and 2019.
They report that 19% of titles and 73% of abstracts
contain acronyms. Of the more than one million
unique acronyms in their data, 0.2% appeared regu-
larly and most acronyms, 79%, appeared less than
10 times.

Acronym resolution (AR) can be performed by
either leveraging acronym definitions found in the
text (referred to as local AR) or by consulting ex-
ternal resources, such as ontologies (known as dis-
ambiguation or global AR). While a lot of progress
has been recently done on the latter, local AR has
seen surprisingly little recent work. In particu-
lar, the SOTA approaches in local AR are rule-
based or simple machine learning approaches from
more than a decade ago. As a result, this task has
not benefited from recent advances in transform-
ers (Vaswani et al., 2017). To address this issue, in
this work we focus on local AR where we try to an-
swer the question: Can transformers be leveraged
to further improve traditional local AR approaches?

To answer this question, we present Biomedical
Local Acronym Resolver (BLAR); a transformer-
based model designed to resolve local acronyms in
biomedical texts. In particular, this work makes the
following contributions:

1. Design of a novel transformer-based model
for local acronym resolution, which resolves
acronyms through a combination of a two-step
architecture and appropriate leveraging of pre-
trained language models. To the best of our
knowledge, this is the first transformer-based
approach for local AR.

2. Experimental evaluation of BLAR against
SOTA local AR approaches, showing that it
outperforms the latter. In particular, evalu-
ated on the Ab3P corpus (Sohn et al., 2008),
BLAR reaches an F1 score of 0.966 compared
to 0.899 of the best performing existing ap-
proach.

2 Background and Related Work

There are a few challenges inherent in acronym res-
olution that make a simple dictionary-lookup and
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Figure 1: Sub-tasks of acronym resolution (AR).
Our approach is applicable to both “Local AR” and
“Acronym Dictionary Compilation.”

other rule-based models less effective. First, short-
form acronym representations are rarely unique.
For instance, “CD” is an acronym for “Crohn’s dis-
ease” and “Cowden Disease.” A simple dictionary
lookup of “CD” using an acronym disease dictio-
nary will produce ambiguous results and requires
additional steps of acronym disambiguation. More-
over, the number of letters in a short-form may not
match the number of words in the corresponding
long-form (e.g. the short-form of “systemic scle-
rosis” is “SSc” ). Lastly, long-form entities can
have complicated short-forms. For example, the
short-form of “heparin-induced thrombocytopenia
type II” is “HIT type II,” a short-form that shortens
the first three words of the long-form and leaves
the last two words unmodified.

To address these challenges, approaches to
acronym resolution have been developed and can
be classified into three broad categories: local
acronym resolution (Schwartz and Hearst, 2003;
Sohn et al., 2008), disambiguation acronym res-
olution (also referred to as non-local or global
acronym resolution) (Jin et al., 2019; Jacobs et al.,
2020), and acronym dictionary compilation (Gross-
man et al., 2018). We refer to approaches that
resolve acronyms by leveraging their definitions
found in the containing text as local acronym reso-
lution techniques. In contrast, non-local or global
techniques resolve acronyms by using external re-
sources. These typically target acronyms whose
long-form is not contained within the text, which is
common among more established acronyms, such
as “mRNA” and “DNA.” Finally, acronym dic-

tionary compilation refers to the creation of an
acronym dictionary based on the source text or
external ontologies, or a combination of the two.
These three sub-categories of AR approaches are
depicted in Figure 1.

Our approach specifically targets local acronym
resolution and acronym dictionary compilation. Lo-
cal acronyms appear as a pair of entities featuring
a short-form (SF) entity and a corresponding long-
form (LF) entity. Historically, local acronym reso-
lution has been handled by rule-based algorithms.
From 2003 to 2009, Schwartz et al. (2003) and
Sohn et al. (2008) demonstrated the best perfor-
mance of local acronym resolution. They used a
combination of hand-crafted filters to identify SF-
LF pairs. Kuo et al. (2009) introduced the first
local acronym resolution model that leveraged ma-
chine learning. It produced SOTA results with the
help of four sets of hand-crafted features, includ-
ing rule-based text filters. Yeganova et al. (2011)
further improved upon local acronym resolution
by introducing a hybrid machine learning and rule-
base model that does not rely on labeled data. They
extract potential SF-LF pairs from PubMed articles
using rules similar to the rules developed by Sohn
et al. and train a classifier to identify SF-LF pairs.

Our approach to local acronym resolution is sim-
ple in its architecture yet novel in its application.
Our two-stage model leverages transfer learning
from modern, SOTA pretrained transformers and
is able to learn the features of short-form and long-
form acronym pairs without the help of a prede-
fined dictionary, hand-crafted features, filters, or
rules. Our model processes batches of documents,
such as abstracts from PubMed, and creates an
acronym dictionary specific to each inputted docu-
ment.

3 Method

The intuition behind local acronym resolution is
that authors of scientific publications commonly
define the acronyms that they employ later on in
the document. This is typically done by defin-
ing acronyms within the text in the form of pairs
of short-form (SF) and corresponding long-form
(LF) entities. We can then use the identified SF-
LF acronym pairs to either resolve the acronyms
appearing in the input document or populate an SF-
LF dictionary that can be used to accurately resolve
future uses of the SF versions of the acronyms in
the remainder of the text.
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Figure 2: Sample output of Step 2 showing the vari-
ous tagged entities of a short and long-form acronym
pair. We use a BILOU (Beginning, Inside, Last, Out-
side, Unit) tagging scheme (Ratinov and Roth, 2009)
to identify long-form (LF) entities, short-form (SF) en-
tities, and parenthesis (PR) enclosing a paired SF or LF
entity.

Identifying the definitions of SF-LF pairs poses
two major challenges: First, one has to identify
the location in the text where the definition of an
SF-LF pair is provided. Second, one has to identify
the exact span (i.e., text) of both the short and
long-form within the definition.

Two-step AR: Following the above structure,
BLAR splits the problem into two separate sub-
tasks:

• Step 1: Sentence Classification. Given the
input text, identify sentences containing defi-
nitions of SF-LF pairs. This is modeled as a
binary classification task.

• Step 2: SF-LF Acronym Tagging: Given a
sentence predicted to contain a definition
of an SF-LF pair, identify the exact form
(i.e., text) of the SF and LF entities. This is
modeled as a token classification task, where
each token in the sentence is classified as
being part of an acronym short-form, acronym
long-form, or the parenthesis enclosing a
paired entity. Token classification follows the
BILOU (Beginning, Inside, Last, Outside,
and Unit) encoding scheme (Ratinov and
Roth, 2009), as shown in Figure 2 through a
simple example.

Model architecture: The sentence classifica-
tion model (Step 1) leverages transfer learning by
fine-tuning the pretrained SciBERT model (Beltagy
et al., 2019) for the specific task of sentence clas-
sification. The sentences that have been predicted
as containing SF-LF pairs are given as input to the
SF and LF tagging model (Step 2). The tagging
model also leverages SciBERT by fine-tuning it on
the SF and LF tagging task. To avoid exposure bias
resulting from training on a set of perfect inputs
(e.g. sentences containing acronym pairs as labeled

in the dataset), we use the output from the sentence
classification model from Step 1 to train the tagging
model in Step 2. The output of the tagging model
is a dictionary that can then be used to replace all
the short-form acronyms with their corresponding
long-forms within a single source text.

Model training: We developed BLAR using the
BioADI corpus (Kuo et al., 2009) and tested it on
the Ab3P corpus (Sohn et al., 2008). BioADI in-
cludes 1,668 true SF-LF pairs from 1,200 annotated
PubMed abstracts and Ab3P includes 1,221 true SF-
LF pairs from 1,250 annotated PubMed abstracts.
Both provide span-level data identifying short and
long-form acronym pairs within PubMed abstracts
and differ only in the articles selected for anno-
tation. During development, we fine-tuned both
our sentence and acronym token classifiers on the
BioADI corpus randomly split into three subsets for
training (80% of the corpus), validation (10% of the
corpus), and testing (10% of the corpus). We use
BioADI as a training dataset and Ab3P as a testing
dataset to best compare our model’s performance
to existing SOTA benchmarks for local acronym
resolution which use the same train/test splits. The
BioADI and Ab3P corpora are described in Sec-
tion 4. Since the models in both steps are fine-tuned
versions of SciBERT, they are able to train fairly
quick on CPUs. Step 1 and Step 2 converged within
eight epochs, taking roughly 10 hours and 2 hours
to complete, respectively, on two Intel Xeon CPUs
(E5-2640 v3 @ 2.60GH) with 16GB of RAM.

Ablation study: To determine the importance
of the 2-step architecture, we conduct an ablation
study where we train a model to resolve acronyms
without the help of a sentence classification step.
This model is identical to the tagging model used
in Step 2, only, it is trained on raw sentences that
may or may not contain an acronym pair. This
single-step architecture must simultaneously learn
to detect and resolve an acronym pair. We refer to
this model variation as “BLAR (single step).”

4 Datasets

BioADI: We use the BioADI (Kuo et al., 2009)
corpus to train BLAR. It includes 1,668 true SF-LF
pairs from 1,200 annotated PubMed abstracts.

Ab3P: We use the Ab3P (Sohn et al., 2008) cor-
pus for testing. It includes 1,221 true SF-LF pairs
from 1,250 annotated PubMed abstracts.

At the time of writing, both datasets are available
for download on the BioC (Comeau et al., 2013)
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website.

5 Results and Discussion

To measure BLAR’s performance, we first compare
it against SOTA local AR approaches. As explained
in the Background and Previous Work section, to
the best of our knowledge, local acronym resolution
has not seen significant advances since 2009. More
recent acronym resolution works have focused in-
stead on disambiguation acronym resolution, still
relying on simpler rule-based algorithms for local
acronym resolution (Jin et al., 2019; Jacobs et al.,
2020). As a result, we compare BLAR to Kuo
et al. (2009), Sohn et al. (2008), and Schwartz and
Hearst (2003), which represent the SOTA in local
acronym resolution.

Table 1 depicts the performance of BLAR
against SOTA AR models. In this experiment, all
models were trained on the BioADI dataset and
tested on the Ab3P dataset. For each model, we
evaluate Precision, Recall, and F1 score based on
exact matches of long-form and short-form pairs.
The results show that BLAR significantly outper-
forms all previous approaches, achieving an F1
score of 0.966 compared to 0.899 of the next best
approach. We observe that, without a sentence
classification step, the single-step BLAR model
under-performs compared to the two-step archi-
tecture, highlighting the benefit of the sentence
classification step in the full two-step architecture.

AR Model P R F1
Schwartz et al. (2003) 0.950 0.788 0.861

Sohn et al. (2008) 0.970 0.836 0.898
Kuo et al. (2009) 0.959 0.846 0.899

Yeganova et al. (2011) 0.936 0.893 0.914
BLAR (single step) 0.950 0.957 0.953
BLAR (two step) 0.966 0.966 0.966

Table 1: Evaluation results of BLAR against SOTA
local acronym resolution models. All models, save
Yeganova et al., were trained on BioADI and tested
on Ab3P. Yeganova et al. is trained on 1M automati-
cally extracted potential SF-LF pairs from PubMed ab-
stracts.

Model Output Analysis: Finally, to further un-
derstand the performance of BLAR, we perform an
instance-level analysis of its output.

Analyzing the correct predictions, we see that
the model successfully overcomes some of the com-
plex challenges inherent in acronym resolution. For

example, it correctly resolves the acronyms “SSc”
to “systemic sclerosis” and “IUAG” to “intrauter-
ine growth retardation.” These examples show that
BLAR learns to resolve short-forms that contain a
different number of letters compared to the number
of words in the corresponding long-form. In an-
other example, BLAR correctly resolves “HIT type
II” to “heparin-induced thrombocytopenia type II”
which illustrates that the model was able to learn
more complex acronyms that consist of a mix of
short-form entities and complete words.

Moving to the incorrect predictions, we clas-
sify BLAR’s errors into three categories: missed
acronyms (false negatives), added acronyms (false
positives), and modified acronyms (i.e., acronyms
where the model correctly identifies a short-form
but either truncates or extends the corresponding
long-form).

A majority of the errors come from modified
acronyms. Analyzing the modified acronyms, we
find that 63.7% of cases are long-forms expanded
or truncated by a single word/token. We identify
that many of the erroneously expanded long-forms
add a word or words preceding the ground truth
long-form. For example, in the text “. . . heat stroke
by reducing iNOS-dependent nitric oxide (NO). . . ”,
BLAR identified “iNOS-dependent nitric oxide” as
the long-form expansion of the short-form “NO.”,
instead of the correct “nitric oxide.”

Another common error within the modified
acronyms category is a truncated long-form. For
example, BLAR predicts the long-form of “FVC”
to be “forced vital capacity” but the ground truth
is “forced expiratory volume in 1 s vital capacity.”
Here, BLAR predicts a simple long-form when the
ground truth long-form is actually more complex.
We plan to explore these insights in future work to
further improve the model.

6 Conclusion and Future Work

Local acronym resolution has seen limited progress
in recent years and has not benefited from the re-
cent advancements in machine learning approaches.
To address this problem, we develop BLAR; a deep-
learning model that leverages a two-step architec-
ture on top of pre-trained language models to iden-
tify SF-LF pairs in input documents. Our experi-
mental results show that BLAR outperforms other
local acronym resolution approaches and achieves
state-of-the-art performance. We release BLAR
and its source code for public use. As part of our
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future work, we will be exploring two threads: first,
further improving the model based on our error
analysis, and second, exploring how BLAR (which
in this case has been fine-tuned for the scientific
domain) can be extended to cover acronyms found
in other domains. We believe future work could
also focus on a hybrid model that leverages both
deep-learning and rule-based algorithms.
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Abstract

Social media contains unfiltered and unique in-
formation, which is potentially of great value,
but, in the case of misinformation, can also do
great harm. With regards to biomedical top-
ics, false information can be particularly dan-
gerous. Methods of automatic fact-checking
and fake news detection address this problem,
but have not been applied to the biomedical
domain in social media yet. We aim to fill
this research gap and annotate a corpus of
1200 tweets for implicit and explicit biomed-
ical claims (the latter also with span annota-
tions for the claim phrase). With this corpus,
which we sample to be related to COVID-19,
measles, cystic fibrosis, and depression, we
develop baseline models which detect tweets
that contain a claim automatically. Our anal-
yses reveal that biomedical tweets are densely
populated with claims (45 % in a corpus sam-
pled to contain 1200 tweets focused on the do-
mains mentioned above). Baseline classifica-
tion experiments with embedding-based classi-
fiers and BERT-based transfer learning demon-
strate that the detection is challenging, how-
ever, shows acceptable performance for the
identification of explicit expressions of claims.
Implicit claim tweets are more challenging to
detect.

1 Introduction

Social media platforms like Twitter contain vast
amounts of valuable and novel information, and
biomedical aspects are no exception (Correia et al.,
2020). Doctors share insights from their everyday
life, patients report on their experiences with partic-
ular medical conditions and drugs, or they discuss
and hypothesize about the potential value of a treat-
ment for a particular disease. This information can
be of great value – governmental administrations
or pharmaceutical companies can for instance learn
about unknown side effects or potentially beneficial
off-label use of medications.

Figure 1: Tweet with a biomedical claim (highlighted).

At the same time, unproven claims or even inten-
tionally spread misinformation might also do great
harm. Therefore, contextualizing a social media
message and investigating if a statement is debated
or can actually be proven with a reference to a re-
liable resource is important. The task of detecting
such claims is essential in argument mining and a
prerequisite in further analysis for tasks like fact-
checking or hypotheses generation. We show an
example of a tweet with a claim in Figure 1.

Claims are widely considered the conclusive and
therefore central part of an argument (Lippi and
Torroni, 2015; Stab and Gurevych, 2017), conse-
quently making it the most valuable information
to extract. Argument mining and claim detection
has been explored for texts like legal documents,
Wikipedia articles, essays (Moens et al., 2007; Levy
et al., 2014; Stab and Gurevych, 2017, i.a.), so-
cial media and web content (Goudas et al., 2014;
Habernal and Gurevych, 2017; Bosc et al., 2016a;
Dusmanu et al., 2017, i.a.). It has also been applied
to scientific biomedical publications (Achakulvisut
et al., 2019; Mayer et al., 2020, i.a.), but biomedi-
cal arguments as they occur on social media, and
particularly Twitter, have not been analyzed yet.

With this paper, we fill this gap and explore
claim detection for tweets discussing biomedical
topics, particularly tweets about COVID-19, the
measles, cystic fibrosis, and depression, to allow
for drawing conclusions across different fields.

Our contributions to a better understanding of
biomedical claims made on Twitter are, (1), to pub-
lish the first biomedical Twitter corpus manually la-
beled with claims (distinguished in explicit and im-
plicit, and with span annotations for explicit claim
phrases), and (2), baseline experiments to detect

131



(implicit and explicit) claim tweets in a classifica-
tion setting. Further, (3), we find in a cross-corpus
study that a generalization across domains is chal-
lenging and that biomedical tweets pose a particu-
larly difficult environment for claim detection.

2 Related Work

Detecting biomedical claims on Twitter is a task
rooted in both the argument mining field as well as
the area of biomedical text mining.

2.1 Argumentation Mining

Argumentation mining covers a variety of differ-
ent domains, text, and discourse types. This in-
cludes online content, for instance Wikipedia (Levy
et al., 2014; Roitman et al., 2016; Lippi and Torroni,
2015), but also more interaction-driven platforms,
like fora. As an example, Habernal and Gurevych
(2017) extract argument structures from blogs and
forum posts, including comments. Apart from that,
Twitter is generally a popular text source (Bosc
et al., 2016a; Dusmanu et al., 2017). Argument
mining is also applied to professionally generated
content, for instance news (Goudas et al., 2014;
Sardianos et al., 2015) and legal or political docu-
ments (Moens et al., 2007; Palau and Moens, 2009;
Mochales and Moens, 2011; Florou et al., 2013).
Another domain of interest are persuasive essays,
which we also use in a cross-domain study in this
paper (Lippi and Torroni, 2015; Stab and Gurevych,
2017; Eger et al., 2017).

Existing approaches differ with regards to which
tasks in the broader argument mining pipeline they
address. While some focus on the detection of
arguments (Moens et al., 2007; Florou et al., 2013;
Levy et al., 2014; Bosc et al., 2016a; Dusmanu
et al., 2017; Habernal and Gurevych, 2017), others
analyze the relational aspects between argument
components (Mochales and Moens, 2011; Stab and
Gurevych, 2017; Eger et al., 2017).

While most approaches cater to a specific do-
main or text genre, Stab et al. (2018) argue that
domain-focused, specialized systems do not gen-
eralize to broader applications such as argument
search in texts. In line with that, Daxenberger
et al. (2017) present a comparative study on cross-
domain claim detection. They observe that diverse
training data leads to a more robust model perfor-
mance in unknown domains.

2.2 Claim Detection

Claim detection is a central task in argumenta-
tion mining. It can be framed as a classification
(Does a document/sentence contain a claim?) or
as sequence labeling (Which tokens make up the
claim?). The setting as classification has been ex-
plored, inter alia, as a retrieval task of online com-
ments made by public stakeholders on pending
governmental regulations (Kwon et al., 2007), for
sentence detection in essays, (Lippi and Torroni,
2015), and for Wikipedia (Roitman et al., 2016;
Levy et al., 2017). The setting as a sequence label-
ing task has been tackled on Wikipedia (Levy et al.,
2014), on Twitter, and on news articles (Goudas
et al., 2014; Sardianos et al., 2015).

One common characteristic in most work on au-
tomatic claim detection is the focus on relatively
formal text. Social media, like tweets, can be con-
sidered a more challenging text type, which despite
this aspect, received considerable attention, also
beyond classification or token sequence labeling.
Bosc et al. (2016a) detect relations between ar-
guments, Dusmanu et al. (2017) identify factual
or opinionated tweets, and Addawood and Bashir
(2016) further classify the type of premise which
accompanies the claim. Ouertatani et al. (2020)
combine aspects of sentiment detection, opinion,
and argument mining in a pipeline to analyze argu-
mentative tweets more comprehensively. Ma et al.
(2018) specifically focus on the claim detection task
in tweets, and present an approach to retrieve Twit-
ter posts that contain argumentative claims about
debatable political topics.

To the best of our knowledge, detecting biomed-
ical claims in tweets has not been approached yet.
Biomedical argument mining, also for other text
types, is generally still limited. The work by Shi
and Bei (2019) is one of the few exceptions that
target this challenge and propose a pipeline to ex-
tract health-related claims from headlines of health-
themed news articles. The majority of other argu-
ment mining approaches for the biomedical do-
main focus on research literature (Blake, 2010;
Alamri and Stevenson, 2015; Alamri and Steven-
sony, 2015; Achakulvisut et al., 2019; Mayer et al.,
2020).

2.3 Biomedical Text Mining

Biomedical natural language processing (BioNLP)
is a field in computational linguistics which also
receives substantial attention from the bioinformat-
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Query category

Disease Names Topical Hashtags Combinations Drugs

COVID-19, #COVID-19 #socialdistancing,
#chinesevirus

COVID-19 AND cured,
COVID-19 AND vaccines

Hydroxychloroquine,
Kaletra, Remdesivir

measles, #measles #vaccineswork,
#dontvaccinate

measles AND vaccine,
measles AND therapize

M-M-R II, Priorix,
ProQuad

cystic fibrosis,
#cysticfibrosis

#livesavingdrugs4cf,
#orkambinow

cystic fibrosis AND treated,
cystic fibrosis AND heal

Orkambi, Trikafta,
Tezacaftor

depression, #depression #depressionisreal,
#notjustsad

depression AND cure,
depression AND treatment

Alprazolam, Buspirone,
Xanax

Table 1: Examples of the four categories of search terms used to retrieve tweets about COVID-19, the measles,
cystic fibrosis, and depression via the Twitter API.

ics community. One focus is on the automatic ex-
traction of information from life science articles,
including entity recognition, e.g., of diseases, drug
names, protein and gene names (Habibi et al., 2017;
Giorgi and Bader, 2018; Lee et al., 2019, i.a.) or re-
lations between those (Lamurias et al., 2019; Sousa
et al., 2021; Lin et al., 2019, i.a.).

Biomedical text mining methods have also been
applied to social media texts and web content
(Wegrzyn-Wolska et al., 2011; Yang et al., 2016;
Sullivan et al., 2016, i.a.). One focus is on the
analysis of Twitter with regards to pharmacovig-
ilance. Other topics include the extraction of ad-
verse drug reactions (Nikfarjam et al., 2015; Cocos
et al., 2017), monitoring public health (Paul and
Dredze, 2012; Choudhury et al., 2013; Sarker et al.,
2016), and detecting personal health mentions (Yin
et al., 2015; Karisani and Agichtein, 2018).

A small number of studies looked into the com-
parison of biomedical information in social media
and scientific text: Thorne and Klinger (2018) ana-
lyze quantitatively how disease names are referred
to across these domains. Seiffe et al. (2020) ana-
lyze laypersons’ medical vocabulary.

3 Corpus Creation and Analysis

As the basis for our study, we collect a novel Twit-
ter corpus in which we annotate which tweets con-
tain biomedical claims, and (for all explicit claims)
which tokens correspond to that claim.

3.1 Data Selection & Acquisition
The data for the corpus was collected in June/July
2020 using Twitter’s API1 which offers a keyword-
based retrieval for tweets. Table 1 provides a sam-
ple of the search terms we used.2 For each of the

1https://developer.twitter.com/en/docs/twitter-api
2The full list of search terms (1771 queries in total) is

available in the supplementary material.

medical topics, we sample English tweets from
keywords and phrases from four different query
categories. This includes (1) the name of the dis-
ease as well as the respective hashtag for each
topic, e.g., depression and #depression, (2) topi-
cal hashtags like #vaccineswork, (3) combinations
of the disease name with words like cure, treatment
or therapy as well as their respective verb forms,
and (4) a list of medications, products, and prod-
uct brand names from the pharmaceutical database
DrugBank3.

When querying the tweets, we exclude retweets
by using the API’s ‘-filter:retweets’ option. From
overall 902,524 collected tweets, we filter out those
with URLs since those are likely to be advertise-
ments (Cocos et al., 2017; Ma et al., 2018), and
further remove duplicates based on the tweet IDs.
From the resulting collection of 127,540 messages
we draw a sample of 75 randomly selected tweets
per topic (four biomedical topics) and search term
category (four categories per topic). The final cor-
pus to be annotated consists of 1200 tweets about
four medical issues and their treatments: measles,
depression, cystic fibrosis, and COVID-19.

3.2 Annotation

3.2.1 Conceptual Definition
While there are different schemes and models of
argumentative structure varying in complexity as
well as in their conceptualization of claims, the
claim element is widely considered the core com-
ponent of an argument (Daxenberger et al., 2017).

3https://go.drugbank.com/. At the time of creating the
search term list, COVID-19 was not included in DrugBank.
Instead, medications which were under investigation at the
time of compiling this list as outlined on the WHO website
were included for Sars-CoV-2 in this category: https://www.
who.int/emergencies/diseases/novel-coronavirus-2019/
global-research-on-novel-coronavirus-2019-ncov/
solidarity-clinical-trial-for-covid-19-treatments.
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Aharoni et al. (2014) suggest a framework in which
an argument consists of two main components: a
claim and premises. We follow Stab and Gurevych
(2017) and define the claim as the argumentative
component in which the speaker or writer expresses
the central, controversial conclusion of their argu-
ment. This claim is presented as if it were true even
though objectively it can be true or false (Mochales
and Ieven, 2009). The premise which is consid-
ered the second part of an argument includes all
elements that are used either to substantiate or dis-
prove the claim. Arguments can contain multiple
premises to justify the claim. (Refer to Section 3.4
for examples and a detailed analysis of argumenta-
tive tweets in the dataset.)

For our corpus, we focus on the claim element
and assign all tweets a binary label that indicates
whether the document contains a claim. Claims
can be either explicitly voiced or the claim property
can be inferred from the text in cases in which they
are expressed implicitly (Habernal and Gurevych,
2017). We therefore annotate explicitness or im-
plicitness if a tweet is labeled as containing a claim.
For explicit cases the claim sequence is addition-
ally marked on the token level. For implicit cases,
the claim which can be inferred from the implicit
utterance is stated alongside the implicitness anno-
tation.

3.2.2 Guideline Development
We define a preliminary set of annotation guide-
lines based on previous work (Mochales and Ieven,
2009; Aharoni et al., 2014; Bosc et al., 2016a; Dax-
enberger et al., 2017; Stab and Gurevych, 2017).
To adapt those to our domain and topic, we go
through four iterations of refinements. In each iter-
ation, 20 tweets receive annotations by two annota-
tors. Both annotators are female and aged 25–30.
Annotator A1 has a background in linguistics and
computational linguistics. A2 has a background in
mathematics, computer science, and computational
linguistics. The results are discussed based on the
calculation of Cohen’s κ (Cohen, 1960).

After Iteration 1, we did not make any substan-
tial changes, but reinforced a common understand-
ing of the existing guidelines in a joint discussion.
After Iteration 2, we clarified the guidelines by
adding the notion of an argumentative intention as
a prerequisite for a claim: a claim is only to be
annotated if the author actually appears to be inten-
tionally argumentative as opposed to just sharing
an opinion (Šnajder, 2016; Habernal and Gurevych,

Cohen’s κ

C/N E/I/N Span

Iteration 1 .31 .43 .32
Iteration 2 .34 .24 .12
Iteration 3 .61 .42 .42
Iteration 4 .60 .68 .41

Final corpus .56 .48 .38

Table 2: Inter-annotator agreement during development
of the annotation guidelines and for the final corpus.
C/N: Claim/non-claim, E/I/N: Explicit/Implicit/Non-
claim, Span: Token-level annotation of the explicit
claim expression.

2017). This is illustrated in the following example,
which is not to be annotated as a claim, given this
additional constraint:

This popped up on my memories from two
years ago, on Instagram, and honestly I’m so
much healthier now it’s quite unbelievable. A
stone heavier, on week 11 of no IVs (back
then it was every 9 weeks), and it’s all thanks
to #Trikafta and determination. I am stronger
than I think.

We further clarified the guidelines with regards
to the claim being the conclusive element in a Twit-
ter document. This change encouraged the annota-
tors to reflect specifically if the conclusive, main
claim is conveyed explicitly or implicitly.

After Iteration 3, we did not introduce any
changes, but went through an additional iteration
to further establish the understanding of the anno-
tation tasks.

Table 2 shows the results of the agreement of
the annotators in each iteration as well as the final
κ-score for the corpus. We observe that the agree-
ment substantially increased from Iteration 1 to 4.
However, we also observe that obtaining a substan-
tial agreement for the span annotation remains the
most challenging task.

3.2.3 Annotation Procedure
The corpus annotation was carried out by the same
annotators that conducted the preliminary annota-
tions. A1 labeled 1000 tweets while A2 annotated
300 instances. From these both sets, 100 tweets
were provided to both annotators, to track agree-
ment (which remained stable, see Table 2). Anno-
tating 100 tweets took approx. 3.3 hours. Over-
all, we observe that the agreement is generally
moderate. Separating claim-tweets from non-claim
tweets shows an acceptable κ=.56. Including the
decision of explicitness/implicitness leads to κ=.48.
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Class # Instances % Length

non-claim 663 55.25 30.56
claim (I+E) 537 44.75 39.88
expl. claim 370 30.83 39.89

claim phrase 17.59
impl. claim 167 13.92 39.88

total 1200 100 % 34.73

Table 3: Distribution of the annotated classes and aver-
age instance lengths (in tokens).

incompl. blended anecdotal impl.

M 8 .16 14 .28 9 .18 14 .28
C 17 .34 15 .30 8 .16 14 .28
CF 12 .24 10 .20 26 .52 18 .36
D 16 .32 9 .18 23 .46 11 .22

total 53 .27 48 .24 66 .33 57 .29

Table 4: Manual analysis of a subsample of 50
tweets/topic. Each column shows raw counts and per-
centage/topic.

The span-based annotation has limited agreement,
with κ=.38 (which is why we do not consider this
task further in this paper). These numbers are
roughly in line with previous work. Achakulvisut
et al. (2019) report an average κ=0.63 for labeling
claims in biomedical research papers. According
to Habernal and Gurevych (2017), explicit, inten-
tional argumentation is easier to annotate than texts
which are less explicit.

Our corpus is available with detailed annotation
guidelines at http://www.ims.uni-stuttgart.de/data/
bioclaim.

3.3 Corpus Statistics

Table 3 presents corpus statistics. Out of the 1200
documents in the corpus, 537 instances (44.75 %)
contain a claim and 663 (55.25 %) do not. From
all claim instances, 370 tweets are explicit (68 %).
The claims are not equally distributed across topics
(not shown in table): 61 % of measle-related tweets
contain a claim, 49 % of those related to COVID-
19, 40 % of cystic fibrosis tweets, and 29 % for
depression.

The longest tweet in the corpus consists of 110
tokens4, while the two shortest consist only of two

4The tweet includes 50 @-mentions followed by a measles-
related claim: “Oh yay! I can do this too, since you’re going
to ignore the thousands of children who died in outbreaks last
year from measles... Show me a proven death of a child from
vaccines in the last decade. That’s the time reference, now?
So let’s see a death certificate that says it, thx”

id Instance

1 The French have had great success #hydroxycloro-
quine.

2 Death is around 1/1000 in measles normally, same
for encephalopathy, hospitalisation around 1/5. With
all the attendant costs, the vaccine saves money, not
makes it.

3 Latest: Kimberly isn’t worried at all. She takes #Hy-
droxychloroquine and feels awesome the next day.
Just think, it’s more dangerous to drive a car than to
catch corona

4 Lol exactly. It’s not toxic to your body idk where he
pulled this information out of. Acid literally cured my
depression/anxiety I had for 5 years in just 5 months
(3 trips). It literally reconnects parts of your brain
that haven’t had that connection in a long time.

5 Hopefully! The MMR toxin loaded vaccine I received
many years ago seemed to work very well. More
please!

6 Wow! Someone tell people with Cystic fibrosis and
Huntington’s that they can cure their genetics through
Mormonism!

Table 5: Examples of explicit and implicit claim tweets
from the corpus. Explicit claims are in italics.

tokens5. On average, a claim tweet has a length
of ≈40 tokens. Both claim tweet types, explicit
and implicit, have similar lengths (39.89 and 39.88
tokens respectively). In contrast to that, the average
non-claim tweet is shorter, consisting of about 30
tokens. Roughly half of an explicit claim corre-
sponds to the claim phrase.

We generally see that there is a connection be-
tween the length of a tweet and its class member-
ship. Out of all tweets with up to 40 tokens, 453
instances are non-claims, while 243 contain a claim.
For the instances that consist of 41 and more tokens,
only 210 are non-claim tweets, whereas 294 are la-
beled as claims. The majority of the shorter tweets
(≤ 40 tokens) tend to be non-claim instances, while
mid-range to longer tweets (≥ 40 tokens) tend to
be members of the claim class.

3.4 Qualitative Analysis

To obtain a better understanding of the corpus, we
perform a qualitative analysis on a subsample of 50
claim-instances/topic. We manually analyze four
claim properties: the tweet exhibits an incomplete
argument structure, different argument components
blend into each other, the text shows anecdotal evi-
dence, and it describes the claim implicitly. Refer
to Table 4 for an overview of the results.

In line with Šnajder (2016), we find that ar-
gument structures are often incomplete, e.g., in-

5“Xanax damage” and “Holy fuck”.
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stances only contain a stand-alone claim without
any premise. This characteristic is most prevalent
in the COVID-19-related tweets In Table 5, Ex. 1
is missing a premising element, Ex. 2 presents
premise and claim.

Argument components (claim, premise) are not
very clear cut and often blend together. Conse-
quently they can be difficult to differentiate, for
instance when authors use claim-like elements as a
premise. This characteristic is again, most preva-
lent for COVID-19. In Ex. 3 in Table 5, the last
sentence reads like a claim, especially when looked
at in isolation, yet it is in fact used by the author to
explain their claim.

Premise elements which substantiate and give
reason for the claim (Bosc et al., 2016b) tradition-
ally include references to studies or mentions of ex-
pert testimony, but occasionally also anecdotal evi-
dence or concrete examples (Aharoni et al., 2014).
We find the latter to be very common for our data
set. This property is most frequent for cystic fibro-
sis and depression. Ex. 4 showcases how a personal
experience is used to build an argument.

Implicitness in the form of irony, sarcasm or
rhetoric questions are common features for these
types of claims on Twitter. We observe claims
related to cystic fibrosis are most often (in our sam-
ple) implicit. Ex. 5 and 6 show instances that use
sarcasm or irony. The fact that implicitness is such
a common feature in our dataset is in line with
the observation that implicitness is a characteristic
device not only in spoken language and everyday,
informal argumentation (Lumer, 1990), but also in
user-generated web content in general (Habernal
and Gurevych, 2017).

4 Methods

In the following sections we describe the concep-
tual design of our experiments and introduce the
models that we use to accomplish the claim detec-
tion task.

4.1 Classification Tasks

We model the task in a set of different model con-
figurations.

Binary. A trained classifier distinguishes between
claim and non-claim.

Multiclass. A trained classifier distinguishes be-
tween exlicit claim, implicit claim, and non-claim.

Multiclass Pipeline. A first classifier learns to dis-
criminate between claims and non-claims (as in
Binary). Each tweet that is classified as claim is
further separated into implicit or explicit with an-
other binary classifier. The secondary classifier is
trained on gold data (not on predictions of the first
model in the pipeline).

4.2 Model Architecture

For each of the classification tasks (bi-
nary/multiclass, steps in the pipeline), we
use a set of standard text classification methods
which we compare. The first three models (NB,
LG, BiLSTM) use 50-dimensional FastText
(Bojanowski et al., 2017) embeddings trained on
the Common Crawl corpus (600 billion tokens) as
input6.

NB. We use a (Gaussian) naive Bayes with an av-
erage vector of the token embeddings as input.

LG. We use a logistic regression classifier with the
same features as in NB.

BiLSTM. As a classifier which can consider con-
textual information and makes use of pretrained
embeddings, we use a bidirectional long short-term
memory network (Hochreiter and Schmidhuber,
1997) with 75 LSTM units followed by the output
layer (sigmoid for binary classification, softmax
for multiclass).

BERT. We use the pretrained BERT (Devlin et al.,
2019) base model7 and fine-tune it using the claim
tweet corpus.

5 Experiments

5.1 Claim Detection

With the first experiment we explore how reliably
we can detect claim tweets in our corpus and how
well the two different claim types (explicit vs. im-
plicit claim tweets) can be distinguished. We use
each model mentioned in Section 4.2 in each set-
ting described in Section 4.1. We evaluate each
classifier in a binary or (where applicable) in a
multi-class setting, to understand if splitting the
claim category into its subcomponents improves
the claim prediction overall.

6https://fasttext.cc/docs/en/english-vectors.html
7https://huggingface.co/bert-base-uncased
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NB LG LSTM BERT

Eval. Task Class P R F1 P R F1 P R F1 P R F1

bi
na

ry binary claim .67 .65 .66 .66 .74 .70 .68 .48 .57 .66 .72 .69
n-claim .75 .77 .76 .79 .72 .76 .69 .84 .75 .78 .72 .75

multiclass claim .66 .65 .66 .73 .53 .61 .75 .35 .48 .81 .49 .61
n-claim .74 .76 .75 .71 .85 .78 .66 .91 .76 .71 .91 .80

m
ul

ti-
cl

as
s multiclass

expl .55 .45 .50 .63 .39 .48 .59 .27 .37 .62 .45 .52
impl .31 .44 .36 .33 .35 .34 .18 .09 .12 .29 .09 .13
n-claim .74 .76 .75 .71 .85 .78 .66 .91 .76 .71 .91 .80

pipeline
expl .56 .45 .50 .52 .55 .53 .50 .37 .43 .54 .65 .59
impl .31 .44 .36 .28 .35 .31 .07 .04 .05 .26 .22 .24
n-claim .75 .77 .76 .79 .72 .76 .69 .84 .75 .78 .72 .75

Table 6: Results for the claim detection experiments, separated into binary and multi-class evaluation. The best F1

scores for each evaluation setting and class are printed in bold face.

5.1.1 Experimental Setting

From our corpus of 1200 tweets we use 800 in-
stances for training, 200 as validation data to opti-
mize hyperparameters and 200 as test data. We tok-
enize the documents and substitute all @-mentions
by “@username”. For the LG models, we use
an l2 regularization. For the LSTM models, the
hyper-parameters learning rate, dropout, number
of epochs, and batch size were determined by a
randomized search over a parameter grid and also
use l2 regularization. For training, we use Adam
(Kingma and Ba, 2015). For the BERT models,
we experiment with combinations of the recom-
mended fine-tuning hyper-parameters from Devlin
et al. (2019) (batch size, learning rate, epochs), and
use those with the best performance on the valida-
tion data. An overview of all hyper-parameters is
provided in Table 9 in the Appendix. For the Bi-
LSTM, we use the Keras API (Chollet et al., 2015)
for TensorFlow (Abadi et al., 2015). For the BERT
model, we use Simple Transformers (Rajapakse,
2019) and its wrapper for the Hugging Face trans-
formers library (Wolf et al., 2020). Further, we
oversample the minority class of implicit claims to
achieve a balanced training set (the test set remains
with the original distribution). To ensure compa-
rability, we oversample in both the binary and the
multi-class setting. For parameters that we do not
explicitly mention, we use default values.

5.1.2 Results

Table 6 reports the results for the conducted experi-
ments. The top half lists the results for the binary
claim detection setting. The bottom half of the ta-
ble presents the results for the multi-class claim
classification.

For the binary evaluation setting, we observe that
casting the problem as a ternary prediction task is
not beneficial – the best F1 score is obtained with
the binary LG classifier (.70 F1 for the class claim
in contrast to .61 F1 for the ternary LG). The BERT
and NB approaches are slightly worse (1 pp and
4pp less for binary, respectively), while the LSTM
shows substantially lower performance (13pp less).

In the ternary/multi-class evaluation, the scores
are overall lower. The LSTM shows the lowest
performance. The best result is obtained in the
pipeline setting, in which separate classifiers can
focus on distinguishing claim/non-claim and ex-
plicit/implicit – we see .59 F1 for the explicit claim
class. Implicit claim detection is substantially more
challenging across all classification approaches.

We attribute the fact that the more complex mod-
els (LSTM, BERT) do not outperform the linear
models across the board to the comparably small
size of the dataset. This appears especially true
for implicit claims in the multi-class setting. Here,
those models struggle the most to predict implicit
claims, indicating that they were not able to learn
sufficiently from the training instances.

5.1.3 Error Analysis
From a manual introspection of the best performing
model in the binary setting, we conclude that it
is difficult to detect general patterns. We show
two cases of false positives and two cases of false
negatives in Table 7. The false positive instances
show that the model struggles with cases that rely
on judging the argumentative intention. Both Ex. 1
and 2 contain potential claims about depression
and therapy, but they have not been annotated as
such, because the authors’ intention is motivational
rather than argumentative. In addition, it appears
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id G P Text

1 n c #DepressionIsReal #MentalHealthAwareness #men-
talhealth ruins lives. #depression destroys people.
Be there when someone needs you. It could change
a life. It may even save one.

2 n c The reason I stepped away from twitch and gaming
with friends is because iv been slowly healing from
a super abusive relationship. Going to therapy and
hearing you have ptsd isnt easy. But look how far iv
come, lost some depression weight and found some
confidence:)plz stay safe

3 c n Not sure who knows more about #COVID19, my
sister or #DrFauci. My money is on Stephanie.

4 c n How does giving the entire world a #COVID19 #vac-
cine compare to letting everyone actually get #covid?
What would you prefer? I’m on team @username
#WHO #CDC #math #VaccinesWork #Science

Table 7: Examples of incorrect predictions by the LG
model in the binary setting (G:Gold, P:Predictions; n:
no claim; c: claim).

that the model struggles to detect implicit claims
that are expressed using irony (Ex. 3) or a rhetorical
question (Ex. 4).

5.2 Cross-domain Experiment

We see that the models show acceptable perfor-
mance in a binary classification setting. In the
following, we analyze if this observation holds
across domains or if information from another out-
of-domain corpus can help.

As the binary LG model achieved the best re-
sults during the previous experiment, we use this
classifier for the cross-domain experiments. We
work with paragraphs of persuasive essays (Stab
and Gurevych, 2017) as a comparative corpus. The
motivation to use this resource is that while they
are a distinctly different text type and usually lin-
guistically much more formal than tweets, they are
also opinionated documents.8 We use the resulting
essay model for making an in-domain as well as
a cross-domain prediction and vice versa for the
Twitter model. We further experiment with com-
bining the training portions of both datasets and
evaluate its performance for both target domains.

5.2.1 Experimental Setting
The comparative corpus contains persuasive es-
says with annotated argument structure (Stab and
Gurevych, 2017). Eger et al. (2017) used this cor-

8An essay is defined as “a short piece of writing on a
particular subject, often expressing personal views” (https:
//dictionary.cambridge.org/dictionary/english/essay).

Train Test P R F1

Twitter Twitter .66 .74 .70
Essay Twitter .51 .69 .59
Twitter+Essay Twitter .58 .75 .66
Essay Essay .96 1.0 .98
Twitter Essay .94 .74 .83
Twitter+Essay Essay .95 1.0 .97

Table 8: Results of cross-domain experiments using the
binary LG model on the Twitter and the essay corpus.
We report precision, recall and F1 for the claim tweet
class.

pus subsequently and provide the data in CONLL-
format, split into paragraphs, and predivided into
train, development and test set.9 We use their ver-
sion of the corpus. The annotations for the es-
say corpus distinguish between major claims and
claims. However, since there is no such hierar-
chical differentiation in the Twitter annotations,
we consider both types as equivalent. We choose
to use paragraphs instead of whole essays as the
individual input documents for the classification
and assign a claim label to every paragraph that
contains a claim. This leaves us with 1587 essay
paragraphs as training data, and 199 and 449 para-
graphs respectively for validation and testing.

We follow the same setup as for the binary set-
ting in the first experiment.

5.2.2 Results
In Table 8, we summarize the results of the cross-
domain experiments with the persuasive essay cor-
pus. We see that the essay model is successful
for classifying claim documents (.98 F1) in the in-
domain experiment. Compared to the in-domain
setting for tweets all evaluation scores measure
substantially higher.

When we compare the two cross-domain experi-
ments, we observe that the performance measures
decrease in both settings when we use the out-of-
domain model to make predictions (11pp in F1

for tweets, 15pp for essays). Combining the train-
ing portions of both data sets does not lead to an
improvement over in-domain experiments. This
shows the challenge of building domain-generic
models that perform well across different data sets.

6 Discussion and Future Work

In this paper, we presented the first data set for
biomedical claim detection in social media. In our

9https://github.com/UKPLab/acl2017-neural_end2end_
am/tree/master/data/conll/Paragraph_Level
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first experiment, we showed that we can achieve an
acceptable performance to detect claims when the
distinction between explicit or implicit claims is not
considered. In the cross-domain experiment, we
see that text formality, which is one of the main dis-
tinguishing feature between the two corpora, might
be an important factor that influences the level of
difficulty in accomplishing the claim detection task.

Our hypothesis in this work was that biomedi-
cal information on Twitter exhibits a challenging
setting for claim detection. Both our experiments
indicate that this is true. Future work needs to
investigate what might be reasons for that. We
hypothesize that our Twitter dataset contains partic-
ular aspects that are specific to the medical domain,
but it might also be that other latent variables lead
to confounders (e.g., the time span that has been
used for crawling). It is important to better under-
stand these properties.

We suggest future work on claim detection mod-
els optimize those to work well across domains. To
enable such research, this paper contributed a novel
resource. This resource could further be improved.
One way of addressing the moderate agreement be-
tween the annotators could be to include annotators
with medical expertise to see if this ultimately fa-
cilitates claim annotation. Additionally, a detailed
introspection of the topics covered in the tweets for
each disease would be interesting for future work
since this might shed some light on which topi-
cal categories of claims are particularly difficult to
label.

The COVID-19 pandemic has sparked recent
research with regards to detecting misinformation
and fact-checking claims (e.g., Hossain et al. (2020)
or Wadden et al. (2020)). Exploring how a claim-
detection-based fact-checking approach rooted in
argument mining compares to other approaches is
up to future research.
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Abstract

Recent advancements in pretraining strategies
in NLP have shown a significant improvement
in the performance of models on various text
mining tasks. In this paper, we introduce Bio-
ELECTRA, a biomedical domain-specific lan-
guage encoder model that adapts ELECTRA
(Clark et al., 2020) for the Biomedical domain.
BioELECTRA outperforms the previous mod-
els and achieves state of the art (SOTA) on
all the 13 datasets in BLURB benchmark and
on all the 4 Clinical datasets from BLUE
Benchmark across 7 NLP tasks. BioELEC-
TRA pretrained on PubMed and PMC full
text articles performs very well on Clinical
datasets as well. BioELECTRA achieves new
SOTA 86.34%(1.39% accuracy improvement)
on MedNLI and 64% (2.98% accuracy im-
provement) on PubMedQA dataset.

1 Introduction

Following the success of BERT (Devlin et al., 2018)
(Bidirectional Encoder Representations from Trans-
formers) in the general domain, the pretrain-and-
finetune approach has been used in the Biomedical
domain. With large scale free text available from
PubMed and PubMed central (millions of articles),
biomedical domain has large unlabelled domain-
specific corpus. However, the biomedical domain
has labelled datasets that are very small compared
to the general domain. Thus the transfer learning
approach is well suited for Biomedical domain.

In the biomedical domain, BioBERT (Lee et al.,
2020), BlueBERT (Peng et al., 2019) and Clinical-
BERT (Alsentzer et al., 2019) are the initial mod-
els based on BERT. These models follow contin-
ual pretraining approach where the model weights
are initialised with weights from BERT trained on
Wikipedia and Book Corpus and uses the same vo-
cabulary. Recent models SciBERT (Beltagy et al.,
2019), PubMedBERT (Gu et al., 2020) and Bio-
lm (Lewis et al., 2020) have shown that pretrain-

ing from scratch using domain specific corpora
along with domain specific vocabulary improves
the model performance significantly.

In this work, we adapt ELECTRA (Clark et al.,
2020), a recent and powerful general domain model
for the biomedical domain and we release Bio-
ELECTRA - a biomedical domain specific lan-
guage encoder model. We follow the domain spe-
cific pretraining approach where the ELECTRA
model is pretrained on PubMed and PubMed Cen-
tral (PMC) full text articles. ELECTRA outper-
forms BERT, ALBERT (Lan et al., 2019), XLNet
(Yang et al., 2020) and RoBERTa (Liu et al., 2019)
on the GLUE (Wang et al., 2019) Benchmark and
SQuAD (Rajpurkar et al., 2016a).

In particular, we make the following contribu-
tions.

1. We release BioELECTRA(P), BioELEC-
TRA(P + F), BioELECTRA(P + F) LT(Longer
Training of additional 1M steps) and Bio-
ELECTRA(W + P) pretrained from scratch
using Biomedical domain text. Pretrained
weights for all these models are publicly
released through huggingface transform-
ers(Wolf et al., 2020) model hub.

2. We evaluate our BioELECTRA models on all
the 13 datasets in the BLURB (Gu et al., 2020)
benchmark and on all the 4 clinical datasets
from BLUE (Peng et al., 2019) benchmark
across 7 NLP tasks.

3. BioELECTRA model achieves state-of-the-
art (SOTA) results on all the 13 datasets in
BLURB benchmark and achieves SOTA on all
the Clinical datasets from BLUE Benchmark.

4. We publicly release the code1 and parameters
to reproduce our research results.

1The code and models are available at
https://github.com/kamalkraj/BioELECTRA
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2 Related work

Pretrained word embeddings (Mikolov et al.,
2013), (Pennington et al., 2014) and contextualised
word embeddings (Peters et al., 2018) have helped
the deep learning algorithms to improve their per-
formance in NLP tasks. ULMFiT (Howard and
Ruder, 2018), introduces the transfer learning ap-
proach to Natural language processing and Ope-
nAI GPT (Radford et al., 2018), pretrains a trans-
former (Vaswani et al., 2017) for learning gen-
eral language representations. Similar to ULM-
FiT and OpenAI GPT, BERT (Devlin et al., 2018)
follows this fine tuning approach and introduces
a powerful bidirectional language representation
model using the transformer based model architec-
ture. BERT achieves SOTA on most NLP tasks
without any heavily-engineered task specific archi-
tectures. Following the success of BERT, XLNet
(Yang et al., 2020) with generalized autoregres-
sive pretraining and RoBERTa (Liu et al., 2019)
with robust pretraining techniques experiment with
different pretraining objectives. ALBERT (Lan
et al., 2019) uses weight sharing and embedding
factorisation to reduce memory consumption and
increase the training speed. ELECTRA (Clark
et al., 2020) introduces sample-efficient ’replaced
token detection’ pretraining technique. ELECTRA-
small, trained with very little compute outperforms
GPT and performs comparably with larger models
like RoBERTa and XLNet.

Recent works adapt BERT to scientific, biomed-
ical and clinical domains. BioBERT (Lee et al.,
2020) pretrains BERT with data from PubMed
and PubMed Central (PMC) articles. BlueBERT
(Peng et al., 2019) pretrains BERT on PubMed,
PMC and MIMIC III (Johnson et al., 2016) data.
ClinicalBERT (Alsentzer et al., 2019) initialises
with BioBERT weights and pretrains on data from
MIMIC III. SciBERT (Beltagy et al., 2019), Pub-
MedBERT (Gu et al., 2020) and Bio-lm (Lewis
et al., 2020) pretrain BERT based models from
scratch with domain specific data. SciBERT pre-
trains on 1.14M papers from Semantic Scholar
(Ammar et al., 2018), PubMedBERT on PubMed
and PMC data and Bio-lm (Lewis et al., 2020) on
data from PubMed, PMC and MIMIC III. Bench-
marks in biomedical NLP - BLUE (Biomedical
Language Understanding Evaluation) and BLURB
(Biomedical Language Understanding & Reason-
ing Benchmark) are released by BlueBERT and

PubMedBERT respectively.

3 Methods

3.1 Pretraining from scratch using domain
specific corpora

The pioneers in applying transfer learning to NLP,
pretrain Language Model(LM) on unlabelled large
corpora in the general domain like Wikipedia ar-
ticles, Web Text, Books corpus, Gigaword, web
crawl etc. Biomedical literature has specific con-
cepts and terms that are not part of the general do-
main. To enable the models to learn these features
very specific to the biomedical domain, BioNLP
models, BioBERT (Lee et al., 2020) and BlueBERT
(Peng et al., 2019) use the mixed-domain pretrain-
ing approach (Gu et al., 2020). In mixed-domain
approach, the model initialises with BERT weights
and vocabulary trained on general domain text and
the model is pretrained on the biomedical text.

Biomedical domain with its publicly available
literature which is growing exponentially by the
year makes it well suited for domain specific pre-
training from scratch. Using a general domain
vocabulary for biomedical text results in complex
and specific terms being split into numerous sub-
words, as they do not exist in the general domain
vocabulary. Hence a model trained on these word
pieces might not generalise well for the domain
specific downstream tasks. Recent work PubMed-
BERT (Gu et al., 2020) and Bio-lm (Lewis et al.,
2020) pretrain a language model from scratch on
PubMed abstracts and use the vocabulary that is
generated from PubMed abstracts. These models
outperform the BioBERT and BlueBERT models
on biomedical and clinical NLP tasks .

3.2 Data

We use data very similar to PubMedBERT for fair
comparison.
PubMed Abstracts We use text from 22 million
PubMed abstracts downloaded as of January 2021.
27 GB of cleaned text with approximately 4.2 bil-
lion words are used.
PubMed Central (PMC) We obtained full text
from 3.2 million PubMed Central (PMC) 2 articles
as of January 2021. After cleaning the data, we use
57GB of text with approximately 9.6 billion words.
Preprocessing We used pubmed_parser parser3 for

2https://www.ncbi.nlm.nih.gov/pmc/
3https://github.com/titipata/pubmed_parser
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Figure 1: Overview of ELECTRA-Base model Pretraining. Output shapes are mentioned in parenthesis after each
block.( B=Batch Size, MSL=Maximum Sequence Length, H=Hidden size )

extracting the abstracts and full text articles. We
used SciSpacy(Neumann et al., 2019) for sentence
tokenization.

3.3 ELECTRA
Architecture ELECTRA (Clark et al., 2020) pre-
training architecture consists of a Generator and a
Discriminator network. Each of them consists of
Encoder blocks of the transformer (Vaswani et al.,
2017) architecture. The generator size is chosen
smaller than the Discriminator to make ELECTRA
computationally efficient. The size of the Hidden
dimension (H) of the transformer encoder in Gen-
erator is reduced to 1/3 the size of the Discrimi-
nator. The Generator and Discriminator share the
weights of the Embedding layer, which is com-
posed of token embeddings, position embeddings
and type embeddings. An embedding projector is
added to Generator after the Embedding layer to
project the embedding dimension H to H/3. Figure
1 shows pretraining configuration of ELECTRA-
Base model. The Generator is trained with maxi-
mum likelihood as in ELECTRA paper and Gener-
ator is not given a noise input vector as in General
Adversarial Networks (GANs). The Discriminator
is trained very similar to a classifier with cross en-
tropy loss. After pretraining only the Discriminator

is used for all the finetuning.

Input/Output representations ELECTRA fol-
lows the Input/Output representations of BERT
(Devlin et al., 2018). The first token is always
the [CLS] token whose final hidden state is used
for finetuning sentence level tasks. For single sen-
tence tasks, the tokenized input sequence should
follow the [CLS] token and end with [SEP]. For
sentence pair tasks, the tokenized input sentences
should be separated by a [SEP] token. Type and
Position embeddings which indicate the sentence
that it belongs to (sentence1/sentence2) are added
to the input token embeddings. Final input rep-
resentation of a given token is the summation of
its token, position and type embeddings which are
learnt during the training.

Pretraining Task ELECTRA introduces re-
placed token prediction pretraining task where
the model is trained to distinguish real input to-
kens from synthetically generated tokens. Random
words are selected in the input text and replaced
with tokens generated by a small Generator net-
work. The Discriminator network then predicts
whether the input token is original or replaced. This
novel approach ensures that the model learns from
all the input tokens and not just from 15% of the
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Dataset Task Train Dev Test Evaluation Metrics

BC5-chem (Li et al., 2016) NER 5203 5347 5385 F1 entity-level
BC5-disease (Li et al., 2016) NER 4182 4244 4424 F1 entity-level
NCBI-disease (Doğan et al., 2014) NER 5134 787 960 F1 entity-level
BC2GM (Smith et al., 2008) NER 15197 3061 6325 F1 entity-level
JNLPBA (Collier and Kim, 2004) NER 46750 4551 8662 F1 entity-level
ShARe/CLEFE* (Suominen et al., 2013) NER 4628 1075 5195 F1 entity-level

EBM PICO(Nye et al., 2018) PICO 339167 85321 16364 Macro F1 word-level

ChemProt (Krallinger et al., 2017) Relation Extraction 18035 11268 15745 Micro F1
DDI (Herrero-Zazo et al., 2013) Relation Extraction 25296 2496 5716 Micro F1
GAD (Bravo et al., 2015) Relation Extraction 4261 535 534 Micro F1
i2b2-2010* (Uzuner et al., 2011) Relation Extraction 3110 11 6293 Micro F1

BIOSSES (Soğancıoğlu et al., 2017) Sentence Similarity 64 16 20 Pearson
ClinicalSTS** (Wang et al., 2020) Sentence Similarity 1312 329 412 Pearson

HoC (Baker et al., 2015) Document Classification 1295 186 371 Micro F1

MedNLI* (Romanov and Shivade, 2018) Inference 11232 1395 1422 Accuracy

PubMedQA (Jin et al., 2019) Question Answering 450 50 500 Accuracy
BioASQ (Nentidis et al., 2019) Question Answering 670 75 140 Accuracy

Table 1: Datasets from BLURB and BLUE benchmark. Number of instances in train, dev, and test set along with
the evaluation metrics used for each of the datasets is listed. * Clinical domain dataset from BLUE. ** Instead of
MedSTS from BLUE we used ClinicalSTS released by (Wang et al., 2020)

tokens in the input text as in BERT. This makes the
pretraining task computationally effective. As re-
cent work (Liu et al., 2019) (Yang et al., 2020) sug-
gests that using ’next sentence prediction’ does not
show consistent improvement in the scores, ELEC-
TRA does not use any such ’contrastive learning’
techniques for pretraining. Since ELECTRA does
not have a contrastive learning technique, there is
no pooling projection layer in ELECTRA.

4 Experiments

4.1 BioELECTRA pretraining

We pretrain ELECTRA from scratch with PubMed
abstracts and PMC full text articles mentioned in
Section 3.2. PubMedBERT (Gu et al., 2020) and
BioBERT (Lee et al., 2020) pretrained BERT-Base
models with biomedical domain specific corpus. In
this paper, we experiment only with ELECTRA-
Base architecture to ensure a fair comparison with
these models. Four ELECTRA-Base models are
trained - BioELECTRA (P) on PubMed abstracts,
BioELECTRA (P+F) on PubMed abstracts and
PMC full text articles, BioELECTRA (P+F) with
longer training (2M steps) and BioELECTRA
(W+P) on Wikipedia and PubMed abstracts. Bio-
ELECTRA(P) and BioELECTRA(P+F) models are
trained with 1M steps with a batch size of 512.
The number of training steps are chosen to make

our work comparable with BioBERT4 and Pub-
MedBERT.5 BioELECTRA(P+F) LT is trained like
BioELECTRA(P+F) with an additional 1M steps.
For BioELECTRA(W+F), a continual training ap-
proach is adopted where the model is initialised
with ELECTRA-BASE general domain weights.
It is pretrained further with PubMed abstracts for
100k, 200k and 400k steps. We publish our re-
sults of BioELECTRA(W+F) pretrained with 200k
steps as these results were comparable with Pub-
MedBERT BLURB (Gu et al., 2020) score.

SciBERT (Beltagy et al., 2019) shows that
models trained on uncased vocabularies perform
slightly better than the cased models in biomed-
ical domain even for NER tasks. Hence we use
the uncased biomedical domain-specific vocabu-
laries from PubMedBERT for all our experiments.
The optimization techniques and parameters from
ELECTRA paper are followed. All our models
are trained on Tensor Processing Unit(TPU) v3-8
instances. Refer Appendix A for complete model
and optimizer details.

4.2 Datasets
We finetune our ELECTRA-Base models on 17
NLP datasets - 13 biomedical datasets from the

4BioBERT was trained with a batch size of 256 with 1M
steps in pretraining and 1M steps in continual pretraining.

5PubMedBERT was trained with a batch size of 8,192 for
62,500 steps.
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BLURB (Gu et al., 2020) benchmark and 4 clinical
datasets from the BLUE (Peng et al., 2019) bench-
mark. We group our datasets based on the NLP
tasks. We do not discuss the datasets in detail due
to space constraints. Details on train, dev, test split,
benchmark they belong to, evaluation metric used
can be found in Table 1. Detailed description of
the datasets are available in the BLURB(Gu et al.,
2020) and BLUE(Peng et al., 2019) paper.

4.2.1 Named Entity Recognition (NER)
NER task aims at recognizing and predicting the
entities e.g (chemicals, diseases, genes, proteins)
in the given text. We use BC5-Chemical, BC5-
Disease, NCBI-Disease, BC2GM, JNLPBA biomed-
ical datasets from the BLURB benchmark. These
datasets have the same train, dev and test split as
released by (Crichton et al., 2017). In addition
to these, ShARe/CLEFE clinical dataset used by
BLUE benchmark which uses the train, dev and
test split released by (Suominen et al., 2013) is used
for NER task.

4.2.2 PICO extraction (PICO)
PICO task is very similar to NER, where the
model aims to predict the Participants, Interven-
tions, Comparisons and Outcomes entities in the
given text. EBM PICO (Nye et al., 2020) dataset
from the BLURB benchmark which has the same
train, test and dev split as the original dataset is
used for this task.

4.2.3 Relation Extraction (RE)
Relation Extraction task predicts relations and their
types between the two entities mentioned in the
given sentences (e.g, gene–disease relations, pro-
tein–chemical relations). We use DDI, ChemProt
and GAD datasets from the BLURB benchmark
and i2b2-2010 clinical dataset in the BLUE bench-
mark. GAD dataset in BLURB benchmark uses
train, dev and test split created by (Lee et al.,
2020). For DDI, BLURB uses the original dataset
by (Herrero-Zazo et al., 2013) and release their
own train, dev and test datasets. BLURB uses the
train, dev and test split from the original dataset
(Krallinger et al., 2017) for ChemProt. BLUE uses
the train, dev and test split released by (Uzuner
et al., 2011)

4.2.4 Sentence Similarity
Sentence Similarity task predicts the similarity
score based on how similar are the given pair of

sentences. BIOSSES dataset from BLURB bench-
mark and ClinicalSTS dataset instead of the Med-
STS dataset is chosen from BLUE benchmark.
BLURB uses the train, dev and split created by
(Peng et al., 2019). ClinicalSTS dataset is chosen
as that is the latest version provided by n2c2 2019
challenge(Wang et al., 2020). It has added 574
more samples for training and a new test set of 412
samples. As this dataset doesn’t have a public train
and dev split, we have split it into 80% train and
20% dev set and we use the original test set for
evaluation.

4.2.5 Document classification
Document classification task aims to predict the
multiple labels for the given text. Evaluation for
Document classification task is done at the docu-
ment level where we aggregate the labels over all
the sentences in a document. We use HoC dataset
from BLURB benchmark which uses the original
dataset by (Baker et al., 2015) to create their own
train, dev and test split.

4.2.6 Natural Language Inference (NLI)
Natural Language Inference task predicts whether
the relation between two sentences are entailment,
contradiction or neutrality. MedNLI (Romanov and
Shivade, 2018) dataset from the BLUE benchmark
which uses the original train, dev and test split is
used for this task.

4.2.7 Question Answering (QA)
Question Answering task aims to predict the an-
swers in the context when a question text is given
as the first sentence. The answers are either two-
way (yes/ no) or three-way (yes/ maybe/ no). Pub-
MedQA and BioASQ datasets from BLURB bench-
mark are used for our experiments. For both Pub-
MedQA (Jin et al., 2019) and BioASQ (Nentidis
et al., 2019), BLURB uses the original train, dev
and test split.

4.3 Fine tuning

ELECTRA (Clark et al., 2020) applies very min-
imal architectural changes for finetuning down-
stream tasks. We follow the same approach as
ELECTRA for finetuning BioELECTRA on the
various downstream tasks. BIO encoding scheme
is adopted for the NER tasks where B stands for
Beginning, I stands for Inside and O stands for
Outside. All the NER datasets in BLURB bench-
mark and ShARe/CLEFE in BLUE benchmark have
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BioBERT SciBERT ClinicalBERT BlueBERT PubMedBERT BioELECTRA
cased uncased cased cased uncased uncased
(P) (CS+F) (W+P+M) (W+P+M) (P) (P)

BC5-chem 92.85 92.49 90.80 91.19 93.33 93.60
BC5-disease. 84.70 84.54 83.04 83.69 85.62 85.84
NCBI-disease 89.13 88.10 86.32 88.04 87.82 89.38
BC2GM 83.82 83.36 81.71 81.87 84.52 84.69
JNLPBA 79.35 79.45 78.59 78.68 80.06 80.17
EBM PICO 73.18 73.12 72.06 72.54 73.38 74.26
ChemProt 76.14 75.24 72.04 71.46 77.24 78.20
DDI 80.88 81.06 78.20 77.78 82.36 82.76
GAD 80.94 80.90 78.40 77.24 82.34 83.70
BIOSSES 89.52 86.25 91.23 85.38 92.30 92.49
HoC 81.54 80.66 80.74 80.48 82.32 83.50
PubMedQA 60.24 57.38 49.08 48.44 55.84 64.02
BioASQ 84.14 78.86 68.50 68.71 87.56 88.57
BLURB score 80.29 78.80 77.19 76.19 81.10 82.47

Table 2: Comparison of pretrained BioNLP models on the BLURB (Gu et al., 2020) benchmark. The BLURB
score is the macro average of mean test results for each of the six tasks (NER, PICO, Relation Extraction, Sentence
Similarity, Document Classification, Question Answering). Refer Table 1 for the evaluation metric used for each
task. (P - PubMed abstracts, CS - Computer Science, F - PubMed Central full text articles, W - Wikipedia, M -
MIMIC III (Johnson et al., 2016))

a single entity. (e.g. Disease in BC5-disease).
PICO, a sequential tagging task is solved using
the NER task approach and Document classifica-
tion task for HoC dataset is solved as multi label
classification task. The datasets in NER, PICO
and Document classification tasks follow the sin-
gle sentence representation. As mentioned in sec-
tion 3.3, each tokenized input sequence follows the
[CLS] token and ends with the [SEP] token. Sen-
tence Similarity, Question Answering and Natural
Language Inference tasks all have sentence pairs
in their inputs. We process the sentence pairs as
[CLS]sentence1[SEP]sentence2[SEP] very similar
to BERT. In the Question Answering task, ’ques-
tion’ is treated as sentence1 and ’context’ is treated
as sentence2.

ELECTRA (Clark et al., 2020) uses the vector
representation of the [CLS] token to generate the
output for all the given NLP tasks except NER
and PICO. For NER and PICO, representations for
each token is used to classify the entities. A simple
linear layer is added to the output of ELECTRA
for finetuning. ELECTRA does not use LSTM
(Hochreiter and Schmidhuber, 1997), CRF (Laf-
ferty et al., 2001) layers for NER tasks. Figure 2 in
appendix B illustrates the finetuning architecture

for the NLP tasks. Mean-square error is used for
regression tasks and cross entropy loss is used for
classification tasks. Similar to BERT finetuning, all
the layers are fine-tuned together along with task
specific prediction layer. We use ’discriminative
finetuning’ similar to ELECTRA, where only the
final layer is trained with the original learning rate
and all other layers use a learning rate with a de-
cay factor. For finetuning, Adam (Kingma and Ba,
2017) optimizer with a slanted triangular learning
rate scheduler which linearly warms up (10% of
steps) followed by linear decay (90% of steps) is
used. We also use a dropout probability of 10%.
We experiment with the following hyper parame-
ters: learning rate [3e-5, 5e-5, 1e-4, 1.5e-4, 2e-4],
batch size [16, 32], layer-wise learning-rate decay
out of [0.9, 0.8, 0.7] and epochs [3,5]. BIOSSES
(Soğancıoğlu et al., 2017), PubMedQA (Jin et al.,
2019), BioASQ (Nentidis et al., 2019) and Clini-
calSTS (Wang et al., 2020) are finetuned for longer
epochs. For more details on the hyper parame-
ters, refer Appendix B. We ran 10 fine tuning runs
on BIOSSES, BioASQ and PubMedQA since the
datasets are relatively smaller and 5 runs on all the
other datasets. The average score is reported as the
final score for the evaluation metric.
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BioBERT ClinicalBERT BlueBERT PubMedBERT BioELECTRA
cased cased cased cased uncased uncased uncased uncased
(P) (W+P+M) (P) (P+M) (P) (P+F) (P) (P+F)

MedNLI 82.63 82.70 82.2 84 83.82 84.17 86.27 86.34
i2b2-2010 72.81 74.82 74.4 76.4 75.14 73.93 76.50 75.73
ShARe/CLEFE 80.73 82.15 75.4 77.1 74.45 74.77 83.71 83.15
ClinicalSTS 85.91 85.63 86.03 84.57 86.72 86.16 89.07 88.34

Table 3: Comparison of pretrained language models on the BLUE (Peng et al., 2019) benchmark. (P - PubMed
abstracts, F - PubMed Central full text articles, W - Wikipedia, M - MIMIC III (Johnson et al., 2016) )

5 Results

We finetune all of the four BioELECTRA models
mentioned in 4.1 for seven biomedical text mining
tasks (NER, PICO, Relation Extraction, Sentence
Similarity, Document Classification, Question An-
swering and Natural Language Inference) that are
part of the BLURB (Gu et al., 2020) and BLUE
(Peng et al., 2019) benchmark.
BLURB benchmark Out of the four BioELEC-
TRA models, BioELECTRA (P) model pretrained
from scratch on PubMed abstracts alone along with
biomedical domain specific vocabulary (from Pub-
MedBERT (Gu et al., 2020)) achieves new State-
of-the-Art (SOTA) results on all of the datasets in
BLURB benchmark. Our results on BioELECTRA
(P) along with the scores for BioBERT (Lee et al.,
2020), SciBERT (Beltagy et al., 2019), Clinical-
BERT (Alsentzer et al., 2019) , BlueBERT (Peng
et al., 2019) and PubMedBERT (Gu et al., 2020) for
all the tasks in the BLURB benchmark are shown
in table 2. The scores on these datasets for all
these models are taken from the BLURB bench-
mark. As we do not have details on train, test and
dev split of datasets used by Bio-lm (Lewis et al.,
2020) paper, we are not able to compare our re-
sults with their results. For NCBI-Disease, where
the train, test and dev split is publicly available,
our model (89.38%) performs better than the Bio-
lm Base (PM + Voc) model (88.2%). ELECTRA
performs significantly better than all other BERT
based models on the SQuAD (Rajpurkar et al.,
2016b) benchmark in the general domain. Sim-
ilarly, BioELECTRA (P) model has significantly
higher scores on the Question Answering tasks. It
achieves new SOTA of 64.02% (3.78% increase
over the previous SOTA) on PubMedQA and with
a new SOTA of 88.57% (1.01 % increase over the
previous SOTA) on BioASQ. Our overall BLURB
score (macro average of the average metric for each

of the six tasks) is 82.40% which is 1.3% higher
than PubMedBERT BLURB score of 81.10%.

BLUE benchmark We present results of Bio-
ELECTRA (P) pretrained on PubMed abstracts
alone and BioELECTRA (P+F) pretrained on both
PubMed abstracts and PubMed full text articles
on four of the clinical datasets in the BLUE bench-
mark in table3. We compare the performance of our
models with the results of BioBERT, ClinicalBERT,
BlueBERT and PubMedBERT. Since the scores on
the train, dev and test split of these clinical datasets
by BioBERT, ClinicalBERT, BlueBERT and Pub-
MedBERT are not available, we used their pre-
trained weights on these datasets and documented
the results. We do not have the results of SciBERT
model as it was trained on mixed domain data. Out
of the four datasets in the BLUE benchmark, we
have results of Biolm for i2b2-2010 and MedNLI.
Since we do not have the train, dev and test split
used by Biolm for i2b2-2010, we compare our re-
sults only for the MedNLI dataset. Score of our
BioELECTRA (P+F) model 86.34% is significantly
higher than Biolm Base model (PM + Voc) score of
83.2%. We also note that BioELECTRA performs
better than BERT based models trained on MIMIC
data. BioELECTRA (P) achieves new SOTA on
three of the datasets - i2b2-2010, ShARe/CLEFE
and ClinicalSTS. BioELECTRA (P+F)’s score of
86.34% on MedNLI task is marginally (0.07%)
higher than the score of BioELECTRA (P)’s score
of 86.27% and this is the new SOTA for MedNLI
dataset for models trained on PubMed abstracts and
PubMed Central full text articles.

Our models pretrained on domain specific text
along with domain specific vocabulary have con-
sistently shown that the pretraining from scratch
with domain specific data enables the model to cap-
ture the contextual representations of the language
better.
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BioELECTRA BioELECTRA BioELECTRA BioELECTRA
P P+F P+F (LT) W+P

Vocab PubMed PubMed PubMed General

BC5-chem 93.60 93.51 93.75 93.03
BC5-disease 85.84 85.55 85.32 84.66
NCBI-disease 89.38 88.43 88.73 88.45
BC2GM 84.69 84.61 84.68 83.90
JNLPBA 80.17 79.98 80.10 79.63
EBM PICO 74.26 73.88 73.86 73.33
ChemProt 78.20 77.76 76.76 77.06
DDI 82.76 83.53 82.34 79.68
GAD 83.70 84.18 85.67 83.16
BIOSSES 92.49 93.80 91.45 88.65
HoC 83.50 82.79 83.20 82.30
PubMedQA 64.02 63.80 62.21 61.20
BioASQ 88.57 91.42 91.50 90.01

BLURB Score 82.47 82.72 82.24 80.96

MedNLI 86.27 86.34 85.36 83.53
i2b2-2010 76.50 75.73 76.17 75.48
ShARe/CLEFE 83.71 83.15 83.52 83.02
ClinicalSTS 89.07 88.34 89.02 88.46

Table 4: Comparison of BioELECTRA models on BLURB (Gu et al., 2020) and BLUE (Peng et al., 2019) bench-
mark. (P - PubMed abstracts, F - PubMed Central full text articles, W - Wikipedia, LT - Longer Training )

Comparison of BioELECTRA models Table 4
shows the comparison of results of our models
BioELECTRA(P), BioELECTRA (P+F) and Bio-
ELECTRA (P+F) LT with longer training of addi-
tional 1 million steps and BioELECTRA (W+P).
BioELECTRA (W+P) is pretrained from scratch
on Wikipedia and PubMed abstracts along with a
general domain vocabulary (BERT (Devlin et al.,
2018) uncased vocabulary). We observe that Bio-
ELECTRA (P+F) LT with longer training of 2
million steps does not give substantial improve-
ments on all of the tasks. BioELECTRA (P+F) LT
model’s result is slightly better than BioELECTRA
(P) on BC5-chem dataset. BioELECTRA (P+F)
LT model’s result on GAD and BioASQ datasets
are marginally better than BioELECTRA (P+F).
BioELECTRA (P+F) performs slightly better than
BioELECTRA (P) on DDI and BIOSSES datasets.

The results clearly show that all BioELECTRA
models pretrained from scratch with biomedical do-
main text and domain specific vocabulary perform
better than the model pretrained on both general
and biomedical domain text with general domain
vocabulary. However it is interesting to note that

BioELECTRA (W+P) model has significantly bet-
ter results for i2b2-2010, ShARe/CLEFE and Clin-
icalSTS datasets than PubMedBERT. BioELEC-
TRA (W+P)’s score for MedNLI is comparable to
that of PubMedBERT (Gu et al., 2020).

6 Conclusion and Future Work

We release BioELECTRA-base models pretrained
from scratch on biomedical domain specific text
and evaluate the performance on seven different
biomedical NLP tasks with 17 datasets. We achieve
SOTA on all the datasets in the BLURB (Gu et al.,
2020) benchmark and all four clinical datasets in
the BLUE (Peng et al., 2019) benchmark. Our
results show that pretraining from scratch with
biomedical domain text helps the model to learn
better contextual representations. We release the
pretrained weights for all our models and the code
for reproducibility.

We plan to explore and experiment with our do-
main specific pretraining approach on ELECTRA-
LARGE models. We also intend to train
ELECTRA-BASE and ELECTRA-LARGE mod-
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els on MIMIC III (Johnson et al., 2016) clinical
notes and evaluate the performance of the models
on biomedical NLP tasks. As ELECTRA shows
a significant improvement on SQuAD (Rajpurkar
et al., 2016b), we want to focus on Biomedical QA
tasks (span prediction) and evaluate domain spe-
cific pretrained ELECTRA models performance.
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A Pretraining

Hyperparameter Discriminator/Generator

Number of layers 12
Hidden Size 768/256
FFN inner hidden size 3072/1024
Attention heads 12/4
Attention head size 64
Embedding Size 768
Mask percent 15
Learning Rate Decay Linear
Warmup steps 10000
Learning Rate 2e-4
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.01
Batch Size 512
Train Steps 1M

Table 5: Pre-train hyperparameters.

All the BioELECTRA models are trained on
TPU v3-8 instances. Adopting bfloat166 training
helped us in improving the training speed. Very
similar to BERT, we train the model in 2 phases,
90% of steps with sequence length of 128 (phase1)
and 10% of steps with sequence length of 512
(phase2) to learn the positional embeddings. Model
training reached 1M steps in 5 days (phase1 - 4
days and phase2 - 1day). For pretraining, we use
the original ELECTRA code7 released by authors.
Refer table 5 for details regarding all the parame-
ters.

B Finetuning

Figure 2 shows different architecture schema of
different models.

• Single Sentence Classification : ChemProt,
DDI, GAD, i2b2-2010, HoC

• Entity Classification: BC5-chem, BC5-
disease, NCBI-Disease, BC2GM, JNLPBA,
ShARe/CLEFE, EBM PICO

6https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-cloud-
tpus

7https://github.com/google-research/electra
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Figure 2: Overview of BioELECTRA model finetuning.

Hyperparameter Value

Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Layerwise LR decay 0.8
Learning rate decay Linear
Warmup fraction 0.1
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0

Table 6: Common hyperparamters across tasks

• Sentence Pair Classification: BIOSSES, Clin-
icalSTS

• Question Answering: PubMedQA, BioASQ

’Discriminative finetuning’ is adopted where the
learning rate varies across the layers. The learning
rate decays across the layers from top to bottom
with a factor of 0.8 for all the NLP tasks. The
colour gradient in figure 2 represents this . For a
learning rate of 1e-4 , only the task specific pre-
diction layer (final layer) is finetuned at this rate.
With a decay factor of 0.8, the embedding layer

Dataset LR BS MSL EPOCHS

BC5-chem 2e-4 16 256 5
BC5-disease 2e-4 16 256 5
NCBI-disease 2e-4 32 128 5
BC2GM 2e-4 32 256 5
JNLPBA 2e-4 16 256 3
ShARe/CLEFE 2e-4 32 512 5
EBM PICO 2e-4 32 256 3
ChemProt 1e-4 32 256 5
DDI 2e-4 32 256 3
GAD 2e-4 32 128 5
i2b2-2010 2e-4 32 128 5
BIOSSES 1.5e-4 16 128 60
ClinicalSTS 5e-5 32 128 10
HoC 2e-4 32 128 5
MedNLI 1e-4 32 128 5
PubMedQA 2e-4 32 512 20
BioASQ 2e-4 32 512 20

Table 7: LR : Learning Rate, BS : Batch Size, MSL :
Maximum Sequence Length

for that particular task is finetuned at a learning
rate of 5.5e-6. Table 6 shows the common hyperpa-
rameters used across tasks, and table 7 shows task
specific hyperparameters.
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Abstract

To keep pace with the increased genera-
tion and digitization of documents, automated
methods that can improve search, discovery
and mining of the vast body of literature are
essential. Keyphrases provide a concise rep-
resentation by identifying salient concepts in
a document. Various supervised approaches
model keyphrase extraction using local con-
text to predict the label for each token and per-
form much better than the unsupervised coun-
terparts. Unfortunately, this method fails for
short documents where the context is unclear.
Moreover, keyphrases, which are usually the
gist of a document, need to be the central
theme. We propose a new extraction model
that introduces a centrality constraint to enrich
the word representation of a Bidirectional long
short-term memory. Performance evaluation
on two publicly available datasets demonstrate
our model outperforms existing state-of-the
art approaches. Our model is publicly avail-
able at https://github.com/ZHgero/
keyphrases_centrality.git

1 Introduction

Keyphrase extraction is an important information
extraction task that identifies single or multi-word
linguistic units that concisely represent a docu-
ment. They can also serve to provide a brief sum-
mary of the document content. Keyphrases are
widely used in variety of natural language process-
ing tasks such as document summarization (Bharti
and Babu, 2017; Sarkar, 2014), query formula-
tion (Jones and Staveley, 1999), text classifica-
tion (Coenen et al., 2007), clustering (Hammouda
et al., 2005), and recommendation systems (Naw
and Hlaing, 2013). Keyphrases have become in-
creasingly important for biomedical documents as
there has been an exponential growth with over 32
million articles indexed by PubMed (NLM). Fig-
ure 1 shows a PubMed document with the author-
specified keyphrases highlighted in blue.

Existing keyphrase extraction methods mainly
fall either under a supervised or unsupervised ap-
proach. Common unsupervised approaches use
word co-occurrence statistics to build graph-based
ranking algorithms. Each word is mapped to a
node and edges connect words that co-occur within
a specified window size. Even though unsuper-
vised approaches are desirable for datasets which
do not have manually-labeled ground truth values,
most such methods perform worse compared to the
supervised counterparts.

The supervised approaches use classification to
label every token as being part of a keyphrase or not
by using features such as part-of speech tags, term-
frequency inverse document frequency (tf-idf), and
the position of the token in the document. Re-
cently, supervised methods based on deep learning
have been employed for keyphrase extraction. In
Thomaidou and Vazirgiannis (2011) and Gollapalli
et al. (2017), the authors posed the problem as a
sequence labeling task and applied a Long Short-
Term Memory network (LSTM) and conditional
random fields (CRF) to tag each token in document
as positive (i.e., part of a keyphrase) or negative.
While these approaches achieve much better per-
formance, they still suffer from a major limitation
when applied on biomedical literature. The task of
labelling each token does not consider how central
the token is to the document contents. For Figure 1,
the main theme of the keyphrases are genes associ-
ated with breast cancer. Thus, the document theme
can be used as additional information to improve
the keyphrase extraction performance.

To this end, we propose to address the problem
of keyphrase extraction as a sequence labelling task
with an additional component to capture the cen-
trality of each token. We design a centrality layer
built on top of a bidirectional LSTM (BiLSTM)
layer to constrain each token with regards to the
central theme of the document. The output depen-
dencies are then modeled using a CRF layer. The
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Figure 1: An example document from PubMed with
author-provided keyphrases in blue.

contributions of our work are:

• Introducing a centrality constraint layer to bet-
ter capture the main theme of the document
and how strongly each token is related to the
main theme.

• Thorough evaluation of the centrality layer
using an ablation study on biomedical and
general domain abstracts.

The next section presents a brief description of
the related work. The proposed keyphrase extrac-
tion method is introduced in Section 3. Sections 4,
and 5 present experimental results and conclusion
respectively.

2 Related Work

Keyphrase extraction methods mainly take either
supervised or unsupervised approach. Unsuper-
vised approaches generate candidates and rank us-
ing features such as tf-idf and topic proportions
(Barker and Cornacchia, 2000; Liu et al., 2009b),
graph-based centrality measures (Grineva et al.,
2009; Wan and Xiao, 2008), topic modeling (Liu
et al., 2009a; Teneva and Cheng, 2017), and doc-
ument’s citation network (Gollapalli and Caragea,
2014). Unsupervised, graph-based methods build a
graph from the input document where all the can-
didate keyphrases are nodes and the connection

between each candidate is represented by edges. A
graph-based ranking method then determines the
weights for each node based on the relatedness be-
tween the candidates. Alternatively, topic-based ap-
proaches cluster candidate keyphrases into topics in
the document so that all the topics in the input doc-
ument are represented by the selected keyphrases.
Recently (Sun et al., 2020) proposed a sentence
embedding model named SIFRank that uses au-
toregressive pre-trained language model to extract
keyphrases from short documents. Yet unsuper-
vised methods often fail to achieve state-of-the-art
performance.

Under the supervised approach, the keyphrase
extraction problem is treated as a binary classifi-
cation task (Alzaidy et al., 2019; Turney, 2000,
2002), where learning algorithms such as support
vector machines (Witten et al., 2005; Jiang et al.,
2009) and maximum entropy (Kim and Kan, 2009;
Yih et al., 2006) are used. Supervised keyphrase
extraction can also be posed as a ranking prob-
lem between candidates (Witten et al., 2005). The
candidates keys are extracted using statistical fea-
tures (tf-idf, number of occurrences, first occur-
rence of the key) and structural features (part of
speech tags).

Deep learning based models have also been used
for keyphrase extraction. Word embeddings are
used to measure the relatedness between words in
graph-based models (Wang et al., 2014). Zhang
et al. (2016) used a Recurrent Neural Network
(RNN) based approach to identify keyphrases in
Twitter data. The model addresses the problem
as sequence labeling for very short text, where
a joint-layer RNN is used to capture the seman-
tic dependencies in the input sequence. Alzaidy
et al. (2019) employed a LSTM-CRF architecture
to model keyphrase extraction as a sequence la-
belling task to learn the labels of the entire input se-
quence. Santosh et al. (2020) extended the LSTM-
CRF to utilize BiLSTM and incorporated an atten-
tion mechanism to retrieve additional information
from other sentences within the same document.
Sahrawat et al. (2020) evaluated the effect of vari-
ous pre-trained word embeddings for the BiLSTM-
CRF architecture in extracting keyphrases from
benchmark datasets and found contextual embed-
dings offered better performance. While these mod-
els offer better performance, they fail to capture
the centrality of the keyphrases which represent a
salient feature of the document.
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Figure 2: Our model architecture with the BiLSTM, centrality weighting, and CRF layer.

3 Methodology

The keyphrase extraction task is formulated as a
sequence labelling task. Given a document X =
w1, w2, · · · , wt where wi is the ith word and t is
the number of words in the document, we predict
the labels y = y1, y2, · · · , yt where each label yi
is whether word wi is a keyphrase or not.

3.1 Word Embedding Layer
Each word in the document is represented by
pre-trained low-dimensional vector representations.
Any pre-trained vector representation can be used,
and we experiment with various pre-trained em-
beddings such as GloVe (Pennington et al., 2014),
BERT (Devlin et al., 2019) and BioBERT (Lee
et al., 2020). The impact of each embedding type
is discussed in the experiments section.

3.2 BiLSTM Layer
This layer is used to encode each document to ob-
tain the local contextual representation. A forward
and backward LSTMs are used to read the input
sequence from left to right,

−→
h1,
−→
h2, · · · ,

−→
ht , and

right to left,
←−
h1,
←−
h2, · · · ,

←−
ht , respectively. The out-

puts from the two directions are concatenated and
summed for the final hidden state representation of
the document, H = [

∑t
i=1

−→
hi ,

∑t
i=1

←−
hi ].

3.3 Centrality Weighting Layer
Sequence labelling is commonly used for other to-
ken encoding tasks such as Named Entity Recogni-
tion (NER) where the task is to determine whether a
token is a named entity or not. However, keyphrase

extraction is different from other sequence labelling
tasks (for example NER) in that the tokens should
capture the main gist of the document. This is in
contrast to NER where the importance of the token
is irrelevant as long as it is a named entity. To incor-
porate the idea of centrality, we use the similarity
between each token and the document embedding,
H , to bias the model towards tokens which are
central (i.e., similar) to the document.

For words {w1, w2, · · · , wt} in a document D,
we compute the centrality weight for each word
α1, α2, · · · , αt. Each αi is calculated as the cosine
similarity between the document vector (H) and
each word (wi). This is then used to weight the
document vector when concatenating with each
word’s representation from the BiLSTM.

The output representation, zi for each word is
then the centrality weight, αi multiplied by the out-
put of the biLSTM, zi = [αi

−→
hi , αi

←−
hi ]. A dense

layer is then used to transform the output represen-
tation, ki = f(zi).

3.4 Conditional Random Fields (CRF)

The obtained contextual representations of each
word, ki are given as input sequence to a CRF
layer. CRFs are widely used to model sequence la-
beling tasks (Lafferty et al., 2001). Given the input
document as sequence of tokens, CRF produces
a probability distribution over the output label se-
quence using the dependencies among the labels
of the entire input sequence. This formulation con-
siders the correlations between neighboring labels
and allows joint decoding for the best sequence of
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Table 1: Datasets used for experiments

Dataset PubMed INSPEC
Tot. documents 2532 500
Tot. # of tokens 654389 67200
Tot. # of keyphrases 31871 4912
Avg. # of keyphrases 12.5 9.8

labels for the input sequence, rather than decoding
each label independently. Moreover, by utilizing
two different labels for the keyphrase to denote
the beginning (tB) and intermediate part (tI ) of
the keyphrase, the model can learn a multi-token
keyphrase. As an example, given a sentence with
five tokens (t1, t2, t3, t4t5) of which two (t2, t3)
are part of a keyphrase, the label would be repre-
sented as (tO, tB, tI , tO, tO). Figure 2 illustrates
our model architecture with the various layers.

4 Experiments

Datasets. We ran our experiment on 2 publicly
available keyphrase datasets: PubMed (Gero and
Ho, 2019) and INSPEC (Hulth, 2003). PubMed
consists of 2532 articles from PubMed Central
Open Access Subset with at least 5 author-provided
keyphrases while INSPEC contains 200 abstracts
of scientific journal papers from Computer Science
collected between the years 1998 and 2002. Each
document in INSPEC has two sets of keywords
assigned: the controlled keywords, which are man-
ually controlled assigned keywords that appear in
the Inspec thesaurus but may not appear in the doc-
ument, and the uncontrolled keywords which are
freely assigned by the editors. The union of both
sets is considered as the ground-truth in this work.
Summary statistics for the datasets are shown in
Table 1.

Since we use a sequence labeling formula-
tion of the keyphrase extraction problem, the ab-
stract/keyphrases data pairs are prepared such that
each document is a sequence of word tokens, each
with positive labels if it occurs in a keyphrase
(kB, kI ), or with a negative label (kO).

Experiment Settings. As baseline models,
we train BiLSTM and BiLSTM-CRF with 100-
dimension Glove pre-trained embedding vectors
(Pennington et al., 2014). We also train BiLSTM-
CRF with two 768-dimension contextual embed-
dings, BERT (Devlin et al., 2019) and BioBERT
(Lee et al., 2020). DAKE (Santosh et al., 2020),
a state-of-the art baseline, uses a sentence enrich-

Table 2: Model performance on different datasets

Model PubMed INSPEC
BiLSTM (GloVe) 0.543 0.427
BiLSTM-CRF (GloVe) 0.554 0.453
BiLSTM-CRF (BERT) 0.604 0.581
BiLSTM-CRF (BioBERT) 0.622 0.464
DAKE 0.623 0.463
Ours 0.644 0.586

ing process from all the documents using sentence
embedding. To replicate their work, we used the
BERT model to extract sentence embeddings for
each document and enrich the representation. Fi-
nally, our model is trained using BERT word em-
beddings for the INSPEC dataset and BioBERT
embeddings for the PubMed dataset.

The results reported are from three runs using
80/20/20 split for train/val/test sets respectively.
The BiLSTM, and BiLSTM-CRF are optimized
during training using stochastic gradient descent
with the learning rate 0.0001. Gradient clipping
and drop-out are used to prevent overflow and over-
fitting. We select the model with the best F1 score
on the validation set over three runs. The final test
scores reported are the averages running the best
model on the test sets.

The code was implemented in Ten-
sorflow 2.4.1 and the code is available
at https://github.com/ZHgero/
keyphrases_centrality.git.

5 Results

The performance comparisons between the base-
lines and our model are shown in Table 2. Our
model performs significantly better on the PubMed
dataset compared to the existing baselines. In par-
ticular, the results show the impact of the centrality
layer as it provides a boost in AUC of 0.02 from
BiLSTM-CRF (BioBERT) to our model. The im-
provement gained from our model is not as large
on the INSPEC dataset. We hypothesize that for
the centrality constraint to be effective, the input se-
quence should be relatively longer. The sentences
in the INSPEC dataset are much shorter hence the
difficulty in learning the central theme.

We also compared our models with several
state-of-the-art unsupervised approaches includ-
ing SingleRank (Litvak and Last, 2008), Position-
Rank (Florescu and Caragea, 2017), TopicRank
(Bougouin et al., 2013), and SIFRank (Sun et al.,
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Table 3: Ranking comparison on the PubMed dataset

Model F1@5 F1@10 F1@15
SingleRank 15.2 16.3 19.2
PositionRank 18.3 18.3 20.9
TopicRank 26.4 28.7 29.2
SIFRank 32.3 48.4 56.2
Ours 34.8 53.1 62.6

2020). Table 3 presents the comparison on the
PubMed dataset. Since the unsupervised methods
are ranking-based methods, the performances are
evaluated in terms of F1-measure when a fixed
number of keyphrases are extracted. To convert
our model into a ranking model, we compute the
probability for the predicted keyphrases by using
an independence assumption after calculating the
marginal probabilities from the CRF layer. The re-
sults illustrate that our model outperforms previous
unsupervised methods by a significant margin.

In Figure 3, we compare keyphrases tagged by
the BioBERT model and our model on a sample
abstract. The true positives are colored blue while
false negatives are in red. We observe that the
BioBERT model fails to identify ‘chronic throm-
boembolic pulmonary hypertension’ as an impor-
tant keyphrase whereas our model correctly identi-
fies it. This may be due to the single occurrence of
‘pulmonary hypertension’ in the input text. Mean-
while our model leverages the document embed-
ding to ‘understand’ that pulmonary hypertension
is semantically relevant in the context of the entire
abstract. We also observe a similar pattern with
the keyphrase ‘duration of anticoagulation’. Even
though both models fail to capture the entire phrase,
our model identifies ‘anticoagulation’ as a strong
candidate because of its semantic meaning in the
context of the whole abstract.

The figure also illustrates the limitation of the
models as both struggle with common words such
as ‘post’ and ‘high’ that are attached as prefixes
to important keywords. ‘High risk’, ‘duration of’
and ‘post-’ are considered unimportant by both
models. This can be explained by the fact that such
words usually occur outside a keyphrase boundary
and get overlooked even when they appear with
important words. False positives by both models
are important terms as the phrases are very relevant
in the context of abstract but were not selected by
the authors.

Figure 3: Comparison of keyphrases tagged by two
models. True positives are colored blue while false neg-
atives are in red.Purple represents keys that are false
positive.

6 Conclusion

In this paper, we proposed a keyphrase extraction
method that focuses on identifying words which
are central to the document semantics. The prob-
lem of keyphrase extraction is posed as a sequence
labeling task where each token is tagged as either a
keyphrase or not. In addition to our novel central-
ity constraint layer, we have used Bi-LSTM layers
to capture the long term dependencies among the
input sequences. Finally, we have a CRF layer
which is well suited to capture the dependencies
from the output labels. Empirical results on two
datasets show that our method gains significant im-
provement in the PubMed dataset while performing
slightly better on the INSPEC dataset.
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Abstract

Disease name recognition and normalization
, which is generally called biomedical entity
linking, is a fundamental process in biomedi-
cal text mining. Recently, neural joint learning
of both tasks has been proposed to utilize the
mutual benefits. While this approach achieves
high performance, disease concepts that do not
appear in the training dataset cannot be accu-
rately predicted. This study introduces a novel
end-to-end approach that combines span rep-
resentations with dictionary-matching features
to address this problem. Our model handles
unseen concepts by referring to a dictionary
while maintaining the performance of neural
network-based models, in an end-to-end fash-
ion. Experiments using two major datasets
demonstrate that our model achieved compet-
itive results with strong baselines, especially
for unseen concepts during training.

1 Introduction

Identifying disease names , which is generally
called biomedical entity linking, is the fundamental
process of biomedical natural language processing,
and it can be utilized in applications such as a lit-
erature search system (Lee et al., 2016) and a
biomedical relation extraction (Xu et al., 2016).
The usual system to identify disease names consists
of two modules: named entity recognition (NER)
and named entity normalization (NEN). NER is
the task that recognizes the span of a disease name,
from the start position to the end position. NEN is
the post-processing of NER, normalizing a disease
name into a controlled vocabulary, such as a MeSH
or Online Mendelian Inheritance in Man (OMIM).

Although most previous studies have developed
pipeline systems, in which the NER model first rec-
ognizs disease mentions (Lee et al., 2020; Weber
et al., 2020) and the NEN model normalizes the

∗Work done while at Nara Institute of Science and Tech-
nology.

recognized mention (Leaman et al., 2013; Ferré
et al., 2020; Xu et al., 2020; Vashishth et al., 2020),
a few approaches employ a joint learning architec-
ture for these tasks (Leaman and Lu, 2016; Lou
et al., 2017). These joint approaches simultane-
ously recognize and normalize disease names uti-
lizing their mutual benefits. For example, Leaman
et al. (2013) demonstrated that dictionary-matching
features, which are commonly used for NEN, are
also effective for NER. While these joint learning
models achieve high performance for both NER
and NEN, they predominately rely on hand-crafted
features, which are difficult to construct because of
the domain knowledge requirement.

Recently, a neural network (NN)-based model
that does not require any hand-crafted features
was applied to the joint learning of NER and
NEN (Zhao et al., 2019). NER and NEN were
defined as two token-level classification tasks, i.e.,
their model classified each token into IOB2 tags
and concepts, respectively. Although their model
achieved the state-of-the-art performance for both
NER and NEN, a concept that does not appear in
training data (i.e., zero-shot situation) can not be
predicted properly.

One possible approach to handle this zero-shot
situation is utilizing the dictionary-matching fea-
tures. Suppose that an input sentence “Classic pol-
yarteritis nodosa is a systemic vasculitis” is given,
where “polyarteritis nodosa” is the target entity.
Even if it does not appear in the training data, it
can be recognized and normalized by referring to
a controlled vocabulary that contains “Polyarteri-
tis Nodosa (MeSH: D010488).” Combining such
looking-up mechanisms with NN-based models,
however, is not a trivial task; dictionary matching
must be performed at the entity-level, whereas stan-
dard NN-based NER and NEN tasks are performed
at the token-level (for example, Zhao et al., 2019).

To overcome this problem, we propose a novel
end-to-end approach for NER and NEN that com-
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Figure 1: The overview of our model. It combines the dictionary-matching scores with the context score obtained
from PubMedBERT. The red boxes are the target span and “ci” in the figure is the “i”-th concept in the dictionary.

bines dictionary-matching features with NN-based
models. Based on the span-based model introduced
by Lee et al. (2017), our model first computes
span representations for all possible spans of the
input sentence and then combines the dictionary-
matching features with the span representations.
Using the score obtained from both features, it
directly classifies the disease concept. Thus, our
model can handle the zero-shot problem by using
dictionary-matching features while maintaining the
performance of the NN-based models.

Our model is also effective in situations other
than the zero-shot condition. Consider the follow-
ing input sentence: “We report the case of a patient
who developed acute hepatitis,” where “hepatitis”
is the target entity that should be normalized to
“drug-induced hepatitis.” While the longer span
“acute hepatitis” also appears plausible for stand-
alone NER models, our end-to-end architecture
assigns a higher score to the correct shorter span
“hepatitis” due to the existence of the normalized
term (“drug-induced hepatitis”) in the dictionary.

Through the experiments using two major NER
and NEN corpora, we demonstrate that our model
achieves competitive results for both corpora.
Further analysis illustrates that the dictionary-
matching features improve the performance of
NEN in the zero-shot and other situations.

Our main contributions are twofold: (i) We
propose a novel end-to-end model for disease
name recognition and normalization that utilizes
both NN-based features and dictionary-matching
features; (ii) We demonstrate that combining
dictionary-matching features with an NN-based

model is highly effective for normalization, espe-
cially in the zero-shot situations.

2 Methods

2.1 Task Definition
Given an input sentence, which is a sequence of
words x = {x1, x2, · · · , x|X|} in the biomedi-
cal literature, let us define S as a set of all pos-
sible spans, and L as a set of concepts that con-
tains the special label Null for a non-disease span.
Our goal is to predict a set of labeled spans y =

{〈i, j, d〉k}|Y |k=1, where (i, j) ∈ S is the word in-
dex in the sentence, and d ∈ L is the concept of
diseases.

2.2 Model Architecture
Our model predicts the concepts for each span
based on the score, which is represented by the
weighted sum of two factors: the context score
scorecont obtained from span representations and
the dictionary-matching score scoredict. Figure 1
illustrates the overall architecture of our model. We
denote the score of the span s as follows:

score(s, c) = scorecont(s, c) + λscoredict(s, c)

where c ∈ L is the candidate concept and λ is the
hyperparameter that balances the scores. For the
concept prediction, the scores of all possible spans
and concepts are calculated, and then the concept
with the highest score is selected as the predicted
concept for each span as follows:

y = argmax
c∈L

score(s, c)
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Context score The context score is computed in
a similar way to that of Lee et al. (2017), which is
based on the span representations. To compute the
representations of each span, the input tokens are
first encoded into the token embeddings. We used
BioBERT (Lee et al., 2020) as the encoder, which
is a variation of bidirectional encoder representa-
tions from transformers (BERT) that is trained on
a large amount of biomedical text. Given an in-
put sentence containing T words, we can obtain
the contextualized embeddings of each token using
BioBERT as follows:

h1:T = BERT(x1, x2, · · · , xT )

where h1:T is the input tokens embeddings.
Span representations are obtained by concatenat-

ing several features from the token embeddings:

gs = [hstart(s),hend(s), ĥs, φ(s)]

g′s = GELU(FFNN(gs))

where hstart(s) and hend(s) are the start and end
token embeddings of the span, respectively; and ĥs

is the weighted sum of the token embeddings in the
span, which is obtained using an attention mech-
anism (Bahdanau et al., 2015). φ(i) is the size of
span s. These representations gs are then fed into a
simple feed-forward NN, FFNN, and a nonlinear
function, GELU (Hendrycks and Gimpel, 2016).

Given a particular span representation and a can-
didate concept as the inputs, we formulate the con-
text score as follows:

scorecont(s, c) = gs ·Wc

where W ∈ R|L|×dg is the weight matrix associ-
ated with each concept c, and Wc represents the
weight vector for the concept c.

Dictionary-matching score We used the cosine
similarity of the TF-IDF vectors as the dictionary-
matching features. Because there are several syn-
onyms for a concept, we calculated the cosine sim-
ilarity for all synonyms of the concept and used
the maximum cosine similarity as the score for
each concept. The TF-IDF is calculated using the
character-level n-gram statistics computed for all
diseases appearing in the training dataset and con-
trolled vocabulary. For example, given the span
“breast cancer,” synonyms with high cosine simi-
larity are “breast cancer (1.0)” and “male breast
cancer (0.829).”

3 Experiment

3.1 Datasets
To evaluate our model, we chose two major datasets
used in disease name recognition and normal-
ization against a popular controlled vocabulary,
MEDIC (Davis et al., 2012). Both datasets, the
National Center for Biotechnology Information
Disease (NCBID) corpus (Doğan et al., 2014)
and the BioCreative V Chemical Disease Relation
(BC5CDR) task corpus (Li et al., 2016), comprise
of PubMed titles and abstracts annotated with dis-
ease names and their corresponding normalized
term IDs (CUIs). NCBID provides 593 training,
100 development, and 100 test data splits, while
BC5CDR evenly divides 1500 data into the three
sets. We adopted the same version of MEDIC as
TaggerOne (Leaman and Lu, 2016) used, and that
we dismissed non-disease entity annotations con-
tained in BC5CDR.

3.2 Baseline Models
We compared several baselines to evaluate our
model. DNorm (Leaman et al., 2013) and
NormCo (Wright et al., 2019) were used as pipeline
models due to their high performance. In addition,
we used the pipeline systems consisting of state-
of-the-art models: BioBERT (Lee et al., 2020) for
NER and BioSyn (Sung et al., 2020) for NEN.

TaggerOne (Leaman and Lu, 2016) and
Transition-based model (Lou et al., 2017) are
used as joint-learning models. These models out-
performed the pipeline models in NCBID and
BC5CDR. For the model introduced by Zhao et al.
(2019), we cannot reproduce the performance re-
ported by them. Instead, we report the performance
of the simple token-level joint learning model based
on the BioBERT, which referred as “joint (token)”.

3.3 Implementation
We performed several preprocessing steps: split-
ting the text into sentences using the NLTK toolkit
(Bird et al., 2009), removing punctuations, and
resolving abbreviations using Ab3P (Sohn et al.,
2008), a common abbreviation resolution module.
We also merged disease names in each training set
into a controlled vocabulary, following the methods
of Lou et al. (2017).

For training, we set the learning rate to 5e-5, and
mini-batch size to 32. λ was set to 0.9 using the
development sets. For BC5CDR, we trained the
model using both the training and development sets
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NCBID BC5CDR

Models NER NEN NER NEN

TaggerOne 0.829 0.807 0.826 0.837
Transition-based model 0.821 0.826 0.862 0.876
NormCo 0.829 0.840 0.826 0.830
pipeline 0.874 0.841 0.865 0.818
joint (token) 0.864 0.765 0.855 0.817

Ours without dictionary 0.884 0.781 0.864 0.808
Ours 0.891 0.854 0.867 0.851

Table 1: F1 scores of NER and NEN in NCBID and
BC5CDR. Bold font represents the highest score.

following Leaman and Lu (2016). For computa-
tional efficiency, we only consider spans with up to
10 words.

3.4 Evaluation Metrics

We evaluated the recognition performance of our
model using micro-F1 at the entity level. We con-
sider the predicted spans as true positive when
their spans are identical. Following the previ-
ous work (Wright et al., 2019; Leaman and Lu,
2016), the performance of NEN was evaluated us-
ing micro-F1 at the abstract level. If a predicted
concept was found within the gold standard con-
cepts in the abstract, regardless of its location, it
was considered as a true positive.

4 Results & Discussions

Table 1 illustrates that our model mostly achieved
the highest F1-scores in both NER and NEN,
except for the NEN in BC5CDR, in which the
transition-based model displays its strength as a
baseline. The proposed model outperformed the
pipeline model of the state-of-the-art models for
both tasks, which demonstrates that the improve-
ment is attributed not to the strength of BioBERT
but the model architecture, including the end-
to-end approach and combinations of dictionary-
matching features.

Comparing the model variation results, adding
dictionary-matching features improved the perfor-
mance in NEN. The results clearly suggest that
dictionary-matching features are effective for NN-
based NEN models.

4.1 Contribution of Dictionary-Matching

To analyze the behavior of our model in the zero-
shot situation, we investigated the NEN perfor-
mance on two subsets of both corpora: disease
names with concepts that appear in the training

standard zero-shot

dataset mention concept mention concept

NCBID 781 135 179 56
BC5CDR 4031 461 391 179

Table 2: Number of mentions and concepts in standard
and zero-shot situations.

Methods NCBID BC5CDR

zero-shot Ours without dictionary 0 0
Ours 0.704 0.597

standard Ours without dictionary 0.854 0.846
Ours 0.905 0.877

Table 3: F1 scores for NEN of NCBID and BC5CDR
subsets for zero-shot situation where disease concepts
do not appear in training data and the standard situation
where they do appear in training data.

data (i.e., standard situation), and disease names
with concepts that do not appear in the training
data (i.e., the zero-shot situation). Table 2 shows
the number of mentions and concepts in each situa-
tion. Table 3 displays the results of the zero-shot
and standard situation. The proposed model with
dictionary-matching features can classify disease
concepts in the zero-shot situation, whereas the
NN-based classification model cannot normalize
the disease names.

The results of the standard situation demonstrate
that combining dictionary-matching features also
improves the performance even when target con-
cepts appear in the training data. This finding im-
plies that an NN-based model can benefit from
dictionary-matching features, even if the models
can learn from many training data.

4.2 Case study

We examined 100 randomly sampled sentences to
determine the contributions of dictionary-matching
features. There are 32 samples in which the models
predicted concepts correctly by adding dictionary-
matching features. Most of these samples are dis-
ease concepts that do not appear in the training set
but appear in the dictionary. For example, “pure
red cell aplasis (MeSH: D012010)” is not in the
BC5CDR training set while the MEDIC contains
“Pure Red-Cell Aplasias” for “D012010”. In this
case, a high dictionary-matching score clearly leads
to a correct prediction in the zero-shot situation.

In contrast, there are 32 samples in which the
dictionary-matching features cause errors. The
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sources of this error type are typically general dis-
ease names in the MEDIC. For example, “Death
(MeSH:D003643)” is incorrectly predicted as a dis-
ease concept in NER. Because these words are also
used in the general context, our model overesti-
mated their dictionary-matching scores.

Furthermore, in the remaining samples, our
model predicted the code properly and the span in-
correctly. For example, although “thoracic hemato-
myelia” is labeled as “MeSH: D020758” in the
BC5CDR test set, our model recognized this as
“hematomyelia.” In this case, our model mostly
relied on the dictionary-matching features and mis-
classifies the span because ‘hematomyelia” is in
the MEDIC but not in the training data.

4.3 Limitations

Our model is inferior to the transition-based model
for BC5CDR. One possible reason is that the
transition-based model utilizes normalized terms
that co-occur within a sentence, whereas our model
does not. Certain disease names that co-occur
within a sentence are strongly useful for normaliz-
ing disease names. Although BERT implicitly con-
siders the interaction between disease names via
the attention mechanism, a more explicit method is
preferable for normalizing diseases.

Another limitation is that our model treats the
dictionary entries equally. Because certain terms
in the dictionary may also be used for non-disease
concepts, such as gene names, we must consider
the relative importance of each concept.

5 Conclusion

We proposed a end-to-end model for disease name
recognition and normalization that combines the
NN-based model with the dictionary-matching
features. Our model achieved highly compet-
itive results for the NCBI disease corpus and
BC5CDR corpus, demonstrating that incorporat-
ing dictionary-matching features into an NN-based
model can improve its performance. Further exper-
iments exhibited that dictionary-matching features
enable our model to accurately predict the con-
cepts in the zero-shot situation, and they are also
beneficial in the other situation. While the results
illustrate the effectiveness of our model, we found
several areas for improvement, such as the general
terms in the dictionary and the interaction between
disease names within a sentence. A possible future
direction to deal with general terms is to jointly

train the parameters representing the importance of
each synonyms.
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Abstract

We describe a simple procedure for the au-
tomatic creation of word-level alignments be-
tween printed documents and their respective
full-text versions. The procedure is unsuper-
vised, uses standard, off-the-shelf components
only, and reaches an F-score of 85.01 in the ba-
sic setup and up to 86.63 when using pre- and
post-processing. Potential areas of application
are manual database curation (incl. document
triage) and biomedical expression OCR.

1 Introduction

Even though most research literature in the life
sciences is born-digital nowadays, manual data
curation (International Society for Biocuration,
2018) from these documents still often involves
paper. For curation steps that require close read-
ing and markup of relevant sections, curators fre-
quently rely on paper printouts and highlighter pens
(Venkatesan et al., 2019). Figure 1a shows a page
of a typical document used for manual curation.
The potential reasons for this can be as varied as
merely sticking to a habit, ergonomic issues re-
lated to reading from and interacting with a device,
and functional limitations of that device (Buchanan
and Loizides, 2007; Köpper et al., 2016; Clinton,
2019).
Whatever the reason, the consequence is a two-fold
media break in many manual curation workflows:
first from electronic format (either PDF or full-text
XML) to paper, and then back from paper to the
electronic format of the curation database. Given
the above arguments in favor of paper-based cu-
ration, removing the first media break from the
curation workflow does not seem feasible. Instead,
we propose to bridge the gap between paper and
electronic media by automatically creating an align-
ment between the words on the printed document
pages and their counterparts in an electronic full-
text version of the same document.

Our approach works as follows: We automatically
create machine-readable versions of printed pa-
per documents (which might or might not contain
markup) by scanning them, applying optical char-
acter recognition (OCR), and converting the result-
ing semi-structured OCR output text into a flexi-
ble XML format for further processing. For this,
we use the multilevel XML format of the anno-
tation tool MMAX21 (Müller and Strube, 2006).
We retrieve electronic full-text counterparts of the
scanned paper documents from PubMedCentral®

in .nxml format2, and also convert them into
MMAX2 format. By using a shared XML for-
mat for the two heterogeneous text sources, we can
capture their content and structural information in
a way that provides a compatible, though often not
identical, word-level tokenization. Finally, using a
sequence alignment algorithm from bioinformatics
and some pre- and post-processing, we create a
word-level alignment of both documents.
Aligning words from OCR and full-text documents
is challenging for several reasons. The OCR out-
put contains various types of recognition errors,
many of which involve special symbols, Greek let-
ters like µ or sub- and superscript characters and
numbers, which are particularly frequent in chemi-
cal names, formulae, and measurement units, and
which are notoriously difficult for OCR (Ohyama
et al., 2019).
If the printed paper document is based on PDF,
it usually has an explicit page layout, which is
different from the way the corresponding full-text
XML document is displayed in a web browser. Dif-
ferences include double- vs. single-column layout,
but also the way in which tables and figures are
rendered and positioned.
Finally, printed papers might contain additional

1https://github.com/nlpAThits/MMAX2
2While PubMedCentral® is an obvious choice here, other

resources with different full-text data formats exist and can
also be used. All that needs to be modified is the conversion
step (see Section 2.2).
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content in headers or footers (like e.g. download
timestamps). Also, while the references/bibliogra-
phy section is an integral part of a printed paper
and will be covered by OCR, in XML documents
it is often structurally kept apart from the actual
document text.
Given these challenges, attempting data extraction
from document images if the documents are avail-
able in PDF or even full-text format may seem un-
reasonable. We see, however, the following useful
applications:
1. Manual Database Curation As mentioned
above, manual database curation requires the ex-
traction, normalization, and database insertion of
scientific content, often from paper documents.
Given a paper document in which a human expert
curator has manually marked a word or sequence of
words for insertion into the database, having a link
from these words to their electronic counterparts
can eliminate or at least reduce error-prone and
time-consuming steps like manual re-keying. Also,
already existing annotations of the electronic full-
text3 would also be accessible and could be used to
inform the curation decision or to supplement the
database entry.
2. Automatic PDF Highlighting for Manual
Triage Database curation candidate papers are
identified by a process called document triage
(Buchanan and Loizides, 2007; Hirschman et al.,
2012) which, despite some attempts towards au-
tomation (e.g. Wang et al. (2020)), remains a
mostly manual process. In a nut shell, triage nor-
mally involves querying a literature database (like
PubMed4) for specific terms, skimming the list of
search results, selecting and skim-reading some pa-
pers, and finally downloading and printing the PDF
versions of the most promising ones for curation
(Venkatesan et al., 2019). Here, the switch from
searching in the electronic full-text (or abstract) to
printing the PDF brings about a loss of information,
because the terms that caused the paper to be re-
trieved will have to be located again in the print-out.
A word-level alignment between the full-text and
the PDF version would allow to create an enhanced
version of the PDF with highlighted search term
occurrences before printing.
3. Biomedical Expression OCR Current state-of-
the-art OCR systems are very accurate at recog-
nizing standard text using Latin script and baseline

3Like https://europepmc.org/Annotations
4https://pubmed.ncbi.nlm.nih.gov/

typography, but, as already mentioned, they are less
reliable for more typographically complex expres-
sions like chemical formulae. In order to develop
specialized OCR systems for these types of expres-
sions, ground-truth data is required in which image
regions containing these expressions are labelled
with the correct characters and their positional in-
formation (see also Section 5). If aligned docu-
ments are available, this type of data can easily be
created at a large scale.

The remainder of this paper is structured as fol-
lows. In Section 2, we describe our data set and
how it was converted into the shared XML format.
Section 3 deals with the actual alignment proce-
dure, including a description of the optional pre-
and post-processing measures. In Section 4, we
present experiments in which we evaluate the per-
formance of the implemented procedure, including
an ablation of the effects of the individual pre- and
post-processing measures. Quantitative evaluation
alone, however, does not convey a realistic idea of
the actual usefulness of the procedure, which ulti-
mately needs to be evaluated in the context of real
applications including, but not limited to, database
curation. Section 4.2, therefore, briefly presents ex-
amples of the alignment and highlighting detection
functionality and the biomedical expression OCR
use case mentioned above. Section 5 discusses rel-
evant related work, and Section 6 summarizes and
concludes the paper with some future work.
All the tools and libraries we use are freely
available. In addition, our implementation
can be found at https://github.com/
nlpAThits/BioNLP2021.

2 Data

For the alignment of a paper document with its
electronic full-text counterpart, what is minimally
required is an image of every page of the docu-
ment, and a full-text XML file of the same docu-
ment. The document images can either be created
by scanning or by directly converting the corre-
sponding PDF into an image. The latter method
will probably yield images of a better quality, be-
cause it completely avoids the physical printing
and subsequent scanning step, while the output of
the former method will be more realistic. We ex-
periment with both types of images (see Section
2.1). We identify a document by its DOI, and re-
fer to the different versions as DOIxml (from the
full-text XML), DOIconv, and DOIscan. Whenever
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a distinction between DOIconv and DOIscan is not
required, we refer to these versions collectively as
DOIocr.
Printable PDF documents and their associated
.nxml files are readily available at PMC-OAI.5

In our case, however, printed paper versions were
already available, as we have access to a collec-
tion of more than 6.000 printed scientific papers
(approx. 30.000 pages in total) that were created
in the SABIO-RK6 Biochemical Reaction Kinetics
Database project (Wittig et al., 2017, 2018). These
papers contain manual highlighter markup at differ-
ent levels of granularity, including the word, line,
and section level. Transferring this type of markup
from printed paper to the electronic medium is
one of the key applications of our alignment proce-
dure. Our paper collection spans many publication
years and venues. For our experiments, however, it
was required that each document was freely avail-
able both as PubMedCentral® full-text XML and as
PDF. While this leaves only a fraction of (currently)
68 papers, the data situation is still sufficient to
demonstrate the feasibility of our procedure. Even
more importantly, the procedure is unsupervised,
i.e. it does not involve learning and does not require
any training data.

2.1 Document Image to Multilevel XML
Since we want to compare downstream effects of
input images of different quality, we created both
a converted and a scanned image version for every
document in our data set. For the DOIconv version,
we used pdftocairo to create a high-resolution
(600 DPI) PNG file for every PDF page. Figure 1c
shows an example. The DOIscan versions, on the
other hand, were extracted from ’sandwich’ PDFs
which had been created earlier by a professional
scanning service provider. The choice of a ser-
vice provider for this task was only motivated by
the large number of pages to process, and not by
expected quality or other considerations. A sand-
wich PDF contains, among other data, the docu-
ment plain text (as recognized by the provider’s
OCR software) and a background image for each
page. This background image is a by-product of
the OCR process in which pixels that were rec-
ognized as parts of a character are inpainted, i.e.
removed by being overwritten with colors of neigh-
bouring regions. Figure 1b shows the background

5https://www.ncbi.nlm.nih.gov/pmc/
tools/oai/

6http://sabio.h-its.org/

image corresponding to the page in Figure 1a. Note
how the image retains the highlighting. We used
pdfimages to extract the background images (72
DPI) from the sandwich PDF for use in highlight-
ing extraction (see Section 2.1.1 below). We refer
to these versions as DOIscan_bg. For the actual
DOIscan versions, we again used pdftocairo
to create a high-resolution (600 DPI) PNG file for
every scanned page.
OCR was then performed on the DOIconv and the
DOIscan versions with tesseract 4.1.17, using de-
fault recognition settings (-oem 3 -psm 3) and
specifying hOCR8 with character-level bounding
boxes as output format. In order to maximize
recognition accuracy (at the expense of process-
ing speed), the default language models for En-
glish were replaced with optimized LSTM mod-
els9. No other modification or re-training of tesser-
act was performed. In a final step, the hOCR out-
put from both image versions was converted into
the MMAX2 (Müller and Strube, 2006) multilevel
XML annotation format, using words as tokeniza-
tion granularity, and storing word- and character-
level confidence scores and bounding boxes as
MMAX2 attributes.10

2.1.1 Highlighting Detection

Highlighting detection and subsequent extraction
can be performed if the scanned paper documents
contain manual markup. In its current state, the
detection procedure described in the following re-
quires inpainted OCR background images which,
in our case, were produced by the third-party OCR
software used by the scanning service provider.
tesseract, on the other hand, does not produce these
images. While it would be desirable to employ
free software only, this fact does not severely limit
the usefulness of our procedure, because 1) other
software (either free or commercial) with the same
functionality might exist, and 2) even for document
collections of medium size, employing an exter-
nal service provider might be the most economical
solution even in academic / research settings, any-
way. What is more, inpainted backgrounds are only
required if highlighting detection is desired: For
text-only alignment, plain scans are sufficient.

7https://github.com/tesseract-ocr/
tesseract

8http://kba.cloud/hocr-spec/1.2/
9https://github.com/tesseract-ocr/

tessdata_best
10See the lower part of Figure A.1 in the Appendix.
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(a) DOIscan (b) DOIscan_bg (c) DOIconv

Figure 1: Three image renderings of the same document page: Scanned print-out w/ manual markup (a), back-
ground with markup only (b), and original PDF (c).

The actual highlighting extraction works as fol-
lows (see Müller et al. (2020) for details): Since
document highlighting comes mostly in strong col-
ors, which are characterized by large differences
among their three component values in the RGB
color model, we create a binarized version of each
page by going over all pixels in the background
image and setting each pixel to 1 if the pairwise
differences between the R, G, and B components
are above a certain threshold (50), and to 0 other-
wise. This yields an image with regions of higher
and lower density of black pixels. In the final step,
we iterate over the word-level tokens created from
the hOCR output and converted into MMAX2 for-
mat earlier, compute for each word its degree of
highlighting as the percentage of black pixels in
the word’s bounding box, and store that percent-
age value as another MMAX2 attribute if it is at
least 50%. An example result will be presented in
Section 4.2.

2.2 PMC® .nxml to Multilevel XML

The .nxml format employed for PubMedCentral®

full-text documents uses the JATS scheme11 which
supports a rich meta data model, only a fraction
of which is of interest for the current task. In
principle, however, all information contained
in JATS-conformant documents can also be
represented in the multilevel XML format of
MMAX2. The .nxml data provides precise infor-

11https://jats.nlm.nih.gov/archiving/

mation about both the textual content (including
correctly encoded special characters) and its word-
and section-level layout. At present, we only
extract content from the <article-meta>
section (<article-title>, <surname>,
<given-names>, <xref>, <email>,
<aff>, and <abstract>), and from the
<body> (<sec>, <p>, <tr>, <td>,
<label>, <caption>, and <title>).
These sections cover the entire textual content of
the document. We also extract the formatting tags
<italic>, <bold>, <underline>, and in
particular <sup> and <sub>. The latter two
play a crucial role in the chemical formulae and
other domain-specific expressions. Converting
the .nxml data to our MMAX2 format is
straightforward.12 In some cases, the .nxml files
contain embedded LaTex code in <tex-math>
tags. If this tag is encountered, its content is
processed as follows: LaTex Math encodings for
sub- and superscript, _{} and ˆ{}, are removed,
their content is extracted and re-inserted with
JATS-conformant <sub>...</sub> and
<sup>...</sup> elements. Then, the result-
ing LaTex-like string is sent through the detex
tool to remove any other markup. While this
obviously cannot handle layouts like e.g. fractions,
it still preserves many simpler expressions that
would otherwise be lost in the conversion.

12See the upper part of Figure A.1 in the Appendix.
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3 Outline of the Alignment Procedure

The actual word-level alignment of the DOIxml

version with the DOIocr version of a document op-
erates on lists of < token, id > tuples which are
created from each version’s MMAX2 annotation.
These lists are characterized by longer and shorter
stretches of tuples with matching tokens, which
just happen to start and end at different list indices.
These stretches are interrupted at times by (usually
shorter) sequences of tuples with non-matching to-
kens, which mostly exist as the result of OCR errors
(see below). Larger distances between stretches
of tuples with matching tokens, on the other hand,
can be caused by structural differences between
the DOIxml and the DOIocr version, which can re-
flect actual layout differences, but which can also
result from OCR errors like incorrectly joining two
adjacent lines from two columns.
The task of the alignment is to find the correct
mapping on the token level for as many tuples as
possible. We use the align.globalxx method
from the Bio.pairwise2 module of Biopython
(Cock et al., 2009), which provides pairwise se-
quence alignment using a dynamic programming
algorithm (Needleman and Wunsch, 1970). While
this library supports the definition of custom simi-
larity functions for minimizing the alignment cost,
we use the most simple version which just ap-
plies a binary (=identity) matching scheme, i.e. full
matches are scored as 1, all others as 0. This way,
we keep full control of the alignment, and can iden-
tify and locally fix non-matching sequences dur-
ing post-processing (cf. Section 3.2 below). The
result of the alignment (after optional pre- and
post-processing) is an n-to-m mapping between
< token, id > tuples from the DOIxml and the
DOIocr version of the same document.13

3.1 Pre-Processing
The main difference between pre- and post-
processing is that the former operates on two still
unrelated tuple lists of different lengths, while for
the latter the tuple lists have the same length due to
padding entries («GAP») that were inserted by the
alignment algorithm in order to bridge sequences
of non-alignable tokens. Pre-processing aims to
smooth out trivial mismatches and thus to help
alignment. Both pre- and post-processing, however,
only modify the tokens in DOIocr, but never those
in DOIxml, which are considered as gold-standard.

13See also the central part of Figure A.1 in the Appendix.

Pre-compress matching sequences
[pre_compress=p] The space complexity
of the Needleman-Wunsch algorithm is O(mn),
where m and n are the numbers of tuples in each
document. Given the length of some documents,
the memory consumption of the alignment can
quickly become critical. In order to reduce the
number of tuples to be compared, we apply a
simple pre-compression step which first identifies
sequences of p tuples (we use p = 20 in all
experiments) with perfectly identical tokens in
both documents, and then replaces them with
single tuples where the token and id part consist
of concatenations of the individual tokens and ids.
After the alignment, these compressed tuples are
expanded again.

While pre-compression was always performed, the
pre- and post-processing measures described in the
following are optional, and their individual effects
on the alignment will be evaluated in Section 4.1.

De-hyphenate DOIocr tokens [dehyp] Some-
times, words in the DOIocr versions are hyphen-
ated due to layout requirements which, in princi-
ple, do not exist in the DOIxml versions. These
words appear as three consecutive tuples with ei-
ther the ’-’ or ’¬’ token in the center tuple. For
de-hyphenation, we search the tokens in the tuple
list for DOIocr for single hyphen characters and
reconstruct the potential un-hyphenated word by
concatenating the tokens immediately before and
after the hyphen. If this word exists anywhere in
the list of DOIxml tokens, we simply substitute the
three original < token, id > DOIocr tuples with
one merged tuple. De-hyphenation (like all other
pre- and post-processing measures) is completely
lexicon-free, because the decision whether the un-
hyphenated word exists is only based on the content
of the DOIxml document.

Diverging tokenizations in the DOIxml and DOIocr
document versions are a common cause of local
mismatches. Assuming the tokenization in DOIxml

to be correct, tokenizations can be fixed by either
joining or splitting tokens in DOIocr.

Join incorrectly split DOIocr tokens
[pre_join] We apply a simple rule to de-
tect and join tokens that were incorrectly split
in DOIocr. We move a window of size 2 over
the list of DOIocr tuples and concatenate the two
tokens. We then iterate over all tokens in the
DOIxml version. If we find the reconstructed
word in a matching context (one immediately
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preceeding and following token), we replace, in
the DOIocr version, the first original tuple with the
concatenated one, assigning the concatenated ID
as new ID, and remove the second tuple from the
list. Consider the following example.

< phen , word_3084 >n

< yl , word_3085 >n+1

=⇒
< phenyl , word_3084+word_3085 >n

This process (and the following one) is repeated
until no more modifications can be performed.
Split incorrectly joined DOIocr tokens
[pre_split] In a similar fashion, we identify
and split incorrectly joined tokens. We move a
window of size 2 over the list of DOIxml tuples,
concatenate the two tokens, and try to locate a
corresponding single token, in a matching context,
in the list of DOIocr tuples. If found, we replace
the respective tuple in that list with two new tuples,
one with the first token from the DOIxml tuple and
one with the second one. Both tuples retain the ID
from the original DOIocr tuple. In the following
example, the correct tokenization separates the
trailing number 3 from the rest of the expression,
because it needs to be typeset in subscript in order
for the formula to be rendered correctly.

< KHSO3, word_3228 >n

=⇒
< KHSO, word_3228 >n

< 3 , word_3228 >n+1

3.2 Alignment Post-Processing
Force-align [post_force_align] The most
frequent post-processing involves cases where sin-
gle tokens of the same length and occurring in the
same context are not aligned automatically. In the
following, the left column contains the DOIocr and
the right the DOIxml tuples. In the first example,
the β was not correctly recognized and substituted
with a B. We identify force-align candidates like
these by looking for sequences of s consecutive
tuples with a «GAP» token in one list, followed by
a similar sequence of the same length in the other.
Then, if both the context and the number of charac-
ters matches, we force-align the two sequences.
<m e t a l l o , word_853> <m e t a l l o , word_546>
<− , word_854> <− , word_547>
<B , word_855> <<<GAP> > , −>
<<<GAP> > , −> < β , word_548>
<− , word_856> <− , word_549>
< l a c t a m a s e , word_857> < l a c t a m a s e , word_550>
=⇒
. . .
<B , word_855> < β , word_548>
. . .

For s = 2, force-align will also fix the following.
<ac id , word_1643> <ac id , word_997>
< , , word_1644> < , , word_998>
<1 t , word_1645> <<<GAP> > , −>
<1s , word_1646> <<<GAP> > , −>
<<<GAP> > , −> < i t , word_999>
<<<GAP> > , −> < i s , word_1000>
< p u r i f i e d , word_1647> < p u r i f i e d , word_1001>
<us ing , word_1648> <us ing , word_1002>
=⇒
. . .
<1 t , word_1645> < i t , word_999>
<1s , word_1646> < i s , word_1000>
. . .

4 Experiments

4.1 Quantitative Evaluation

We evaluate the system on our 68 DOIxml – DOIocr
document pair data set by computing P, R, and F
for the task of aligning tokens from DOIxml (the
gold-standard) to tokens in DOIocr. By defining
the evaluation task in this manner, we take into
account that the DOIocr version usually contains
more tokens, mostly because it includes the bib-
liography, which is generally not included in the
DOIxml version. Thus, an alignment is perfect if
every token in DOIxml is correctly aligned to a to-
ken in DOIocr, regardless of there being additional
tokens in DOIocr. In order to compute P and R,
the number of correct alignments (=TP) among all
alignments needs to be determined. Rather than in-
specting and checking all alignments manually, we
employ a simple heuristic: Given a pair of automat-
ically aligned tokens, we create two KWIC string
representations, KWICxml and KWICocr, with a
left and right context of 10 tokens each. Then,
we compute the normalized Levenshtein similar-
ity lsim between each pair ct1 and ct2 of left and
right contexts, respectively, as

1− levdist(ct1, ct2)/max(len(ct1), len(ct2))

We count the alignment as correct (=TP) if lsim
of both the two left and the two right contexts
is >= .50, and as incorrect (=FP) otherwise.14

The number of missed alignments (=FN) can be
computed by substracting the number of TP from
the number of all tokens in DOIxml. Based on
these counts, we compute precision (P), recall (R),
and F-score (F) in the standard way. Results are
provided in Table 1. For each parameter setting
(first column), there are two result columns with P,
R, and F each. The column DOIxml – DOIconv
contains alignment results for which OCR was

14Figure A.2 in the Appendix provides an example.
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Pre-/Post-Processing DOIxml – DOIconv DOIxml – DOIscan
P R F P R F

- 95.04 76.90 85.01 93.59 75.29 83.45
dehyp 94.91 77.47 85.31 93.48 75.96 83.81
pre 95.04 77.40 85.32 93.57 75.83 83.77
dehyp + pre 94.90 77.97 85.61 93.47 76.52 84.15
post_force_align 95.03 78.57 86.02 93.57 76.99 84.48
dehyp + post_force_align 94.91 79.17 86.32 93.47 77.69 84.86
pre + post_force_align 95.02 79.08 86.32 93.56 77.55 84.81
dehyp + pre + post_force_align 94.90 79.68 86.63 93.47 78.27 85.20

Table 1: Alignment Scores (micro-averaged, n=68). All results using pre_compress=20. Max. values in bold.

performed on the converted PDF pages, while re-
sults in column DOIxml – DOIscan are based on
scanned print-outs. Differences between these two
sets of results are due to the inferior quality of the
images used in the latter. The top row in Table
1 contains the result of using only the alignment
without any pre- or post-processing. Subsequent
rows show results for all possible combinations
of pre- and post-processing measures (cf. Section
3.1). Note that pre_split and pre_join are
not evaluated separately and appear combined as
pre. The first observation is that, for DOIxml

– DOIconv and DOIxml – DOIscan, precision is
very high, with max. values of 95.04 and 93.59,
respectively. This is a result of the rather strict
alignment method which will align two tokens
only if they are identical (rather than merely sim-
ilar). At the same time, precision is very stable
across experiments, i.e. indifferent to changes in
pre- and post-processing. This is because, as de-
scribed in Section 3.1, pre- and post-processing
exclusively aim to improve recall by either smooth-
ing out trivial mismatches before alignment, or
adding missing alignments afterwards. In fact, pre-
and post-processing actually introduce precision
errors, since they relax this alignment condition
somewhat: This is evident in the fact that the two
top precision scores result from the setup with no
pre- or post-processing at all, and even though the
differences across experiments are extremly small,
the pattern is still clear. Table 1 also shows the
intended positive effect of the different pre- and
post-processing measures on recall. Without going
into much detail, we can state the following: For
DOIxml – DOIconv and DOIxml – DOIscan, the
lowest recall results from the setup without pre- or
post-processing. When pre- and post-processing
measures are added, recall increases constantly, at
the expense of small drops in precision. However,
the positive effect consistently outweighs the neg-
ative, causing the F-score to increase to a max.

score of 86.63 and 85.20, respectively, when all
pre- and post-processing measures are used. Fi-
nally, as expected, the inferior quality of the data in
DOIscan as compared to DOIconv is nicely reflected
in consistently lower scores across all measure-
ments. The absolute differences, however, are very
small, amounting to only about 1.5 points. This
might be taken to indicate that converted (rather
than printed and scanned) PDF documents can be
functionally equivalent as input for tasks like OCR
ground-truth data generation.

4.2 Qualitative Evaluation and Examples

This section complements the quantitative evalu-
ation with some illustrative examples. Figure 2
shows two screenshots in which DOIscan (left) and
DOIxml (right) are displayed in the MMAX2 anno-
tation tool. The left image shows that the off-the-
shelf text recognition accuracy of tesseract is very
good for standard text, but lacking, as expected,
when it comes to recognising special characters and
subscripts (like µ, ZnCl2, or kobs in the example).
For the highlighting detection, the yellow text back-
ground was chosen as visualization in MMAX2 in
order to mimick the physical highlighting of the
printed paper. Note that since the highlighting de-
tection is based on layout position only (and not
anchored to text), manually highlighted text is rec-
ognized as highlighted regardless of whether the
actual underlying text is recognized correctly. The
right image shows the rendering of the correct text
extracted from the original PMC® full-text XML.
The rendering of the title as bold and underlined
is based on typographic information that was ex-
tracted at conversion time (cf. Section 2.2). The
same is true for the subscripts, which are correctly
rendered both in terms of the content and the po-
sition. Table 2 displays a different type of result,
i.e. a small selection of a much larger set of OCR
errors with their respective images and the correct
recognition result. This data, automatically identi-
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Figure 2: DOIscan document with automatically detected, overlayed highlighting (left). DOIxml with highlighting
transferred from automatically aligned DOIscan document (right).

fied by the alignment post-processing, is a valuable
resource for the development of biomedical expres-
sion OCR systems.

Image OCR PMC®

Agyg5 ∆ε265

“UM µM
kyps kobs
7 + 1 7± 1

DH50 DH5α
Table 2: Examples of image snippets (left) with incor-
rect (middle) and correct (right) text representation.

5 Related Work

The work in this paper is obviously related to au-
tomatic text alignment, with the difference that
what is mostly done there is the alignment of texts
in different languages (i.e. bi-lingual alignment).
Gale and Church (1993) align not words but entire

sentences from two languages based on statistical
properties. Even if words were aligned, alignment
candidates in bi-lingual corpora are not identified
on the basis of simple matching, with the exception
of language-independent tokens like e.g. proper
names.

Scanning and OCR is also often applied to histori-
cal documents, which are only available in paper
(Hill and Hengchen, 2019; van Strien et al., 2020;
Schaefer and Neudecker, 2020). Here, OCR post-
correction attempts to map words with word- and
character-level OCR errors (similar to those found
in our DOIocr data) to their correct variants, but it
does so by using general language models and dic-
tionaries, and not an aligned correct version. Many
of the above approaches have in common that they
employ specialized OCR models and often ML/DL
models of considerable complexity.

The idea of using an electronic and a paper version
of the same document for creating a character-
level alignment dates back at least to Kanungo and
Haralick (1999), who worked on OCR ground-truth
data generation. Like most later methods, the pro-
cedure of Kanungo and Haralick (1999) works on
the graphical level, as opposed to the textual level.
Kanungo and Haralick (1999) use LaTex to cre-
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ate what they call ’ideal document images’ with
controlled content. Print-outs of these images are
created, which are then photocopied and scanned,
yielding slightly noisy and skewed variants of the
’ideal’ images. Then, corresponding feature points
in both images are identified, and a projective trans-
formation between these is computed. Finally, the
actual ground-truth data is generated by applying
this transformation for aligning the bounding boxes
in the ideal images to their correspondences in
the scanned images. Since Kanungo and Haralick
(1999) have full control over the content of their
’ideal document images’, extracting the ground-
truth character data is trivial. The approach of
van Beusekom et al. (2008) is similar to that of
Kanungo and Haralick (1999), but the former use
more sophisticated methods, including Canny edge
detection (Canny, 1986) for finding corresponding
sections in images of the original and the scanned
document, and RAST (Breuel, 2001) for doing the
actual alignment. Another difference is that van
Beusekom et al. (2008) use pre-existing PDF docu-
ments as the source documents from which ground-
truth data is to be extracted. Interestingly, however,
their experiments only use synthetic ground-truth
data from the UW3 data set15, in which bounding
boxes and the contained characters are explicitly
encoded. In their conclusion, van Beusekom et al.
(2008) concede that extracting ground-truth data
from PDF is a non-trivial task in itself. Ahmed et al.
(2016) work on automatic ground-truth data genera-
tion for camera-captured document images, which
they claim pose different problems than document
images created by scanning, like e.g. blur, perspec-
tive distortion, and varying lighting. Their proce-
dure, however, is similar to that of van Beusekom
et al. (2008). They also use pre-existing PDF docu-
ments and automatically rendered 300 DPI images
of these documents.

6 Conclusions

In this paper, we described a completely unsuper-
vised procedure for automatically aligning printed
paper documents with their electronic full-text
counterparts. Our point of departure and main
motivation was the idea to alleviate the effect of
the paper-to-electronic media break in manual
biocuration, where printed paper is still very pop-
ular when it comes to close reading and manual

15http://tc11.cvc.uab.es/datasets/
DFKI-TGT-2010_1

markup. We also argued that the related task of
document triage can benefit from the availability
of alignments between electronic full-text docu-
ments (as retrieved from a literature database) and
the corresponding PDF documents. Apart from
this, we identified yet another field of application,
biomedical expression OCR, which can benefit
from ground-truth data which can automatically
be generated with our procedure. Improvements in
biomedical expression OCR, then, can feed back
into the other use cases, by improving the OCR
step and thus the alignment, thus potentially estab-
lishing a kind of bootstrapping development. Our
implementation relies on tried and tested technol-
ogy, including tesseract as off-the-shelf OCR com-
ponent, Biopython for the alignment, and MMAX2
as visualization and data processing platform. The
most computationally complex part is the actual
sequence alignment with a dynamic programming
algorithm from the Biopython library, which we
keep tractable even for longer documents by using
a simple pre-compression method. The main exper-
imental finding of this paper is that our approach,
although very simple, yields a level of performance
that we consider suitable for practical applications.
In quantitative terms, the procedure reaches a very
good F-score of 86.63 on converted and 85.20 on
printed and scanned PDF documents, with corre-
sponding precision scores of 94.90 and 93.47, re-
spectively. The negligible difference in results be-
tween the two types of images is interesting, as it
seems to indicate that converted PDF documents,
which are very easy to generate in large amounts,
are almost equivalent to the more labour-intensive
scans. In future work, we plan to implement solu-
tions for the identified use cases, and to test them
in actual biocuration settings. Also, we will start
creating OCR ground-truth data at a larger scale,
and apply that for the development of specialised
tools for biomedical OCR. In the long run, proce-
dures like the one presented in this paper might
contribute to the development of systems that sup-
port curators to work in a more natural, practical,
convenient, and efficient way.
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Appendix

Figure A.1: Conversion and alignment data model. Top: Full-text and markup (subscript, superscript)
is extracted from .nxml documents. Each content token is associated with an alignment token (solid blue boxes).
Bottom: Text and meta-data is extracted from the OCR result of scanned document pages. Meta-data includes
bounding boxes, which link the recognized text to image regions, and numerical recognition scores, which reflect
the confidence with which the OCR system recognized the respective token. (Not all meta-data is given in the
Figure to avoid clutter.)
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Figure A.2: Sample output of the KWIC-based alignment evaluation procedure (context size = 10 tokens (left and
right)). In each pair of lines, the top line comes from DOIocr, the bottom line from DOIxml. Pairs are labeled as
TP (correctly aligned) if the normalized Levenshtein similarity of both the left and the right context strings (given
in parentheses) is above 0.5.
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Abstract

Pretrained language models have shown suc-
cess in many natural language processing
tasks. Many works explore incorporat-
ing knowledge into language models. In
the biomedical domain, experts have taken
decades of effort on building large-scale
knowledge bases. For example, the Unified
Medical Language System (UMLS) contains
millions of entities with their synonyms and
defines hundreds of relations among entities.
Leveraging this knowledge can benefit a va-
riety of downstream tasks such as named en-
tity recognition and relation extraction. To this
end, we propose KeBioLM, a biomedical pre-
trained language model that explicitly lever-
ages knowledge from the UMLS knowledge
bases. Specifically, we extract entities from
PubMed abstracts and link them to UMLS. We
then train a knowledge-aware language model
that firstly applies a text-only encoding layer
to learn entity representation and applies a
text-entity fusion encoding to aggregate entity
representation. Besides, we add two training
objectives as entity detection and entity link-
ing. Experiments on the named entity recogni-
tion and relation extraction from the BLURB
benchmark demonstrate the effectiveness of
our approach. Further analysis on a collected
probing dataset shows that our model has bet-
ter ability to model medical knowledge.

1 Introduction

Large-scale pretrained language models (PLMs)
are proved to be effective in many natural language
processing (NLP) tasks (Peters et al., 2018; Devlin
et al., 2019). However, there are still many works
that explore multiple strategies to improve the
PLMs. Firstly, in specialized domains (i.e biomedi-
cal domain), many works demonstrate that using in-
domain text (i.e. PubMed and MIMIC for biomedi-
cal domain) can further improve downstream tasks

∗ Work done at Alibaba DAMO Academy.
† Corresponding author.

… treated with glycerin show reduced inflammation after 2 hours.

C0011603 
dermatitis

C0017861
1,2,3-Propanetriol

R176722500
(C0017861, may_prevent, C0011603)

Figure 1: An example of the biomedical sentence.
Two entities “glycerin” and “inflammation” are linked
to C0017861 (1,2,3-Propanetriol) and C0011603 (der-
matitis) respectively with a relation triplet (C0017861,
may_prevent, C0011603) in UMLS.

over general-domain PLMs (Lee et al., 2020; Peng
et al., 2019; Gu et al., 2020; Shin et al., 2020; Lewis
et al., 2020; Beltagy et al., 2019; Alsentzer et al.,
2019). Secondly, unlike training language models
(LMs) with unlabeled text, many works explore
training the model with structural knowledge (i.e.
triplets and facts) for better language understand-
ing (Zhang et al., 2019; Peters et al., 2019; Févry
et al., 2020; Wang et al., 2019). In this work, we
propose to combine the above two strategies for a
better Knowledge enhanced Biomedical pretrained
Language Model (KeBioLM).

As an applied discipline that needs a lot of facts
and evidence, the biomedical and clinical fields
have accumulated data and knowledge from a very
early age (Ashburner et al., 2000; Stearns et al.,
2001). One of the most representative work is Uni-
fied Medical Language System (UMLS) (Boden-
reider, 2004) that contains more than 4M entities
with their synonyms and defines over 900 kinds of
relations. Figure 1 shows an example. There are
two entities “glycerin” and “inflammation” that
can be linked to C0017861 (1,2,3-Propanetriol)
and C0011603 (dermatitis) respectively with a
may_prevent relation in UMLS. As the most impor-
tant facts in biomedical text, entities and relations
can provide information for better text understand-
ing (Xu et al., 2018; Yuan et al., 2020).

To this end, we propose to improve biomedical
PLMs with explicit knowledge modeling. Firstly,
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we process the PubMed text to link entities to the
knowledge base. We apply an entity recognition
and linking tool ScispaCy (Neumann et al., 2019)
to annotate 660M entities in 3.5M documents. Sec-
ondly, we implement a knowledge enhanced lan-
guage model based on Févry et al. (2020), which
performs a text-only encoding and a text-entity fu-
sion encoding. Text-only encoding is responsible
for bridging text and entities. Text-entity fusion
encoding fuses information from tokens and knowl-
edge from entities. Finally, two objectives as entity
extraction and linking are added to learn better en-
tity representations. To be noticed, we initialize
the entity embeddings with TransE (Bordes et al.,
2013), which leverages not only entity but also
relation information of the knowledge graph.

We conduct experiments on the named entity
recognition (NER) and relation extraction (RE)
tasks in the BLURB benchmark dataset. Results
show that our KeBioLM outperforms the previous
work with average scores of 87.1 and 81.2 on 5
NER datasets and 3 RE datasets respectively. Fur-
thermore, our KeBioLM also achieves better per-
formance in a probing task that requires models to
fill the masked entity in UMLS triplets.

We summary our contributions as follows1:

• We propose KeBioLM, a biomedical pre-
trained language model that explicitly incor-
porates knowledge from UMLS.

• We conduct experiments on 5 NER datasets
and 3 RE datasets. Results demonstrate that
our KeBioLM achieves the best performance
on both NER and RE tasks.

• We collect a cloze-style probing dataset from
UMLS relation triplets. The probing results
show that our KeBioLM absorbs more knowl-
edge than other biomedical PLMs.

2 Related Work

2.1 Biomedical PLMs

Models like ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019) show the effectiveness of the
paradigm of first pre-training an LM on the unla-
beled text then fine-tuning the model on the down-
stream NLP tasks. However, direct application of
the LMs pre-trained on the encyclopedia and web

1Our codes and model can be found at https://
github.com/GanjinZero/KeBioLM.

text usually fails on the biomedical domain, be-
cause of the distinctive terminologies and idioms.

The gap between general and biomedical do-
mains inspires the researchers to propose LMs
specially tailored for the biomedical domain.
BioBERT (Lee et al., 2020) is the most widely
used biomedical PLM which is trained on PubMed
abstracts and PMC articles. It outperforms vanilla
BERT in named entity recognition, relation extrac-
tion, and question answering tasks. Jin et al. (2019)
train BioELMo with PubMed abstracts, and find
features extracted by BioELMo contain entity-type
and relational information. Different training cor-
pora have been used for enhancing performance of
sub-domain tasks. ClinicalBERT (Alsentzer et al.,
2019), BlueBERT (Peng et al., 2019) and bio-lm
(Lewis et al., 2020) utilize clinical notes MIMIC to
improve clinical-related downstream tasks. SciB-
ERT (Beltagy et al., 2019) uses papers from the
biomedical and computer science domain as train-
ing corpora with a new vocabulary. KeBioLM is
trained on PubMed abstracts to adapt to PubMed-
related downstream tasks.

To understand the factors in pretraining biomed-
ical LMs, Gu et al. (2020) study pretraining tech-
niques systematically and propose PubMedBERT
pretrained from scratch with an in-domain vocab-
ulary. Lewis et al. (2020) also find using an in-
domain vocabulary enhances the downstream per-
formances. This inspires us to utilize the in-domain
vocabulary for KeBioLM.

2.2 Knowledge-enhanced LMs

LMs like ELMo and BERT are trained to predict
correlation between tokens, ignoring the meanings
behind them. To capture both the textual and con-
ceptual information, several knowledge-enhanced
PLMs are proposed.

Entities are used for bridging tokens and knowl-
edge graphs. Zhang et al. (2019) align tokens
and entities within sentences, and aggregate to-
ken and entity representations via two multi-head
self-attentions. KnowBert (Peters et al., 2019) and
Entity as Experts (EAE) (Févry et al., 2020) use
the entity linker to perform entity disambiguation
for candidate entity spans and enhance token rep-
resentations using entity embeddings. Inspired by
entity-enhanced PLMs, we follow the model of
EAE to inject biomedical knowledge into KeBi-
oLM by performing entity detection and linking.

Relation triplets provide intrinsic knowledge be-
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tween entity pairs. KEPLER (Wang et al., 2019)
learns the knowledge embeddings through rela-
tion triplets while pretraining. K-BERT (Liu et al.,
2020) converts input sentences into sentence trees
by relation triplets to infuse knowledge.

In the biomedical domain, He et al. (2020) in-
ject disease knowledge to existing PLMs by pre-
dicting diseases names and aspects on Wikipedia
passages. Michalopoulos et al. (2020) use UMLS
synonyms to supervise masked language modeling.
We propose KeBioLM to infuse various kinds of
biomedical knowledge from UMLS including but
not limited to diseases.

3 Approach

In this paper, we assume to access an entity set
E = {e1, ..., et}. For a sentence x = {x1, ..., xn},
we assume some spans m = (xi, ..., xj) can be
grounded to one or more entities in E . We further
assume the disjuncture of these spans. In this paper,
we use UMLS to set the entity set.

3.1 Model Architecture
To explicitly model both the textual and conceptual
information, we follow Févry et al. (2020) and use
a multi-layer self-attention network to encode both
the text and entities. The model can be viewed as
building the links between text and entities in the
lower layers and fusing the text and entity represen-
tation in the upper layers. The overall architecture
is shown in Figure 2. To be more specific, we set
the PubMedBERT (Gu et al., 2020) as our back-
bone. We split the layers of the backbone into
two groups, performing a text-only encoding and
text-entity fusion encoding respectively.

Text-only encoding. For the first group, which
is closer to the input, we extract the final hidden
states and perform a token-wise classification to
identify if the token is at the beginning, inside, or
outside of a mention (i.e., the BIO scheme). The
probabilities of the B/I/O label {li} are written as:

h1, ...,hn = Transformers0(x1, ..., xn) (1)

p(li | x) = softmax(Wlhi + bl) (2)

After identifying the mention boundary, we main-
tain a functionM(i)→ E ∪ {NIL}, which returns
the entity of the i-th token belongs.2 We collect
the mentions with a sentence x. For a mention
m = (s, t), where s and t represents the starting

2NIL is returned when there is no entity being matched.

and ending indexes of m, we encode it as the con-
catenation of hidden states of the boundary tokens
hm = [hs;ht].

For an entity ej ∈ E in the KG, we denote its en-
tity embedding as ej . For a mention m, we search
the k nearest entities of its projected representa-
tion h′m = Wmhm + bm in the entity embedding
space, obtaining a set of entities E ′. The normal-
ized similarity between h′m and ej is calculated as

aj =
exp(h′m · ej)∑

ek∈E ′ exp(h
′
m · ek)

(3)

The additional entity representation e′m of m is
calculated as a weighted sum of the embeddings
e′m =

∑
ej∈E ′ aj · ej .

Text-entity fusion encoding. After getting the
mentions and entities, we fuse the entity embed-
dings with the text embedding by summation. For
the i-th token, the entity-enhanced embedding is
calculated as:

h∗i =

{
hi + (Wee

′
m + be) , ∃m,M(i) = m,

hi, otherwise.
(4)

M(i) = m represents the i-th token belong to en-
tity em. The sequence of h∗1, ...,h

∗
n is then fed into

the second group of transformer layers to generate
text-entity representations. The final hidden states
hf
i are calculated as:

hf
1 , ...,h

f
n = Transformers1(h∗1, ...,h

∗
n) (5)

3.2 Pretraining Tasks
We have three pretraining tasks for KeBioLM.
Masked language modeling is a cloze-style task
for predicting masked tokens. Since the entities are
the main focus of our model, we add two tasks as
entity detection and linking respectively following
Févry et al. (2020). Finally, we jointly minimize
the following loss:

L = LMLM + LED + LEL (6)

Masked Language Modeling Like BERT and
other LMs, we predict the masked tokens {xi} in
inputs using the final hidden representations {hf

i }.
The loss LMLM is calculated based on the cross-
entropy of masked and predicted tokens:

pM (xi | x) = softmax(Wmhf
i + bm) (7)

LMLM =
∑
− log pM (xi | x) (8)
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Figure 2: The overall architecture of KeBioLM.

Whole word masking is successful in training
masked language models (Devlin et al., 2019; Cui
et al., 2019). In the biomedical domain, entities are
the semantic units of texts. Therefore, we extend
this technique to whole entity masking. We mask
all tokens within a word or entity span. KeBioLM
replaces 12% of tokens to [MASK] and 1.5% to-
kens to random tokens. This is more difficult for
models to recover tokens, which leads to learning
better entity representations.

Entity Detection Entity detection is an impor-
tant task in biomedical NLP to link the tokens to
entities. Thus, We add an entity detection loss by
calculating the cross-entropy for BIO labels:

LED =
n∑

i=1

− log p(li | x) (9)

Entity Linking One medical entity in different
names linking to the same index permits the model
to learn better text-entity representations. To link
mention {m} in texts with entities {e} in entity
set E , we calculate the cross-entropy loss using
similarities between {h′m} and entities in E :

LEL =
∑
− log

exp(h′m · e)∑
ej∈E exp(h

′
m · ej)

(10)

3.3 Data Creation
Given a sentence S from PubMed content, we need
to recognize entities and link them to the UMLS

knowledge base. We use ScispaCy (Neumann et al.,
2019), a robust biomedical NER and entity linking
model, to annotate the sentence. Unlike previous
work (Vashishth et al., 2020) that only retains rec-
ognized entities in a subset of Medical Subject
Headings (MeSH) (Lipscomb, 2000), we relax the
restriction to annotate all entities to UMLS 2020
AA release 3 whose linking scores are higher than
a threshold of 0.85.

4 Experiments

In this section, we first introduce the pretraining de-
tails of KeBioLM. Then we introduce the BLURB
datasets for evaluating our approach. Finally, we
introduce a probing dataset based on UMLS triplets
for evaluating knowledge modeling.

4.1 Pretraining Details

We use ScispaCy to acquire 477K CUIs and 660M
entities among 3.5M PubMed documents4 from
PubMedDS dataset (Vashishth et al., 2020) as train-
ing corpora.

We initialize entity embeddings by TransE (Bor-
des et al., 2013) which learns embeddings from re-
lation triplets. Relation triplets come from UMLS

3https://www.nlm.nih.gov/research/
umls/licensedcontent/umlsarchives04.
html#2020AA

4The count of documents in PubMedDS is based on
https://arxiv.org/pdf/2005.00460v1.pdf.
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#Train #Dev #Test #Ments
#Ments
(UMLS)

#Ments
(KeBioLM)

BC5chem 5,203 5,347 5,385 15,935 10,373 8,993
BC5dis 4,182 4,244 4,424 12,850 8,846 3,878
NCBI 5,137 787 960 6,884 1,985 1,091
BC2GM 15,197 3,061 6,325 24,583 2,808 2,423
JNLPBA 46,750 4,551 8,662 59,963 6,099 5,233
ChemProt 18,035 11,268 15,745 39,022 13,106 10,772
DDI 25,296 2,496 5,716 15,738 10,429 9,212
GAD 4,261 535 534 - - -

Table 1: The training instances (mentions for NER tasks and sentences with two entities for RE tasks) and the
mention counts of NER and RE datasets preprocessed in BLURB benchmark respectively. The mention counts
overlapping with UMLS 2020 AA release and KeBioLM are also listed. For the GAD dataset, annotated mentions
do not appear in the BLURB preprocessed version.

2020 AA release. We train TransE with the L2-
norm distance function and set embedding dim to
100. Adam (Kingma and Ba, 2014) is used as the
optimizer with a learning rate of 1e-3, batch size
of 2048, and train epoch of 30. Entity embeddings
add 45.5M parameters to KeBioLM.

The parameters of transformers in KeBioLM are
initialized from the checkpoint of PubMedBERT.
We also use the vocabulary from PubMedBERT.
AdamW (Loshchilov and Hutter, 2017) is used
as the optimizer for KeBioLM with 10,000 steps
warmup and linear decay. We use an 8-layer trans-
former for text-only encoding and a 4-layer trans-
former for text-entity fusion encoding. We set the
learning rate to 5e-5, batch size to 512, max se-
quence length to 512, and training epochs to 2.
For each input sequence, we limit the max entities
count to 50 and the excessive entities will be trun-
cated. To generate entity representation e′m, the
most k = 100 similar entities are used. We train
our model with 8 NVIDIA 16GB V100 GPUs.

4.2 Datasets

In this section, we evaluate KeBioLM on NER
tasks and RE tasks of the BLURB benchmark5

(Gu et al., 2020). For all tasks, we use the pre-
processed version from BLURB. We measure the
NER and RE datasets in terms of F1-score. Table 1
shows the counts of training instances in BLURB
datasets (i.e., annotated mentions for NER datasets
and sentences with two mentions for RE datasets).
We also report the count of annotated mentions
overlapping with the UMLS 2020 release and Ke-
BioLM in each dataset. The percentage of men-

5https://microsoft.github.io/BLURB/

tions overlapping with KeBioLM ranges from 8.7%
(NCBI-disease) to 58.5% (DDI) which indicates
that KeBioLM learns entity knowledge related to
downstream tasks.

4.2.1 Named Entity Recognition
BC5-chem & BC5-disease (Li et al., 2016) con-
tain 1500 PubMed abstracts for extracting chemical
and disease entities respectively.

NCBI-disease (Doğan et al., 2014) includes 793
PubMed abstracts to detect disease entities.

BC2GM (Smith et al., 2008) contains 20K
PubMed sentences to extract gene entities.

JNLPBA (Collier and Kim, 2004) includes
2,000 PubMed abstracts to identify molecular
biology-related entities. We ignore entity types
in JNLPBA following Gu et al. (2020).

4.2.2 Relation Extraction
ChemProt (Krallinger et al., 2017) classifies the
relation between chemicals and proteins within sen-
tences from PubMed abstracts. Sentences are clas-
sified into 6 classes including a negative class.

DDI (Herrero-Zazo et al., 2013) is a RE dataset
with sentence-level drug-drug relation on PubMed
abstracts. There are four classes for relation: ad-
vice, effect, mechanism, and false.

GAD (Bravo et al., 2015) is a gene-disease re-
lation binary classification dataset collected from
PubMed sentences.

4.3 Fine-tuning Details
NER We follow Gu et al. (2020) to formulate
NER tasks as sequential labeling tasks with the
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Bio-
BERT

Sci-
BERT

Clinical-
BERT

Blue-
BERT

disease-
BERT

bio-
lm†

PubMed-
BERT

KeBio-
LM

BC5chem 92.9 92.5 90.8 91.2 - 92.9 93.3 93.3±0.2
BC5dis 84.7 84.5 83.0 83.7 86.5 83.8 85.6 86.1±0.3∗
NCBI 89.1 88.1 88.3 88.0 87.1 87.7 87.8 89.1±0.3∗
BC2GM 83.8 83.4 81.7 81.9 - 87.0 84.5 85.1±1.6
JNLPBA 79.4 79.5 78.6 78.7 - 80.6 80.1 82.0±0.2∗
NER 86.0 85.6 84.5 84.7 - 86.4 86.3 87.1±0.3∗
ChemProt 76.1 75.2 72.0 71.5 - 75.4 77.2 77.5±0.3∗
DDI 80.9 81.1 78.2 77.8 - 81.0 82.4 81.9±0.8
GAD 80.9 80.9 78.4 77.2 - 82.2 82.3 84.3±1.0∗
RE 79.3 79.1 76.2 75.5 - 79.5 80.6 81.2±0.5∗

Table 2: F1-scores on NER and RE tasks in BLURB benchmark. Standard deviations of KeBioLM are reported
across five runs. Results of diseaseBERT-biobert and bio-lm come from their corresponded papers. Others are
copied from BLURB. * indicates that p ≤ 0.05 of one-sample t-test which compares whether the mean perfor-
mance of KeBioLM is better than PubMedBERT. † Bio-lm applies different metrics with BLURB (micro F1 v.s.
macro F1). Thus, we just list its results but do not directly compare with them.

BIO tagging scheme and ignore the entity types in
NER datasets. We classify labels of tokens by a
linear layer on top of the hidden representations.

RE We replace the entity mentions in RE
datasets with entity indicators like @DISEASE$ or
@GENE$ to avoid models classifying relations by
memorizing entity names. We add these entity indi-
cators into the vocabulary of LMs. We concatenate
the representation of two concerned entities and
feed it into a linear layer for relation classification.

Parameters We adopt AdamW as the optimizer
with a 10% steps linear warmup and a linear de-
cay. We search the hyperparameters of learning
rate among 1e-5, 3e-5, and 5e-5. We fine-tune the
model for 60 epochs. We evaluate the model at the
end of each epoch and choose the best model ac-
cording to the evaluation score on the development
set. We set batch size as 16 when fine-tuning. The
maximal input lengths are 512 for all NER datasets.
We truncate ChemProt and DDI to 256 tokens, and
GAD to 128 tokens. To perform a fair comparison,
we fine-tune our model with 5 different seeds and
report the average score.

4.4 Results

We compare KeBioLM with following base-size
biomedical PLMs on the above-mentioned datasets:
BioBERT (Lee et al., 2020), SciBERT (Beltagy
et al., 2019), ClinicalBERT (Alsentzer et al., 2019),
BlueBERT (Peng et al., 2019), bio-lm (Lewis et al.,
2020), diseaseBERT (He et al., 2020), and Pub-

MedBERT (Gu et al., 2020) 6.
Table 2 shows the main results on NER and

RE datasets of the BLURB benchmark. In addi-
tion, we report the average scores for NER and
RE tasks respectively. KeBioLM achieves state-of-
the-art performance for NER and RE tasks. Com-
pared with the strong baseline BioBERT, KeBi-
oLM shows stable improvements in NER and RE
datasets (+1.1 in NER, +1.9 in RE). Compared
with our baseline model PubMedBERT, KeBioLM
performs significantly better in BC5dis, NCBI,
JNLPBA, ChemProt, and GAD (p ≤ 0.05 based
on one-sample t-test) and achieves better average
scores (+0.8 in NER, +0.6 in RE). DiseaseBERT is
a model carefully designed for predicting disease
names and aspects, which leads to better perfor-
mance in the BC5dis dataset (+0.4). They only re-
port the promising results in disease-related tasks,
however, our model obtains consistent promising
performances across all kinds of biomedical tasks.
In the BC2GM dataset, KeBioLM outperforms our
baseline model PubMedBERT and other PLMs
except for bio-lm, and the standard deviation of
the BC2GM task is evidently larger than other
tasks. Another exception is the DDI dataset, we ob-
serve a slight performance degradation compared
to PubMedBERT (-0.5). The average performances
demonstrate that fusing entity knowledge into the
LM boosts the performances across the board.

6We use BioBERT v1.1, SciBERT-scivocab-uncased, Bio-
ClinicalBERT, BlueBERT-pubmed-mimic, bio-lm(RoBERTa-
base-PM-M3-Voc), diseaseBERT-biobert and PubMedBERT-
abstract versions for comparison.
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KeBio-
LM -wem +rand +frz

BC5chem 93.3 92.8 92.8 92.3
BC5dis 86.1 85.9 85.5 85.5
NCBI 89.1 88.4 88.8 88.3
BC2GM 85.1 84.5 84.5 85.7
JNLPBA 82.0 81.5 81.9 81.8
NER 87.1 86.6 86.7 86.7
ChemProt 77.5 77.3 76.3 76.8
DDI 81.9 80.6 81.4 80.7
GAD 84.3 83.1 82.3 82.8
RE 81.2 80.3 80.0 80.1

Table 3: Ablation studies for KeBioLM architecture on
the BLURB benchmark. We use -wem, +rand and +frz
to represent pretraining setting (a), (b) and (c), respec-
tively.

4.5 Ablation Test

We conduct ablation tests to validate the effective-
ness of each part in KeBioLM. We pretrain the
model with the following settings and reuse the
same parameters described above: (a) Remove
whole entity masking and retain whole word mask-
ing while pretraining (-wem); (b) Initialize entity
embeddings randomly (+rand); (c) Initialize en-
tity embeddings by TransE and freeze the entity
embeddings while pretraining (+frz).

In Table 3, we observe the following results.
Firstly, comparing KeBioLM with setting (a) shows
that whole entity masking boosting the perfor-
mances consistently in all datasets (+0.5 in NER,
+0.9 in RE). Secondly, comparing KeBioLM with
setting (b) indicates initializing the entity embed-
dings randomly degrades performances in NER
tasks and RE tasks (-0.4 in NER, -1.2 in RE). En-
tity embeddings initialized by TransE utilize rela-
tion knowledge in UMLS and enhance the results.
Thirdly, freezing the entity embeddings in setting
(c) reduces the performances on all datasets com-
pared to KeBioLM except BC2GM (-0.4 in NER,
-1.1 in RE). This indicates that updating entity em-
bedding while pretraining helps KeBioLM to have
better text-entity representations, and this leads to
better downstream performances.

To evaluate how the count of transformer layers
affects our model, we pretrain KeBioLM with the
different number of layers. For the convenience of
notation, denote l0 is the layer count of text-only
encoding and l1 is the layer count of text-entity fu-
sion encoding. We have the following settings: (i)

l0 = 8
l1 = 4

l0 = 4
l1 = 8

l0 = 12
l1 = 0

BC5chem 93.3 93.1 93.2
BC5dis 86.1 85.7 86.0
NCBI 89.1 88.5 88.4
BC2GM 85.1 84.8 86.8
JNLPBA 82.0 81.7 78.8
NER 87.1 86.8 86.6
ChemProt 77.5 77.7 77.6
DDI 81.9 81.0 80.1
GAD 84.3 82.9 83.2
RE 81.2 80.5 80.3

Table 4: Ablation studies for transformer layers count
in KeBioLM on the BLURB benchmark.

l0 = 8, l1 = 4 (our base model), (ii)l0 = 4, l1 = 8,
(iii)l0 = 12, l1 = 0 (without the second group of
transformer layers, {hi} are used for token repre-
sentations). Results are shown in Table 4. Our base
model (i) has better performance than setting (ii)
(+0.3 in NER, +0.7 in RE). Training setting (iii) is
equal to a traditional BERT model with additional
entity extraction and entity linking tasks. The com-
parison with (i) and (iii) indicates that text-entity
representations have better performances than text-
only representations (+0.5 in NER, +0.9 in RE) in
the same amount of parameters.

4.6 UMLS Knowledge Probing
We establish a probing dataset based on UMLS
triplets to evaluate how LMs understand medical
knowledge via pretraining.

4.6.1 Probing Dataset
UMLS triplets are stored in the form of (s, r, o)
where s and o are CUIs in UMLS and r is a relation
type. We generate two queries for one triplet based
on names of CUIs and relation type:

• Q1: [CLS] s r [MASK] [SEP]

• Q2: [CLS] [MASK] r o [SEP]

For example, we sample a triplet and terms of
corresponded entities (C0048038:apraclonidine,
may_prevent, C0028840:ocular hypertension). We
remove the underscores of relation names and gen-
erate two queries (we omit [CLS] and [SEP]):

• Q1: apraclonidine may prevent [MASK].

• Q2: [MASK] may prevent ocular hyperten-
sion.
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#Queries #Relations #Avg. CUIs
143,771 922 2.39

Table 5: The number of generated UMLS relation prob-
ing dataset.

For relation names end with “of”, “as” , and “by”,
we add “is” in front of relation names. For in-
stance, translation_of is converted to is translation
of, classified_as is converted to is classified as, and
used_by is converted to is used by. Commonly,
different relation triplets can generate same query
since triplets may overlap (s, r,−) or (−, r, o) with
each other. We deduplicate all repeat queries and
randomly choose at most 200 queries from all rela-
tion types in UMLS. After deduplication, one query
can have multiple CUIs as answers. For example:

• Q: [MASK] may treat essential tremor.

• A1: C0282321: propranolol hydrochloride

• A2: C0033497: propranolol

We summarize our generated UMLS relation prob-
ing dataset in Table 5. Unlike LAMA (Petroni et al.,
2019) and X-FACTR (Jiang et al., 2020) that con-
tain less than 50 kinds of relation, our probing task
is a more difficult task requiring a model to decode
entities over 900 kinds of relations.

4.6.2 Multi [MASK] Decoding
To probe PLMs using generated queries, we re-
quire models to recover the masked tokens. Since
biomedical entities are usually formed by multiple
words and each word can be tokenized into several
wordpieces (Wu et al., 2016), models have to re-
cover multiple [MASK] tokens. We limit the max
length of one entity is 10 for decoding.

We decode the multi [MASK] tokens using the
confidence-based method described in Jiang et al.
(2020). We also implement a beam search for de-
coding. Unlike beam search in machine translation
that decodes tokens from left to right, we decode
tokens in an arbitrary order. For each step, we cal-
culate the probabilities of all undecoded masked
tokens based on original input and decoded tokens.
We predict only one token within undecoded to-
kens with the top B = 5 accumulated log probabil-
ities. Decoding will be accomplished after count
of [MASK] times iterations and we keep the best
B = 5 decoding results. We skip the refinement
stage since it is time-consuming and does not sig-
nificantly improve the results.

Type 1 Type 2 Overall
SciBERT 13.92 1.01 2.75
ClinicalBERT 4.19 0.33 0.79
BlueBERT 4.67 0.39 1.02
KeBioLM 14.01 1.48 3.26

Table 6: Results of the probing test in terms of Re-
call@5.

4.6.3 Evaluation Metric
Since multiple correct CUIs exist for one query,
we consider a model answering the query correctly
if any decoded tokens in any [MASK] length hit
any of the correct CUIs. We evaluate the probing
results by the relation-level macro-recall@5.

4.6.4 Probing Results
We classify probing queries into two types based on
their difficulties. Type 1: answers within queries
(24,260 queries); Type 2: answers not in queries
(119,511 queries). Here are examples of Type 1
(Q1 and A1) and Type 2 (Q2 and A2) queries:

• Q1: [MASK] has form tacrolimus monohy-
drate.

• A1: C0085149: tacrolimus

• Q2: cosyntropin may diagnose [MASK].

• A2: C0001614: adrenal cortex disease

Table 6 summarizes the probing results of differ-
ent PLMs according to query types. Checkpoints of
BioBERT and PubMedBERT miss a cls/predictions
layer and cannot perform the probe directly. Com-
pared to other PLMs, KeBioLM achieves the best
scores in both two types and obviously outperforms
BlueBERT and ClincalBERT with a large margin,
which indicates that KeBioLM learns more medical
knowledge.

Table 7 lists some probing examples. SciBERT
can decode medical entities for [MASK] tokens
which may be unrelated. KeBioLM decodes re-
lation correctly and is aware of the synonyms of
hepatic. KeBioLM states that Vaccination may
prevent tetanus which is a correct but not precise
statement.

5 Conclusions

In this paper, we propose to improve biomedical
pretrained language models with knowledge. We
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Query & Answer CUI SciBERT KeBioLM
omalizumab may treat [MASK] migraine asthma

C0004096: asthma the disease severe allergic asthma
phentolamine may diagnose [MASK] depression pheochromocytoma

C0031511: phaeochromocytoma the serotonin syndrome renovascular hypertension
[MASK] is noun form of hepatic it liver

C0023884: liver the form of hepatic hepatic only
[MASK] may prevent tetanus it vaccination

C0305062: tetanus toxoid bcg vaccination prophylactic tetanus vaccination

Table 7: Probing examples of UMLS relation triplets. Queries and answer CUIs are listed. We only list one
correct CUI for each query. For each model, one [MASK] token decoding result and an example of multi [MASK]
decoding result are displayed. Bold text represents a term of the answer CUI.

propose KeBioLM which applies text-only encod-
ing and text-entity fusion encoding and has two
additional entity-related pretraining tasks: entity
detection and entity linking. Extensive experiments
have shown that KeBioLM outperforms other
PLMs on NER and RE datasets of the BLURB
benchmark. We further probe biomedical PLMs
by querying UMLS relation triplets, which indi-
cates KeBioLM absorbs more biomedical knowl-
edge than others. In this work, we only leverage
the relation information in TransE to initialize the
entity embeddings. We will further investigate how
to directly incorporate the relation information into
LMs in the future.
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Abstract

Transformer-based neural language models
have led to breakthroughs for a variety of natu-
ral language processing (NLP) tasks. However,
most models are pretrained on general domain
data. We propose a methodology to produce a
model focused on the clinical domain: contin-
ued pretraining of a model with a broad repre-
sentation of biomedical terminology (PubMed-
BERT) on a clinical corpus along with a novel
entity-centric masking strategy to infuse do-
main knowledge in the learning process. We
show that such a model achieves superior re-
sults on clinical extraction tasks by compar-
ing our entity-centric masking strategy with
classic random masking on three clinical NLP
tasks: cross-domain negation detection (Wu
et al., 2014), document time relation (Doc-
TimeRel) classification (Lin et al., 2020b), and
temporal relation extraction (Wright-Bettner
et al., 2020). We also evaluate our models
on the PubMedQA(Jin et al., 2019) dataset to
measure the models’ performance on a non-
entity-centric task in the biomedical domain.
The language addressed in this work is En-
glish.

1 Introduction

Transformer-based neural language models, such
as BERT (Devlin et al., 2018), have achieved
state-of-the-art performance for a variety of nat-
ural language processing (NLP) tasks. Since most
are pre-trained on large general domain corpora,
many efforts have been made to continue pre-
taining general-domain language models on clini-
cal/biomedical corpora to derive domain-specific
language models (Lee et al., 2020; Alsentzer et al.,
2019; Beltagy et al., 2019).

Yet, as Gu et al. (2020a) pointed out, in special-
ized domains such as biomedicine, continued pre-
training from generic language models is inferior
to domain-specific pretraining from scratch. Con-
tinued pre-training from a generic model would

break down many of the domain specific terms
into sub-words through the Byte-Pair Encoding
(BPE) (Gage, 1994) or variants like WordPiece
tokenization (Wu et al., 2016) because these spe-
cific terms are not in the vocabulary of the generic
pretrained model. A clinical domain-specific pre-
training from scratch would derive an in-domain
vocabulary as many of the biomedical terms, such
as diseases, signs/symptoms, medications, anatom-
ical sites, procedures, would be represented in their
original form. Such an improved word-level rep-
resentation is expected to bring substantial perfor-
mance gains in clinical domain tasks because the
model would learn the characteristics of the term
along with its surrounding context as one unit.

In our preliminary work on a clinical rela-
tion extraction task, we observed a performance
gain with the PubMedBERT model (Gu et al.,
2020a) which outperformed BioBERT (Lee et al.,
2020), ClinicalBERT (Alsentzer et al., 2019), and
even some larger general domain models like
RoBERTa (Liu et al., 2019) and BART-large (Lewis
et al., 2019). The performance gain was primar-
ily attributed to PubMedBERT’s in-domain vo-
cabulary as we observed that PubMedBERT kept
30% more in-domain words in its vocabulary than
BERT. When we swapped PubMedBERT tokeniza-
tion with BERT or RoBERTa tokenization, the per-
formance of PubMedBERT degraded.

Thus, PubMedBERT appears to provide a vocab-
ulary that is helpful to the clinical domain. How-
ever, the language of biomedical literature is dif-
ferent from the language of the clinical documents
found in electronic medical records (EMRs). In
general, a clinical document is written by physi-
cians who have very limited time to express the
numerous details of a patient-physician encounter.
Many nonstandard expressions, abbreviations, as-
sumptions and domain knowledge are used in clini-
cal notes which makes the text hard to understand
outside of the clinical community and presents
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challenges for automated systems. Pretraining a
language model specific to the clinical domain re-
quires large amounts of unlabeled clinical text on
par with what the generic models are trained on.
Unfortunately, such data are not available to the
community. The only available such corpus is
MIMIC III used to train ClinicalBERT (Alsentzer
et al., 2019) and BlueBERT (Peng et al., 2019),
but it is magnitudes smaller and represents one
specialty in medicine – intensive care.

Pretraining is agnostic to downstream tasks: it
learns representations for all words using a self-
supervised data-rich task. Yet, not all words are
important for downstream fine-tuning tasks. Nu-
merous pretrained words are not even used in the
fine-tuning step, while important words crucial for
the downstream task are not well represented due
to insufficient amounts of labeled data. Many clini-
cal NLP tasks are centered around entities: clinical
named entity recognition aims to detect clinical en-
tities (Wu et al., 2017; Pradhan et al., 2014; Elhadad
et al., 2015), clinical negation extraction decides if
a certain clinical entity is negated (Chapman et al.,
2001; Harkema et al., 2009; Mehrabi et al., 2015),
clinical relation discovery extracts relations among
clinical entities (Lv et al., 2016; Leeuwenberg
and Moens, 2017), etc. Though various masking
strategies have been employed during pretraining
– masking contiguous spans of text (SpanBERT,
Joshi et al., 2020; BART, Lewis et al., 2019), vary-
ing masking ratios (Raffel et al., 2019), building
additional neural models to predict which words
to mask (Gu et al., 2020b), incorporating knowl-
edge graphs (Zhang et al., 2019), masking entities
for a named entity recognition task (Ziyadi et al.,
2020) – none of the masking techniques so far have
investigated and focused on clinical entities.

Besides transformer-based models, there are
other efforts (Beam et al., 2019; Chen et al., 2020)
to characterize the biomedical/clinical entities at
the word embedding level. There are also other
statistical methods applied to the downstream tasks.
We do not include these efforts in our discussion
because the focus of our paper is the investiga-
tion of a novel entity-based masking strategy in a
transformer-based setting.

In this paper, we propose a methodology to pro-
duce a model focused on clinical entities: contin-
ued pretraining of a model with a broad representa-
tion of biomedical terminology (the PubMedBERT
model) on a clinical corpus, along with a novel

entity-centric masking strategy to infuse domain
knowledge in the learning process1. We show that
such a model achieves superior results on clinical
extraction tasks by comparing our entity-centric
masking strategy with classic random masking on
three clinical NLP tasks: cross-domain negation de-
tetction (Wu et al., 2014), document time relation
(DocTimeRel) classification (Lin et al., 2020b), and
temporal relation extraction (Wright-Bettner et al.,
2020).

The contributions of this paper are: (1) a contin-
ued pretraining methodology for clinical domain
specific neural language models, (2) a novel entity-
centric masking strategy to infuse domain specific
knowledge, (3) evaluation of the proposed strate-
gies on three clinical tasks: cross-domain negation
detection, DocTimeRel classification, and temporal
relation extraction, and (4) evaluation of our mod-
els on the PubMedQA (Jin et al., 2019) dataset to
measure the models’ performance on a non-entity-
centric task in the biomedical domain.

2 Methods

In this section, we first describe our clinical text
datasets and related NLP tasks, the details of our
entity-centric masking strategy, and finally the set-
tings we used for both pretraining and fine-tuning.

2.1 Transformer models

Transformer models learn a sequential contextual
representation of the input sequence through a
multi-layer, multi-head self-attention mechanism,
which models long-range dependencies in texts
through highly parallel computation. They are usu-
ally pretrained through a self-supervised masked
language model (MLM) task i.e., predicting the
randomly masked subset of the input tokens. Some
transformer models also use next sentence predic-
tion (NSP) as a self-supervision task i.e., predicting
if two given sentences are adjacent in the original
text. A language model can be continuously pre-
trained on new corpora to further expand its repre-
sentative power especially for a target domain. For
a task-specific application, a pretrained language
model’s parameters are usually refined through a
fine-tuning process on the task-specific training
data, and a special [CLS] token is usually used as

1Our pretrained models are submitted to Phys-
ioNet(Goldberger et al., 2000). Once approved, they
will be publicly available through PhysioNet Credentialed
Health Data License 1.5.0.
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Dataset sentence# word# entities#/sentence

MIMIC-SMALL 4.6M 125.1M 1+
MIMIC-BIG 15.6M 728.6M 2+

Table 1: Two versions of curated MIMIC data.

the representation of the input instance for text-
classification tasks.

2.2 Unlabeled Pre-training Data

MIMIC-III We use the freely-available MIMIC-
III (Medical Information Mart for Intensive Care)
Clinical dataset (Johnson et al., 2016) (version
1.4) for continued pretraining of the PubMedBERT
model. This dataset comprises approximately 2M
deidentified notes for over 40,000 patients who
stayed in critical care units of the Beth Israel Dea-
coness Medical Center between 2001 and 2012.

We process the MIMIC-III corpus with the sen-
tence detection, tokenization, and temporal mod-
ules of Apache cTAKES (Savova et al., 2010)2

to identify all entities (events and time expres-
sions) in the corpus. Events are recognized by
cTAKES event annotator. Event types include
diseases/disorders, signs/symptoms, medications,
anatomical sites, and procedures. Time expressions
are recognized by cTAKES timex annotator. Time
classes includes: date, time, duration, quantifier,
prepostesp, and set (Styler IV et al., 2014). Spe-
cial XML tags (Dligach et al., 2017) are inserted
into the text sequence to mark the position of iden-
tified entities. Time expressions are replaced by
their time class (Lin et al., 2017, 2018) for better
generalizability. All special XML-tags and time
class tokens are added into the PubMedBERT vo-
cabulary so that they can be recognized. The top
line of Figure 1 shows a sample sentence from the
MIMIC-III corpus. The entities of this sentence are
identified by Apache cTAKES. The bottom line of
Figure 1 shows the entities marked by XML tags
and the temporal expression replaced by its class.
We process the MIMIC corpus sentence by sen-
tence, and discard sentences that have fewer than
two entities. The resulting set (MIMIC-BIG) has
15.6 million sentences, 728.6 million words (the
bottom row of Table 1). In another setting, from
the pool of sentences with at least one entity, we
sample a smaller set (MIMIC-SMALL), resulting
in 4.6 million sentences and 125.1 million words
(the top row of Table 1).

2http://ctakes.apache.org

The patient had
EVENT

fever ,
EVENT

tachypnea , and elevated
EVENT

lactate on
TIME

March 11, 2010 .
⇓

The patient had <e> fever </e>, <e> tachypnea </e>, and
elevated <e> lactate </e> on <t> date </t>.

Figure 1: MIMIC-III text with XML-tagged entities:
<e> and </e> mark events; <t> and </t> mark time ex-
pressions.

#1: she is feeling reasonably well . she has not <e> noted </e>
any new areas of pain and has had no fevers
#2: a <e> surgery </e> was scheduled on <t> date </t> .
#3: a <e1> surgery </e1> was <e2> scheduled </e2> on
march 11th .
#4: she denies any <e> fevers </e> or chills .
#5: Inpatient versus outpatient management of neutropenic
fever in gynecologic oncology patients: is risk stratification
useful? ANSWER: Based on this pilot data, MASCC score
appears promising in determining suitability for outpatient
management of NF in gynecologic oncology patients. Prospec-
tive study is ongoing to confirm safety and determine impact
on cost.

Figure 2: Sample instances for DocTimeRel(1),
TLINK:event-time(2), TLINK:event-event(3), Nega-
tion (4), and PubMedQA (5).

2.3 Labeled Fine-tuning Data

The following sections describe the labeled datasets
that are used as fine-tuning tasks. Figure 2 shows
examples of how we format inputs for these tasks
(more details below).

THYME The THYME corpus (Styler IV et al.,
2014) is widely used (Bethard et al., 2015, 2016,
2017) for clinical temporal relation discovery.
There are two types of temporal relations defined
in it: (1) The document time relations (DocTime-
Rel), which link a clinical event (EVENT) to
the document creation time (DCT) with possible
values of BEFORE, AFTER, OVERLAP, and BE-
FORE_OVERLAP, and (2) pairwise temporal re-
lations (TLINK) between two events (EVENT)
or an event and a time expression (TIMEX3) us-
ing an extension of TimeML (Pustejovsky et al.,
2003; Pustejovsky and Stubbs, 2011). Recently, the
TLINK annotations of (2) were refined with val-
ues of BEFORE, BEGINS-ON, CONTAINS, CON-
SUB, ENDS-ON, NOTED-ON, OVERLAP, with
the revised corpus known as the THYME+ cor-
pus (Wright-Bettner et al., 2020).

For the DocTimeRel task, we mark all events in
THYME+ corpus with XML tags (“<e>”, “</e>”)
and extract 10 tokens from each side of the event
as the contextual information. The DocTimeRel
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labels are predicted using the special [CLS] embed-
ding and a softmax function.

For the TLINK task, we use the THYME+ anno-
tation and the same window-based processing (Lin
et al., 2019; Wright-Bettner et al., 2020) for gen-
erating relational candidates. The two entities in-
volved in a relation candidate are marked by XML
tags following the style of Dligach et al. (2017).
Time expressions are represented by their time
classes. The TLINK labels are predicted using the
special [CLS] embedding and a softmax function.

Cross-domain Negation We use the same cor-
pora as Miller et al. (2017); Lin et al. (2020a):
(1) 2010 i2b2/VA NLP Challenge Corpus (i2b2:
Uzuner et al., 2011), (2) the Multi-source Inte-
grated Platform for Answering Clinical Questions
Corpus (MiPACQ: Albright et al., 2013), (3) the
Strategic Health IT Advanced Research Projects
(SHARP) Seed (Seed), and (4) SHARP Stratified
(Strat). We use them for fine-tuning the pretrained
models for the cross-domain negation task. The
same XML tags as described above mark the en-
tities for which the negation status is to be deter-
mined. The +1(negated) and -1(not negated) labels
are predicted using the special [CLS] embedding
and a softmax function.

PubMedQA PubMedQA (Jin et al., 2019) is a
biomedical question answering (QA) dataset col-
lected from PubMed abstracts. The task is to an-
swer research questions with yes/no/maybe using
the corresponding abstracts or the conclusion sec-
tions of the abstracts (i.e., the long answers). For
simplicity, we only fine-tune pretrained models on
the PubMedQA labeled (PQA-L) data of 1K ex-
pert annotations, with the original train/dev/test
split with 450, 50, 500 questions, respectively. The
unlabeled (PQA-U) and artificially generated QA
instances (PQA-A) are not used. Pretrained models
are fine-tuned on the PQA-L data in the reasoning-
free setting (without reasoning the full abstracts
as contexts) by concatenating the questions and re-
lated long answers. The question and the answer is
separated by "ANSWER:" (as shown in the bottom
case of fig. 2) instead of the special [SEP] token
in order not to involve the Next Sentence Predic-
tion (NSP). The yes/no/maybe labels are predicted
using the special [CLS] embedding and a softmax
function.

2.4 Entity-centric Masking

Conventional BERT-style Masked Language
Model (MLM) randomly chooses 15% of the in-
put tokens for corruption, among which 80% are
replaced by a special token "[MASK]", 10% are
left unchanged, and 10% are randomly replaced by
a token from the vocabulary. The language model
is trained to reconstruct the masked tokens.

We propose an entity-centric masking strategy
(as shown in Figure 3). All entities in the input
sequence are marked with XML tags, which are
added into the vocabulary and mapped to unique
IDs. Then 40% of entities and 12% of random
words are chosen respectively within each sequence
block for corruption, following the same 80%-10%-
10% ratio for [MASK], unchanged, and random
replacement. We refer to this masking strategy as
entity-centric masking.

We did not use the Next Sentence Prediction
(NSP) task in our pretraining experiments based
on Liu et al. (2019).

The PubMedBERT base uncased version was
pretrained from scratch using abstracts from
PubMed and full-text articles from PubMedCen-
tral. We applied continued pretraining on it with
MIMIC-BIG and MIMIC-SMALL with entity-
centric masking and random masking. We denote
the model pretrained with entity-centric masking
EntityBERT, and model pretrained with random
masking RandMask. For both masking strategies,
we use different random seeds.

The pretrained models are then fine-tuned for the
three clinical tasks (TLINK temporal relation ex-
traction, DocTimeRel classification, and negation
detection) and one biomedical task (PubMedQA).
Since the TLINK task has the most relation types
and is the most complicated task among the three,
we use it as the primary testing task. The best mod-
els derived on the TLINK task are then tested on
the other tasks.

2.5 Settings

We used an NVIDIA Titan RTX GPU cluster of 7
nodes for pre-training and fine-tuning experiments
through HuggingFace’s Transformer API (Wolf
et al., 2019) version 2.10.0.

For pretraining, we set the max steps to 200k
to allow full model convergence, and set the block
size to 100. For fine-tuning, the batch size is se-
lected from (16, 32), the learning rate is selected
from (1e-5, 2e-5, 3e-5, 4e-5, 5e-5).
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Figure 3: The architecture for continued pretraining of PubMedBERT with the entity-centric masking strategy.

For the TLINK task, the maximal sequence
length is set to 100. The models are fine-tuned
on the THYME colon cancer training set, parame-
ters are optimized through the THYME colon de-
velopment set, and tested on the THYME colon
cancer test set. The performance is evaluated by
the Clinical TempEval evaluation script (Bethard
et al., 2017) modified to accommodate the refined
temporal relations (Wright-Bettner et al., 2020).

For the DocTimeRel task, the maximal sequence
length is set to 30. The models are fine-tuned on
the THYME colon cancer training set, parameters
are optimized on the THYME colon cancer devel-
opment set, and tested on both the THYME colon
cancer test set and the THYME brain cancer test
set for portability evaluation.

For the negation task, the maximal sequence
length is set to 64. We follow the same source-
target setting as (Lin et al., 2020a) to carry out the
cross-domain negation experiments.

For PubMedQA, the maximal sequence length
is set to 100 to accommodate both the question and
the long answer. The average PubMedQA ques-
tion length is 14.4 tokens, while the average long
answer length is 43.2 tokens (Jin et al., 2019).

Following (Reimers and Gurevych, 2017) in
addition to reporting the best scores, we executed
multiple runs with varied settings (e.g. random
seeds, learning rates, etc.). We compared the dis-
tributions with two-sample t-test and report related
p-values.

3 Results

Table 2 shows that on the test set of the TLINK
task, the best rates for randomly masking entities

Entity-rate Word-rate Overall TLINK F1

30% 10% 0.631
30% 12% 0.644
30% 14% 0.642
40% 10% 0.640
40% 12% 0.651
40% 14% 0.642
40% 16% 0.639
50% 12% 0.643
50% 14% 0.641
60% 8% 0.638
60% 10% 0.634
60% 12% 0.631

Table 2: Effect of masking rates for entities (entity-
rate) and random words (word-rate) when pretraining
PubMedBERT on MIMIC-SMALL for temporal rela-
tion extraction. Performance is in terms of overall F1.

and words are 40% and 12%, respectively. The
table shows only the most successful rates; we con-
sidered more entity rates (20%, 40%, 60%, 80%,
100%) and word rates (0%, 8%, 10%, 12%, 14%,
16%). We found that (1) masking non-entity words
in addition to masking entities is important as non-
entity words capture semantic/syntactic informa-
tion, and (2) masking too many tokens may make
the reconstruction task too hard.

Table 3 shows that continuously pretraining Pub-
MedBert (PM) with entity-centric masking (En-
tity) outperforms random masking (Rand) on both
MIMIC-SMALL (p=0.034 with a two-sample t-
test) and MIMIC-BIG (p=0.046). The best scores
are marked in bold. MIMIC-BIG models have
a lower inter-seed variance and slightly better
average performance than MIMIC-SMALL. We
also combined entity-centric masking with Span-
BERT (Joshi et al., 2020) and continuously pre-
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Random Seed

Mask BERT MIMIC 3 4 12 13 42 avg

Rand PM Small 0.628 0.641 0.632 0.628 0.641 0.634
Entity PM Small 0.643 0.641 0.640 0.634 0.651 0.642

Rand PM Big 0.634 0.637 0.641 0.634 0.635 0.636
Entity PM Big 0.641 0.642 0.640 0.643 0.648 0.643

Rand Span Small 0.632 0.630 0.632 0.641 0.636 0.634
Entity Span Small 0.638 0.635 0.637 0.643 0.643 0.639

Table 3: Effect of masking strategy (random or entity-
centric) on continuously pretraining models (PubMed-
BERT (PM) or SpanBERT) on MIMIC (BIG or
SMALL) for the TLINK task, across different random
seeds. Performance is in terms of overall F1.

trained the model on MIMIC-SMALL with differ-
ent random seeds. The last two rows of Table 3
show that entity-centric masking also helps Span-
BERT on the TLINK task (p=0.004).

For our experiments on the downstream tasks,
we choose the EntityBERT model continuously pre-
trained on MIMIC-SMALL with random seed 42
(0.651 F1) and the RandMask model continuously
pretrained on MIMIC-BIG with random seed 12
(0.641 F1) because of their best performance. For
RandMask models that all get 0.641 F1, we pick
the one continuously pretrained on MIMIC-BIG.
We fine-tuned them for the specific tasks. The de-
tailed model performance on all TLINK categories
is in the bottom two rows in Table 4. The top three
rows of Table 4 show the previous best TLINK
scores on the same THYME+ corpus by BioBERT
and BART-large (Wright-Bettner et al., 2020) and
the original PubMedBERT performance.

Table 5 shows that for cross-domain negation
detection, out of 12 cross-domain pairs, the entity-
centric masking is helpful for 9 pairs. Entity-
BERT’s cross-domain negation average F1 is 0.781
while RandMask’s average F1 is 0.773.

Table 6 shows that for DocTimeRel classifica-
tion, EntityBERT improves over RandMask in the
cross-domain setting. When trained and tested in
the same colon cancer domain, EntityBERT gets
the same overall F1 score as RandMask (0.92 F1).
But when trained on colon cancer and tested on
brain cancer, EntityBERT significantly improves
the overall F1 from 0.69 F1 to 0.72 F1 (p=0.0007).

Table 7 shows PubMedBERT, RandMask and
EntityBERT fine-tuning results on the PQA-L test
set in the reasoning-free final-phase only setting. It
is an extremely low resource setting where there
are only 450 training instances used for fine-tuning

Figure 4: Histogram of token numbers after using dif-
ferent tokenization methods to process all single-token
events in THYME Colon training set.

the models. Results are reported in accuracy using
the provided evaluation script. EntityBERT is on
par with RandMask (p=0.307) even though these
clinical-domain models are both out-of-domain for
this biomedical-domain task.

4 Discussion

The benefit of an in-domain vocabulary. To
study the in-domain vocabulary’s contribution to
a clinical task, we extract all 3,471 gold standard
events in the THYME colon cancer training set
and feed them into the PubMedBERT, RoBERTa,
and BERT tokenizers. These events are all single-
token events. Figure 4 shows the histogram of
tokens per event after tokenization (x-axis shows
the number of tokens each event is represented by).
We see that PubMedBERT keeps the majority of
the events (2,330) as one unit instead of breaking
them into multiple sub-words. The BERT tokenizer
keeps 1,729 events as one unit. The 601 events
that PubMedBERT recognizes but BERT breaks
into word pieces are of importance for the TLINK
task. If we remove these 601 events from the Pub-
MedBERT vocabulary – forcing them to be broken
down into word pieces – the model performance on
the TLINK task drops from 0.638 F1 (Table 4 row
three) to 0.541 F1, which is the same performance
we get if we replace PubMedBERT’s tokenizer en-
tirely with BERT’s.

What makes a difference? By comparing the
TLINK predictions (without applying temporal clo-
sure) produced by the best EntityBERT (0.651 F1)
and by the best RandMask (0.641 F1), we found
that EntityBERT predicted 4,924 correct TLINKs,
while RandMask predicted 4,778 correct TLINKs
(Table 8). By comparing the entities involved
in those correct TLINKs, we found that Entity-
BERT recognized 131 more entities than Rand-
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BEFORE BEGINS-ON CONTAINS ENDS-ON

Model P R F1 P R F1 P R F1 P R F1

BioBERT 0.278 0.458 0.346 0.423 0.175 0.248 0.793 0.708 0.748 0.112 0.210 0.146
BART-large 0.300 0.422 0.351 0.378 0.175 0.239 0.796 0.710 0.750 0.124 0.210 0.156
PubMedBERT 0.302 0.493 0.375 0.368 0.172 0.234 0.786 0.734 0.759 0.131 0.227 0.166
RandMask 0.309 0.460 0.370 0.376 0.165 0.229 0.804 0.726 0.763 0.131 0.160 0.144
EntityBERT 0.308 0.467 0.371 0.398 0.179 0.247 0.802 0.739 0.769 0.149 0.185 0.165

NOTED-ON OVERLAP OVERALL

Model P R F1 P R F1 P R F1

BioBERT 0.786 0.706 0.744 0.353 0.508 0.416 0.696 0.568 0.625
BART-large 0.786 0.707 0.744 0.404 0.470 0.435 0.718 0.558 0.628
PubMedBERT 0.791 0.728 0.758 0.403 0.489 0.442 0.704 0.583 0.638
RandMask 0.767 0.742 0.754 0.404 0.519 0.455 0.717 0.580 0.641
EntityBERT 0.783 0.758 0.770 0.408 0.534 0.462 0.723 0.592 0.651

Table 4: Performance of previous state-of-the-art and the proposed model (EntityBERT) on the TLINK task.

Source Target RandMask EntityBERT

Seed Strat 0.830 0.834
Seed Mipacq 0.759 0.761
Seed i2b2 0.827 0.828
Strat Seed 0.722 0.772
Strat Mipacq 0.758 0.754
Strat i2b2 0.881 0.886
Mipacq Seed 0.780 0.772
Mipacq Strat 0.756 0.785
Mipacq i2b2 0.878 0.871
i2b2 Seed 0.730 0.732
i2b2 Strat 0.662 0.664
i2b2 Mipacq 0.693 0.713

Overall 0.773 0.781

Table 5: Effect of masking strategy (Rand or Entity)
on cross-domain negation detection. Performance is in
terms of F1.

Model Domain after before bfr/ovlp overlap overall

RandMask same 0.88 0.92 0.78 0.94 0.92
EntityBERT same 0.88 0.92 0.79 0.94 0.92

RandMask cross 0.65 0.65 0.34 0.74 0.69
EntityBERT cross 0.64 0.66 0.40 0.77 0.72

Table 6: Effect of masking strategy (Rand or Entity)
for in-domain (same) and cross-domain settings of the
DocTimeRel task. Performance is in terms of F1.

Mask. Some entities only appear in EntityBERT-
identified relations, e.g. staging, hemoglobin, find-
ing, consideration, consider, develops, request,
treatment, neuropathy, carcinoma, metastasis, in-
jection, resected, and staged are involved in multi-
ple relations. Entity-centric masking masks more
entities than random masking so that those clinical
entities can be better represented by the language
model in terms of their semantic and syntactic us-
age. When the model is fine-tuned for an entity-

PubMedBERT RandMask EntityBERT

Accuracy 0.760 0.738 0.750

Table 7: Performance of models on PubMedQA.

Model within-sentence cross-sentence total

RandMask 4,021 757 4,778
EntityBERT 4,156 768 4,924

Table 8: Correctly predicted TLINK counts by Entity-
BERT and RandMask before temporal closure.

centric task like the TLINK extraction task, these
entities can be better utilized for reasoning relations
which they are part of.

In Figure 5 we visualize with BertViz (Vig, 2019)
the attention weights of head zero from the last
layer of the fine-tuned RandMask and EntityBERT
models on the TLINK task for a relation that Enti-
tyBERT correctly predicted but RandMask missed.
The context is he has had steroid <e> injection
</e> <t> date </t>. A plausible explanation is that
because the key entities, injection and date, are not
well represented in RandMask model, the [CLS]
token of RandMask model (Figure 5 (a)) focuses
on entity markers, <e>, </e>, <t>, and </t>. It
may figure out this is an event-time relation but
incorrectly infers its type. The [CLS] token of En-
tityBERT (Figure 5 (b)) bakes in representations of
all tokens with knowledge that injection is related
to steroid and date is related to <e> injection </e>,
which shows the key entities are well represented.

Table 8 also shows that the EntityBERT model
is most helpful for within-sentence relations (135
more correct within-sentence predictions vs. 11
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Figure 5: Attention visualization of the last layer of
RandMask (a) and EntityBERT (b).

more correct cross-sentence predictions). It could
mean the better-learned entity representation is
most helpful within a relatively close distance for
the current model architecture. To help inferring
longer-distanced relations, we may need enhanced
model architectures, e.g., DeBERTa (He et al.,
2020), that can represent the relative distance be-
tween two entities in a disentangled fashion.

Combining Entity-centric Masking with An-
other Masking Strategy. Some other pre-trained
language models like BART (Lewis et al., 2019)
and SpanBERT (Joshi et al., 2020) are not pre-
trained on clinical/biomedical corpora. Yet, they
are suitable for clinical tasks in that they mask
contiguous random spans instead of individual to-
kens/word pieces during pretraining – in the clin-
ical domain there are a lot of events and entities
that span multiple tokens (e.g., ascending colon
cancer, March 11, 2011). Even without any contin-
ued pretraining on a clinical corpus, BART-large
achieves 0.628 F1 on the TLINK task (Table 4,
row 2), and with continued pretraining on MIMIC-
SMALL, SpanBERT-base achieves 0.641 F1 (Ta-
ble 3, row 5, seed 13). Interestingly, entity-centric
masking can further increase SpanBERT perfor-
mance in the continued pretraining setting (Table 3,
last two rows, p=0.004). The reason could be that
even though clinical entities could span multiple
tokens, a contiguous random span may not be a clin-
ical entity. So, specifically masking clinical entities
still has its advantage during continued pretraining
a contiguous-span-based language model. We may
even see further improved performance if BART or
SpanBERT can be pretained from scratch on large
clinical/biomedical corpora (however, such a cor-
pus is not available currently!) and then combined
with entity-centric masking.

The Strength and Limitations of Entity-

BERT: EntityBERT assumes that clinical entities
are important words, thus if a clinical language
model can represent clinical entities better, it will
benefit downstream clinical entity-centric tasks.
Therefore, such a masking strategy increases the
entity concentrations in the masked words during
the model pretraining, but does not increase the
overall computational loads either for pre-training
or for fine-tuning since the overall total number of
masked items is similar to random word masking.
This is unlike building an additional neural network
for selective masking Gu et al. (2020b) or incorpo-
rating knowledge graphs Zhang et al. (2019).

The better representation of clinical entities is
not only beneficial in an in-domain setting, e.g., the
TLINK task, but also effective in a cross-domain
setting, e.g., the negation and DocTimeRel tasks.
For the DocTimeRel task, both EntityBERT and
RandMask achieve very good in-domain perfor-
mance of 0.92 F1 (see Table 6). In its cross-domain
setting, EntityBERT has a clear edge of 0.71 F1
over RandMask 0.69 F1 (see Table 6). Even though
some of the improvements may not seem big, they
are statistically significant.

We acknowledge some limitations of the cur-
rent EntityBERT model. First, it is pretrained with
a relatively small block size (100 tokens) which
is sufficient for a sentence- or a short-paragraph-
level reasoning tasks but may be not sufficient for
document-level tasks. Second, EntityBERT aims to
improve the performance of entity-centric clinical
tasks. For tasks that may not directly leverage enti-
ties, such as question answering or document clas-
sification, entities may still play a supporting role
but may not prove as effective. However, we hy-
pothesize that even in those cases its performance
would be on-par with RandMask because of its
in-domain vocabulary and continued training on a
clinical corpus.

Based on the results of Table 7 on PubMedQA,
we can see that even though RandMask and Entity-
BERT models are continuously pretrained from the
PubMedBERT model, the continued pretraining on
a clinical corpus has made them diverge from its
biomedical domain. For the PubMedQA biomedi-
cal domain task, the original PubMedBERT model
was pretrained from scratch in this target domain,
thus performs the best in this task. Yet, even for
this non-entity-centric task, EntityBERT performs
slightly (but not significantly) better than the Rand-
Mask model (0.750 vs. 0.738 in accuracy).
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MIMIC-BIG vs. MIMIC-SMALL: Rand-
Mask and EntityBERT models pretrained on
MIMIC-SMALL perform almost on par with mod-
els pretrained on the much bigger corpus, MIMIC-
BIG (Table 3) for the TLINK task. The reason
could be that even though clinical language varies,
the crucial clinical entities are not that many. For
example, for the TLINK task, there are only 3,471
unique gold standard events in the training set.
Thus, although the size of the corpus is smaller,
it could be sufficient for the model to learn repre-
sentations of the important unique entities.

MIMIC-BIG was created by filtering sentences
with fewer than two entities with the goal of cap-
turing pair-wise interactions between events in the
language model. One of the limitations of our ar-
chitecture is its block size. Perhaps with a model
that can effectively represent the relative distances,
the interactions among entities can be represented
better. In addition, by eliminating sentences that
only have one or no entity, MIMIC-BIG misses
some language phenomena. MIMIC-SMALL, de-
spite its smaller size, thus may encounter more
diverse language. This could be the explanation of
why an EntityBERT model pretrained on MIMIC-
SMALL gets the best TLINK performance (0.651
F1; Table 3 row 2 and Table 4 bottom row).

In the future, we will investigate combining
entity-centric masking with DeBERTa (He et al.,
2020) with the goal of developing a strategy for
a deep neural model that combines entities and
their relative position in an input sequence. We
will experiment with more flavors of EntityBERT
with different block sizes for a wider range of clini-
cal applications. Further testing EntityBERT on a
wider range of clinical and biomedical tasks would
be helpful for understanding its capabilities.
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Abstract

Several previous studies on explanation for re-
current neural networks focus on approaches
that find the most important input segments
for a network as its explanations. In that case,
the manner in which these input segments
combine with each other to form an explana-
tory pattern remains unknown. To overcome
this, some previous work tries to find patterns
(called rules) in the data that explain neural
outputs. However, their explanations are often
insensitive to model parameters, which limits
the scalability of text explanations. To over-
come these limitations, we propose a pipeline
to explain RNNs by means of decision lists
(also called rules) over skipgrams. For eval-
uation of explanations, we create a synthetic
sepsis-identification dataset, as well as apply
our technique on additional clinical and senti-
ment analysis datasets. We find that our tech-
nique persistently achieves high explanation fi-
delity and qualitatively interpretable rules.

1 Introduction

Understanding and explaining decisions of com-
plex models such as neural networks has recently
gained a lot of attention for engendering trust in
these models, improving them, and understanding
them better (Montavon et al., 2018; Alishahi et al.,
2019; Belinkov and Glass, 2019). Several previous
studies developing interpretability techniques pro-
vide a set of input features or segments that are the
most salient for the model output. Approaches such
as input perturbation and gradient computation are
popular for this purpose (Ancona et al., 2018; Ar-
ras et al., 2019). A drawback of these approaches
is the lack of information about interaction be-
tween different features. While heatmaps (Li et al.,
2016b,a; Arras et al., 2017) and partial dependence
plots (Lundberg and Lee, 2017) are popularly used,
they only provide a qualitative view which quickly

∗Research conducted while at CLiPS.

gets complex as the number of features increases.
To overcome this limitation, rule induction for
model interpretability has become popular, which
accounts for interactions between multiple features
and output classes (Lakkaraju et al., 2017; Puri
et al., 2017; Ming et al., 2018; Ribeiro et al., 2018;
Sushil et al., 2018; Evans et al., 2019; Pastor and
Baralis, 2019). Most of these work treat the ex-
plained models as black boxes, and fit a separate
interpretable model on the original input to find
rules that mimic the output of the explained model.
However, because the interpretable model does not
have information about the parameters of the com-
plex model, global explanation is expensive, and
the explaining and explained models could fit dif-
ferent curves to arrive to the same output. Sushil
et al. (2018) incorporates model gradients in the
explanation process to overcome these challenges,
but this technique cannot be used with current state-
of-the-art models that use word embeddings due
to their reliance on interpretable model input in
the form of bag-of-words. Murdoch and Szlam
(2017) explain long short term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997) by
means of ngram rules, but their rules are limited
to presence of single ngrams and do not capture
interaction between ngrams in text. To learn ex-
planation rules for RNNs while overcoming the
limitations of the previous approaches, we have the
following contributions in the paper:

1. We induce explanation rules over important
skipgrams in text, while ensuring that these
rules generalize to unseen data. To this end,
we quantify skipgram importance in LSTMs
by first pooling gradients across embedding
dimensions to compute word importance, and
thereby aggregating them into skipgram im-
portance. Skipgrams incorporate word order
in explanations and increase interpretability.

2. To overcome existing limitations with au-
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tomated explanation evaluation (Lertvit-
tayakumjorn and Toni, 2019; Poerner et al.,
2018), we provide a synthetic clinical text clas-
sification dataset for evaluating interpretabil-
ity techniques. We construct this dataset ac-
cording to existing medical knowledge and
clinical corpus. We validate our explanation
pipeline on this synthetic dataset by recover-
ing the labeling rules of the dataset. We then
apply our pipeline to two clinical datasets for
sepsis classification, and one dataset for sen-
timent analysis. We confirm that the expla-
nation results obtained on synthetic data are
scalable to real corpora.

2 Explanation pipeline

We propose a method to find decision lists as expla-
nation rules for RNNs with word embedding input.
We quantify word importance in an RNN by com-
paring multiple pooling operations (qualitatively
and quantitatively). After establishing a desired
pooling technique, we move to finding importance
of skipgrams, which provides larger context around
words in explanations. We then find decision lists
that associate the relative importance of multiple
skipgrams in the RNN to an output class. This is
an extension of our prior work (Sushil et al., 2018)
where we find if-then-else rules for feedforward
neural networks. However, the previous approach
relies on using interpretable inputs independent of
word order and is not scalable to the current state-
of-the-art approaches that use word embeddings
instead. Moreover, explanation of binary classifiers
is not supported by that pipeline, and the explana-
tion rules are not generalized to unseen examples.
Furthermore, the previous explanation rules are
hierarchical, and hence cannot be understood inde-
pendently without parsing the entire rule hierarchy.
In the proposed research, we address all these limi-
tations and extend the explanations to binary cases,
unseen data, and to sequential neural networks with
word embedding input. Additionally, these expla-
nation rules can be understood as an independent
decision path. We present the complete pipeline for
our approach, which we name UNRAVEL, in Fig-
ure 1. Code for the paper is available on https:
//github.com/clips/rnn_expl_rules.

2.1 Word importance computation

Saliency (importance) scores of input features are
often computed as gradients of the predicted out-

Figure 1: The complete UNRAVEL pipeline for
gradient-informed rule induction in recurrent neural
networks. The underlined terms in point 4 refer to dif-
ferent important skipgrams in the text.

put node w.r.t. all the input nodes for all the in-
stances (Simonyan et al., 2013; Adebayo et al.,
2018). In neural architectures that have an embed-
ding layer, interpretable input features are replaced
by corresponding low-dimensional embeddings.
Due to this, we obtain different saliency scores
for different embedding dimensions of a word in a
document. Because embedding dimensions are not
interpretable, it is difficult to understand what these
multiple saliency scores mean. To instead obtain
a single score for a word by combining saliency
values of all the dimensions, we consider the fol-
lowing commonly used pooling techniques:

• L2 norm of the gradient scores (Bansal et al.,
2016; Hechtlinger, 2016; Poerner et al., 2018).

saliencyL2 = Σdimgrad
2

• Sum of gradients across all the dimensions.

saliencysum = Σdimgrad

• Dot product between the embeddings and the
gradient scores (Denil et al., 2014; Montavon
et al., 2018; Arras et al., 2019). This addition-
ally accounts for the embedding value itself.

saliencydot = Σdim(emb� grad)

We also experimented with max pooling, but
we omit the discussion here because they have
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the same patterns as the L2 norm, albeit with
higher magnitudes.

In Section 4.1, we analyze the importance scores
obtained with these techniques qualitatively and
quantitatively to identify the preferred one.

2.2 Skipgrams to incorporate context

One of the contributions of this work is to find
explanation rules for sequential models such as
RNNs. Conjunctive clauses of if-then-else rules
are order independent although this order is critical
for RNNs. To account for word order in input docu-
ments, some previous approaches find the most im-
portant ngrams instead of the top words only (Mur-
doch and Szlam, 2017; Jacovi et al., 2018). To in-
corporate word order also in explanation rules, we
compute the importance of subsequences in the doc-
uments before combining different subsequences
into conjunctive rules. We define importance of a
subsequence as the mean saliency of all the tokens
in that subsequence. We represent subsequences as
skipgrams with length in the range [1,4] and with
maximum two skip tokens1. After computing the
scores, we retain the 50 most important skipgrams
for every document (based on absolute importance
scores). The number of unique skipgrams obtained
in this manner is very high. To limit the complexity
of explanations, we retain 5k skipgrams with the
highest total absolute importance score across the
entire training set and learn explanation rules over
these. To this end, we create a bag-of-skipgram-
importance representation of the documents, where
the vocabulary corresponds to the 5k most impor-
tant skipgrams across the training set. For ease of
understanding, we discretize the importance scores
of the skipgrams to represent five different levels
of importance: {−−, −, 0, +, ++}. Here −− and
++ represent a high negative and positive impor-
tance, respectively, for the predicted output class, 0
means that the skipgram is absent in the document,
and − and + indicate low negative and positive
importance scores, respectively. This skipgram set,
along with the output predictions of a model, is
then input to a rule induction module to obtain
decision lists as explanations.

1Length and skip values in skipgrams were manually de-
cided to include sufficient context while limiting complexity.
As these values increase further, the phrases become more
sparse, resulting into a larger explanation vocabulary. Feature
selection step hence selects a smaller proportion of phrases to
retain the same computational complexity, which can limit the
explanation coverage/recall.

2.3 Learning transferable explanations

In the prediction phase, a model merely applies
the knowledge it has learned from the training data.
Hence, an explanation technique should not require
prior knowledge of the test set to find global expla-
nations of a model. We hypothesize that explana-
tion rules should be consistently accurate between
the training data and the predictions on unseen data.
In accordance to this hypothesis, instead of learn-
ing explanations directly from validation or test
instances, which is common in interpretability re-
search (Ribeiro et al., 2018; Sushil et al., 2018), we
modify the explanation procedure to learn accurate,
transferable explanations only from the training set.
We first feed the training data to our neural network
and record the corresponding output predictions.
These output predictions, combined with the corre-
sponding set of top discretized skipgrams, are used
to fit the rule inducer. The hyperparameters of the
rule inducer are optimized to best explain the vali-
dation set outputs. Finally, we report a score that
quantifies how well the learned rules transfer to the
test predictions. This training scheme ensures that
the explanations are generalizable to unseen data,
instead of overfitting the test set.

We obtain decision lists using PART (Frank and
Witten, 1998), which finds simplified paths of par-
tial C4.5 decision trees. These decision lists can
be comprehended independent of the order, and
support both binary and multi-class cases.

3 Datasets and Models

3.1 Synthetic dataset

A big challenge for interpretability research is the
evaluation of the results (Lertvittayakumjorn and
Toni, 2019). Human evaluation is not ideal because
a model can learn correct classification patterns
that are counter-intuitive for humans (Poerner et al.,
2018). In complex domains like healthcare, such an
evaluation is additionally infeasible. To overcome
existing limitations with automated evaluation of
explanations, we create a synthetic binary clini-
cal document classification dataset. We base the
dataset construction on the sepsis screening guide-
lines2. This is a critical task for preventing deaths
in ICUs (Futoma et al., 2017) and new insights
about the problem are important in the medical do-
main. The synthetic dataset includes a subset of
sentences from the freely available clinical corpus

2https://bit.ly/3575e3d
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MIMIC-III (Johnson et al., 2016). Dataset con-
struction process is described here:

• From the MIMIC-III corpus, we sample 3–15
words long sentences that mention the key-
words discussed in the screening guidelines,
grouped into the following sets:

1. I: Contains sentences that mention these
infection-related keywords: {pneumonia
and3 empyema, meningitis, endocarditis,
infection}.

2. Infl: Contains sentences that mention
these inflammation-related keywords:
{hypothermia or4 hyperthermia, leukocy-
tosis or leukopenia, altered mental status,
tachycardia, tachypnea, hyperglycemia}.

3. Others: Sentences that do not mention
any of the previously stated keywords:
Sentence /∈ {I ∪ Infl}.

• We populate 50k documents with 17 sentences
each by randomly sampling one sentence from
set I , one sentence for each comma-separated
term in set Infl, and 10 sentences from set
Others. We additionally populate 20k docu-
ments with 17 sentences, all from set Others.

• We then run the CLAMP clinical NLP
pipeline (Soysal et al., 2017) to identify if
these keywords are negated in the documents.

• Next, we assign class labels to the documents
using the following rule:

if the infection term sampled from
set I is not negated and at least 2
responses sampled from set Infl
are not negated
=⇒ Class label is septic,
Class label is non-septic otherwise.

49% of the documents are thus labeled as septic.
Sampling sentences from the MIMIC-III corpus

introduces language diversity through a large vo-
cabulary and varied sentence structures. Use of
an imperfect tool to identify negation for docu-
ment labeling also adds noise to the dataset. These
properties are desirable because they allow for con-
trolled explanation evaluation while also simulating
real world corpora and tasks, unlike several syn-
thetic datasets used for explanation evaluation (Ar-
ras et al., 2019; Chrupala and Alishahi, 2019).

3Sentences mentioning both the keywords are sampled.
4Sentences mentioning either of the keywords are sampled.

3.1.1 Gold important terms
For every document, the set of words that are used
to assign it a class label includes all the keyword
terms about infection from set I that are mentioned
in that document, keyword terms about inflamma-
tory response from set Infl, and their correspond-
ing negation markers as identified by the CLAMP

pipeline. We mark these sets of terms, one set per
document, as the gold set of important terms for
this task. For example in the document:

No signs of infection were found.
Altered mental status exists. Patient is
suffering from hypothermia,

the set of gold terms would include all the under-
lined words. Among these words, infection, altered,
mental, status, and hypothermia are keyword terms,
and no, signs, and of are terms corresponding to
the negation scope.

3.1.2 Model:
We split the dataset into subsets of 80-10-10% as
training-validation-test sets. We obtain a vocabu-
lary of 47,015 tokens after lower-casing the docu-
ments without removing punctuation. We replace
unknown words in validation and test sets with the
〈unk〉 token. We train LSTM classifiers to predict
the document class from the hidden representation
after the final timestep, which is obtained after
processing the entire document as a sequence of
tokens5. The classifiers use randomly initialized
word embeddings and a single RNN layer without
attention. The hidden state size and embedding
dimension are set to either 50 or 100. We use
the Adam optimizer (Kingma and Ba, 2014) with
learning rate 0.001 and a batch size of 64 (with-
out hyperparameter optimization). Classification
performance is shown in Table 1.

3.2 Real clinical datasets
We additionally find explanation rules for sepsis
classifiers on the MIMIC-III clinical corpus. We
define sepsis label as all the cases where patients
are assigned one of the following diagnostic codes:

• 995.91 (Sepsis): Two or more systemic in-
flammatory response criteria plus a known or
suspected infection. 2% of the cases.

5We do not experiment with other types of classifiers be-
cause the focus of the work is to find and evaluate explanation
rules for sequential models that use word embeddings as input,
as opposed to comparing different classifiers.
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• 995.92 (Severe Sepsis): Sepsis with acute or-
gan dysfunction. 3% of the cases.

• 785.52 (Septic Shock): Form of severe sep-
sis where the organ dysfunction involves the
cardiovascular system. 4% of the cases.

We analyze two different setups after removing
blank notes and the notes marked as error in the
MIMIC-III corpus:

1. We use the last discharge note for every pa-
tient to classify whether the patient has sepsis.
Class distribution among 58,028 instances is
90-10% for non-septic and septic cases respec-
tively, and the vocabulary size is 229,799. The
task is easier in this setup because 70% of sep-
tic cases mention sepsis directly, whereas only
13% of non-septic cases mention sepsis.

2. We classify whether a patient has a sepsis
diagnosis or not using the last note about a pa-
tient excluding the categories discharge notes,
social work, rehab services and nutrition. We
obtain 52,691 patients in this manner, out of
which only 9% are septic. The vocabulary
size is 87,753. In this setup, only 17% of sep-
tic cases mention sepsis, as opposed to 6% of
non-septic cases mentioning sepsis.

3.2.1 Models:

We train 2-layer bidirectional LSTM classifiers
with 100 dimensional randomly initialized word
embeddings and 100 dimensional hidden layer. We
train for 50 epochs with early stopping with pa-
tience 5. The remaining data processing and im-
plementation details are the same as discussed for
synthetic dataset. Macro F1 score of classification
when using discharge notes is 0.68 (septic class F1
is 0.41), and without using discharge notes is 0.60
(septic class F1 is 0.27). Majority baseline is 0.5.

3.3 Sentiment analysis

Following Murdoch and Szlam (2017), we explain
LSTM classifiers initialized with 300 dimensional
Glove (Pennington et al., 2014) embeddings and
150 hidden nodes for binary sentiment classifica-
tion on the Stanford sentiment analysis (SST2)
dataset (Socher et al., 2013). We obtain 84.13%
classification accuracy, and our vocabulary size is
13,983.

3.4 Baseline explanation rules

Several existing approaches for global rule-based
interpretability (Lakkaraju et al., 2017; Puri et al.,
2017) have one common aspect—they directly use
the original input to find explanation rules for com-
plex classifiers without making use of the param-
eters of the complex models. However, these ap-
proaches don’t scale to NLP tasks due to combina-
torial computational complexity in finding explana-
tion rules. For comparison, as baseline rules, we
induce explanations directly from the input data
without using gradients of neural models. To this
end, we create a bag-of-skipgrams by binarizing the
most frequent skipgrams to represent whether they
are present in a document. We then train rule in-
duction classifiers on this binarized skipgram data
to explain neural outputs.

We also compare to Anchors (Ribeiro et al.,
2018) for SST2 explanations by implementing their
submodular pick algorithm for obtaining global
explanations. Anchors does not scale to longer
documents used for sepsis classification.

3.5 Evaluation metrics

We record fidelity scores of the explanation rules
on the test set, and the complexity of these explana-
tions. Fidelity scores refer to how faithful the expla-
nations are to the test output predictions of the ex-
plained neural network. Like our prior work (Sushil
et al., 2018), we use macro F1-measure of explana-
tions compared to original predictions to quantify
it. We define explanation complexity as the number
of rules in an explanation.

4 Evaluation

4.1 Comparing pooling techniques

To compare different pooling techniques described
in Section 2.1, we evaluate sets of most important
words obtained by different techniques against gold
sets of important terms for the documents.

4.1.1 Qualitative analysis
In Figure 2, we compare word importance distribu-
tion for the pooling techniques for an instance in
the validation set of the synthetic corpus. The L2
norm provides distributions over the positive values
only and the importance scores are low because it
squares the gradients. Sum pooling and dot product
instead return a distribution over both positive and
negative values, with dot product returning a more
peaked distribution. However, as we can see, sum
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Classification Pooling
Classifier Acc. L2 sum dot
LSTM100, E100 96.5 17.8 13.7 26.0
LSTM100, E50 95.5 23.7 21.5 35.4
LSTM50, E100 92.0 38.2 33.5 50.2
LSTM50, E50 92.4 26.5 25.1 36.1

Table 1: Classification accuracy of different LSTM
classifiers and the average accuracy for the top k words
in documents in the synthetic dataset obtained with
L2, sum and dot product pooling techniques. LSTMx,
Ey refers to LSTM with x hidden nodes and y dimen-
sional word embeddings.

and dot product often provide opposite importance
signs for the same words. This is caused due to
presence of word embeddings while computing dot
product, which can take both positive and negative
values. In this instance, both true and predicted
classes are non-septic. Looking at Figure 2c, we
find positive peaks over negative and infection, and
negative peaks over altered mental status and hy-
perglycemia. This corresponds to the class labeling
rule in the synthetic data, where non-septic class is
assigned when infection terms are negated. These
directions of influence are counter-intuitive for sum
pooling in Figure 2b. Due to its intuitive, peaked
importance distributions, dot product seems to be
better than other techniques. However, we move
to quantitative evaluation for a global perspective
because this qualitative analysis is biased towards
a specific instance and model.

4.1.2 Quantitative analysis

We find the top k tokens for test documents in the
synthetic dataset by ranking absolute word impor-
tance scores, where k is the number of gold impor-
tant terms used to label the document. We ignore
the 20k documents that only consist of sentences
that do not mention any keyword term, and hence
have an empty gold set. We compute the accuracy
of the set of most important words for every doc-
ument compared to their corresponding gold set.
Later, we take a mean across all the documents
and report it in Table 1. We find that dot product
consistently recovers more important tokens than
other pooling techniques across all the classifiers,
confirming the qualitative analysis earlier and the
findings of Arras et al. (2019). Hence we use dot
product for computing word importance before in-
ducing explanation rules.

We additionally see that the mean accuracy is

nearly twice for the classifier with 50 hidden nodes
and 100 dimensional word embeddings as com-
pared to the the larger classifier that uses 100 hid-
den units instead, although the latter classifier is
nearly 5% more accurate. This suggests that the
larger network obtains higher performance by fo-
cusing on tokens that are not incorporated within
the gold keywords. The reason behind different
tokens being considered important could be that
our gold set of important terms is noisy:

• Some tokens such as punctuation symbols are
missing from the gold set, although they are
important for identifying the scope of nega-
tion, as seen in Figure 3.

• Some terms in the gold set are not required
for correct classification. For example: 1. Too
many words are included as negation triggers.
For example, in the sentence no signs of in-
fection were found., ‘no’, ‘signs’, and ‘of’ are
all added to the gold set as negation markers
although the subset {‘no’, ‘infection’} may
be sufficient. 2. Similarly, the keyword al-
tered mental status could already be recog-
nized from a subset of these terms.

4.2 Explaining synthetic data classifiers

We obtain explanations of all the LSTM classifiers
for the synthetic dataset. We record fidelity scores
of explanations and the corresponding complexity
in Table 2. We find that when we use the proposed
pipeline UNRAVEL for learning gradient-informed
rules, we obtain explanations with high fidelity
scores also on the test data. On the other hand, with
the baseline approach, we obtain nearly 15% lower
fidelity scores. In addition, explanations are more
complex with the baseline approach. This confirms
that making use of model parameters by means of
gradients acts as an additional useful cue for the
rule-based explainability module, thus resulting in
more faithful explanations.

We present some examples of explanation rules
for the most accurate LSTM classifier for the syn-
thetic dataset in Figure 3. Here, we indicate in-
fection keywords that were used to populate the
dataset with a single underline, and the inflamma-
tory response keywords with a double underline.
The first rule in the figure indicates that if two in-
flammatory response criteria are highly important
for the network, the term infection is highly impor-
tant, and phrases negating the presence of infection
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(a) L2 norm

(b) Sum

(c) Dot

Figure 2: Heatmap visualization of word importance distribution for a single validation set instance in LSTM
classifier with 50 hidden nodes and 100 dimensional word embeddings when L2, sum, and dot pooling techniques
are used. Blue reflects positive importance and red indicates negative importance.

Explanation Eval type LSTM100,E100 LSTM100,E50 LSTM50,E100 LSTM50,E50

Baseline(sg)
Fidelity 75.65 77.67 83.19 84.30
Complexity 63 60 26 46

UNRAVEL(sg)
Fidelity 98.90 99.46 99.97 98.24
Complexity 32 13 2 49

UNRAVEL(1gram)
Fidelity 98.83 99.51 99.97 97.22
Complexity 23 18 2 51

Table 2: Test set fidelity scores of explanations (in %macro-F1), and number of explanation rules as the measure
of explanation complexity for different LSTM classifiers on the synthetic dataset using our approach compared
to the baseline approach. LSTMx,Ey refers to LSTM with x hidden nodes and y dimensional word embeddings.
sg in parenthesis refers to skipgram-based explanations.

(a) if hyperglycemia = ++ AND to exclude = 0 AND evidence infection . = 0 AND infection = ++ AND

no infection .= 0 AND no infection = 0 AND negative infection = 0 AND or of infection = 0 AND fungal
infection other = 0 AND of infection in the = 0 AND altered = ++ =⇒ septic (17466/17466)

(b) if tachypnea = 0 AND meningitis = 0 AND urinary tract = 0 AND endocarditis = 0 AND hyperglycemia
= 0 =⇒ non-septic (16015/16015)

(c) if no = ++ AND urinary = 0 AND bacterial = 0 AND mental = − =⇒ non-septic (1277/1345)

Figure 3: Example explanation rules for the best LSTM classifier on the synthetic dataset. Infection keywords
from set I are marked with a single underline, and the corresponding inflammatory response keywords from set
Infl are marked with double underline. ++ refers to high positive importance of a term, 0 represents absence of
a term, and − means that the term gets a low negative importance, i.e., presence of the term reduces the output
probability. The numbers (a/b) mean that b training instances are explained by the rule, of which a are correct. The
first two rules are obtained with skipgrams, and the third one is obtained on using only unigrams for explanations.
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Dataset Explanation Fidelity N_rules

+discharge
Baseline(sg) 61.7 825
UNRAVEL(sg) 97.9 16

-discharge UNRAVEL(sg) 77.3 196

SST2
Anchors 70.3 10
UNRAVEL(sg) 80.2 87

Table 3: Explanation fidelity (% macro F1) and com-
plexity for sepsis classification: 1) With discharge
notes 2) Without discharge notes, and on the SST2
dataset. The baseline method did not converge (in sev-
eral weeks) for sepsis classification without discharge
note and for SST2 classification. Anchors did not scale
(in memory usage) to document-level sepsis datasets.

are absent, then the class is recognized as septic.
This is similar to the rule we have used to label the
synthetic dataset, which requires at least one infec-
tion term and at least two inflammatory response
criteria to not be negated in the document for being
assigned a septic class. In the next rule—applied af-
ter all the cases from the previous rule have been ex-
cluded from the dataset—if several keyword terms
are absent, the document is classified as non-septic.
It is useful to remember that urinary tract is usually
followed by the word infection in the dataset, and
several instances mentioning infection have already
been explained by the previous rule and hence have
been ignored by this rule. This explanation rule is
also in accordance to the synthetic dataset, where
20k documents do not contain any keyword term
and are labeled as non-septic.

The third rule is an example rule for the same
model when explanations are based on unigrams
only as opposed to skipgrams. In this case, we
lose the context of the negation marker no. When
using skipgrams, this context of negation is avail-
able, which makes the negation scope clearer. Fur-
ther, terms like evidence, fungal and urinary tract
captured by skipgrams provide additional context
for understanding the rules. This illustrates that
even though the fidelity scores of explanations are
similar, skipgram based explanations are more in-
terpretable than only unigram-based explanations.
Hence, we use skipgrams for further analysis.

4.3 Explaining clinical models

We rerun our explainability pipeline on both clini-
cal models for sepsis classification—with and with-
out using discharge notes (Section 3.2). For the
first classifier with discharge notes, we again obtain
very high fidelity scores of explanations (Table 3).

if sepsis major surgical = ++ =⇒ septic (209/209)
if complaint : sepsis = 0 AND chief hypotension
major = ++ =⇒ septic (169/169)

Figure 4: First two explanation rules for the clinical
dataset that uses discharge notes to classify sepsis. ++
refers to high positive importance, and 0 refers to an ab-
sent term in the document. (a/b) in parentheses show
that a of b examples explained by this rule are correct.

The baseline explanations have significantly lower
fidelity scores while also being extremely complex.
On inspecting the corresponding explanation rules
given in Figure 4, we find that they refer to the
direct mentions of sepsis in the discharge notes. In
the first rule, if sepsis major surgical is mentioned,
the class is directly septic. In the second condi-
tion, it first rules out the mention of a complaint
of sepsis and then checks for additional conditions.
This confirms that not only does the classifier pick
up on these direct mentions, but the explanations
also recover this information. This illustrates the
utility of UNRAVEL in understanding our models,
which is the first step towards improving them. For
example, if our model is learning direct mentions
of sepsis as a discriminating feature, we could re-
move these direct mentions from the dataset before
training new models to ensure that they generalize.

Next, for the more difficult case where we use
only the final non-discharge note about patients
to classify whether they have sepsis, the fidelity
score is 77.33%. Although this score is good as an
absolute number, it is much lower than other two
cases. Explanations for this model are also much
more complex. This highlights that more complex
classifiers and explanations have lower explanation
fidelity. While manually inspecting these explana-
tions, we find that absence of terms such as diag-
nosis : sepsis, indication endocarditis . valve, indi-
cation bacteremia, admitting diagnosis fever and
pyelonephritis are used to rule out sepsis. These are
similar to the explanations of the other two datasets,
albeit enriched with information about additional
infections and body conditions. This confirms that
the synthetic dataset closely models a real clinical
use case, and suggests that these explanations rules
could result into useful hypothesis generation.

4.4 Explaining sentiment classifier

Results of the SST2 explanations are given in Ta-
ble 3. Our pipeline provides ∼10% more accurate
explanations compared to Anchors. Moreover, on
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if ? = 0 AND bad . = 0 AND too = ++ AND one = 0 =⇒ negative (159/159)

if ? = ++ =⇒ negative (81/82)

if bad . = 0 AND worst = 0 AND fails = 0 AND feels = ++ =⇒ negative (54/54)

if bad . = 0 AND worst = 0 AND fails = 0 AND is bad = 0 AND flat = 0 AND mess = 0 AND stupid = 0 AND

suffers = 0 AND pointless = 0 AND dull = ++ =⇒ negative (38/38)

if bad . = ++ =⇒ negative (36/36)

Figure 5: Example explanation rules for the SST2 dataset. ++ refers to high positive importance, and 0 refers to
an absent term in the document. (a/b) in parentheses show that a of b examples explained by this rule are correct.

if the is present =⇒ negative

if a is present =⇒ positive

if civility is present =⇒ positive

if of is present =⇒ positive

if this is present =⇒ negative

if just is present =⇒ negative

if good is present =⇒ positive

if with is present =⇒ positive

if no is present =⇒ negative

if little is present =⇒ positive

Figure 6: Explanation rules for the LSTM classifier on
the SST2 dataset with the Anchors submodular pick al-
gorithm. The rules check the presence of words in the
input to map to an output class.

inspecting the explanation rules for our method
and Anchors respectively presented in Figures 5
and 6, we find that Anchors rules consist only of
single words, as opposed to UNRAVEL, which finds
conjunctions of different phrases. Furthermore,
explanation rules with UNRAVEL obtain 71% clas-
sification accuracy on the original task. This perfor-
mance drop compared to LSTM is ∼7% lower than
gradient decomposition-based performance drop
reported by Murdoch and Szlam (2017), although
the numbers aren’t strictly comparable because we
explain different classifiers6.

6Their implementation is not openly available for direct
comparison.

5 Conclusions and Future Work

We have successfully developed a pipeline to ob-
tain transferable, accurate gradient-informed expla-
nation rules from RNNs. We have constructed a
synthetic dataset to qualitatively and quantitatively
evaluate the results, and we obtain informative ex-
planations with high fidelity scores. We obtain
similar results on clinical datasets and sentiment
analysis. Our approach is transferable to all similar
neural models. In future, it would be interesting to
extend the capabilities of this approach to obtain
more accurate, less complex and scalable explana-
tions for classifiers with more complex patterns.
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Abstract

Chinese word segmentation (CWS) and med-
ical concept recognition are two fundamental
tasks to process Chinese electronic medical
records (EMRs) and play important roles in
downstream tasks for understanding Chinese
EMRs. One challenge to these tasks is the
lack of medical domain datasets with high-
quality annotations, especially medical-related
tags that reveal the characteristics of Chinese
EMRs. In this paper, we collected a Chinese
EMR corpus, namely, ACEMR, with human
annotations for Chinese word segmentation
and EMR-related tags. On the ACEMR cor-
pus, we run well-known models (i.e., BiLSTM,
BERT, and ZEN) and existing state-of-the-art
systems (e.g., WMSeg and TwASP) for CWS
and medical concept recognition. Experimen-
tal results demonstrate the necessity of build-
ing a dedicated medical dataset and show that
models that leverage extra resources achieve
the best performance for both tasks, which pro-
vides certain guidance for future studies on
model selection in the medical domain.1

1 Introduction

Medical language processing (MLP), i.e., natu-
ral language processing (NLP) for the electronic
medical record (EMR), has drawn significant at-
tention over the past few decades (Rector et al.,
1991; Friedman et al., 2004; Stevenson et al., 2012;
Koleck et al., 2021). EMR normally records the
entire process of a patient’s examination, diagnosis,
and treatment by clinicians in the hospital, and con-
tains a large amount of medical information, which,
if extracted properly, can be used to train a machine
learning model as an automated tool for auxiliary
diagnosis and treatment, forming the foundation of
wise information technology of medicine.

†Corresponding author.
1The resources in this paper are released at https://

github.com/cuhksz-nlp/ACEMR.

Chinese word segmentation (CWS) and medical
concept recognition are two important and related
tasks for Chinese MLP, which received much atten-
tion in previous studies (Xing et al., 2018; Wang
et al., 2019). The first task (i.e., CWS) aims to
segment Chinese text (i.e., character sequence) into
words, which is a necessary step for MLP because
the meaning of many medical terms cannot be sim-
ply inferred by its component characters. For exam-
ple, it is hard to infer the meaning of “扁桃体” (ton-
sil) from its components “扁” (flat), “桃” (peach),
and “体” (body). The second task (i.e., medical con-
cept recognition) assigns an EMR-related tag (e.g.,
Organism and Group) to the segmented words. It
is worth noting that the medical concept in this pa-
per includes not only the standard medical named
entities but also other categories that are useful for
medical text analysis. For example, “Time” is a
medical concept that can be used to represent the
disease history; “Probability” is a possible medical
concept tag for “考虑” (consider), in EMR.

To perform CWS and medical concept recogni-
tion in Chinese EMR, researchers face a challenge
that existing training data for the tasks is either
publicly unavailable or of poor quality. Although
one possible solution is to apply models trained in
the general domain to the medical text, these mod-
els always fail to have good performance because
there are many domain-specific medical terms that
rarely occur in the general domain. To address
these challenges, we collect and annotate a new
Chinese EMR corpus, named ACEMR, where texts
from 500 EMRs (7K sentences) are annotated with
CWS and medical concept recognition labels. In
addition, we test several state-of-the-art models for
CWS and medical concept recognition on the col-
lected ACEMR corpus. Experimental results show
the necessity of constructing an informative Chi-
nese medical corpus and provide certain guidance
for the model selection in medical domain.
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基本信息
(Basic Information) Patient’s name, gender, age, rea-

son for admission, time of admis-
sion

病历特点
(Case Characteristic) Detailed symptoms of the patient

before admission, past history,
physical examination results and
auxiliary examination results

初步诊断
(Preliminary Diagnosis) The type of disease initially

judged, usually several disease
names

鉴别诊断
(Differential Diagnosis) According to the main complaint

of the patient, distinguish it from
other diseases and exclude the pos-
sible diagnosis of other diseases

治疗计划
(Treatment Plan) Medical examinations to be done

in the next step, and preliminary
treatment plan

Table 1: The major five parts of information contained
in one First Course Record in Chinese EMRs.

2 Related Work

NLP for medical text has draw many attentions in
the recent years (Xue et al., 2012; Xu et al., 2015;
Li et al., 2019; Tian et al., 2019, 2020a; Song et al.,
2020; Wang et al., 2020; Chen et al., 2020b), es-
pecially for the EMR texts. Among different tasks
to process Chinese EMR texts, CWS and medi-
cal concept recognition are two fundamental ones
that draw much attentions from previous studies.
Due to the dramatic performance drop when ap-
plying the model trained from open source corpus
on the medical field, previous studies (Xu et al.,
2014, 2015; Li et al., 2015; Zhang et al., 2016;
He et al., 2017) always construct Chinese medical
datasets themselves and test their models on the
datasets. However, most constructed datasets used
for CWS are relatively small, where there are only
roughly 100 Chinese EMRs. Besides, the medical
concept types in most existing datasets are limited
to named entities (e.g., “Disease” and “Symptoms
and Signs”), which fails to consider other medi-
cal concept types (e.g., “Time”) in EMRs that are
potentially helpful for Chinese EMR texts analysis.

3 The ACEMR Corpus

3.1 Data Collection
We collected 500 Chinese EMRs from five depart-
ments (i.e., Respiratory, Gastroenterology, Urol-
ogy, Gynecology, and Cardiology) of a local hos-
pital, where one EMR specifically means the First
Course Record in the inpatient record for one pa-

Class Sub-class Count

物体 Organism (Ogm) 150
Thing Group (Gr) 3,059

Health Device (HD) 433

事件 Health Behavior (HB) 3,093
Event Events (E) 4,442

身体 Body Parts (BP) 19,004
Body Body Substance (BS) 1,103

Body Function (BF) 5,179

异常 Signs or symptoms (SOS) 21,263
Abnormality Disease (Di) 3,543

检查
Examination Examination Project (EP) 3,201

治疗 Treatment Project (TP) 1,579
Treatment Clinical Drug (Drug) 728

概念 Time (T) 4,514
Concept Qualitative (Ql) 14,510

Space (Sp) 7,626
Presence (Pre) 8,748
Absence (Ab) 13,642
Probability (Prob) 388
Cause and Effect (CE) 1,359

Total – 107,943

Table 2: The list of all medical concepts and counts.

tient. First Course Record refers to the first course
record written by the treating physician or on-duty
physician within eight hours after the patient is
admitted to the hospital. It contains seven fields,
namely department, ward, basic information, case
characteristics, preliminary diagnosis, differential
diagnosis, treatment plan, where the last five fields
are illustrated in Table 1. We extract the texts in
those fields and clean them by anonymizing the
text and removing invalid or garbled characters.

3.2 CWS and Medical Concept Annotation
Four specialists participated in the development
of the annotation guideline, where two of them
are junior doctors, and the other two are PhD stu-
dents in NLP. For CWS guideline, we refer to the
segmentation guidelines of the Chinese Treebank
(Xia, 2000) for the general domain as well as the
annotation guideline proposed by He et al. (2017)
for the medical domain. For medical concept an-
notation guideline, we refer to the medical taxon-
omy defined by unified medical language system
(UMLS) semantic groups (Lindberg et al., 1993)
and define 7 major medical concept classes with
20 sub-classes, which are elaborated in Table 2.
Compared to existing medical taxonomies, our pro-
posed medical concept classes are simple and clear
with fine-grained medical concept focusing on the
characteristics of Chinese EMR texts. Note that,
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Count Length
Avg. Max. Min.

Char/Types 326,098/1,595 - - -
Word/Types 205,304/4,144 2.54 13 1
Sentences 7,370 43.63 311 4

Table 3: The statistics of the ACEMR corpus.

for segmentation, we do not segment one word if it
is a defined medical concept.

According to the annotation guideline, we ask
the two junior doctors to annotate the 500 EMRs
independently and resolve their disagreements by
discussion. The consistency of labeling between
two annotators is evaluated by the F value (Hripc-
sak and Rothschild, 2005). The specific method is
to treat the labeling result of one annotator (A1) as
the standard answer, and calculate the F value of
the labeling result of the other annotator (A2). The
annotation agreement evaluated by the F value be-
tween two annotators of CWS and medical concept
tagging are 0.9409 and 0.9360, respectively. We
name the annotated corpus as Annotated Chinese
Electronic Medical Record (ACEMR) and report
its statistics in Table 3, where the lengths are com-
puted based on Chinese characters. In addition,
the number of medical concepts in ACEMR is also
reported in the last column of Table 2.

Table 4 shows two annotated example sentences,
where Chinese words are split by white spaces2.
The medical concept tag attached to a specific word
is highlighted in red color (“/” is a delimiter be-
tween a word and its medical concept tag).

3.3 The Corpus Properties

ACEMR is an informative Chinese medical dataset.
It contains 500 Chinese EMR texts that are anno-
tated with CWS labels and medical concepts from
20 sub-classes. Due to space limitations, among
20 sub-classes, we introduce three sub-classes (i.e.,
Group, Health Behavior, and Qualitative) in the
following texts. Group includes the patient’s gen-
der, age, and name. It generally appears at the
beginning of Chinese EMRs as part of the basic in-
formation, indicating the group the patient belongs
to. In addition, it can also act as a participant in
medical and health activities (i.e. patients and doc-
tors). Health Behavior means medical-related be-
haviors. It mainly includes examination behaviors,
diagnostic behaviors, and broad non-specific treat-

2If a Chinese word is translated into multiple English
words, we use “*” in the English translation to mark its bound-
ary in Table 4. E.g., “3天” is translated into “*3 days*”.

患者/Gr 老年/Gr 女性/Gr ， 慢性/Ql 病程/Di ， 急
性/Ql加重/SOS。患者/Gr主/Ql因/CE "反复/Ql咳
嗽/SOS、咳痰/SOS ,加重/SOS 3天/T "入院/E。

Patient/Gr elderly/Gr female/Gr , chroic/Ql course/Di ,
acute/Ql exacerbation/SOS . The main/Ql cause/CE of the
patient/Gr was " repeated/Ql cough/SOS and sputum/SOS
, which became worse/SOS for *3 days*/T " and was
*admitted to the hospital*/E .

Table 4: An example of annotated medical sentence in
ACEMR with the corresponding English translations.
The abbreviations of tags are used for annotation.

ment behaviors. E.g., “予” (given), “入院治疗”
(admission to hospital for treatment). Qualitative
emphasizes a qualitative description of something,
rather than a direct measurement and can be used
to describe the body, abnormalities, etc. E.g., “胃
肠型感冒” (gastrointestinal cold) where “胃肠型”
(gastrointestinal) are Qualitative medical concepts.

4 Methods

A good text representation is highly important in
achieving a promising performance in many NLP
tasks (Song et al., 2017; Liu and Lapata, 2018;
Song and Shi, 2018). Therefore, we select several
well-known models for CWS and medical concept
recognition tasks and test them on ACEMR corpus.

4.1 CWS for Chinese EMR

For CWS, we follow the convention in previous
CWS studies (Sun and Xu, 2011; Song et al., 2012;
Song and Xia, 2013; Chen et al., 2015; Zhang et al.,
2016; Qiu et al., 2019) to regard it as a sequence
labeling task with the “BIES” scheme. We select
four well-know models, namely, BiLSTM, BERT
(Devlin et al., 2019), ZEN (Diao et al., 2020), and
WMSeg (Tian et al., 2020d) with softmax and CRF
decoder. Herein, BERT and ZEN are pre-trained
language models that have achieved state-of-the-art
performance in many NLP tasks (Liang et al., 2020;
Tian et al., 2020c; Yu et al., 2020; Nie et al., 2020;
Luoma and Pyysalo, 2020; Chen et al., 2020a;
Helwe et al., 2020; Tian et al., 2021a,b). WMSeg
is CWS model that leverages key-value memory
networks (KVMN) (Miller et al., 2016) to incor-
porate wordhood information to improve model
performance, which achieves state-of-the-art per-
formance on many CWS benchmark datasets.

4.2 Medical Concept Recognition

Similarly, for medical concept recognition, we re-
gard it as a character-based sequence labeling task
and perform it in a similar way with named entity
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Figure 1: The auto-generated syntactic information
(i.e., POS labels, dependency relations, and syntactic
constituents) of a sentence with English translation.

Dataset Word Counts Word Types

Train 169,047 3,833
Test 36,257 1,529

Table 5: The statistics (i.e., word count and word type)
of the training and test sets of ACEMR.

recognition, where the medical concept tags for
the input characters follow the “BIOES” scheme.
For example, “支气管” (“virus”) has a medical
tag sub-class “BP”, and thus the tags for the three
characters are “B-BP”, “I-BP”, and “E-BP”, re-
spectively. We try BiLSTM, BERT, ZEN, as well
as TwASP (Tian et al., 2020b) with the CRF de-
coder for medical concept recognition. TwASP
is a model that leverages the auto-generated syn-
tactic information (e.g., the POS tags (POS), the
dependency relations (Dep.), and the syntactic con-
stituents (Syn.)) through a two-way attention mech-
anism to improve model performance for sequence
labeling tasks. To obtain the syntactic information
of the input sentence required by TwASP, we use
Stanford CoreNLP Toolkits (Manning et al., 2014)
to obtain the POS tags, the dependency tree, and the
constituent syntax tree. Figure 1 shows an example
sentence (with English translation) and the three
types of the auto-generated syntactic information.

5 Experiments

In the experiments, we use two datasets. The first
is the in-domain ACMER corpus introduced in Sec.
3; the second is CTB6 (Xue et al., 2005), which is
a benchmark CWS dataset of the general domain
text. We split the ACMER corpus into training/test
sets and report the statistics in Table 5. For all
experiments, we use precision (Prec.), recall, and
F1 scores to evaluate different models.

5.1 Performance on Medical CWS
For medical CWS, we try BiLSTM, BERT, ZEN,
and WMSeg3. For BiLSTM, we use pre-trained

3https://github.com/SVAIGBA/WMSeg

Methods Prec. Recall F1

CTB Only

WMSeg 77.60 76.85 77.22
*ZEN is the base model

CTB+ACEMR

BiLSTM 98.01 98.09 98.05
+ CRF 98.22 98.30 98.26
+ Tencent Embedding 98.75 98.68 98.72

BERT 98.32 98.65 98.48
+ CRF 98.40 98.66 98.53
+ KVMN 98.55 98.78 98.69

ZEN 98.51 98.89 98.70
+ CRF 98.70 98.81 98.76
+ KVMN 98.86 98.84 98.85

ACEMR Only

ZEN 99.01 99.00 99.00
+ CRF 98.99 98.91 98.94
+ KVMN 99.03 99.04 99.03

Table 6: CWS performance for different composition
of training data where +CRF, +KVMN, +Tencent Em-
bedding represent the use of CRF layer, memory net-
work (WMSeg) and Tencent Embedding respectively.

character embeddings from Tencent Embedding4

(Song et al., 2018), with the training epoch, batch
size, and learning rate set to 50, 32, and 0.001,
respectively. For BERT, ZEN, and WMSeg, we
use the official settings (e.g., 768 dimensional hid-
den vectors with 12 multi-head self-attentions for
BERT), where the number of training epoch is 50,
the batch size is 16, and the learning rate is 1e-5.

The experimental results of CWS are presented
in Table 6 with three different settings (i.e., CTB
Only, CTB+ACEMR, and ACEMR Only). The CTB
Only setting displays the results of WMSeg model
(with ZEN encoder) when it is trained on CTB6
only and evaluated on the ACEMR test set. The
inferior results confirm the big gap between the
texts and guidelines in general and medical do-
mains, which indicates the challenge to perform
transfer learning from the general domain to the
medical domain. The CTB+ACEMR setting shows
the results of all models trained on the combination
of ACEMR and CTB6 datasets, where all mod-
els have a high improvement compared with the
WMSeg model trained on CTB6 only, emphasizing
the necessity of constructing an annotated dataset
in medical domain. Compared with BERT and
ZEN baseline, adding the KVMN module at the top
of the BERT/ZEN encoder to leverage wordhood
information (which is exactly the architecture of

4We use the official release from https://ai.
tencent.com/ailab/nlp/zh/embedding.html.
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Methods Prec. Recall F1

BiLSTM-CRF 95.65 95.41 95.53
BERT-CRF 97.62 97.84 97.73
ZEN-CRF 97.00 97.87 97.82

Table 7: The results on three different well-known
models on medical concept recognition.

Concept F1 Count OOV

Top 3 sub-classes

Probability (Prob) 100.00 372 0.000
Group (Gr) 99.84 2,440 0.177
Absence (Ab) 99.74 10,964 0.053

Bottom 3 sub-classes

Treatment Project (TP) 90.91 1,380 0.291
Clinical Drug (Drug) 88.20 648 0.462
Body Substance (BS) 74.24 976 0.400

Total 97.82 - -

Table 8: The top and bottom 3 results of ZEN-CRF on
each sub-classes of medical concept recognition, where
the number of medical concepts belonging to each sub-
class in training set and the out-of-vocabulary (OOV)
rate in test set are reported in last two columns.

WMSeg) can improve the performance on CWS. In
addition, models with ZEN encoder achieve higher
performance than the ones with BERT, which may
result from the fact that ZEN leverage n-gram in-
formation during pre-training and thus can obtain
a better contextual representation. Moreover, if we
train the model on ACEMR only (i.e., the ACEMR
only setting), models with ZEN encoder can be fur-
ther improved. This observation is not surprising
because the texts in CTB6 from the general domain
could introduce noise into the model.

5.2 Performance on Concept Recognition

For medical concept recognition (MCR) task where
the gold CWS results are given, the results from
BiLSTM, BERT, and ZEN encoder with CRF de-
coder are reported in Table 7, where ZEN-CRF
achieves the highest performance. In addition, we
rank the F1 scores of all sub-class labels obtained
by ZEN-CRF and present the results of the top
and bottom 3 ones in Table 8, where the number
of medical concepts belonging to each sub-class
in the training set as well as the rate of out-of-
vocabulary (OOV) medical concepts in the test set
is also reported. It is observed that the model does
not perform well on sub-classes with fewer train-
ing instances and higher OOV rate (e.g., Body Sub-
stance), which suggests that the OOV issue is a
challenge for Chinese medical concept recognition.

Methods Prec. Recall F1

BERT-CRF 97.62 97.84 97.73
TwASP (POS) 97.74 98.04 97.89
TwASP (Dep.) 97.85 98.02 97.94
TwASP (Syn.) 97.65 97.93 97.79

ZEN-CRF 97.00 97.78 97.82
TwASP (POS) 97.77 98.00 97.85
TwASP (Dep.) 97.64 98.01 97.90
TwASP (Syn.) 97.52 97.74 97.63

Table 9: The results of TWASP on medical concept
recognition with auto-generated POS labels, dependen-
cies (Dep.), and syntactic constituents (Syn.).

In addition, we run TwASP5 with three different
types of auto-generated syntactic information (i.e.,
POS labels, dependency relations, and syntactic
constituents). The results are reported in Table 9,
where we find that MCR can benefit from syntactic
information and obtain improvement in most cases,
although BERT-CRF and ZEN-CRF baselines have
already achieve outstanding performance.

6 Conclusion
In this paper, we collect a new Chinese medical cor-
pus, named ACEMR, which contains 500 EMRs
from a local hospital, and annotate the corpus with
CWS and medical concept labels. ACEMR fea-
tures in the rich types of medical concept, in which
20 sub-classes of medical concepts are annotated.
We test several state-of-the-art models for CWS
and medical concept recognition on the annotated
ACEMR. The results on CWS show that models
trained on general domain dataset (i.e., CTB6) can-
not perform well on medical domain, which con-
firms the necessity of constructing the ACEMR
corpus. Furthermore, WMSeg with wordhood in-
formation and TwASP with auto-generated syntac-
tic information outperforms strong baselines on
word segmentation and medical concept recogni-
tion, respectively, which demonstrates the benefit
of leveraging extra resources (i.e., wordhood infor-
mation and syntactic information) for CWS and
medical concept recognition.
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Abstract

The impact of design choices on the per-
formance of biomedical language models re-
cently has been a subject for investigation. In
this paper, we empirically study biomedical
domain adaptation with large transformer mod-
els using different design choices. We eval-
uate the performance of our pretrained mod-
els against other existing biomedical language
models in the literature. Our results show that
we achieve state-of-the-art results on several
biomedical domain tasks despite using similar
or less computational cost compared to other
models in the literature. Our findings high-
light the significant effect of design choices on
improving the performance of biomedical lan-
guage models.

1 Introduction

The amount of biomedical literature has grown sub-
stantially in recent years. This growth created a
demand for powerful biomedical language models.
Transformer-based language models, such as BERT
(Devlin et al., 2019), have shown effectiveness in
capturing the contextual representation of corpora
at large volume. To address the lack of biomedi-
cal contextual representation, both BioBERT (Lee
et al., 2019), and SciBERT (Beltagy et al., 2019)
have adapted BERT to the biomedical domain.

Recently, several Transformer-based mod-
els have been introduced, including Megatron
(Shoeybi et al., 2020), RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2020) and ELECTRA (Clark
et al., 2020). These models show impressive per-
formance gains over BERT in the general domain
leading most NLP leader boards. However, these
models have been evaluated with environmental de-
sign factors varying in several dimensions (e.g., vo-
cabulary and corpora domain, loss function, train-
ing steps, batch size, and model’s scale). Under-
standing the contribution of these factors to the
performance of the language models is challenging,

especially when our goal is to shift the contextual
representations to the biomedical domain.

This challenge motivates us to investigate the
impact of design choices on the performance of
biomedical language models. Moreover, highlight-
ing this impact is critical when evaluating new
applications in BioNLP, where each application
may evaluate its performance against other mod-
els that use different design setups. In this work,
we pretrain and evaluate different variants of large
biomedical Transformer-based models across dif-
ferent design factors.

Thus, our contributions in this paper includes :

(i) We pretrain four different variations of
Transformer-based models including:
ELECTRABase, ELECTRALarge, BERTLarge
and ALBERTxxlarge on biomedical domain
corpora using Tensor Processing Units TPUs.

(ii) We fine-tune and evaluate our pretrained mod-
els on several downstream biomedical tasks.
We present a comprehensive evaluation that
highlights the impact of design choices on the
performance of biomedical language models.

(iii) We released our pretrained models along with
our Github repository.1

2 Related Work

2.1 Transformer-based Language Models

The introduction of the BERT model (Devlin
et al., 2019) has initiated the advancement of
Transformer-based models. Consequently, the in-
vestigation of the architecture and design choices
of BERT introduced new state-of-the-art models.
By exploiting the advantage of using the large
batch size and increasing the size of the corpus,

1Our pre-trained models and our Github repository
are accessible at https://github.com/salrowili/
BioM-Transformers.
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RoBERTa (Liu et al., 2019) has achieved signifi-
cant performance gains on all downstream tasks.

The loss function and scalability of BERT were
also a subject for investigation by ELECTRA
(Clark et al., 2020) and ALBERT (Lan et al., 2020).
ELECTRA reaches state-of-the-art results by in-
troducing a binary loss function. This loss func-
tion uses generative and discriminative models to
accelerate the learning curve. Furthermore, the
ALBERT model introduces multiple ideas to the
BERT model to improve performance and scalabil-
ity, including parameter-sharing technique, LAMB
optimizer, and factorization of embedding layers.
Both ELECTRA and ALBERT are now leading
most of NLP benchmarks, including SQuAD (Ra-
jpurkar et al., 2016) and GLUE (Wang et al., 2018).

2.2 Biomedical Language Models

In this section, we will briefly summarize the
current state-of-the-art biomedical language mod-
els. We should also note that there are other in-
sightful models in literature such as ClinicalBERT
(Alsentzer et al., 2019), BlueBERT (Peng et al.,
2019), BioELECTRA (Ozyurt, 2020) and BioMed-
BERT (Chakraborty et al., 2020) .

BioBERT (Lee et al., 2019) is a BERTBase model
that has been pretrained on biomedical corpora,
including PubMed and PMC articles for 23 days
on eight V100 GPUs. In our evaluation, we use
BioBERTBasev1.1, which extends the pre-training
steps of BioBERTB to 1M steps and was trained on
PubMed abstracts only.

SciBERT (Beltagy et al., 2019) is a BERTBase
model that has been pretrained on 1.14M biomed-
ical and computer science papers from Semantic
Scholar Corpus .

PubMedBERT (Gu et al., 2021) follows a similar
approach of BioBERT by pretraining the BERT
model on large biomedical corpora, including
PubMed abstracts and PMC articles. PubMed-
BERT, in contrast to BioBERT, is pretrained using
a large batch size (8192) and studies various effects
on domain adaptation. The paper also introduces
the BLURB benchmark, which is a collection of
downstream biomedical tasks.

BioMegaTron345m (Shin et al., 2020) is a large-
scale model (345m parameters) by NVIDIA based
on MegaTron architecture. (Shoeybi et al., 2020).
BioMegaTron introduces a variety of large biomed-

ical language models examining the choice of cor-
pora and vocabulary domain.

BioRoBERTa (Lewis et al., 2020) extends the
state-of-the-art results by testing different design
choices. Similar to BioMegaTron’s approach,
BioRoBERTa models investigate the effect of vo-
cabulary and corpora domain on the performance
of biomedical language model.

3 Pretraining our Language Models

We pretrain all our models using the original im-
plementation of BERT, ALBERT, and ELECTRA.
We use TensorFlow 1.15 and TPUv3-512 units
to pretrain our large models and TPUv3-32 to
pretrain our BioM-ELECTRAB model.

3.1 BioM-ALBERT
Initially, we pretrain our model BioM-
ALBERTxxlarge on PubMed abstracts only.
BioM-ALBERTxxlarge is based on ALBERTxxlarge
architecture which has larger hidden layer size
(4096) than both BERTL and ELECTRAL (1024).
We build our specific domain vocabulary, which
has a size of 30K words, using the sentence piece
model (Kudo and Richardson, 2018). We maintain
the same hyperparameters that (Lan et al., 2020)
use, except that we increase the batch size to
8192, decrease the initializer range to 0.01. We
pretrain BioM-ALBERTxxlarge with a learning rate
of 1.76e-3 for 264K steps.

Table 1 show the details of our pretrained mod-
els compared to the existing model in the litera-
ture. The goal to pretrain BioM-ALBERTxxlarge
is to understand the impact of using ALBERT’s
techniques on domain adaptation. Moreover, we
introduce PMC articles at 264k step, to study the
influence of adding PMC articles on the language
model. BioM-ALBERTxxlarge is the first model that
we pretrain and fine-tune among our large models.

3.2 BioM-ELECTRA
We build our BioM-ELECTRABase and BioM-
ELECTRALarge based on ELECTRA architec-
ture (Clark et al., 2020). We pre-train BioM-
ELECTRAL on PubMed abstracts only using spe-
cific domain vocabulary generated by PubMed-
BERT, which has a size of 28,895 words. Our
evaluation of BioM-ALBERTxxlarge on downstream
tasks, influences our decision to pretrain BioM-
ELECTRA on PubMed abstracts only. We use
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Model Steps Batch C Corpus Vocabulary
RoBERTaBase 500k 8192 4.00x Web crawl 50K Web crawl
ELECTRABase++ 4M 256 1.00x XLNET Data 30K Wikipedia + Books
SciBERTBase - - - Semantic Scholar 30K PMC+CS
BioBERTBase 1M 256 0.25x PubMed Abstracts 30K Wikipedia + Books
PubMedBERTBase 64K 8192 0.50x PubMed Abstracts 29K PubMed Abstracts
PubMedBERTBase+ 64K 8192 0.50x PubMed+PMC 30K PubMed+PMC
BioM-ELECTRABase 500K 1024 0.50x PubMed Abstracts 29K PubMedBERT
ELECTRALarge 1.7M 2048 3.40x XLNET Data 30K Wikipedia + Books
ALBERTxxlarge 1.5M 4096 6.00x Wikipedia + Books 30k Wikpedia + Books
BioRoBERTaLarge 500K 8192 4.00x PubMed+PMC+M 50K PubMed+PMC+M
BioM-BERTLarge 690K 4096 2.76x PubMed+PMC 30k Wikipedia + Books
BioM-ELECTRALarge 434K 4096 1.73x PubMed Abstracts 29K PubMedBERT
BioMegaTron345m 800K 512 0.40x PubMed+PMC-CC 50K PubMed Abstracts
BioM-ALBERTxxlarge 264K 8192 2.11x PubMed Abstracts 30k PubMed (ours)

Table 1: Design choices for our pretrained models and state-of-the-art models. The computational ratio (C) rep-
resents the ratio between the number of steps multiplied by the batch size where ELECTRAbase++ is the baseline.
XLNet (Yang et al., 2020) data set consist of 33B tokens (130GB) of English corpora. We split the table based on
the scale and the domain of language models. CC: Commercial use Collection.

similar pre-training hyperparameters setting de-
scribed by (Clark et al., 2020) except that we use a
larger batch size for BioM-ELECTRAbase (1024)
and BioM-ELECTRAlarge (4096). We pretrain our
BioM-ELECTRAbase for 500K steps and BioM-
ELECTRAlarge model for 434K steps .

The main objective to pretrain BioM-
ELECTRABase is to study the effect of ELECTRA
function by comparing its performance with
PubMedBERTBase and RoBERTaBase . Fur-
thermore, we build our BioM-ELECTRALarge
model to study the effect of model scale by
comparing it with BioM-ELECTRABase and
PubMedBERTBase where other factors are similar.
We should also note that we choose general
domain model ELECTRAB++ as a baseline model
instead of ELECTRAB model. The difference
between ELECTRAB and ELECTRAB++ is that
ELECTRAB is pretrained with less steps (1M) and
on smaller corpora (Wikipedia+ Books) (Clark
et al., 2020).

3.3 BioM-BERT
We pretrain BioM-BERTLarge model on PubMed
abstracts and PMC articles using the same vo-
cabulary of BioBERTBase. BioBERTBase uses
a general domain vocabulary pretrained on En-
glish Wikipedia and Books Corpus. Our BioM-
BERTLarge model aims to study the effect of using
general domain vocabulary and PubMed + PMC
corpora on downstream biomedical tasks. We use a

batch size of 4096, a learning rate of 2e-4, and we
set the pretraining steps to 700K. However, since
we use preemptible TPUs, our TPUs preempted
at 690K. We use the ELECTRA implementation
of BERT to pretrain our BERTLarge model. This
implementation uses a dynamic masking feature
without using next-sentence prediction objective.

4 Fine-Tuning

4.1 Downstream Tasks

Our choices of downstream biomedical tasks are
similar to (Shin et al., 2020). For Named Entity
Recognition (NER) and Relation Extraction (RE),
we generate our training, development, and test
data using the same script that PubMedBERT uses
(Gu et al., 2021).
Named Entity Recognition Our choices for NER
tasks including: BC5CDR-Chemical, BC5CDR-
Disease (Li et al., 2016) and NCBI-Disease task.
(Doğan et al., 2014). These tasks aim to identify
chemical and disease entities using IOB tagging
format (Ramshaw and Marcus, 1995). For NER
tasks, we use entity-Level F1 score, which is a
common standard in the literature.
Relation Extraction is a text classification task
where we classify each sequence from a list
of labels (classes). For RE task, we choose
the ChemProt task (Krallinger et al., 2015) ,
which is a task that classifies chemical-protein
interactions. We use micro-level F1 score on the
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five most common classes. We reproduce the
results of BioRoBERTaL

2 on ChemProt task since
BioRoBERTa uses a different pre-processing script
than (Gu et al., 2021).
Question Answering We use the same
BioASQ7B-factoid dataset that (Lee et al.,
2019) use, which is in the format of SQuADv1.1.
We use Mean Reciprocal Rank (MMR) as an
evaluation metric for this task. Moreover, as it is
a common practice, we fine-tune our models on
BioASQ task using a checkpoint fine-tuned on
SQuAD2.0 task (Rajpurkar et al., 2016).

4.2 Fine-Tuning Hyperparameters
We conduct a hyperparameters grid search using
the development data set on TPUv3-8. We use Ten-
sorFlow 1.15 to fine-tune our model for all tasks,
except that we use Transformers library (Wolf et al.,
2020) to fine-tune our BioM-ALBERT on NER
tasks. Since we are fine-tuning different architec-
tures, we extend our grid search range to : learn-
ing rate (1e-4, 2e-4, 1e-5 - 7e-5), batch size (24,
32, 48, 64, 128) and (2-5) epochs . We fixed our
choices of hyperparameters for each set of tasks,
model’s scale, and architecture. The details of our
fine-tuning hyperparameters can be found in Ap-
pendix A.1.

5 Results and Discussion

Table 2 shows our evaluation results. We categorize
models into four categories based on the domain
and the scale of each model. We show the results of
BioM-BERTL and BioM-ALBERTxxlarge at differ-
ent steps. We report entity-level F1 for NER tasks,
micro-level F1 for ChemProt, F1 for SQuAD2.0,
and Mean Reciprocal Rank (MMR) for BioASQ.
We add SQuAD results to track the direction of
contextual representation between the general and
biomedical domain.

5.1 ELECTRA Objective
The effect of the ELECTRA objective can be seen
from comparing both PubMedBERTB and BioM-
ELECTRAB, where they both use similar design
choices, vocabulary set, and C ratio. Our evaluation
shows that the ELECTRA function improves the
performance on ChemProt, SQuAD, and BioASQ
tasks. On the SQuAD task, our BioM-ELECTRAB

2BioRoBERTA released their models at https://
github.com/facebookresearch/bio-lm. We use
following hyperparameters to reproduce results (lr: 2e-5 ,
batch size: 16, epochs : 10, seeds: 10, 42, 1234, 12345, 666).

exceeds RoBERTaB despite using biomedical cor-
pora and less C ratio. On NER tasks, BioM-
ELECTRAB performs better on the NCBI-disease
and worse on the BC5-CDR task. In contrast,
BioM-ELECTRAlarge performs better than other
large models on the BC5-CDR dataset, which ex-
cludes the assumption that ELECTRA function
negatively affects BioM-ELECTRAB performance
on BC5-CDR tasks

5.2 Named Entity Recognition
Specific domain vocabulary significantly improves
the results on NER tasks. Results of BioM-
ELECTRAL and BioRoBERTaL show that biomed-
ical corpora choices have a marginal effect on NER
tasks. Our results also show that the gap between
base-scale and large-scale biomedical models on
NER tasks is relatively smaller than RE and QA
tasks, especially for NCBI-Disease task.

5.3 Relation Extraction
On ChemProt task, BioM-BERTLarge achieve 78.8
F1 score at 100K step with a C ratio of 0.4x match-
ing the performance of BioRoBERTaL which has a
C ratio of 4.0x. At 1.6x C ratio (400K), it exceeds
by a significant margin all large-scale biomedical
models. BioM-BERTL is the only large model in
Table 2 that has PP design choice, which highlights
the critical impact of general domain vocabulary
on some RE tasks such as ChemProt.

5.4 Question Answering
Our results highlight that question answering tasks
are sensitive to out-of-domain corpora. This sensi-
tivity can be clearly seen when we introduce (PP)
design to BioM-ALBERTxxlarge. The performance
decreases significantly on the BioASQ challenge.
In contrast, the performance on the SQuAD dataset
increase to 88.0%. This increase is not caused by
extending the training steps since SQuAD score
remains stable at 215K and 264K steps.

Moreover, we can observe a gap of 3.9%
in the SQuAD benchmark between BioM-
ELECTRALarge and BioM-ELECTRABase. How-
ever, this gap is not reflected in the BioASQ bench-
mark since it is in the format of SQuADv1.1, high-
lighting the need to have a biomedical questing
answering task in the format of SQuADv2.0.

Furthermore, our evaluation shows that
ELECTRAB++ model achieve state-of-the-art
result on BioASQ for base-scale models. We
attribute this performance to the fact that we use
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Model Design BC5CDR- NCBI- Chem- QA
C Design Chem. Dise. Dise. Prot SQuAD BioASQ

RoBERTaB 4.00x G 89.4 80.7 86.6 73.0 83.7 -
ELECTRAB++ 1.00x G 90.7 83.0 86.3 73.7 86.2 52.5
SciBERTB - S V 92.5 84.7 88.3 75.0 - -
BioBERTB 0.25x P 92.6 84.7 89.1 76.1 - 41.1
PubMedBERTB 0.50x P V 93.3 85.6 87.9 77.2 79.1 51.6
PubMedBERTB+ 0.50x PP V 93.4 85.6 88.3 77.0 80.9 51.9
BioM-ELECTRAB 0.50x P V 93.1 85.2 88.4 77.6 84.4 52.3
ELECTRAL 3.40x G 91.6 84.4 87.6 75.3 90.7 53.0
ALBERTxxlarge 6.00x G 89.7 81.7 85.5 75.8 90.2 53.1
BioRoBERTaL 4.00x PPM V 93.7 85.2 89.0 78.8 - -
BioM-BERTL

100K 0.40x PP - - 87.8 78.8 84.0 -
400K 1.60x PP - - 88.5 79.8 86.5 -
690K 2.76x PP 92.4 84.5 88.6 80.0 87.3 53.4

BioM-ELECTRAL 1.73x P V 93.8 85.9 89.0 78.6 88.3 54.1
BioMegaTron345m 0.40x PP V 92.5 88.5 87.0 77.0 84.2 52.5
BioM-ALBERTxxlarge

215K 1.70x P V - - - 79.0 87.0 55.1
264K 2.11x P V 93.5 85.2 88.7 79.3 87.0 56.9
+64K 2.60x PP V - - - 79.2 88.0 54.5

Table 2: Evaluation results of our pretrained models. For NER and ChemProt, we use reported results of SciBERTB,
RoBERTaB, BioBERTB, PubMedBERTB, PubMedBERTB++ (Gu et al., 2021), BioMegaTron (Shin et al., 2020),
BioRoBERTaL (Lewis et al., 2020). We generate QA results for all models, except that we use reported results
for BioMegaTron, BioBERT (Shin et al., 2020), RoBERTaB (Dai et al., 2020). BioMegaTron uses sub-tokens
evaluation for NER tasks rather than whole-entity evaluation and uses different pre-processed data set for ChemProt
task. Our results are the average scores of five different runs. B: Base, L: Large, P: PubMed, PP: PubMed+PMC,
PPM: PubMed+PMC+MMIC, V: Specific domain vocabulary, S: Semantic Scholar, G: General domain model.

a SQuAD fine-tuned checkpoint to fine-tune our
models on BioASQ task. In contrast, the gap
between the general and biomedical domain is
worse on NER and RE tasks since we are not using
any general domain fine-tune checkpoints.

5.5 Fine-Tuning Time
Table 3 shows the fine-tuning efficiency. All base-
scale models in Table 2 have similar fine-tuning
time to BioM-ELECTRAB since they are built on
BERTB architecture. Also all models that are based
on BERTL, such as BioRoBERTaL have similar
fine-tuning time to BioM-ELECTRAL. Our evalu-
ation shows that hidden layer size (H) significantly
influences the fine-tuning time.

6 Conclusion

We introduce four biomedical Transformer-based
language models. Our results show that lan-
guage models with general domain vocabulary
and PubMed+PMC corpora perform better on the

Model H Time Ratio
BioM-ELECTRAB 768 03:01 0.35x
BioM-ELECTRAL 1024 08:27 1.00x
BioM-ALBERTxxlarge 4096 31:15 3.67x

Table 3: Fine-Tuning time of our pre-trained models.
We fine-tune all models on ChemProt data set for 3
epochs with a batch size of 32 and max seq. length
of 128 on 3090RTX GPU with PyTorch (FP16).

ChemProt task. Language models with specific
domain vocabulary and PubMed abstracts perform
better on NER and QA tasks. In the future, we
are planning to extend our evaluation to additional
biomedical tasks and investigate implementing
early existing (Zhou et al., 2020) to reduce the fine-
tuning time. Also, we are planning to build an End-
to-End ensemble QA system with our large models
and Sentence-BERT (Reimers and Gurevych, 2019)
to address pandemic issues such as COVID-19.
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A Appendix

A.1 Fine-Tuning Hyperparameters

Task Model E LR B
NER ELECTRAB 5 2e-4 48
NER BioM-ELECTRAB 5 2e-4 48
NER BioM-ELECTRAL 5 7e-5 32
NER ELECTRAL 5 7e-5 32
NER BioM-BERTL 5 7e-5 32
NER BioM-ALBERTxxl 4 3e-5 16
NER ALBERTxxl 4 3e-5 16
RE ELECTRAB 4 1e-4 32
RE BioM-ELECTRAB 4 1e-4 32
RE BioM-ELECTRAL 4 7e-5 32
RE ELECTRAL 4 7e-5 32
RE BioM-BERTL 4 7e-5 32
RE BioM-ALBERTxxl 5 3e-5 128
RE ALBERTxxl 5 3e-5 128
SQ. PubMedBERT 2 5e-5 32
SQ. BioM-ELECTRAB 3 1e-4 32
SQ. BioM-ELECTRAL 3 5e-5 32
SQ. BioM-BERTL 5 5e-5 48
SQ. BioM-ALBERTxxl 2 3e-5 128
Bio. BioM-ELECTRAB 4 2e-5 24
Bio. ELECTRAB 4 2e-5 24
Bio. BioM-ELECTRAL 4 2e-5 24
Bio. ELECTRAL 4 2e-5 24
Bio. PubMedBERT 3 1e-5 128
Bio. BioM-ALBERTxxl 3 1e-5 128
Bio. ALBERTxxl 3 1e-5 128

Table 4: Fine-Tuning hyperparameters of our pre-
trained models and base-line general models. We fine-
tune all listed models with TensorFlow 1.15 on TPUv3-
8 unit. (SQ.: SQuAD2.0, Bio.: BioASQ7B-Factoid, E:
Epochs, LR: learning rate, B: Batch size).
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Abstract 

First-hand experience related to any 

changes of one’s health condition and 

understanding such experience can play an 

important role in advancing medical 

science and healthcare. Monitoring the safe 

use of medication drugs is an important task 

of pharmacovigilance, and first-hand 

experience of effects about consumers’ 

medication intake can be valuable to gain 

insight into how our human body reacts to 

medications. Social media have been 

considered as a possible alternative data 

source for gathering personal experience 

with medications posted by users. 

Identifying personal experience tweets is a 

challenging classification task, and efforts 

have been made to tackle the challenges 

using supervised approaches requiring 

annotated data. There exists an abundance 

of unlabeled Twitter data, and being able to 

use such data for training without suffering 

in classification performance is of great 

value, which can reduce the cost of 

laborious annotation process. We 

investigated two semi-supervised learning 

methods, with different mixes of labeled 

and unlabeled data in the training set, to 

understand the impact on classification 

performance. Our results from both 

pseudo-label and consistency 

regularization methods show that both 

methods generated a noticeable 

improvement in F1 score when the labeled 

set was small, and consistency 

regularization could still provide a small 

gain even a larger labeled set was used. 

1 Introduction 

First-hand experience related to any changes of 

one’s health condition and understanding such 

experience can play an important role in advancing 

medical science and healthcare. What has 

happened since the COVID-19 pandemic started 

demonstrates potential values and applications of 

such experiential knowledge, ranging from 

understanding the symptoms of the viral infection, 

to learning the effects after vaccination – personal 

experience shared on social media pertaining to 

symptoms of infection and side effects of vaccine 

may help us gain insight into the virus and vaccine, 

and ultimately advance medical science and 

clinical practice. Post-market surveillance is an 

important activity of pharmacovigilance, and 

experiential information from the users of the 

therapeutic products can help supplement the 

knowledge of medication effects gathered with 

other data sources. Many nations recognized 

importance of patient reporting of drug effects and 

its scientific value (van Hunsel et al., 2012), and 

potential benefits of patient reported drug events 

were studied (de Langen et al., 2008; Blenkinsopp 

et al., 2007; Avery et al., 2011; Anderson et al., 

2011). Patient reporting could help identify new 

adverse drug effects sooner than that by healthcare 

professionals alone (Egberts et al., 1996). A study 

by McLernon and colleagues found that patient 

reports contained a higher median number of 

suspected adverse drug reactions (ADRs) per 

report, and described reactions in more detail, and 

they were richer in descriptions of reactions than 

those from healthcare providers (McLernon et al., 

2010). One study showed that consumers reported 

seven categories of ADRs unreported by the other 

sources, and the investigators recommended that 

consumers should be included in systematic drug 

surveillance systems (Aagaard et al., 2009). 

It is a primary concern of monitoring the health 

conditions as well as the safe use of pharmaceutical 

products to find a rich and accessible data source 

and build an efficient system to process and 

analyze the data.  

Semi-Supervised Language Models for Identification of Personal  

Health Experiential from Twitter Data: A Case for Medication Effects 
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People share their personal health experience on 

social media thanks to their prevalence. As such, 

social media have been considered an alternative 

and active data source for studying health 

surveillance. Platforms like Twitter allow users to 

express their health condition freely online. There 

exist many studies of using social media for health 

surveillance, such as influenza outbreak detection 

(Culotta et al., 2010), public health analyzing (Paul 

et al., 2011), dental pain surveillance (Heaivilin et 

al., 2011). 

Personal experience tweets (PETs) related to 

medication use are defined as Twitter posts 

expressing one’s first-hand personal encounters or 

observations about their health conditions after the 

administration of pharmaceutical drugs. 

Medication effects can be undesirable feelings 

caused by medication’s side-effects which 

exacerbate one’s health condition, or beneficial 

effects which help alleviate one’s health condition 

after medication intake. Below are examples of 

personal experience tweets (PETs) pertaining to 

medication use (the medication names are in 

boldface and experiences are underscored): 

“codeine got me feeling sloooow xanax got 

me sleeping” 

“this vicodin is putting me to sleep” 

“morphine actual makes ur face so itchy 

think ive scratched ma whole face off” 

As a general purpose social media platform, 

Twitter contains posts on almost all thinkable 

topics and many of them are unrelated to health, let 

alone misspellings, incorrect grammas, and 

creative short texts found in the posts. Therefore, 

differentiating personal experience tweets (PETs) 

from other irrelevant or noisy tweets is challenging. 

Efforts have been made in previous endeavors. 

Personal pronouns were chosen as the feature to 

distinguish PETs from irrelevant tweets such 

advertisements, news, even spams (Jiang and 

Zheng, 2013). An effort was made to engineer 

features including Twitter specific features, n-

grams, punctuation elements, and topics, but the 

topic feature was discarded because of its 

significant efforts required to achieve minimum 

merit of classification performance improvement 

(Alvaro et al., 2015). Later, a set of 22 Twitter 

features including textual data and metadata was 

engineered by Jiang and his colleagues (2016) and 

conventional machine learning methods such as 

decision tree were applied to predict PETs. The 

concept of deep grammulator was proposed to 

include a textual feature with expressions in one 

class but not in the opposite class, to enhance the 

discriminatory power of the classification (Calix et 

al., 2017). In recent studies, application of neural 

embedding and recurrent neural network (LSTM) 

was investigated to improve the classification 

performance (Jiang et al., 2018). In the latest 

development, pre-trained attention-based language 

model approaches based on BERT and RoBERTa 

language models were explored to have achieved 

even better classification performance (Jiang et al., 

2019, Zhu et al., 2020). 

However, all previous attempts are based on 

fully supervised learning mechanisms, requiring 

the laborious effort of annotation which can be 

cost-prohibitive if a large amount of accurately 

labeled data is needed with a limited budget. 

Unlike labeling text data in formal writing, 

annotating Twitter posts can be especially 

challenging, because of various complexities 

associated with the data such as misspellings, use 

of nonstandard language, and lack of sufficient 

context within the limited space. In addition, 

supervised methods are widely used on social 

media data in health-related tasks due to their 

higher accurate than unsupervised approaches, 

requiring manual annotation of large corpora of 

data. Furthermore, the subjectivity of labeling 

social media data is of concern. Inter-annotator 

agreements tend to be relatively low for social 

media–based annotation tasks even with domain 

experts as annotators (O’Connor, 2020). 

On social media, there exists an abundance of 

unannotated data, and being able to use such large 

amount of unlabeled data for training may improve 

the classification performance, without spending a 

significant amount of resources in annotation. In 

this study, we investigate how the classification 

performance in predicting personal experience 

tweets related to medication use will be affected 

using a relatively small amount of annotated data 

instances in training an attention-based language 

model.  

2 Background 

Data and features determine the upper limit of 

machine learning, while models and algorithms can 

only approach this upper limit. For most machine 
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learning tasks, the amount of labeled data directly 

affects the final learning performance.  

In order to obtain a large set of labeled data, 

researchers usually need to spend a significant 

amount of time to annotate data, and the cost of 

annotation process can be drastic and sometimes 

unaffordable. On the other hand, there is 

abundance of unlabeled data which are easily 

accessible. Semi-supervised learning is a 

promising approach in machine learning which 

uses the combination of both of labeled and 

unlabeled data. Studies have shown that it can 

achieve considerable improvement for various 

tasks with a small labeled dataset in conjunction 

with a large set of unlabeled data.  

Based on the cluster assumption, semi-

supervised learning methods are mainly classified 

into two different categories: proxy-label and 

consistency regularization. The proxy-label 

method uses the supervised model or its variants to 

generate proxy labels for the unlabeled data, and 

the proxy labels are mixed with true labels to 

provide additional features to benefit training 

process. A typical implementation of such 

approach is the pseudo-label method as described 

below (Lee 2013). 

Consistency regularization is a relatively new 

method. In consistency training, models are 

regularized to be invariant to a small amount of 

noise applied to inputs or hidden neurons. The 

invariance can be all or parts of hidden states in the 

network, or the outputs of the model. Common 

methods include Temporal Ensembling (Laine et 

al., 2016), Mean Teachers (Tarvainen et al., 2017), 

and Unsupervised Data Augmentation (Xie et al., 

2019). 

3 Method  

The pipeline of data processing and analysis of our 

methods is depicted in Figure 1. Our approach of 

identifying personal experience tweets was based 

upon the two semi-supervised learning methods 

mentioned above: (1) Pseudo-Label which 

generates pseudo labels for unlabeled tweets and 

trains the model with labeled tweets together in a 

supervised behavior, and (2) Consistency 

Regularization which does not generate any labels 

for unlabeled data but tries to keep the consistency 

of the model outputs with the same inputs injected 

with some stochastic noise.  

Our language model is based upon the Google’s 

attention-based Bidirectional Encoder 

Representations from Transformers (BERT) 

(Devlin et al., 2018). Although the Google team 

highly recommends using its pre-trained language 

 

Figure 1. Pipeline of Data Processing and 

Analysis. 

 

Figure 2. Setup of Pseudo-label Based Semi-

supervised Learning. 

230



 
 

model, a Microsoft team demonstrated that the 

domain-specific BERT language model can 

perform better (Gu et al., 2020), and we adopted 

Microsoft’s approach in this work.  

3.1 Pseudo-Label 

Figure 2 shows our pseudo-label based method. A 

naive but efficient semi-supervised learning 

structure was implemented in this method by 

combining both labeled and unlabeled (pseudo-

labeled) sets of data. First, the model was trained in 

a fully supervised manner with the labeled set, and 

the trained model was used to assign pseudo labels 

to unlabeled tweets. Later, a subset of unlabeled 

tweets was chosen for prediction by the initial 

model. From the prediction results, each unlabeled 

tweet was assigned a pseudo-label whose class has 

the maximum predicted probability. Due to the 

class imbalance of the corpus of labeled tweets 

(Table 1 below), the composition of the unlabeled 

train set was made up of the classes which were 

inversely proportional to the annotated corpus 

(PET: non-PET = 3:1). Finally, both sets of labeled 

and pseudo-labeled tweets were combined to train 

the model. 

3.2 Consistency Regularization 

For consistency training, the framework of П-

model (Laine et al., 2016) was used for reference. 

Figure 3 and Algorithm 1 shows our method. In this 

approach, two parts of the loss function were 

considered: (1) the classification loss, which is 

usually the cross entropy, and (2) the consistency 

loss. The classification loss was only applied to the 

labeled tweets while the consistency loss was for 

all. During training, each input was evaluated twice 

with hidden noise injection, and the difference 

between the two evaluation results was calculated 

by the squared error. In combining these two parts 

of loss, a weight variable was applied to scale the 

consistency loss. The weight variable was initialed 

to zero, allowing the training loss to be dominated 

by classification so that the model could learn from 

labeled data first, and later the weight variable was 

recalculated in the training epochs to reflect the 

consistency loss consistent with the data. The value 

of this weight would be adjusted to a fixed level 

according to the number of labeled and unlabeled 

data used in training. It was an important and tricky 

step. This is because if the value is too small, the 

training is more likely to be supervised and prone 

to overfitting, and on the contrary, the model 

trained with an overly large weight will noticeably 

deteriorate, making the predictions less 

meaningful. Refer to Appendix A for the details of 

training parameters. 

Dropout regularization was chosen as the noise 

injection method in the hidden layer of the model. 

Because the dropout performed stochastically, the 

model outputs were different from training even 

 

Figure 3. Setup of Consistency Regularization 

Require: xi = training stimuli 

Require: L = labeled set 

Require: yi = labels of labeled data 

Require: w(t) = weight ramp-up function for 

consistency loss 

Require: f(x)= neural network with dropout 

and parameter  

 

for t in [1, num_epochs] do 

  for each minibatch B do 

      𝑧𝑖∈𝐵   f(𝑥𝑖∈𝐵) 

      𝑧′𝑖∈𝐵 f(𝑥𝑖∈𝐵) 

      𝑙𝑜𝑠𝑠 −
1

|𝐵|
∑ (𝑦𝑖log𝑧𝑖 + (1 −𝑖∈(𝐵∩𝐿)

𝑦𝑖)log (1 − 𝑧𝑖)) +

𝑤(𝑡)
1

|𝐵|
∑ |𝑧𝑖 − 𝑧𝑖

′|2
𝑖∈𝐵  

     Update  by using Adam 

   end for 

end for 

Algorithm 1. Pseudo code of consistency 

regularization 
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with the same inputs. Therefore, there were two 

different evaluation results for each input, and the 

expected goal was to minimize them. 

3.3 Network Structure and Baseline 

Pre-trained language models such as Bidirectional 

Encoder Representations from Transformers 

(BERT) (Devlin et al., 2018), Robustly Optimized 

BERT Pretraining Approach (RoBERTa) (Liu et 

al., 2019) and Generative Pre-trained Transformer 

(GPT) (Radford et al., 2019) have achieved the 

state-of-the-art performances in many NLP 

benchmarks and downstream tasks. Efforts have 

been made to apply the pre-trained BERT and 

RoBERTa (and its continuous pre-training) 

language models in identifying PETs (Jiang et al., 

2019; Zhu et al., 2020) which demonstrated 

significant improvement in all classification 

measures. However, these language models are all 

pre-trained using general-domain texts such as 

news, Wikipedia and/or BookCorpus which may 

not have significant relevance to Twitter posts, 

especially pertaining to personal health experience. 

Gu and colleagues (Gu et al., 2020) found that the 

language model learned with domain specific data 

can provide substantial gains over the general 

domain language model, and domain-specific 

learning from the scratch is better than the one that 

starts with the general domain model and is 

updated with the specific domain data. Therefore, 

we decided to pre-train a domain-specific BERT 

language model from scratch to investigate its 

performance. The pre-training process used 10M 

unlabeled medication-related tweets we collected, 

and a new set of in-domain sub-word vocabulary 

was generated. See Appendix A for detail settings. 

This newly pre-trained language model was 

utilized as a network backend for both semi-

supervised learning approaches as well as the 

baseline method. 

For the baseline, supervised learning was 

considered. Following the official transfer learning 

guideline, the domain-specific BERT was 

transferred for binary classification and trained in a 

fully supervised way with the same labeled data as 

semi-supervised methods used. 

3.4 Data 

A set of 22 million raw tweets was collect with 

Twitter Streaming APIs from 25 August 2015 to 7 

December 2016, and another set of 52 million 

tweets posted between 2006 as 2017 was collected 

using a home-made crawler which followed the 

crawling policy documented in the Twitter.com’s 

robots.txt file. To clean the collected raw data, both 

sets were filtered by a set of brand and generic 

medication names, and duplicate as well as non-

English tweets were all eliminated. The above pre-

processing yielded a total 10 million tweets, among 

which a collection of 12,331 (12K) tweets was 

selected and annotated according to the annotation 

guideline which defines what is a PET and a non-

PET. Table 1 lists the composition of labeled 

tweets. 

First, a corpus of 10 million unlabeled tweets 

was used to build a sub-word vocabulary and pre-

training domain-specific BERT language model. 

To avoid any possible data leakage, the 12K 

annotated tweets were excluded from the 10 

million set. The set of 12K labeled tweets was used 

for both supervised baseline method and the 

labeled part of semi-supervised methods. As for the 

unlabeled part of semi-supervised learning, a 

stochastic subset of was randomly generated from 

the 10 million unlabeled corpus.  

3.5 Implementation 

Our two semi-supervised learning methods were 

evaluated in the task of identifying personal 

experience tweets related to medication effects. To 

simulate the situation of the lack of labeled data and 

investigate how semi-supervised learning would 

perform for our task, both of our methods were 

tested with different percentages of the labeled data 

in our training set, and we evaluated the 

performance of the semi-supervised methods along 

with the fully supervised settings as the baseline.  

Ten-fold cross-validation was applied to both 

supervised and semi-supervised approaches, and 

the mean of each classification measure was 

collected. For each fold, 10% of labeled tweets was 

partitioned as the test set which was only used for 

testing the classification performance. The labeled 

training set was randomly selected from the 

remaining 90% tweets by a proportion – we set six 

different proportions: 10%, 30%, 50%, 70%, 90% 

and 100% to investigate how the size of labeled 

data would affect the performance. Note that the 

initial training of pseudo-labeling method used the 

 PETs Non-PETs Total 

Count 2,962 9,369 12,331 

Table 1. Composition of annotated tweets. 
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same proportion of labeled data as the supervised 

baseline as well as the consistency regularization 

method to initial the model for assigning pseudo 

labels of unlabeled tweets. A fixed random seed 

was used to ensure that all methods have the same 

partition of data. 

For both semi-supervised learning methods, a 

collection of 10K of unlabeled tweets was used as 

the unlabeled training set and mixed up with 

labeled ones. More specifically, in consistency 

training, the unlabeled train set was simply 

generated from the 10M unlabeled corpus by a 

stochastic sampler. But for pseudo-label, it was 

time consuming to predict for 10M tweets, and it 

was observed that the prediction of unlabeled data 

was imbalanced – the number of non-PETs was 

about ten times more than that of PETs. In other 

words, the training set would be more imbalanced 

if the 10K unlabeled set were to be used before 

assigning pseudo labels. To address the issue, and 

keep the training time tolerable, a set of 100K 

unlabeled tweets was chosen and assigned with 

pseudo labels, and afterwards, a training set of 10K 

unlabeled tweets was composed from the 100K 

tweets with pseudo labels. To balance the labeled 

set with a 1:3 ratio for PET: non-PET (Table 1), our 

pseudo-labeled training set was made up of 7,500 

tweets with the PET pseudo-label and 2500 the 

non-PET pseudo label. 

4 Results and Discussions  

Listed in Table 2 are the measures of classification 

performance of our semi-supervised methods 

along with the supervised baseline in different 

proportions of labeled data (the highest values are 

in boldface).  

As can be seen in Table 2, no single method 

achieved the best performance in all classification 

measures. The pseudo-label-based method 

achieved the best recall but showed the poorest 

accuracy, precision and AUC/ROC, in all the 

proportions of the labeled tweets used. On the 

contrary, the consistency regularization approach 

demonstrated the completely opposite 

%1 Method2 Acc. (PET) Recall (PET) Prec. (PET) F1 (PET) AUC/ROC 

10 C. 0.8597 0.6239 0.7500 0.6786 0.9079 

 P. 0.8390 0.7512 0.6500 0.6916 0.8944 

 S. 0.8466 0.6607 0.7038 0.6706 0.9048 

30 C. 0.8723 0.6894 0.7559 0.7206 0.9235 

 P. 0.8528 0.7802 0.6661 0.7180 0.9155 

 S. 0.8638 0.6904 0.7325 0.7081 0.9199 

50 C. 0.8765 0.6945 0.7689 0.7294 0.9287 

 P. 0.8591 0.7927 0.6798 0.7303 0.9211 

 S. 0.8657 0.7474 0.7198 0.7280 0.9266 

70 C. 0.8797 0.7134 0.7678 0.7392 0.9313 

 P. 0.8646 0.7765 0.6963 0.7338 0.9239 

 S. 0.8755 0.7171 0.7556 0.7338 0.9289 

90 C. 0.8829 0.7316 0.7680 0.7488 0.9338 

 P. 0.8685 0.7846 0.7037 0.7415 0.9266 

 S. 0.8758 0.7552 0.7383 0.7452 0.9315 

100 C. 0.8855 0.7245 0.7802 0.7508 0.9344 

 P. 0.8678 0.7937 0.6990 0.7427 0.9278 

 S. 0.8792 0.7620 0.7447 0.7519 0.9335 
1. the percentage of labeled data used. 

2. ‘C’ for consistency regularization, ‘P’ for pseudo-label, ‘S’ for supervised baseline. 

Table 2. Classification performance  

% Method F1 AUC/ROC 

10 C. 2.749x10-1 5.534x10-2 

 P. 3.676x10-2 5.188x10-5 

30 C. 3.653x10-2 6.923x10-3 

 P. 3.828x10-2 3.372x10-4 

50 C. 4.115x10-1 2.538x10-2 

 P. 3.002x10-1 4.669x10-5 

70 C. 7.326x10-2 1.331x10-2 

 P. 4.965x10-1 5.089x10-4 

90 C. 1.979x10-1 4.581x10-3 

 P. 6.620x10-2 9.336x10-4 

100 C. 3.724x10-1 1.018x10-1 

 P. 3.222x10-2 3.619x10-4 

Table 3. T-test results (p-values) between 

baseline and semi-supervised learning methods 

(C. and P.) Boldface figures: < 0.05 
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performances, and notably its AUC/ROC, a more 

comprehensive measure for discriminability, is 

consistently higher than other two methods 

(Fawcett, 2006) – this may indicate that the 

consistency regularization method performed 

better in correctly predicting each class of data. 

It seems to be inconclusive to state which one is 

the winner on a single classification measure. A 

higher accuracy does not necessarily indicate that 

the method is better because the accuracy is 

calculated based upon the prediction results of both 

positive and negative classes. The class imbalance 

in our test set may contribute to a higher accuracy 

if the majority class dominates. Recall and 

precision are of equal importance but neither of 

them alone can measure a network independently 

because recall focuses on the sensitivity of positive 

class while precision just measures the percentage 

of true positive samples in the predicted class. The 

F1 measure represents the harmonic mean 

calculated from both recall and precision, along 

with AUC/ROC, they have been considered as the 

most comprehensive measure among these five 

measures. Figure 4 shows the changes of F1 value 

for each method along with the proportions of the 

labeled data used. To confirm if the improvement 

difference does exist, we conducted statistical 

analysis (paired t-test) on the results between semi-

supervised learning methods and baseline. We set 

the null hypothesis to that the difference between a 

pair of method does not exist while the labeled data 

remain the same. Table 3 shows the results of 

statistical analysis on F1 and AUC/ROC between 

the baseline and two semi-supervised learning 

methods. We set the p-value threshold to 0.05, 

meaning that any p-value less than 0.05, and if its 

corresponding value of performance measure 

larger than that of baseline, it indicates that the 

improvement difference does exist with statistical 

significance and it is not due to chance (these 

values are shown in boldface). 

 As shown in Figure 4, it is clear that both semi-

supervised learning methods performed better than 

supervised baseline when a small amount of 

labeled data was used. In other words, semi-

supervised learning may help us build a more 

robust PET prediction network in the situation 

where only a limited or small amount of the labeled 

data is available. 

More specifically, according to Figure 4 and its 

corresponding p-values, the pseudo-label based 

method showed an outstanding F1 performance in 

tiny labeled sets (about 10% and 30% of the labeled 

data), and its improvement is of statistical 

significance. However, its performance appeared 

to deteriorate when the training set contained a 

large amount of annotated tweets (about more than 

70% of labeled data). A possible explanation of this 

phenomenon might be the mislabeling of unlabeled 

tweets, which may mislead the training process if it 

has more labeled data than unlabeled one. 

The consistency regularization method appears 

to be more stable than the pseudo-label method. It 

demonstrates consistently good performance even 

with the larger labeled sets (about 90% of labeled 

data), except that it shows a slight but not 

significantly lag behind the supervised baseline in 

F1 when the training set contains all of the labeled 

data. Although the statistical analysis seems does 

not show that the improvement in F1 is significant, 

the constant outperformance in AUC/ROC could 

be confirmed by the t-test – the larger AUC/ROC 

  

Figure 4. F1 and AUC/ROC Measures for Each Method. 

0.6200

0.6400

0.6600

0.6800

0.7000

0.7200

0.7400

0.7600

0.1000 0.3000 0.5000 0.7000 0.9000 1.0000

F1

f1 supervised f1 pseudo label f1 consistency regularization

0.8700

0.8800

0.8900

0.9000

0.9100

0.9200

0.9300

0.9400

0.1000 0.3000 0.5000 0.7000 0.9000 1.0000

AUC/ROC

AUC supervised AUC pseudo label AUC consistency regularization

234



 
 

values in 30%, 50%, 70% and 90% of labeled data 

demonstrated their statistical significance. In the 

case of 10% of labeled data, the t-test results do not 

confirm the existence of performance differences. 

This may be attributed to the fact that too many 

unlabeled instances dominate the training set, 

which confused models in training. It may be 

concluded that Consistency Regularization is 

consistently better if the training data have more 

than 10% but less than 100% labeled instances and 

performs equally well with 100% labeled data in 

this task. However, it seems not performing well as 

the pseudo-label one in F1 when very few tweets 

are labeled (about 10%). This may indicate that 

labels are important in contributing to the 

performance, and the pseudo-label approach may 

be more suitable for the training with an extremely 

small labeled set, whereas consistency 

regularization seems to perform well in other 

situations. 

5 Conclusion 

In this study, we investigated classification 

performance using semi-supervised learning in 

identifying personal experience tweets. Two 

methods of semi-supervision were studied: 

pseudo-label and consistency regularization. Our 

results show that either of the methods performs 

outstandingly well in individual classification 

measures, in comparison with the supervised 

baseline method. However, the F1 and AUC/ROC 

scores show that both could enhance the network 

performance when a small size of the labeled set 

was used, and consistency regularization 

performed consistently well even with the datasets 

containing high number of labeled instances. In 

summary, either semi-supervised method 

performed well in predicting PETs with a small 

amount of labeled instances in the training set, 

which could significantly reduce the annotation 

effort. Although this study focused on the personal 

experience pertaining to medication effects, it is 

conceivable that our semi-supervised approach can 

help other health-related studies where personal 

experience is needed. 
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A Setup and Training Parameters 

All networks were trained by Adam optimizer. For 

supervised baseline and the supervised initial 

training of pseudo-label method, we used the 

parameters suggested by the BERT’s official fine-

tuning guideline with learning rate being 1e-5, and 

training with a batch size of 32 for two epochs. For 

the semi-supervised learning, both methods were 

trained with a batch size of 128, started with a 

learning rate of 1e-5, then progressed with linear 

decay in four (for pseudo-label) and five (for 

consistency regularization) epochs. 

The unsupervised weight variable used in 

consistency training was set by following the setup 

of П-model (Laine et al., 2016). A Gaussian curve 

exp[-5(1 - T)2] was used to ramp-up the weight, 

where T was increased linearly from zero to one 
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during the ramp-up period. We set the first three 

epochs as the period to ramp-up the weight, and the 

maximum value of this weight variable was set to 

wmax * M / N where M is the number of labeled 

tweets and N is the total number of train set. wmax 

was manually set to 1 in this task. 

The structure of domain-specific language 

model was based on BERT which has 12 layers, 

768 hidden neurons and 12 self-attention heads. 

The pre-training process used masked language 

model task only and the next sentence prediction 

was discarded. Following the official guideline of 

pre-training settings, fifteen percent (15%) of 

words in each tweet were masked by special 

[MASK] tokens and the model is trained to predict 

the masked token correctly. We trained the 

language model with 10M unlabeled tweets for 

400K steps with a batch size of 512. The learning 

rate started with zero, and warmed up to 1e-4 in 

first one thousand steps and then linearly decayed 

to zero in the rest of training steps. 

A sub-word vocabulary with about 50K tokens 

was generated by applying WordPiece algorithm 

(Schuster et al., 2012) in our 10M unlabeled tweets. 

Our implementation was based on TensorFlow 

(www.tensorflow.org) and Transformers 

(huggingface.co/transformers). 
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Abstract 

The amount of biomedical literature has 

vastly increased over the past few decades. 

As a result, the sheer quantity of accessible 

information is overwhelming, and 

complicates manual information retrieval. 

Automated methods seek to speed up 

information retrieval from biomedical 

literature. However, such automated 

methods are still too time-intensive to 

survey all existing biomedical literature. 

We present a methodology for 

automatically generating literature queries 

that select relevant papers based on 

biological data. By using differentially 

expressed genes to inform our literature 

searches, we focus information extraction 

on mechanistic signaling details that are 

crucial for the disease or context of interest. 

1 Introduction 

The number of peer-reviewed publications in 

molecular biology, biotechnology, and biomedical 

research increases exponentially every year. There 

is a considerable number of published papers on 

any one mainstream biomedical research topic, 

potentially hundreds of thousands of relevant 

articles. For many areas of study, simply reading 

every paper is unrealistic, or even physically 

impossible. When studying biological systems, 

such as intracellular signaling networks, this 

problem is apparent – accurate representation of all 

relevant signaling events requires extensive, expert 

knowledge acquired over many years of study. By 

using natural language processing, machine 

readers are capable of extracting interactions from 

hundreds or thousands of papers in a matter of 

hours, achieving a substantial speedup over manual 

information extraction (Björne & Salakoski, 2011). 

For this reason, automated methods for information 

extraction, such as machine reading, are used to 

retrieve information about intracellular signaling 

networks, and this information can then be used for 

model assembly or extension. While automated 

methods accelerate model assembly, the time 

required for processing all selected papers still 

depends on the number and the type of papers 

chosen for machine reading (Holtzapple, Telmer, & 

Miskov-Zivanov, 2020). 

To retrieve relevant papers for machine reading, 

a common method is to query databases that 

contain biomedical literature. One repository for 

biomedical literature, MEDLINE, contains over 27 

million papers (Fiorini, Lipman, & Lu, 2017), and 

a common method for retrieving papers from 

MEDLINE is through its associated search engine, 

PubMed. Querying MEDLINE through PubMed is 

particularly useful for identifying papers on a 

specific context such as disease or cell type. It is 

also used for identification of individual proteins, 

signaling pathways, and general cell processes in 

one specific context. One example of a PubMed 

query that targets a single pathway in a specific 

context is ‘"Hippo pathway" AND "stem cells"’. 

This query returns 272 papers, many of which 

describe Hippo pathway signaling trends in 

cancerous stem cells, as well as non-cancerous 

stem cells. These papers contain a wealth of 

information about the mechanistic causes of 

stemness. However, retrieval of these papers 

requires a priori knowledge that the Hippo pathway 

is important in stem cell maintenance and renewal. 

Additionally, these papers describe one small facet 

of stem cell signaling, and do not contain all the 

information needed to understand the system. To 

widen our perspective, we could retrieve all papers 

in MEDLINE that concern stem cells by querying 

PubMed with "stem cells". Here, we encounter two 

obstacles – this query returns over 271,000 papers, 

many of which describe morphological or 

anatomical details, and not signaling pathways. 

Context-aware query design combines knowledge and data for efficient 

reading and reasoning 
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Our dilemma is that retrieval of relevant, crucial 

papers requires prior knowledge of which 

pathways are important.  

There is a demand for improvement in methods 

for patient-specific paper retrieval, as evidenced by 

the TREC precision medicine track (Roberts et al., 

2017). State-of-the-art methods for paper retrieval 

rely on term lists generated by experts or users, or 

automated information retrieval of similar papers 

(Sesagiri Raamkumar, Foo, & Pang, 2017; Wesley-

Smith & West, 2016). These methods have several 

disadvantages. First, paper retrieval may depend on 

the cooperation of one or more experts in the field. 

Even for automated techniques that locate papers 

through related citations, or sematic analysis, some 

level of prior knowledge is needed. Also, even for 

experts that are up to date on canonical signaling 

pathways in a context of interest, novel pathways 

or signaling events cannot be easily targeted in a 

literature query. For efficient, thorough, context-

aware exploration of cellular signaling, improved 

methods for literature retrieval are needed.  

We present here a methodology for automated 

query design that does not rely on manual steps of 

the domain expert. To address the potential role of 

differentially expressed genes (DEGs) in disease 

mechanisms, we infer queries from biological data. 

Under- or over-expressed genes in the disease state 

are often the ones that play a role in disease 

progression (Armstrong et al., 2002). Identifying 

these contextual DEGs and using them as query 

terms focuses literature reading on genes and 

proteins that have altered signaling trends, and 

therefore, it facilitates further exploration of 

intracellular signaling networks that are potentially 

affected in disease. Our method utilizes gene 

expression data to find possible genes of interest 

based on their relative expression changes in 

response to disease, infection, etc. These genes of 

interest are used in the query to narrow down all 

possible PubMed hits to relevant signaling papers 

only. Furthermore, we also take into consideration 

how well-known each gene is, to choose the 

optimal number of gene terms in a query. Our 

results show that automated query design using 

these methods returns relevant signaling papers, 

and interactions extracted from these papers are 

informative and useful when reasoning about the 

queried context. This addresses a well-established 

problem in precision medicine – altered signaling 

pathways are often unique to one patient or 

environment and are difficult to study manually. 

Our methodology can be used in conjunction with 

any state-of-the-art model assembly techniques to 

aid in understanding affected signaling 

mechanisms in patient or cell line-specific systems. 

This methodology will provide an automated 

framework to retrieve research papers and 

streamline the process of model assembly. Our 

proposed automated query design methodology is 

outlined in Figure 1.  

2 Query Design Method 

In the following sub-sections, we describe our 

method to identify DEGs in the context of a 

disease, cell line, tissue type, or other condition 

(e.g., drug treatments), and for using them to form 

query terms when searching literature. 

2.1 Identification of differentially expressed 

genes  

As shown in Figure 1, the first step in our query 

design method is to define a context for literature 

search. Our approach allows a user to automatically 

design queries for many different contexts, 

including any biological condition that can be 

observed long enough to generate gene expression 

Figure 1. The automated query design methodology for information retrieval in biomedical research. 
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data. The user selects a data source and a relevant 

dataset from that source. While any kind of gene 

expression data can be used (microarray, RNA-seq, 

or single cell RNA-seq), public databases for 

expression data most frequently include RNA-seq 

data. Public databases for RNA-seq data include 

the Cancer Genome Atlas (TCGA) (Weinstein et 

al., 2013), Gene Expression Omnibus (Clough & 

Barrett, 2016), and the Expression Atlas 

(Papatheodorou et al., 2018), all of which contain 

sufficient expression data to be used in our 

proposed query generation method. 

Once the dataset file is selected and input by the 

user, our proposed query design method identifies 

genes that are differentially expressed in the 

context of interest (e.g., disease state, cell line, 

etc.), compared to the control. The RNA-seq 

technique provides insight into the transcriptional 

activity of a cell population and reveals the number 

of gene transcripts present at a single point in time. 

For any gene X, we compute its differential 

expression as the fold change between the amount 

of its transcript (𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 ) in two scenarios, 

control ( 𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙  ) and disease state 

(𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡
𝑑𝑖𝑠𝑒𝑎𝑠𝑒  ), a common method for measuring 

changes in gene expression (Huang, Zhang, Shen, 

Wong, & Xie, 2015). Since in this work we are 

interested in the magnitude of the change from the 

control, and not the direction of the change (i.e., 

increase or decrease), we use the absolute value of 

the change:  

𝑑𝑋 = |
𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡

𝑑𝑖𝑠𝑒𝑎𝑠𝑒  

𝑋𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 | (1) 

We determine the 𝑑𝑋 value for all transcripts in 

the selected RNA-seq dataset. Next, we sort the 

transcripts in a descending order of their 𝑑𝑋 values 

(i.e., descending magnitude of change), and select 

a threshold for the 𝑑𝑋 value, to ensure that all genes 

used as query terms are relevant to the dataset 

context. Specifically, we use 2.0 as a threshold, that 

is, we remove from the sorted list those transcripts 

that have 𝑑𝑋 < 2.0. The standard threshold for 𝑑𝑋 

is usually 2.0 or 1.5 (Huang et al., 2015), based on 

what a cell biologist would consider notable or 

likely due to the effect of the disease or altered 

state, and not just noise in gene expression. While 

we use 𝑑𝑋 ≥ 2.0,  the user can adjust this threshold 
to suit the research context (i.e., diseases or cell 

types with more or less DEGs than expected). We 

will refer to the transcripts remaining in the sorted 

list as DEGs. As probable indicators of a disease 

state, these DEGs become candidates for query 

terms. To give an estimate of an expected size of 

the sorted DEG list, previous work on analyzing 

many RNA-seq datasets over a wide range of 

conditions, including disease, tissues, cell types, 

drug treatments, etc., has shown that the median 

number of DEGs (with 𝑑𝑋 ≥ 2.0) per dataset is 92 
(Crow, Lim, Ballouz, Pavlidis, & Gillis, 2019). 

However, as many as 10,000 DEGs per dataset 

were also observed, although rarely. We expect to 

see dozens to hundreds of DEGs (gene transcripts 

with 𝑑𝑋 ≥ 2.0 ), out of the 20,000  genes in an 
RNA-seq dataset. 

2.2 Selection of query terms 

The sorted list of selected context-dependent DEGs 

that is automatically generated as described in 

Section 2.1, and the list of context terms, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 
provided by a user, are inputs to the next step of our 

proposed query generation method.  

Using all DEGs with 𝑑𝑋 > 2.0  to formulate a 
query is still not practical, as there can be tens or 

hundreds of such DEGs (see Section 2.1). Instead, 

we propose a method to further reduce the size of 

the sorted DEG list. We determine the number of 

DEGs to be used as query terms by estimating the 

number of papers that would be retrieved from a 

literature database when using the query formed 

from these terms. For example, in PubMed, the 

“popularity” of genes varies widely: TP53 is a 

well-known oncogene with over 100,000 papers 

found in PubMed, and therefore, any query 

containing “p53” will return more papers than a 

query using a novel gene.  

Thus, to estimate the impact of each DEG, as a 

possible query term, on the number of papers 

retrieved, we propose to utilize the annotation 

information provided by the UniProt database 

(The UniProt Consortium, 2017). This database 

contains information on the gene itself, known 

transcripts, as well as information on the gene 

product, if available. Each gene in the UniProt 

database has an assigned annotation score, which 

is an amalgamation of evidence of the gene and 

gene product’s existence, including cross-

references in other databases, known aliases, 

experimental evidence, and more. We use this 

annotation score as a measure of how established a 

gene is in the literature. For manually annotated 

genes, where the evidence has been reviewed by an 

expert, the score is higher. The annotation score has 
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an integer value in the interval between 1 and 5, 

where score of 5 indicates ample evidence of the 

protein in existing literature and databases, and 

score of 1 indicates little to no available 

information about the protein. For example, the 

TP53 gene in humans (UniProt ID P04637), a well-

known tumor suppressor, has an annotation score 

of 5, while the OATL1 transcript in humans 

(UniProt ID B4DF03), which has not been 

observed at the protein level, has an annotation 

score of 1.  

We propose here to use the annotation score 

together with the 𝑑𝑋  value when deciding which 

DEGs to include as query terms. The combination 

of these two measures allows the design of queries 

for different objectives or tasks, for example, to 

search for literature that contains a few well-known 

(high annotation score) proteins, or many novel or 

unstudied (low annotation score) proteins. 

Furthermore, by incorporating the UniProt 

annotation score to choose terms, we can 

automatically design queries that will lead to a 

selection of a manageable number of papers. In 

other words, the optimal number of papers would 

be the one large enough to provide adequate 

information on the system and small enough to still 

be processed in a feasible amount of time. What 

would be considered the “optimal” number of 

papers depends on both the complexity of the 

context of interest, as well as the allocated 

resources for information extraction. For example, 

a researcher using a machine reader to process 

literature on diabetes will require many more 

papers than someone who wants to read papers 

manually. Additionally, the number of papers 

found in a literature database as a result of the 

query will be different for each user depending on 

the input dataset, annotation score, and the addition 

of new publications in the literature database, and 

so this method allows to tailor the query design 

process to the user’s research goals. We will refer 

to the DEGs that are selected to be used in a query 

as query term DEGs.  

Different research tasks, paper contexts, and 

datasets will require a different number of papers 

to be read. Therefore, our method allows the user 

to provide an additional input, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, which 
will influence the number of papers selected for 

reading. The 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  input can be either 
categorical, or a discrete number greater than 0, and 

is used in our method to determine the cut-off 

parameter, 𝐶. The cut-off 𝐶 value is in turn used to 

select those DEGs that will be included in the 

query. Specifically, we traverse the sorted DEG list, 

starting with the DEG that has the largest 𝑑𝑋 value, 

and we keep adding DEGs to the query term list, as 

long as the sum of their annotation scores is smaller 

than or equal to the cut-off value 𝐶.  
We use three categories to indicate the level of 

automated reading needed to comprehend all 

information in the paper set. The first category, 

“human-readable”, results in a selection of a small 

number of papers, suitable for a human to read in a 

short time (e.g., hours). The second category, 

“automation suggested”, leads to a medium 

number of selected papers that is possible for a 

human to read (e.g., days), but more practical if 

processed by machine reading. The third category, 

“automation required”, results in a large number of 

selected papers, only practical for machine reading. 

Allowing for two different ways to enter the 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  input, provides additional flexibility. 
If the user knows exactly which value they want to 

use for the cut-off parameter, they can directly enter 

it. However, in the research process, the users may 

sometimes be interested in exploring a smaller 

subset of relevant papers, or doing a more 

comprehensive exploration of the topic, and the 

three categories listed above are useful in such 

cases. The values of the parameter 𝐶  that 
correspond to the three categories, and that we used 

to obtain results and demonstrate our approach, are 

listed in Table 1.  

We note here that, while these values are set 

internally in the code, they could be easily changed 

to better suit different domains or research goals. 

For example, for a “human-readable” reading 

output, we set 𝐶=15, and following our method for 
selecting query term DEGs given the cut-off value 

𝐶, this could result in as few as 3 query term DEGs 
(all with annotation score 5) or as many as 15 query 

term DEGs (all with annotation score 1).  

Table 1. User-input categories, the corresponding cut-

off parameter 𝐶 for the annotation score sum, as well 

as the expected maximum and minimum number of 

query term DEGs. (These values do not account for 

DEGs with no entry in the UniProt database.) 
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To this end, it is worth noting that not all DEGs 

are always found in UniProt, and therefore, the 

DEGs without a corresponding UniProt entry are 

assumed to have annotation score value of 0. As 

this is possible even for DEGs with large 𝑑𝑋 value, 

this could lead, in rare cases, to the actual number 

of query term DEGs exceeding the cut-off value 𝐶 
(e.g., this would be 15, for our example above). 

While, in theory, the number of DEGs with 𝑑𝑋 ≥
2.0 and annotations score of 0 could potentially be 
very large, we have not encountered such cases. 

Moreover, our experiments have shown that 

allowing for DEGs with annotation score 0 to be 

added to the query term list does not significantly 

increase the number of selected papers, while at the 

same time can lead to the retrieval of papers with 

very novel disease mechanisms. In Table 1, we 

provide the 𝐶 values that we use for the three user-
input categories, and the corresponding typical 

minimum and maximum number of query term 

DEGs.  As a guidance, we list in Table 1 the typical 

minimum and maximum numbers that are easily 

determined from 𝐶  values, and which consider 
only those genes with an annotation score greater 

than 0.  

Once the list of the query term DEGs is 

determined, their official gene names (e.g., TP53, 

BRCA1, EGFR) are combined with a logical OR, 
thus allowing any paper that includes at least one 

of the query term DEGs to be selected. It is 

important to note that the official gene name (or 

another standardized identifier) is already supplied 

by gene expression datasets, and so we avoid the 

challenge of using named-entity normalization to 

automatically standardize the names of DEG query 

terms. We chose to use a logical OR to retrieve the 
maximum number of relevant papers for each 

query, since a logical AND would make the query 
more specific, and so restrict the number of papers. 

Other combinations of logical AND and OR 
between the terms in the query are possible and 

could be informed by the user or inferred if relevant 

information is available. This is beyond the scope 

of the work presented here and is one of the next 

steps that we plan to explore in the future.  

Furthermore, since we are interested in creating 

queries that focus on a particular context, our 

automated tool adds Context to this logical 

expression as a necessary condition, that is, it 

combines it with the other terms using a logical 

AND:  

(𝑔𝑒𝑛𝑒1 𝐎𝐑 𝑔𝑒𝑛𝑒2 𝐎𝐑 … 𝑔𝑒𝑛𝑒𝑁) 𝐀𝐍𝐃 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 
(2) 

where each 𝑔𝑒𝑛𝑒𝑖  (i=1,..,N) is the official gene 

name of one of the N query term DEGs. By 

including only papers that mention the context of 

interest, we can extract relevant interactions. It is 

important to note that one context may have 

multiple aliases (e.g., “coronavirus”, “COVID-19”, 

and “SARS-CoV-2” are all referring to the same 

disease). The user can increase the scope of the 

retrieved papers by combining all possible context 

aliases with a logical OR.  

2.3 Using queries in disease explanation  

We discuss in this section the use of automatically 

generated targeted queries in information 

extraction conducted by machine readers, followed 

by automated reasoning about affected signaling 

networks and biological processes. For each query, 

we retrieve all machine reading statements in the 

INDRA database (Gyori et al., 2017) that are 

associated with at least one paper in our reading set. 

The INDRA database is a system that incorporates 

natural language processing tools and standardized 

databases to collect biomedical signaling events. 

INDRA relies on several different machine readers 

to process papers and supply information on 

signaling events. The interactions output by readers 

are directed, and therefore, they can be used in the 

process of assembly or extension of dynamic 

models, in order to explain mechanisms and timing 

of the disease. Although the query term DEGs that 

were selected following our method described in 

Sections 2.1 and 2.2 are likely to participate in 

these interactions, it is important to note that the 

interactions output by readers will include many 

other relevant genes and proteins. Thus, these 

extracted interactions are expected to provide the 

information on intracellular signaling networks 

that is potentially critical for the context originally 

selected by the user and included as a term in the 

generated query (equation 2).  

To evaluate the relevance of extracted 

interactions, we assess what types of biological 

processes and signaling pathways these 

interactions are involved in. We use PANTHER 

(Mi, Muruganujan, Ebert, Huang, & Thomas, 

2018) to calculate enriched Gene Ontology (GO) 

terms (Ashburner et al., 2000) in the protein-

protein interactions within our interaction sets for 

each query. In the GO database, genes and proteins 

are annotated with known cellular functions. Each 
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GO term has a list of proteins involved in the 

biological process, and PANTHER calculates 

representation of all known GO terms for each 

interaction set. For GO terms that have a greater 

number of genes found in the interaction set than 

would be expected by chance, we consider this GO 

term statistically enriched. To assess whether 

enriched GO terms are similar, we use NaviGo to 

calculate the Resnik similarity score between all 

GO terms (described in (Wei, Khan, Ding, Yerneni, 

& Kihara, 2017)). By determining highly enriched 

GO terms, we can draw conclusions about what 

signaling pathways and biological processes are 

represented in our paper sets for each query. 

3 Results  

To demonstrate the usefulness of our automated 

query design methodology, we show results for 

four different contexts. For each context, we 

automatically design two queries, one with an 

expected large number of output papers, and one 

with an expected small number of output papers. 

These results illustrate how DEGs can be used to 

formulate queries that output relevant papers, and 

how the annotation score affects the volume of 

papers. We also show that the papers contain 

interactions that are closely related and are 

involved in the same GO biological processes.  

3.1 Case studies 

Using the Expression Atlas (Papatheodorou et al., 

2018), we selected four publicly available RNA-

seq datasets. These four datasets provide gene 

expression data for both control and disease state in 

SARS-CoV-2 (Blanco-Melo et al., 2020), 

ulcerative colitis (Mo et al., 2018), glioblastoma 

multiforme (Gill et al., 2014), and thyroid 

carcinoma (Costa et al., 2015). All four datasets 

express transcription in transcripts per million 

(TPM) and include the 𝑑𝑋 values computed for the 

disease state with respect to the control state. In the 

following studies, we use the 𝑑𝑋  values that are 

provided with selected datasets. With these case 

studies, we cover three substantial topics in 

biomedical research – autoimmune disorders, 

cancer, and viral infections. These diseases differ in 

the number of expected publications, largely due to 

the awareness of the disease itself. We chose 

several well-studied diseases, as well as several 

relatively unknown diseases as case studies, to 

show the utility of our methodology, regardless of 

the recognition of the system at hand. Using 

differential gene expression data from these 

diseases, we illustrate how biological data can 

provide valuable information for automatically 

designed targeted queries. 

3.2 Selection of queries 

To design a query that retrieves a small reading set, 

as discussed in Section 2.2, we explored the effect 

of the cut-off value 𝐶=15 for the annotation score 
sum, and to design a query that retrieves a large 

reading set, we use the cut-off value 𝐶 =60. The 
queries generated for all four contexts for these two 

cut-off values are listed in Table 2. Notably, the 

same cut-off value 𝐶 for different datasets may 
result in queries with a different number of terms. 

This can be explained by the UniProt annotation 

score of the top (with large 𝑑𝑋 ) DEGs in the 

datasets. Due to differences in experiment 

techniques, environmental conditions, or other 

 

Table 2. Eight automatically formulated queries for four diseases. Each disease has two associated queries, 

which are expected to retrieve different sized reading sets. 
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factors, gene expression datasets from different 

samples and labs will likely show differences in the 

top DEGs. Consider a hypothetical example where 

we formulate queries based on two pancreatic 

cancer datasets (another example, not listed in 

Table 2), A and B, and choose the cut-off 𝐶=10. For 
dataset A, this value is achieved after adding two 

DEG query terms, since the DEGs with highest 𝑑𝑋 

values are P53 and MDM2, which are both very 

well-known proteins with an annotation score of 5. 

For dataset B, the threshold is not passed until five 

DEG query terms are added. The top five most 

differentially expressed genes are small non-

coding RNAs, which are generally poorly studied, 

and each has an annotation score of 2. 

3.3 Paper retrieval 

In our studies, we used PubMed (Fiorini et al., 

2017) as the most up-to-date and comprehensive 

source for biomedical literature. We do not apply 

any filters for article type, year, or journal. 

However, we restrict our results to only those 

papers with valid PMCIDs, to ensure that all papers 

can be processed with state-of-the-art machine 

readers. 

Once we have formulated queries for each 

disease, we can use them to search PubMed. In 

Figure 2a, we show the number of papers retrieved 

as a function of how many of the top DEGs are 

used as query terms. As expected, as the number of 

terms increase, so does the number of retrieved 

papers. However, many query terms, in 

conjunction with the context term, add no 

additional papers to the reading set. This indicates 

that some of these DEGs have not been explored 

much or mentioned in papers in the context of the 

relevant disease, and therefore, they may be a 

fruitful avenue for exploration.  

We also show in Figure 2b that, as the number 

of extracted papers in the reading output increases, 

the distribution of article types also changes. We 

examine the composition of the reading set by 

classifying each paper as either a research article, 

review, or other (books, documents, etc.). In large 

reading sets, reviews are slightly more common 

than in small reading sets, which is due to one or 

more query term DEGs having better 

representation in PubMed. Well-studied genes and 

proteins are more likely to be included in reviews 

than novel, relatively unknown genes. Since the 

scope of reviews and research articles differ 

drastically, we expect them to contribute differently 

to the number of extracted interactions. 

3.4 Validation of extracted interactions 

To validate the paper sets retrieved from each 

query, we analyzed the statements from the INDRA 

database (described in Section 2.3). In Figure 3a, 

we show the number of extracted interactions for 

each query. The number of interactions is 

dependent upon the number of papers, as well as 

the representation of the context and DEG query 

terms in PubMed. For each query, we also 

determined the top 10 enriched GO terms, sorted 

using the false discovery rate (FDR) (Benjamini & 

Hochberg, 1995). We show the average Resnik 

similarity score between the top 10 GO terms for 

each of our eight queries, where a higher score 

indicates more similarity between GO terms. 

Finally, in Figure 3b, we show the percent of DEG 

query terms that are present in the list of extracted 

interactions. These results, taken together, show 

that these queries retrieve papers that contain 

relevant signaling events that can be interpreted by 

machine readers, and describe highly related 

biological processes. In general, our method of 

increasing the cut-off value 𝐶  not only retrieves 

 

(a) 

 

(b) 

Figure 2. Number of papers found in PubMed, based 

on how many of the top DEGs were used as query 

terms. (b) Distribution of paper types by query. 
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more papers, but it also increases the number of 

signaling events extracted by readers, without a 

sizeable cost to relevance, as assessed by GO term 

semantic similarity.      

4 Conclusions 

While automated methods for extracting 

interactions from literature have improved the 

speed of information extraction, this process still 

has its pitfalls. Specifically, finding all relevant 

literature for the context at hand can be difficult, 

and brute force methods for selecting papers are too 

slow. By incorporating biological data in our 

queries, we can select relevant literature, and 

control the size of the reading sets.  

Our results show that using DEGs to formulate 

queries allows for targeting literature that could 

help explain differentially regulated pathways in 

disease. One side effect of this method is 

identification of DEGs in disease where there is 

little to no literature presence. In such cases, our 

proposed method could become critical, as it 

automatically identifies the gaps in our collective 

knowledge of certain diseases, and thus, suggests 

important research directions. For DEGs that return 

no additional results when used as a query term, 

this indicates the gene has an undiscovered role in 

the context of interest.  

Future directions include refining the query 

formulation methodology, as well as expanding our 

results. The relative presence of different diseases 

in PubMed affects the size of the reading set, 

independent of the number of gene query terms. By 

incorporating preliminary data on the presence of a 

disease or context in PubMed, we can adjust the 

annotation score. Additionally, since this method 

hinges on a list of affected genes or proteins with 

quantifiable differences from a control state, other 

measures of relative changes in cell function could 

also be used. Data on changes in post-translational 

modification of proteins, changes in epigenetic 

markers such as methylation, open chromatin, or 

histone modifications, or even somatic mutations 

could also be used, especially as such entities and 

events can be output by the state-of-the-art 

machine reading. Testing our methods on different 

datasets would help showcase the usefulness of our 

approach. In the future, we would also like to 

compare our method to a literature corpus 

assembled by an expert. However, since our 

queries are based on cell line-specific gene 

expression datasets, there are no existing corpuses 

for comparison. Future work includes assembling 

said corpuses and comparing to our method 

presented in this work. 
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Abstract 

With the growing availability of full-text articles, 
integrating abstracts and full texts of documents into a 
unified representation is essential for comprehensive 
search of scientific literature. However, previous studies 
have shown that naïvely merging abstracts with full 
texts of articles does not consistently yield better 
performance. Balancing the contribution of query terms 
appearing in the abstract and in sections of different 
importance in full text articles remains a challenge both 
with traditional bag-of-words IR approaches and for 
neural retrieval methods. 
In this work we establish the connection between the 
BM25 score of a query term appearing in a section of a 
full text document and the probability of that document 
being clicked or identified as relevant. Probability is 
computed using Pool Adjacent Violators (PAV), an 
isotonic regression algorithm, providing a maximum 
likelihood estimate based on the observed data. Using 
this probabilistic transformation of BM25 scores we 
show an improved performance on the PubMed Click 
dataset developed and presented in this study, as well as 
on the 2007 TREC Genomics collection. 

1 Introduction 

PubMed (https://pubmed.gov) is a search engine 
providing access to a collection of more than 30 
million biomedical abstracts. Of these, about 5 
million have full text available in PubMed Central 
(PMC; https://www.ncbi.nlm.nih.gov/pmc). 
Millions of users search PubMed and PMC daily  
(Fiorini, Canese, et al., 2018). However, it is not 
currently possible for a user to simultaneously 
query the contents of both databases with a single 
integrated search.  

With the growing availability of full-text 
articles, integrating these two rich resources to 
allow a unified retrieval becomes an essential goal, 
which has potential for improving information 
retrieval and the user search experience (Fiorini, 
Leaman, Lipman, & Lu, 2018). An obvious benefit 
is improving the handling of queries that produce 
limited or no retrieval in PubMed. In many 

instances, incorporating full text information can 
yield useful retrieval results. For example, the 
query cd40 fmf retrieves no articles in PubMed, but 
finds 60 articles in PMC discussing protein cd40 
and a computational technique of flow 
microfluorometry (FMF).  

A number of studies have pointed out the 
benefits of full text for a range of text mining tasks 
(Cejuela et al., 2014; Cohen, Johnson, Verspoor, 
Roeder, & Hunter, 2010; J. Kim, Kim, Han, & 
Rebholz-Schuhmann, 2015; Westergaard, 
Stærfeldt, Tønsberg, Jensen , & Brunak, 2018) and 
demonstrated improved performance on named 
entity recognition, relation extraction, and other 
natural language processing tasks (Wei, Allot, 
Leaman, & Lu, 2019). For information retrieval, 
however, combining the full text of some papers 
with only the abstracts of others is not a trivial 
endeavor. Naïvely merging the body text of articles 
with abstract data, naturally increases the recall, 
but at a cost in precision, generally degrading the 
overall quality of the combined search (W. Kim, 
Yeganova, Comeau, Wilbur, & Lu, 2018; Jimmy 
Lin, 2009). This can be explained by several 
complexities associated with full texts, such as 
multiple subtopics often being discussed in a full-
length article or information being mentioned in 
the form of conjecture or a proposal for future 
work. In addition, not every record matching the 
query is focused on the query subject, as query 
words may be mentioned in passing, which is more 
common in full text. Another challenge in 
incorporating full text in retrieval is merging 
sources of information with different 
characteristics: the abstract, generally a concise 
summary on the topic of the study, versus a lengthy 
detailed description provided in full text. To 
address that, recent studies have attempted to use 
full text in a more targeted way — by performing 
paragraph-level retrieval (Hersh, Cohen, Ruslen, & 
Roberts, 2007; Jimmy Lin, 2009), passage-level 
retrieval (Sarrouti & El Alaoui, 2017) or sentence-
level retrieval (Allot et al., 2019; Blanco & 
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Zaragoza, 2010). LitSense (Allot et al., 2019), for 
example, searches over a half-billion sentences 
from the combined text of 30+ million PubMed 
records and ∼3 million open access full-text 
articles in PMC.  

Towards the overarching goal of improving 
PubMed document retrieval by incorporating the 
full texts of articles in PMC, in this work we lay 
the groundwork by studying strategies for 
integrating full text information with abstract for 
one query token at a time. We choose to use BM25, 
a classical term weighting approach, as a base 
token score. We, however, observe that token 
BM25 scores are not directly comparable between 
the sections of a full text article – the same BM25 
score may have a different significance depending 
on the section. To address variable significance of 
sections, we propose converting BM25 section 
scores into probabilities of a document being 
clicked and using these probabilities to compute 
the overall token score. To summarize, given a 
single token in a query, we 1) define how to 
compute section scores, 2) examine the relative 
importance of different sections in the full text, and 
3) study how to combine section scores from a 
document.  

To examine these questions, we use two 
evaluation datasets. One is a standard TREC 
dataset frequently used for evaluating ad-hoc 
information retrieval. The second is a dataset we 
created based on PubMed user click information. 
The dataset is constructed from PubMed queries 
and clicks under the assumption that a clicked 
document is relevant to a user issuing a query. The 
dataset is used for both training and evaluation.  

Neural retrieval models have been extensively 
studies in recent years in the context of Information 
Retrieval (Guo et al., 2020; Jimmy  Lin et al., 
2021). However, despite significant advances, they 
show no consistent improvement over traditional 
bag of words IR methods (Chen & Hersh, 2020; 
Zhang et al., 2020). BM25 remains in the core of 
most production search systems, including 
Lucene’s search engine and PubMed. In addition, 
many relevance ranking algorithms rely on BM25 
as a preliminary retrieval step, followed by re-
ranking of the top scoring documents (Fiorini, 
Canese, et al., 2018). 

In the next section, we describe the evaluation 
datasets, and lay out a retrieval framework for 
studying the problem at hand. Then, we describe 
our approach of converting the raw BM25 section 

score into the probability of document relevance. 
Such probabilities are comparable across the 
sections of full text documents, including the 
abstract. In section 4 we learn how to combine 
them in a way which accounts for the relative 
importance of sections.  Results are presented in 
section 5, followed by the Discussion and 
Conclusions section. 

2 Evaluation Datasets 

Retrieval methods are generally evaluated based 
on how the retrieval output compares to a gold 
standard. A gold standard is a set of records judged 
for relevance to a query that provides a benchmark 
against which to measure the quality of search 
results. This approach is used at the annual Text 
Retrieval Conference (TREC), run by the National 
Institute of Standards and Technology (NIST)  
(Voorhees, 2001). NIST develops a list of queries, 
called topics, and provides large test collections 
and uniform scoring procedures. The difficulty 
with this approach is that a gold standard is created 
by human experts which makes the evaluation 
expensive, time consuming, and therefore not 
available for large scale experiments involving 
thousands of queries. To compare different 
retrieval approaches without a manually created 
gold standard we describe semi-automatically 
created test data based on indirect human 
judgements that can be utilized in our setting. The 
PubMed User Click dataset is created based on 
retrospective analysis of PubMed queries under the 
assumption that a clicked document is relevant to a 
user issuing a query. In our study we use both, the 
TREC 2007 Genomics and PubMed user click 
datasets.  

TREC 2007 Genomics dataset. The Genomics 
dataset (Hersh et al., 2007) consists of 36 queries, 
called topics, and 162,259 full-text articles from 
Highwire Press (http:// highwire.stanford.edu/). 
160K of these documents were successfully 
mapped to their corresponding PubMed Identifiers 
(PMIDs) and are the basis of our experiments. 
Each document is split into legal spans 
corresponding to paragraphs in the articles, 
amounting to over 12 million legal spans. For each 
of the 36 topics human relevance judgements are 
provided on the paragraph level. Following 
previous studies, a document is labeled positive, if 
it contains at least 1 paragraph judged to be 
relevant to the query.  
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The query topics are presented in the form of 
biological questions, such as:  

What toxicities are associated with etidronate? 
What signs or symptoms are caused by human 
parvovirus infection? 

These question-like topic formulations contain 
generic words, that are not representative of the 
specific information need of a user, such as “what”, 
“associated”, etc. We applied a combination of 
frequency-based techniques and manual validation 
to filter these stop words out and used the 
remaining 165 content terms for our analysis.  

PubMed Click Dataset. The dataset is 
constructed from PubMed queries and clicks, 
under the general assumption that a clicked 
document is relevant to a user issuing a query.  

The presence of a query token in the title is 
known to present a strong signal associated with a 
document being clicked (W. Kim et al., 2018; 
Resnick, 1961). Users searching PubMed only see 
the title of the document on the DocSum page and 
not the abstract or the full text. If query tokens do 
not appear in the title, then predictions on the 
abstract or the full text can only be effective to the 
extent they predict something about the title that 
makes the user choose to click. This is a weaker 
signal and would be obscured by query words 
appearing in a title. To remove this bias, we only 
consider documents for which none of the query 
tokens appear in the title. Note that since the 
document is retrieved via PubMed, all query 
tokens must be found in the title, abstract or article 
citation information. We collect only retrieved 
documents for which none of the query tokens 
appear in the title and all of them appear in the 
abstract. 

Clicked documents are assumed to be relevant 
to the user issuing the query, and we label a clicked 
document as a positive instance. We further 
assumed that documents displayed above the 
clicked document were seen by the user and 
rejected. These documents are labeled negative. 
Clicks on the top rank are ignored as a precaution, 
as those clicks might simply represent a user’s urge 
to click on something indiscriminately.  
Documents displayed below the lowest clicked 
document on the document summary page are 
ignored as the user may not have considered them. 

The same query string may be searched multiple 
times within a period of time and subsequently 
may result in different articles displayed and 
different documents clicked. In addition, a query 

within a single search may receive multiple clicks 
on the same page. To account for these user search 
actions, we merge the data for the evaluation 
dataset as follows. Given a unique query string, we 
collect all positive and negative data points 
associated with each click instance, and remove 
from the negative set those documents that also 
appear as positives following the reasoning: if a 
document is thought to be relevant by at least one 
user we consider it relevant for that query string.  

Using this dataset, for each query token we wish 
to compare its score coming from a document’s 
abstract versus the body text. First, to directly 
measure the benefit of full text, for each query in 
the PubMed Click Dataset, we perform this 
comparison on a subset of documents in the dataset 
that have full text available in PMC. Second, for 
each query in the dataset, we perform the 
comparison on all documents available in the 
PubMed Click dataset. This includes documents 
that do and do not have the full text available, as in 
production PubMed. 

We randomly sampled 2 million unique queries 
from the PubMed query log in 2017, which 
retrieved at least one positive document. On 
average there are 6.60 documents collected for 
each query, an average of ~30% of which are 
labeled positive. Of 6.60 documents available for 
each query, only 2.65 documents have full text 
available in PubMed Central (~40%). We 
separated two thirds of queries for training PAV 
functions described in the next section, and one 
third for testing. 634,364 queries along with 
collected labeled documents comprise the test 
portion of the PubMed click dataset. A subset of 
that dataset that includes queries for which all 
retrieved documents have full text available 
constitutes 232,636 queries, and will be referred to 
as Set_FT. 

3 Methods – Using Full Text to score a 
query token 

Here we examine how to optimally use BM25 
scores coming from the abstracts and full text 
paragraphs to improve retrieval performance. We 
first define the score of a token within a full-text 
section, which then we transform into a probability 
of that document being relevant given the score 
and the section. We then learn how to combine 
these section-based token scores into an overall 
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score predicting the probability of a document 
being relevant. 

3.1 Obtaining Full Text 

We obtain full text documents from the PubMed 
Central full text collection in BioC 
(https://www.ncbi.nlm.nih.gov/research/bionlp/A
PIs) (Comeau, Wei, Doğan, & Z., 2019). This 
collection contains about 5 million full text 
manuscripts. BioC allows one to obtain full text 
information by paragraphs. 

Full-text articles are typically comprised of 
sections presented in a logical sequence. Sections 
such as Introduction, Materials and Methods, 
Results, and Discussion predominantly appear as 
they represent the logical sequence in scientific 
writing. Frequently, however, sections carrying 
similar types of information are referred to 
differently depending on the journal, the 
requirements of the publishing entity, and author 
writing style. For example, Introduction and 
Background section titles are used 
interchangeably. Results sections can be also 
referred to as Results and Experiments, etc. Using 
BioC provided section type identifiers that are 
based on the labels and regular expressions found 
in (Kafkas et al., 2015). To normalize section titles, 
we concentrate on the following section types: 
Abstract, Abbreviation, Caption, Discussion, Case, 
Keyword, Conclusion, Result, Methods, 
Introduction, Generic Section Title, Supplement, 
and Appendix. In what follows, all the sections 
other than the Abstract text will be referred to as 
body sections or full text sections. 

3.2 Defining the score of a token in a 
section 

Given a token " we can compute a BM25 score  
representing relevance of the token to a paragraph 
of text. The score is a product of the IDF weight 
and a local weighting factor that is zero if  does 
not occur in the paragraph. Using BM25 scoring of 
tokens in paragraphs, our goal is to devise a 
number representing the full text and its 
contribution to an overall document score that 
predicts user clicks based on each token in a query.  

Since there are generally multiple paragraphs 
within each section of a paper, we keep the largest 
BM25 score for a token in a section paragraph and 
call it the BM25 score of the section type (stype)  

in a full text document and denote it  
Keeping the maximum score is plausible because 
it is not affected by the size of the section (Jimmy 
Lin, 2009). Thus, given a token, for any document 
we have potentially thirteen different BM25 scores 
for that token, one from each section type.  

Because of the structure of full text documents, 
the appearance of a token in different sections 
makes different contributions to the relevance of 
the document. The same BM25 score may have a 
different significance depending on the section. 
For example, a high score in the Results section 
would likely be more indicative of importance than 
if it occurred in the Methods section of a paper. To 
address the issue of variable significance of 
sections, we convert these BM25 section scores 
into probabilities of a document being clicked. The 
Pool Adjacent Violators (PAV) Algorithm (Ayer, 
Brunk, Ewing, Reid, & Silverman, 1954; Hardle, 
1991; Wilbur, Yeganova, & Kim, 2005) is ideal for 
this purpose. 

3.3 Training a PAV Function 

Given a set of labeled data points along with their 
scores with the property that the higher the score 
the more likely a point is in the positive class, PAV 
is a simple and efficient algorithm that derives 
from such data a monotonically non-decreasing 
estimate of the probability that a point is in the 
positive class. Among non-decreasing functions 
that estimate the probability of a point being 
positive as a function of score, the PAV function 
assigns the highest likelihood to the actual 
observed class of the data points. Using training 
data, we apply PAV to the BM25 scores coming 
from each section type and obtain a function, 
, that predicts the probability of relevance. By 
nature of the monotonically non-decreasing 
estimate, the probabilities satisfy: 

  

All scores from single tokens from queries 
appearing in training documents are distinct data 
points included for learning these PAV-derived 
probabilities. The stepwise linear PAV function for 
each of the thirteen document sections are 
presented in Figure 1. Results are presented in four 
blocks, each block comparing three body section 
PAV probability functions to the abstract 
probability function. The figures show that there is 
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a difference between the sections in their relative 
importance. Given two sections, a higher BM25 
token score from one section does not necessarily 
translate to a higher probability of relevance 
compared to the other section. If one section is 
more important for retrieval than the other, the 
same BM25 score in each section will lead to a 
higher probability in a more important section. 
Abrupt jumps may be due to sparseness of data 
This will have implications for retrieval. 

The PAV-based probabilistic transformation 
allows one to directly compare the value of section 
scores to each other. A clear conclusion here is that 
the raw BM25 scores do not well reflect the 
relative importance of different body sections, as 
expected. 

3.4 Combining Scores from Different 
Sections of the Body Text 

Now we examine how to combine these 
probability scores coming from different sections 
into a single document score that predicts the 
document being relevant. Let us denote the 
probability of relevance given BM25 section 
scores as #(%&'|)*25	section	scores). Then, the 
log odds ratio, defined as 

log $
%('()|+,25	section	scores)
%(¬'()|+,25	section	scores)

9																														(1)	

is monotonically related to the probability of 
relevance. We apply Bayes’ Theorem. 

log $
%('()|+,25	section	scores)
%(¬'()|+,25	section	scores)

9																																	(2)

= log $
%(+,25	section	scores|'())%('())

%(+,25	section	scores|¬'())%(¬'())
9					

The naïve Bayes’ assumption will allow us to 
factor the right side of (2) as 

log $
%(+,25 section	scores|'())%('())

%(+,25 secttion	scores|¬'())%(¬rel)9
											(3)

= log =
> %(?!"#$%|'())!"#$%
> %(?!"#$%|¬'())!"#$%

@ +	

log B
%('())
%(¬'())

C .

 

The second term on the right in equation 3 is a 
constant and can be disregarded, as it will not affect 
the ranking. The first term on the right side of 
equation 3 can be rewritten as: 

log =
> %(?!"#$%|'())!"#$%
> %(?!"#$%|¬'())!"#$%

@																																									(4)

=F log $
%('()|?!"#$%)

1 − %('()|?!"#$%)
%('())

1 − %('())
H 9

!"#$%
. 

The right side of equation 4 is monotonically 
related to the left side of equation 2, and 
consequently should rank documents in the order 
of their probability of being relevant. This is the 
ideal ranking according to the probability ranking 
principle (Robertson, Walker, Jones, Hancock-
Beaulieu, & Gatford, 1994). Here !(#$%|'!"#$%) =
!!"#$%('!"#$%)  is the PAV determined probability 
estimate for the section type, while !(#$%) is the 
fraction of positive documents in the training set. 
Based on these results we define the log odds score 
of a token in a section as  
log&''!!"#$%(") = log B

$!"#$%*!"
!"#$%+

,-$!"#$%*!"
!"#$%+

$&'()*+
,-$&'()*+

H C.								(5)   

where %./0'&1 = !(#$%). Such scores for tokens can 
be added if the naive assumption of independence 
of the BM25 scores on which they are based is 
reasonably accurate. 

Now we test different ways of combining scores 
of a token from different sections to derive a full-
text score for the token. In (Jimmy Lin, 2009), the 
author found that computing the article score as the 
maximum score over all spans is superior to 
computing the score for an article as sum of scores 
over all spans. Spans in that work were paragraphs 
of full text documents from the TREC genomics 
collection, which consists of 36 topics (query 
questions) and manually annotated spans 
representing 2,477 full-text articles. In contrast, 
(Hearst & Plaunt, 1993) found that using the sum 
of scores over all spans in scoring a document 
produces a superior ranking when evaluated on a 
data set of 43 queries and 274 full text documents. 
Spans in (Hearst & Plaunt, 1993) are computed 
segments correlating with subtopics of a full text 
paper and are different from paragraphs.  

Taking these references into consideration, we 
study and compare the Sum and Max scoring 
strategies using BM25 raw scores and log odds of 
BM25 scores. BM25 on Abstracts is also computed 
as it is used in the PubMed search system. 
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Fig 1. In these four graphs 12 PAV functions for 12 different body sections are compared to the abstract PAV function. 
X-axis represents the BM25 score across all four graphs, Y axis represents the Probability of a click based on the 
section term score. 
 

Sum LogOdds: The score of token t in document 
d is computed as the sum of log odds scores, as 
defined in (5), coming from sections within the full 
text document: 

'+,&'(_*+,-..!(-, /)
=0 log	 _,--'!"#$%(/)

!"#$%∈.
																				(6) 

Max LogOdds: The score of token t in document 
is computed as the maximum log odds score 
coming from sections within the full text 
document: 

'+,012_*+,-..!(-, /)																																		(7) 
= max	{log	 _,--'!"#$%(/)|'/<!$ ∈ -}										 

Abstract BM25: The score of token t in document 
d is computed as the raw BM25 token score of the 
abstract 

 '+,3045_67!(-, /) = 8!"#$																										(8)  
 
Sum BM25: The score of token t in document d 
is computed as the sum of BM25 section token 
scores within the full text document 

	'+,&'(_3045(-, /) =
																																		0 8!$!%&'					!"#$%∈.

         (9) 

Max BM25: The score of token t in document d is 
computed as the highest BM25 section token score 
within the full text document 
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After trying scoring based directly on log odds 
using formulas (6) and (7), it was evident that we 
are dealing with two kinds of documents, which 
behave differently. Those documents that contain 
the search token only in the abstract receive a 
single score from the abstract, and Sum and Max 
really don’t play a role. But for those documents 
having the term in multiple sections, Sum and Max 
do play a role, and the log odds scores are higher. 
In order to balance the scores for best results, we 
found it necessary to create PAV curves for Sum 
and Max scores just on documents with multiple 
sections providing scores. We simply use the 
probabilities based on a PAV curve for each type of 
document to rank the different types in the same 
ranking for retrieval. In what follows, we will 
continue to use the term LogOdds to refer to this 
scoring. 

4 Results  

Proposed methods are tested on the PubMed Click 
Dataset and on the TREC Genomics collection 
(Hersh et al., 2007). 

4.1 The PubMed Click Dataset 

To directly measure the benefit of full text, for each 
query in the PubMed Click Dataset we first 
compare the proposed scoring techniques on 
Set_FT. Set_FT is a subset of the PubMed Click 
dataset that includes queries for which all labeled 
documents in the evaluation dataset have full text 
available. Second, we extend this analysis to the 
whole test portion of the PubMed Click dataset. It 
contains queries and labeled documents, which 
may or may not have full text available. For each 
query token, we score its corresponding retrieved 
documents in the evaluation dataset and compute 
the average Precision using labels in the evaluation 
dataset. These are averaged over all tokens in a 
query, and then average over all queries producing 
the MAP results presented in Figure 2. 

Figure 2 demonstrates our findings computed on 
the complete set of tokens available in the two test 
sets. We observe that the LogOdds probabilistic 
scoring approach significantly outperforms the 
BM25 scoring for both Sum and Max variants for 
the PubMed click data and Set_FT. A bigger 
difference is observed on Set_FT, where full text is 

available for every participating document. 
Additionally, we observe that LogOdds Sum 
computed on article full text outperforms the 
abstract score and the difference although small is 
statistically significant.  

We conducted pairwise statistical tests for all 
methods to verify if the differences in performance 
for each pair of tests is significant. We used the 
“Percentile bootstrap” test at the 5% significance 
level which works well for our study because the 
distribution is symmetric around the MAP value 
(https://en.wikipedia.org/wiki/Bootstrapping). 
Differences between all pairs of methods are 
statistically significant, except for the Max 
LogOdds and the Abs BM25 for the Set_FT subset 
of PubMed Click Dataset. 

Based on these results we believe that log odds 
scoring is a useful approach for retrieval 
incorporating body text. The intuition behind it is 
that BM25 scores have a different meaning 
depending on the sections from which they are 
derived as illustrated in Fig 1. For a single query 
token, results in Figure 2 also suggest that the Sum 
scoring approach provides a better estimate of 
token importance than the Max scoring approach 
when using the log odds scoring for the Click 
dataset. If sections within a full text document were 
truly independent from each other, Sum LogOdds 
would be the ideal method to score a single query 
token over the multiple sections in a document. 
 

Figure 2. Average Precision for all query tokens is computed, 
averaged for each query and then over all queries for the 
PubMed Click dataset and its subset Set_FT. For both datasets, 
LogOdds Sum and LogOdds Max scoring methods 
demonstrate a significantly improved performance compared 
to Sum and Max on raw BM25 scores.  
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4.2 The TREC Genomics Dataset 

We apply the proposed methods to each query 
token in the TREC dataset. We score the retrieved 
documents in the evaluation dataset and compute 
the Average Precision using gold standard labels. 
These are then averaged over all query tokens, and 
the MAP results are presented in Figure 3. Leave-
one-out training strategy was used for each topic. 

Figure 3 demonstrates our findings computed on 
non-stop word query tokens in the TREC 
Genomics Dataset. We observe that the Sum 
LogOdds probabilistic scoring significantly 
outperforms Sum BM25 scoring. Similarly, the 
Max LogOdds probabilistic scoring significantly 
outperforms Max BM25 scoring. Similar to the 
PubMed Click Dataset, here we observe that Sum 
LogOdds has a slight advantage over Max 
LogOdds, and both are competitive with the 
abstract BM25 score.   

We conducted Wilcoxon signed rank test 
(https://en.wikipedia.org/wiki/Wilcoxon_signed-
rank_test) at 5% significance level to verify if the 
differences in performance for each pair of tests is 
significant. The differences between Max 
LogOdds and Abs BM25 as well as Sum LogOdds 
and Abs BM25 are not statistically significant. The 
differences between all other pairs of methods are 
statistically significant. 

 

 
 
Figure 3. Mean Average Precision on TREC Genomics Dataset 
is computed on single tokens and averaged for all tokens in the 
experiment. Sum LogOdds and Max LogOdds demonstrate a 
significantly improved performance compared to those on raw 
BM25 scores.  

5 Conclusions and Discussion 

Based on the PubMed Click dataset and the TREC 
genomics dataset, we studied how to integrate full 
text and abstract information for scoring a query 

token. The main contribution of this work is to 
study the benefits of log odds of BM25 compared 
to raw BM25 scores.  Our experimental results on 
both datasets support these important conclusions: 

1. PAV based log odds scoring is a useful 
way to compare the contribution of a token in 
different sections of a document for predicting 
clicks. BM25 scores are not directly comparable 
with each other for making such predictions. The 
same BM25 score is of different value depending 
on the section type in which it is found. 

2. We proposed two methods to compute 
the log odds body score by taking the sum or max 
of scores. In both cases, PAV based LogOdds 
scoring is significantly better than ranking based 
on raw BM25 scores. The difference between Sum 
and Max scoring is small.  

For the PubMed Click dataset, using the Sum 
LogOdds score from the whole document for a 
query token produces better results than using only 
the abstract score. In the TREC genomics dataset, 
the performance of full text LogOdds is 
comparable to abstract only score. This is an 
important contribution and meaningful building 
block towards improving full text retrieval in 
PubMed. Our immediate plan is to extend this 
single token analysis to full queries. 

6 Conclusions and Discussion 

Based on the PubMed Click dataset and the TREC 
genomics dataset, we studied how to integrate full 
text and abstract information for scoring a query 
token. The main contribution of this work is to 
study the benefits of log odds of BM25 compared 
to raw BM25 scores.  Our experimental results on 
both datasets support these important conclusions: 
   1. PAV based log odds scoring is a useful way to 
compare the contribution of a token in different 
sections of a document for predicting clicks. BM25 
scores are not directly comparable with each other 
for making such predictions. The same BM25 
score is of different value depending on the section 
type in which it is found. 
   2. We proposed two methods to compute the log 
odds body score by taking the sum or max of 
scores. In both cases, PAV based LogOdds scoring 
is significantly better than ranking based on raw 
BM25 scores. The difference between Sum and 
Max scoring is small.  
For the PubMed Click dataset, using the Sum 
LogOdds score from the whole document for a 
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query token produces better results than using only 
the abstract score. In the TREC genomics dataset, 
the performance of full text LogOdds is 
comparable to abstract only score. This is an 
important contribution and meaningful building 
block towards improving full text retrieval in 
PubMed. Our immediate plan is to extend this 
single token analysis to full queries. 
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Abstract

In this paper, we describe our approach
to question summarization and multi-answer
summarization in the context of the 2021
MEDIQA shared task (Ben Abacha et al.,
2021). We propose two kinds of transfer
learning for the abstractive summarization of
medical questions. First, we train on Health-
CareMagic, a large question summarization
dataset collected from an online healthcare ser-
vice platform. Second, we leverage the abil-
ity of the BART encoder-decoder architecture
to model both generation and classification
tasks to train on the task of Recognizing Ques-
tion Entailment (RQE) in the medical domain.
We show that both transfer learning methods
combined achieve the highest ROUGE scores.
Finally, we cast the question-driven extrac-
tive summarization of multiple relevant an-
swer documents as an Answer Sentence Selec-
tion (AS2) problem. We show how we can pre-
process the MEDIQA-AnS dataset such that it
can be trained in an AS2 setting. Our AS2
model is able to generate extractive summaries
achieving high ROUGE scores.

1 Introduction

The 2021 Medical NLP and Question Answering
(MEDIQA) shared task (Ben Abacha et al., 2021)
is comprised of three tasks, centered around sum-
marization in the medical domain: Question Sum-
marization, Multi-Answer Summarization, and Ra-
diology Report Summarization. In this paper, we
focus on the first two tasks. In Question Sum-
marization, the goal is to generate a one-sentence
formal question summary from a consumer health
question – a relatively long question asked by a user.
In Multi-Answer Summarization, we are given a
one-sentence question and multiple relevant answer
documents, and the aim is to compose a question-
driven summary from the answer text.

In this paper, we first show that transfer learning
from pre-trained language models can achieve very

high results for question summarization. Sequence-
to-sequence language model BART (Lewis et al.,
2020) has achieved state-of-the-art results in var-
ious NLP benchmarks, including in the CNN-
Dailymail news article summarization dataset (Her-
mann et al., 2015). We leverage this success
and train BART on summarization datasets from
the medical domain (Ben Abacha and Demner-
Fushman, 2019; Zeng et al., 2020; Mrini et al.,
2021). Moreover, we find that training on a differ-
ent task in the medical domain – Recognizing Ques-
tion Entailment (RQE) (Ben Abacha and Demner-
Fushman, 2016) – can yield better improvements,
especially in terms of ROUGE precision scores.

Second, we tackle the extractive track of the
multi-answer summarization task, and we cast
multi-answer extractive summarization as an An-
swer Sentence Selection (AS2) problem. A limi-
tation of BART is that the input to its abstractive
summarization cannot be as long as the multiple
documents in this task. We therefore propose to
mitigate this weakness by proposing to cut up the
input into pairs of sentences, where the first sen-
tence is the input question, and the second one is a
candidate answer. We then train our BART model
to score the relevance of each candidate answer
with regards to its corresponding question. We also
describe in this paper the algorithm used to extract
an AS2 dataset from an multi-document extractive
summarization dataset.

2 Question Summarization

Our approach to question summarization involves
two kinds of transfer learning. First, we train
our model to learn from medical summarization
datasets. Second, we show that transfer learning
from other tasks in the medical domain increases
ROUGE scores.
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2.1 Training Details

We adopt the BART Large architecture (Lewis
et al., 2020), as it set a state of the art in abstractive
summarization benchmarks, and allows us to train a
single model on generation and classification tasks.

We use a base model, which is trained on
BART’s language modeling tasks and the XSum
abstractive summarization dataset (Narayan et al.,
2018). We use a learning rate of 3 ∗ 10−5 for sum-
marization tasks and 1 ∗ 10−5 for the recognizing
question entailment task. We use 512 as the maxi-
mum number of token positions.

Following the MEDIQA instructions and leader-
board, we use precision, recall and F1 scores for
the ROUGE-1, ROUGE-2 and ROUGE-L metrics
(Lin, 2004).

2.2 Transfer Learning from Medical
Summarization

2.2.1 Summarization Datasets
In addition to the XSum base model, we train on
two additional datasets. The first dataset is MeQ-
Sum (Ben Abacha and Demner-Fushman, 2019). It
is an abstractive medical question summarization
dataset, which consists of 1,000 consumer health
questions (CHQs) and their corresponding one-
sentence-long frequently asked questions (FAQs).
It was released by the U.S. National Institutes of
Health (NIH), and the FAQs are written by med-
ical experts. Whereas Ben Abacha and Demner-
Fushman (2019) use the first 500 datapoints for
training and the last 500 for testing, participants
in this shared task are encouraged to use the entire
MeQSum dataset for training.

We also use the HealthCareMagic (HCM)
dataset. It is also a medical question summarization
dataset, but it is a large-scale dataset consisting of
181, 122 training instances. In contemporaneous
work of ours (Mrini et al., 2021), we extract this
dataset from the MedDialog dataset (Zeng et al.,
2020), a medical dialog dataset collected from
HealthCareMagic.com and iCliniq.com,
two online platforms of healthcare service.

The dialogues in the MedDialog dataset consist
of a question from a user, a response from a doc-
tor or medical professional, and a summary of the
question from the user. We form a question sum-
marization dataset by taking the user question and
its corresponding summary, and we discard the an-
swers. We choose to work with HealthCareMagic
as the questions are abstractive and resemble the

formal style in the FAQs of the U.S. National Li-
brary of Medicine (NLM), whereas iCliniq ques-
tion summaries are noisier and more extractive.

Given that MeQSum is 180 times smaller than
HealthCareMagic, we train for 100 epochs on MeQ-
Sum, and 10 epochs for HealthCareMagic. We use
the validation set of the MEDIQA question sum-
marization task to select the best parameters.

2.2.2 Results and Discussion

We show the validation results in Table 1 and the
test results in Table 2. In all test results, we follow
approaches of 2019 MEDIQA participants (Zhu
et al., 2019), and add the validation set to training
for the leaderboard submissions only.

We notice that the validation results for the
BART + XSum base model are significantly lower
than other models. The corresponding test results
are also the lowest-ranking, even though the differ-
ence is not as large as we trained on the validation
set. These results show that training on an out-of-
domain abstractive summarization dataset is not
efficient for this task.

We consider now the training on the medical
question summarization datasets. First, the val-
idation results show that training on MeQSum
achieves comparable F1 scores as training on
HealthCareMagic. The main contrasting point is
that training on HealthCareMagic yields higher
precision, whereas training on MeQSum yields
higher recall. This means that training on Health-
CareMagic generates summaries with more rele-
vant content, whereas training on MeQSum gener-
ates summaries with higher coverage of the con-
tent of the reference summaries. However, the
corresponding test results show similar recall, but
higher precision for HealthCareMagic. Accord-
ingly, ROUGE F1 test scores are higher when train-
ing with HealthCareMagic compared to training
with MeQSum.

Finally, we consider the results of training on
HealthCareMagic followed by MeQSum (HCM
+ MeQSum). On the validation set, we notice
this method generally scores lower precision than
just training on HealthCareMagic, but significantly
higher recall than any previous training method,
therefore achieving higher F1 across all three
ROUGE metrics. On the test set, scores are gener-
ally comparable with training on HealthCareMagic
only.
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Metric→ ROUGE-1 ROUGE-2 ROUGE-L
Model ↓ P R F1 P R F1 P R F1
BART + XSum 14.64 27.59 18.48 4.73 9.16 5.97 12.26 23.11 15.46
BART + XSum + MeQSum 27.08 37.05 30.46 10.66 14.43 11.92 25.03 34.37 28.20
BART + XSum + HCM 35.33 27.81 29.64 14.56 10.22 11.40 33.82 26.31 28.16
BART + XSum + HCM + MeQSum 32.14 40.80 35.22 14.84 18.01 15.92 28.94 36.66 31.66
BART + XSum + HCM + RQE 38.86 32.97 34.10 20.31 15.69 16.88 37.89 31.98 33.15
BART + XSum + HCM + RQE + MeQSum 31.81 40.22 34.52 14.60 18.22 15.78 28.82 36.57 31.29

Table 1: Validation results for Question Summarization. HCM is the HealthCareMagic dataset, and RQE is the
Recognizing Question Entailment dataset.

Metric→ ROUGE-1 ROUGE-2 ROUGE-L
Model ↓ P R F1 P R F1 P R F1
BART + XSum 28.89 32.86 29.56 10.78 12.19 10.94 26.16 29.65 26.71
BART + XSum + MeQSum 29.88 34.73 30.70 11.69 13.16 11.87 26.71 30.82 27.38
BART + XSum + HCM 31.83 34.31 31.61 13.21 13.81 12.82 28.58 30.75 28.32
BART + XSum + HCM + MeQSum 31.85 35.58 32.00 12.77 13.59 12.51 28.41 31.68 28.53
BART + XSum + HCM + RQE 33.58 35.43 32.65 14.23 14.16 13.46 29.51 31.06 28.73
BART + XSum + HCM + RQE + MeQSum 33.82 39.10 34.63 13.91 15.80 14.14 29.91 34.62 30.65

Table 2: Test results for Question Summarization. All models are trained on the provided validation set as well.

2.3 Transfer Learning from Medical
Question Entailment

We consider transfer learning using another task in
the medical domain: Recognizing Question Entail-
ment (RQE). Ben Abacha and Demner-Fushman
(2016) introduce the RQE task as a binary clas-
sification problem, where the goal is to predict
whether – given two questions A and B – A entails
B. Ben Abacha and Demner-Fushman (2016) fur-
ther define question entailment as the following:
question A entails question B if every answer to B
is a correct answer to A, whether partially or fully.

The BART architecture enables us to train on the
RQE task using the checkpoint of the question sum-
marization models. BART is an encoder-decoder
model that can train, on top of generation tasks,
classification tasks as well, such as RQE. We feed
the entire RQE question pair as input to both the
encoder and the decoder. We add a classification
head to be able to predict the entailment score.

2.3.1 Entailment Dataset
For the RQE task, we use the RQE dataset from
the 2019 MEDIQA shared task (Ben Abacha
et al., 2019). The training set was introduced in
Ben Abacha and Demner-Fushman (2016). Sim-
ilarly to MeQSum, this dataset is released by the
U.S. National Institutes of Health. The MEDIQA-
RQE dataset contains 8,588 training question pairs.
We train for 10 epochs and choose the best parame-
ters using the validation set of the 2021 MEDIQA

question summarization task.

2.3.2 Results and Discussion
Similarly to training on HealthCareMagic, we no-
tice in Table 1 that the validation set for train-
ing on MEDIQA-RQE yields very high precision
scores. This method produces the highest precision
scores across all trialled methods, and achieves the
highest F1 scores for ROUGE-2 and ROUGE-L.
Adding MeQSum to the training (RQE + MeQ-
Sum) seems to decrease precision, increase recall,
achieve similar ROUGE-1 F1, but lower ROUGE-2
and ROUGE-L F1 scores.

In Table 2, we notice that the test results that
the RQE + MeQSum model is the clear winner,
providing the highest scores across the board, with
the exception of ROUGE-2 precision. Overall, it
seems that pre-training on a similar task in the med-
ical domain is beneficial for this medical question
summarization task.

3 Multi-Answer Extractive
Summarization

3.1 Dataset
The dataset for this task is the MEDIQA-AnS
dataset (Savery et al., 2020). It contains 156 user-
written medical questions, and answer articles to
these questions, such that one question usually
has more than one answer article. There are also
manually-written abstractive and extractive sum-
maries for the individual answer articles, as well as

259



for the overall question.

3.2 Casting as Answer Sentence Selection

Given that state-of-the-art summarizer BART can
only take relatively short sequences of text as input,
we cannot summarize directly from the long answer
articles to generate the overall answer summary.
We considered summarizing in stages: first training
BART to generate summaries for individual answer
articles, and then summarize the concatenation of
those summaries to generate the answer summary
for the user question. However, we only have refer-
ence summaries of individual answer articles in the
training set of this task, not in the validation or test
set. We notice that extractive answer summaries
for questions consist of sentences extracted fully
from the answer articles. Therefore, we decide
to tackle the extractive track of this task, and cast
multi-answer extractive summarization as an An-
swer Sentence Selection (AS2) problem. Similarly
to RQE, AS2 is a binary classification task, and as
such we are able to train it using BART.

In the AS2 setting, we train BART to predict
the relevance score of a candidate answer given a
question. To obtain the pairs of questions and can-
didate answers from the MEDIQA-AnS dataset, we
proceed as follows. First, we concatenate for each
question the text data of its corresponding answer
articles. Then, we use the NLTK sentence tokenizer
(Loper and Bird, 2002) to split this text data into
individual sentences. Finally, we form question-
sentence pairs for AS2 by pairing the user question
with each sentence from the corresponding answer
article text data.

In this training context, AS2 is a binary clas-
sification task, where each pair of question and
candidate answer is labeled as relevant (1) or irrele-
vant (0). We use cross-entropy as the loss function.
We label sentences contained in the reference ex-
tractive summary as relevant. We notice that some
sentences in the reference summary may appear
slightly changed in the answer articles, or in excep-
tional cases may not appear at all. We decide to
allow a margin of difference between a reference
summary sentence and an answer article sentence,
such that if the max-normalized Levenshtein dis-
tance between both sentences is 25% or less, we
consider the answer article sentence to be relevant.
In the rare cases when the reference summary sen-
tence does not appear at all in the answer articles,
we add it to our training set and label the sentence

Set # sentences # relevant % relevant
Train 48,317 3,995 8.27
Dev 2,494 692 27.8

Table 3: Statistics for MEDIQA-AnS cast as an Answer
Sentence Selection dataset.

Metric→ Acc. MAP MRRModel ↓
BART + XSum + MEDIQA-AnS 71.52 58.63 68.61
BART + XSum + HCM + RQE +
MeQSum + MEDIQA-AnS

72.09 57.08 68.52

Table 4: Validation results for Multi-Answer Extractive
Summarization, cast as an Answer Sentence Selection
problem. We use accuracy and Information Retrieval
metrics like Mean Average Precision (MAP) and Mean
Reciprocal Rank (MRR).

as relevant. We show the statistics of the resulting
dataset in Table 3.

3.3 Results and Discussion

In Answer Sentence Selection, we use two Infor-
mation Retrieval metrics for evaluation: Mean
Average Precision (MAP) and Mean Reciprocal
Rank (MRR). MAP measures how many of the top-
ranked answers are relevant, whereas MRR mea-
sures how highly a first relevant answer is ranked.
We compute the scores as follows, given a set Q of
questions:

MAP(Q) =

∑
q∈Q average_precision(q)

|Q| (1)

MRR(Q) =

∑
q∈Q

1
rank(q)
|Q| (2)

We take as base models the BART + XSum
model, as well as the best-performing model in
the test set of the question summarization task, as
shown in Table 2. We train for 10 epochs on the
AS2 version of the MEDIQA-AnS dataset. We
show classification and AS2 validation results in
Table 4. We notice that both models perform some-
what similarly. Accuracy, MAP and MRR scores
are independent of the extractive summary.

We now evaluate the same two models on Multi-
Answer Summarization. To form an extractive sum-
mary of k sentences, we concatenate the top k most
relevant sentences, in the order in which they ap-
peared in the answer articles. We consider two
options. First, we generate extractive summaries of
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Metric→ ROUGE-1 ROUGE-2 ROUGE-L
Model ↓ # sentences ↓ P R F1 P R F1 P R F1
BART + XSum + MEDIQA-AnS Same as ref. 70.89 61.48 65.17 53.82 47.43 49.99 40.28 34.86 37.00
BART + XSum + MEDIQA-AnS 11 65.13 66.65 61.10 50.45 54.37 48.49 36.57 39.26 35.00
BART + XSum + HCM + RQE +
MeQSum + MEDIQA-AnS

Same as ref. 68.53 63.28 65.06 52.09 48.41 49.65 40.10 36.40 37.77

BART + XSum + HCM + RQE +
MeQSum + MEDIQA-AnS

11 61.84 67.83 60.52 46.72 54.57 47.08 35.64 40.53 35.36

Table 5: Validation results for Multi-Answer Extractive Summarization.

Metric→ ROUGE-1 ROUGE-2 ROUGE-L
Model ↓ # sentences ↓ P R F1 P R F1 P R F1
BART + XSum + MEDIQA-AnS 11 61.57 67.19 60.74 47.33 53.09 47.20 43.27 48.07 42.90
BART + XSum + HCM + RQE +
MeQSum + MEDIQA-AnS

11 59.74 66.34 59.22 45.87 52.21 45.95 42.08 46.98 41.70

Table 6: Test results for Multi-Answer Extractive Summarization.

the same number of sentences as the corresponding
reference extractive summary. Second, we generate
extractive summaries of 11 sentences, as the aver-
age number of sentences in the reference extractive
summaries is 10.66. We show validation results
in Table 5 and test results in Table 6. For the test
results, we are not able to match the number of sen-
tences since we do not have access to the reference
summaries. In addition, we train on the validation
set as well to report test results, following the ap-
proach of MEDIQA 2019 participants (Zhu et al.,
2019).

The summarization results on the validation set
show that extractive summaries with the same num-
ber of sentences as the corresponding reference
summaries have higher precision, whereas the 11-
sentence extractive summaries have higher recall.
Overall, the model trained on BART + XSum fares
better than the one fine-tuned on top of question
summarization. The test results in Table 6 display
the same trend, as the model trained on BART +
XSum achieves higher scores across the board. It
seems that for this task, transfer learning from other
medical datasets was not as useful as for medical
question summarization.

4 Conclusions

This paper describes the approach taken by our
team, UCSD-Adobe, at the 2021 MEDIQA shared
task. We tackle the tasks of question summarization
and multi-answer summarization.

For question summarization, we propose two
kinds of transfer learning. First, we propose to pre-
train on a large-scale dataset of abstractive sum-
marization of medical questions, HealthCareMagic.

Our results show that training on this dataset en-
hances performance in both validation and test sets.
Then, we propose to transfer from another medical
question-based task: recognizing question entail-
ment. This binary classification task increases per-
formance, and precision scores in particular. In the
test results, the highest ROUGE scores are achieved
by a model trained on both transfer learning meth-
ods.

We tackle the extractive track of the multi-
answer summarization task. We propose to cast
the question-driven extractive summarization of
multiple answer documents as an answer sentence
selection problem. We show how we can transform
the MEDIQA-AnS dataset into an AS2 dataset. We
show that we achieve good ROUGE scores with
and without transfer learning from question sum-
marization on the validation set. In the test results,
the model without question summarization training
achieves the highest ROUGE scores.
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Abstract

In this article, we will describe our system for
MEDIQA2021 shared tasks. First, we will de-
scribe the method of the second task, multi-
ple answer summary (MAS). For extracting
abstracts, we follow the rules of Xu and Lap-
ata (2020). First, the candidate sentences are
roughly estimated by using the Roberta model.
Then the Markov chain model is used to evalu-
ate the sentences in a fine-grained manner. Our
team won the first place in overall performance,
with the fourth place in MAS task, the seventh
place in RRS task and the eleventh place in
QS task. For the QS and RRS tasks, we in-
vestigate the performanceS of the end-to-end
pre-trained seq2seq model. Experiments show
that the methods of adversarial training and re-
verse translation are beneficial to improve the
fine tuning performance.

1 Introduction

The mediqa 2021 shared tasks aim to investigate the
most advanced summary models, especially their
performance in the medical field. There are three
tasks. The first is question summary (QS), which
classifies long and complex consumer health prob-
lems into simple ones, which has been proved to be
helpful to answer questions automatically (Abacha
and Demner-Fushman, 2019). The second task is
multiple answer summary (MAS) (Savery et al.,
2020). Different answers can bring complementary
views, which may benefit the users of QA system.
The goal of this task is to develop a system that can
aggregate and summarize answers scattered across
multiple documents. The third task is radiology
report summary (RRs) (Zhang et al., 2018, 2020b),
which generates radiology impression statements
by summarizing the text results written by radiolo-
gists.

Automatic summarization is an important task
in the field of medicine. When users use Google,

∗Contact author: yi.cai@chic-health.com.

MEDLINE and other search engines, they need to
read a large number of medical documents about
a certain topic and get a list of possible answers,
which is very time-consuming. First, the content
may be too specialized for laymen to understand.
Second, one document may not be able to fully
answer queries, and users may need to summa-
rize conclusions across multiple documents, which
may lead to a waste of time or misunderstanding.
In order to improve the user experience when us-
ing medical applications, automatic summarization
technology is needed.

In the MAS task, we improve upon (Xu and La-
pata, 2020) via three methods. First, during the
coarse ranking of a sentence in one of the given
documents, we also add the surrounding sentences
as input and use two special tokens marking the po-
sitions of the sentence. This modification improves
the coarse ranking with a large margin. Second,
due to the low resource settings of this task, we
find that applying a RoBERTa (Liu et al., 2019)
model which is already fine-tuned on the GLUE
benchmark (Wang et al., 2018) can be beneficial.

In the MAS task, we use two methods to improve
(?). First, when we rank a sentence coarsely in a
given document, we add the surrounding sentences
as input. This modification greatly improves the ef-
ficiency of coarse ranking. Secondly, due to the low
resource setting of this task, we find that it is bene-
ficial to apply the Roberta (Liu2019RoBERTaAR)
model, which has been fine tuned on the glue bench-
mark (Wang2018GLUEAM).

For the other two tasks, we mainly discuss how
the pre trained seq2seq model, such as Bart (Lewis
et al., 2020), Pegasus (Zhang et al., 2020a), can
be implemented in these tasks. You can make two
takeout. First, for tasks with smaller datasets, freez-
ing part of the parameters is beneficial. Second,
backtranslation is beneficial for generalization.

Our team ChicHealth participated in all three
tasks and won the first place for the overall per-
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formances. Experiments show that our methods
are beneficial for pre-trained models’ downstream
performances.

2 Extractive MDS

Let Q denote a query, and D = {d1, d2, ..., dM}
a set of documents. We have implemented multi
granularity MDS following the implementation of
Xu and Lapata (2020). We first break down the doc-
ument into paragraphs, which are sentences. Then,
a trained Roberta model quantifies the semantic
similarity between the selected sentence and the
query, and estimates the importance of the sentence
(evidence estimator) according to the sentence it-
self or the local context of the sentence. Thirdly,
in order to give the global estimation of the im-
portance of each part in the summary, we use the
centrality estimator based on the Markov chain.

2.1 Evidence Estimator

Let {S1, S2, ..., SN} as the candidate answer set.
Our training goal is to find the right answers in this
group. We use Roberta as our sequence encoder

We concatenate queryQ after candidate sentence
S into a sequence < /s >, S, < /s > < s >, Q,
< /s >, as the input to the RoBERTa encoder.
The starting < s > token’s vector representations
t serves as input to a single layer feed forward
layer to obtain the distribution over positive and
negative classes, where the positive class denotes
that a sentence contains the answer and 0 otherwise.

We connect the query Q to the sequence < s >,
S, < /s >, Q, < /s > after the candidate state-
ment sas the input of the Roberta encoder. The
vector of the starting < s > is used as the input of
the single feed-forward layer to obtain the distribu-
tion on the positive and negative classes, where the
positive class indicates that the sentence contains
the answer, otherwise it is 0. We can improve the
performance of the evidence estimator by adding
the surrounding sentences of S into the model dur-
ing training.

After fine-tuning, we take the probability of pos-
itive class as the score of local evidence, and we
will use it to sort all sentences of each query.

2.2 Centrality Estimator

In order to obtain a global estimate of the score of
each candidate sentence, we apply a global estima-
tor following Xu and Lapata (2020). The centrality

estimator is essentially an extension of the famous
LexRank algorithm (Erkan and Radev, 2004).

For each document cluster, i.e., the collections
of documents for each query in our tasks, LexRank
builds a graph G = (V ;E) with nodes V cor-
responding to sentences and undirected edges E
whose weights are computed based on a certian sim-
ilarity metric. The original LEXRANK algorithm
uses TF-IDF (Term Frequency Inverse Document
Frequency). (Xu and Lapata, 2020) proposes to
use TF-ISF (Term Frequency Inverse Sentence Fre-
quency), which is similar to TF-IDF but operates
at the sentence level.

Following ((Xu and Lapata, 2020)), the similar-
ity matrix E is combined with the evidence estima-
tor’s , that is,

Ẽ = w ∗ [q̃; ...; q̃] + (1− w) ∗ E, (1)

where w ∈ (0, 1) controls the extent to which the
evidence estimator can influence the final summa-
rization, and q̃ is obtained by normalizing the the
evidence scores,

q̃ =
q

∑|V |
v qv

. (2)

We run a Markov Chain on the graph and the
final stationary distribution q̃∗ of this Markov chain
serves as the final scores of each sentence.

3 Abstractive summarization

Pre-trained models. In this section, we investigate
the pretrained Seq2Seq models to obtain abstrac-
tive summarizations, after finetuning their on our
datasets. We mainly investigate two types of mod-
els, BART ((Lewis et al., 2020)) and PEGASUS
((Zhang et al., 2020a)). And experiments show the
PEGASUS model is better

Finetuning techniques. In order to fine tune
the pre-trained seq2seq model, we test some meth-
ods/techniques that can improve the performance
of downstream tasks:

• Freezing a proportion of the parameters of the
model;

• Advarsarial training method, i.e., Projected
Gradient Descent (PGD, (Madry et al., 2018)).

• Backtraslation (from English to Thai, and then
Thai to English) is applied for data augmenta-
tion.
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model ROUGE-2 F1
BART-base 11.47
BART-large 13.73

PEGASUS-large 16.37

Table 1: Comparison of different pretrained models on valid set in Task 1.

model # layers to freeze ROUGE-2
PEGASUS-large 3 16.37
PEGASUS-large 0 15.80
PEGASUS-large 6 14.98
PEGASUS-large 9 15.64
PEGASUS-large 12 9.85

Table 2: Results of PEGASUS-large model, when we freeze different numbers of lower layers of the encoder and
decoder.

with Adv training? ROUGE-2
Yes 16.37
No 15.46

Table 3: Results of PEGASUS-large model, with or without adversarial training.

evidence estimator centrality estimator ROUGE-2
dev set

roberta-base No 44.32
roberta-large No 46.48

roberta-large + GLUE finetuning No 47.13
roberta-large + GLUE finetuning LexRank 48.24

ensemble models LexRank 49.18

Table 4: Comparison of different models on dev set of the MAS task.

model ROUGE-2
BERT-abs 34.95
T5-small 45.46
T5-base 49.41
T5-large 50.68

BART-base 49.65
BART-large 49.81

PEGASUS-pubmed 45.93
PEGASUS-large 51.95

Table 5: The results of different summarization models.
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4 Experiments

4.1 dataset statistics

For QS tasks (Figure 1 and 2), the source length
distribution is consistent on the train/Val/test set,
and the target length distribution is also consistent.
For RRS tasks (7 and 8), we can observe that the
sequence length distribution of train/ val/test set is
different, which may lead to skewed model. For
task 2, the length of the document varies, which
is too long for pre-trained models like Pegasus.
Therefore, for task 2, abstractive summaries are
generated from extractive summaries.

Figure 1: Source sequence length of QS.

Figure 2: Target sequence length of QS.

4.2 Results on QS

We first report the results on the QS task. First,
we compare BART and PEGASUS (Table 1), and
find that PEGASUS performs significantly better
than BART. Second, we compare PEGASUS with
different number of layers freezed (Table 2), and
find that freezing three 3 layers obtains the best dev
performance. Third, we compare the model with
or without adversarial training (Table 3), and show
that adversarial training is important for this task.

4.3 Results on MAS

Now we report results on the MAS task (Table 4).
RoBERTa large performs better on coarse ranking
than RoBERTa base. And using a model finetuned
on GLUE also helps to improve the fine-tuning
task. After centrality ranking with LexRank, the
score improve by more than one percent. And our
best score is obtained by using ensemble on the
evidence estimators.

Figure 3: Query length of MAS.

Figure 4: Document length of MAS.

Figure 5: Extractive summary length of MAS.

Figure 6: Abstractive summary length of
MAS.

Figure 7: source length of task3 using PEGA-
SUS tokenizer

Figure 8: target length of task2 using PEGA-
SUS tokenizer
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4.4 Results on RRS

Now we report results on the RRS task. We com-
pare 4 groups of models, BERT-abs, T5 (Raffel
et al., 2020), BART and PEGASUS (Table 5). PE-
GASUS also performs best, like in the QS task.
However, we find that the PEGASUS trained on
PubMed performs significant worse, which is con-
tradictory to our hypothesis that fine-tuning on re-
lated domain corpus is beneficial for downstream
tasks.

5 Conclusion

In this work, we elaborate on the methods we em-
ployed for the three tasks in the MEDIQA 2021
shared tasks. For the extractive summarization of
MAS task, we build upon Xu and Lapata (2020),
and achieve improvements by adding contexts and
sentence position markers. For generating ab-
stractive summaries, we leverage the pre-trained
seq2seq models. To improve the fine-tuning per-
formances on the downstream tasks, we implement
a few techniques, like freezing part of the models,
adversarial training and back-translation. Our team
achieves the 1st place for the overall performances.

In this work, we elaborate the methods used in
the three shared tasks of mediqa 2021. For MAS
task, we employ the methods that are similar to Xu
and Lapata (2020). In order to generate abstract
abstracts, we take advantages of the pre-trained
seq2seq model. In order to improve the fine-tuning
performance of downstream tasks, we use freezing
part of the model, adversarial training. Our team
ranks first in the overall performances of the three
task.
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Abstract 

This study describes the model design of 
the NCUEE-NLP system for the MEDIQA 
challenge at the BioNLP 2021 workshop. 
We use the PEGASUS transformers and 
fine-tune the downstream summarization 
task using our collected and processed 
datasets. A total of 22 teams participated in 
the consumer health question 
summarization task of MEDIQA 2021. 
Each participating team was allowed to 
submit a maximum of ten runs. Our best 
submission, achieving a ROUGE2-F1 
score of 0.1597, ranked third among all 128 
submissions.  

1 Introduction 

Consumers increasingly use online resources to 
meet their health information needs. However, 
health information needs are usually complex and 
to be expressed in natural language (Kilicoglu et al., 
2018). In general, health questions tend to consist 
of considerable contextual information that may 
hinder automatic Question Answering (QA) 
systems. Paraphrasing and summarizing the 
questions has been shown to substantially improve 
QA performance (Ben Abacha and Demner-
Fushman, 2019a). Therefore, effective 
summarization methods for consumer health 
questions could play an important role in 
enhancing medical QA performance.   

Automatic text summarization is the process of 
computationally shortening texts to find or 
generate the most informative sentences that 
represent the most important or relevant 
information within the original content. There are 
two general approaches to summarization: 
extraction and abstraction. In extractive 
summarization methods, a summary is extracted 
from the original texts, but the extracted sentences 

are not modified in any way. Abstractive 
summarization methods learn a semantic 
representation of the original content, and then use 
this representation to generate a summary that is 
closer to what a human might express in terms of 
original content.  

MEDIQA 2021 is the second edition of the 
MEDIQA challenge collocated with the BioNLP 
2021 workshop, focusing on summarization in the 
medical domain with three tasks: consumer health 
question summarization, multi-answer 
summarization, and radiology report 
summarization. We only participated the first 
Question Summarization (QS) task, in the domain 
of abstractive summarization. The goal of this task 
is to promote the development of new 
summarization methods that specifically address 
the challenges of long and complex consumer 
health questions. The recently developed  
transformer in NLP is a novel neural architecture 
that aims to solve sequence-to-sequence tasks in 
handling long dependencies and usually achieves 
promising results. This achievement motivates us 
to explore the use of a transformer-based model to 
tackle the question summarization problem in the 
medical domain. 

This paper describes the NCUEE-NLP 
(National Central University, Dept. of 
Electrical Engineering, Natural Language 
Processing Lab) system for the QS task of the 
MEDIQA challenge at the BioNLP 2021 workshop. 
Our solution explores the use of pre-trained 
PEGASUS Transformers (Zhang et al., 2020a) and 
fine-tuning on the downstream question 
summarization task using our collected and 
processed datasets. A total of 22 teams participated 
in this task. Each participating team was allowed to 
submit a maximum of ten runs. Our best 
submission had a ROUGE2-F1 score of 0.1597, 
ranking third among all 128 submissions. 

NCUEE-NLP at MEDIQA 2021: 
Health Question Summarization Using PEGASUS Transformers 
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The rest of this paper is organized as follows. 
Section 2 describes the NCUEE-NLP system for 
the question summarization task. Section 3 
presents the evaluation results and performance 
comparisons. Conclusions are finally drawn in 
Section 4.  

2 The NCUEE-NLP System 

Figure 1 shows our NCUEE-NLP system 
architecture for the QS task. Specifically, our 
system is comprised of two main parts: 1) 
PEGASUS transformers, and 2) fine-tuning.  
Details are introduced as follows.  

2.1 PEGASUS Transformers 

Zhang et al. (2020a) proposed PEGASUS 
(Pretraining with Extracted Gap-sentences for 
Abstractive SUmmarization Sequence-to-
sequence) method that pre-trains large transformer-
based encoder-decoder models on massive text 
corpora. New self-supervised objectives called 
Gap Sentences Generation (GSG) and classical 
Mask Language Models (MLM) were applied 
simultaneously as pre-training objectives. The 
PEGASUS model was evaluated on 12 
downstream summarization tasks spanning news, 
science, stories, instructions, emails, patents, and 
legislative bills.  Experimental results showed that 
good abstractive summarization performance can 

be achieved across broad domains by fine-tuning 
the model, outperforming previous state-of-the-art 
approaches on many tasks.  

These achievements motivate us to explore the 
use of the PEGASUS transformers and fine-tuning 
on the downstream QS task in the medical domain.  

2.2 Fine-tuning 

Many summarization datasets contain original 
texts and their referenced summarizes written in 
declarative sentences. Question summaries written 
in interrogative sentences are relatively rare. Hence, 
in addition to the training set provided by task 
organizers, we also collected and processed the 
following datasets to fine-tune the QS task.  

• MEDIQA 2019 – NLI Dataset (Ben Abacha 
et al., 2019) 

The Natural Language Inference (NLI) task of 
the MEDIQA 2019 challenge identifies three 
relations between two sentences including 
entailment, neutral, and contradiction. We only use 
the entailment relation that was annotated from the 
training, validation and test datasets. Comparing 
the lengths of two the sentences in each pair, the 
longer sentences will be regarded as a question, 
while the other is used as the corresponding 
summary. A total of 4,683 pairs were collected 
from this dataset. 

 

 
 
 

Figure 1: Our NCUEE-NLP system architecture for the QS task. 
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• MEDIQA 2019 – RQE Dataset (Ben Abacha 
et al., 2019) 

The Recognizing Question Entailment (RQE) 
task of the MEDIQA 2019 challenge focuses on  
identifying entailments between two questions. We 
use the positive question-pairs (annotated as 
“entailment”) from the training, validation and test 
datasets. However, some questions are not written 
using valid interrogative sentences such as a 
declarative sentences followed by “Right?”. We 
exclude these cases and only use questions that 
start with wh-words, be verbs, and auxiliary verbs. 
Similarly, the shorter question in each question-
pairs is regarded as a reference summary. This 
resulted in a final subset of 4,011 pairs.  

• MQP Dataset (McCreery et al., 2020) 

The Medical Question Pairs (MQP) dataset 
contains similar and dissimilar medical question 
pairs hand-generated and labeled by doctors. A list 
of 1,524 patient-asked questions were randomly 
sampled. Doctors as the labelers had rewritten the 
original question in different ways while 
maintaining the same intent, and used similar key 
words to write related but dissimilar questions for 
which the answer would be wrong or irrelevant. 
Hence, each question results in one similar and one 
different pair. We only use the similar question 
pairs to fine-tune the transformers. In the same way, 
the longer questions are used as original questions 
and the shorter ones are their reference summaries.    

• EPIC-QA Dataset on COVID-19 (Goodwin 
et al., 2020) 

In response to the COVID-19 pandemic, the 
Epidemic Question Answering (EPIC-QA) track in 
TREC 2020 conference focuses on developing 
systems capable of automatically answering 
questions about COVID-19. In the question part of 
EPIC-QA data, two prepared sets of approximately 
45 questions were provided: one for expert-level 
questions and one for consumer-level questions. 
Without considering the question levels, we regard 
the longer questions as original questions and the 
corresponding shorter question are their summaries.  

3 Evaluation  

3.1 Data 

The experimental datasets were mainly provided 
by task organizers (Ben Abacha et al., 2021). The 

training, validation and test sets were composed of 
data from an independent set of consumer health 
questions. The MeQSum Dataset of consumer 
health questions and their summaries can be used 
for training (Ben Abacha and Demner-Fushman, 
2019b). The validation and test sets consist of 
consumer health questions received by the U.S. 
National Library of Medicine (NLM) in December 
2020. Their associated summaries were manually 
created by medical experts for evaluation.  

In summary, during the system development 
phase, the training and validation sets respectively 
consisted of 1,000 and 50 consumer health 
questions and their associated summaries for 
system designing and implementation. In total, 
only 100 consumer health questions in the test 
dataset were used for final performance evaluation.   

3.2 Settings 

The pre-trained PEGASUS models were 
downloaded from the HuggingFace (Wolf et al., 
2019). A PEGASUS model was trained with 
sampled gap sentence ratios on both C4 (Raffel et 
al., 2020) and HugeNews datasets, and important 
sentences were sampled stochastically. We selected 
the PEGASUS-Large model and its mixed and 
stochastic model (denoting PEGASUS-Large-
XSum) on the XSum (Narayan et al., 2018) 
datasets, containing 227k BBC news articles from 
2010 to 2017 covering a wide variety of subjects 
along with professionally written single-sentence  
summarizes.  

To confirm model performance, we compared 
the previous state-of-the-art BART method (Lewis 
et al., 2019) that uses a denoising autoencoder to 
pre-train sequence-to-sequence models. We also 
downloaded the pre-trained BART-Large and 
BART-Large-XSum models from the 
HuggingFace (Wolf et al., 2019).  

On an Nvidia DGX-1 server using a V100 GPU 
with the same settings, the hyper-parameter values 
for our model implementation were optimized as 
follows: maximum sequence length 512; learning 
rate 0.00005; batch size 6 and gradient 
accumulation steps 128 for both BART models; 
and batch size 8 and gradient accumulation steps 
512 for both PEGASUS models. 

3.3 Metrics 

ROUGE is used to measure summarization 
performance (Lin, 2004). ROUGE stands for 
Recall-Oriented Understudy for Gisting Evaluation, 
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including several automatic evaluation methods 
that measure the similarity between summaries. 
ROUGE-N is an n-gram recall between a candidate 
summary and a set of reference summaries. 
ROUGE-L accounts for the union Longest 
Common Sequence (LCS) in matching between a 
reference summary sentence and every candidate 
summary sentence. 

In the QS task of MEDIQA 2021 challenge, 
ROUGE-1 (denoted as R1), ROUGE-2 (R2), and 
ROUGE-L (RL) were adopted as measure metrics. 
The F1 score,  which is a harmonic mean of 
precision (short in P) and recall (R), of R2 was 
regarded as the official score to rank the 
participating teams’ performance in the 
leaderboard.  

3.4 Results 

Table 1 shows the results on the QS validation set 
of MEDIQA 2021 challenge. Both PEGASUS 
models outperformed the BART models in a half of 
the metrics. The mixed and stochastic models on 
the XSum datasets usually outperformed than those 
without the XSum optimization using both BART 
and PEGASUS transformers. The PEGASUS-
Large-XSum model obtained the best overall score 
of 0.1469 in R2-F1, considered as the ranking 
metric.   

During the final testing phase of the QS task, we 
used the training set and collected datasets to fine-
tune the models and the validation set for parameter 
optimization. Each participating team was allowed 
to submit a maximum of ten runs for each task. We 
submitted the four above-mentioned models. Table 
2 shows the results of our testing models. The 
PEGASUS-Large-XSum model clearly 

outperformed the others than the others in almost 
all evaluation metrics.  

A total of 22 teams participated in the QS task, 
each submitting at least one entry. Our best 
submission achieved an R2-F1 score of 0.1597, 
significantly outperforming the baseline model 
with a score of 0.1373 and ranking third place 
among all 128 submissions.  

In addition to ROUGE metrics, task organizers 
also use several evaluation metrics that may be 
better adapted to the QS task. Our best submission 
also achieved a HOLMS score (Mrabet and 
Demner-Fushman, 2020) of 0.5783, ranking first 
among all 128 submissions. Our best submission 
had a BERTScore-F1 (Zhang et al., 2020b) of 
0.6960, ranked ninth among all submissions. 

4 Conclusions 

This study describes the NCUEE-NLP system in 
the consumer health question summarization task 
of the MEDIQA 2021 challenge, including system 
design, implementation and evaluation. We used 
the PEGASUS transformers and fine-tuned the 
downstream summarization task using our 
collected and processed datasets. A total of 22 
teams participated in the task, each submitting at 
least one entry. Our best submission had a 
ROUGE2-F1 score of 0.1597, ranking third place 
among all 128 submissions. 
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Models R1-P R1-R R1-F1 R2-P R2-R R2-F1 RL-P RL-R RL-F1 
BART-Large 0.3165 0.3255 0.3209 0.1355 0.1438 0.1395 0.3090 0.3182 0.3135 

BART-Large-XSum 0.3299 0.3194 0.3246 0.1435 0.1488 0.1461 0.3215 0.3127 0.3170 
PEGASUS-Large 0.3153 0.3368 0.3257 0.1307 0.1593 0.1436 0.3029 0.3285 0.3152 

PEGASUS-Large-XSum 0.3159 0.3269 0.3213 0.1393 0.1553 0.1469 0.3017 0.3157 0.3085 

Table 1:  Results of summarization models on the QS validation dataset. 

 Models R1-P R1-R R1-F1 R2-P R2-R R2-F1 RL-P RL-R RL-F1 
BART-Large 0.3526 0.3159 0.3132 0.1452 0.1236 0.1268 0.3187 0.2865 0.2842 

BART-Large-XSum 0.3308 0.3253 0.3116 0.1212 0.1150 0.1125 0.2976 0.2891 0.2784 
PEGASUS-Large 0.3173 0.3426 0.2936 0.1377 0.1346 0.1217 0.2821 0.2934 0.2579 

PEGASUS-Large-XSum 0.3869 0.3316 0.3352 0.1850 0.1573 0.1597 0.3576 0.3030 0.3090 

Table 2:  Results of summarization models on the QS test dataset. 
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Abstract

Recent strides in the healthcare domain,
have resulted in vast quantities of streaming
data available for use for building intelligent
knowledge-based applications. However, the
challenges introduced to the huge volume, ve-
locity of generation, variety and variability of
this medical data have to be adequately ad-
dressed. In this paper, we describe the model
and results for our submission at MEDIQA
2021 Question Summarization shared task. In
order to improve the performance of sum-
marization of consumer health questions, our
method explores the use of transfer learning
to utilize the knowledge of NLP transformers
like BART, T5 and PEGASUS. The proposed
models utilize the knowledge of pre-trained
NLP transformers to achieve improved results
when compared to conventional deep learning
models such as LSTM, RNN etc. Our team
SB_NITK ranked 12th among the total 22 sub-
missions in the official final rankings. Our
BART based model achieved a ROUGE-2 F1
score of 0.139.

1 Introduction

The Question Summarization (QS) task aims to
promote the development of new summarization
models that are able to summarize lengthy and com-
plex consumer health questions. The consumer
health questions can have a variety of subjects like
medications, diseases, effects, medical treatments
and procedures. The medical questions can also
contain a lot of irrelevant information that makes
automated question summarization a difficult and
challenging task (Mayya et al., 2021). It is also
often cumbersome to go through lengthy questions
during the question answering process and then
formulate relevant answers (Upadhya et al., 2019).
The automated summarization approaches for con-
sumer health questions thus have many medical ap-
plications. An effective automated summarization
approach for obtaining simplified medical health

questions can be crucial to improving medical ques-
tion answering systems.

The MEDIQA 2021 (Ben Abacha et al., 2021)
proposes three different shared tasks to promote
the development, performance improvement and
evaluation of text summarization models in the
medical domain:

• Consumer Health Question Summarization
(QS) - Development of summarization models
to produce the shortened form of consumer
health related questions.

• Multi-Answer Summarization - Development
of summarization models to aggregate and
summarize multiple answers to a medical
question.

• Radiology Report Summarization - Develop-
ment of summarization models that can pro-
duce radiology impression statements by sum-
marising text-based observations.

The role of question summarization or simplifica-
tion in answering consumer health questions is not
explored extensively when compared to the sum-
marization of documents and news articles (George
et al., 2021). Ishigaki et al. (2017) explored various
extractive and abstractive methods for summariza-
tion of questions that are posted on a community
question answering site. The results showed that
abstractive methods with copying mechanism per-
formed better than extractive methods. Agrawal
et al. (2019) proposed a closed-domain Ques-
tion Answering technique that uses Bi-directional
LSTMs trained on the SquAD dataset to deter-
mine relevant ranks of answers for a given ques-
tion. Ben Abacha and Demner-Fushman (2019)
proposed sequence-to-sequence attention models
with pointer generator network for summariza-
tion of consumer health questions collected from
MeQSum, Quora question pairs dataset and other
sources. The addition of pointer generator and cov-
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erage mechanisms on the sequence-to-sequence
has improved the ROUGE scores considerably.

In this paper, we describe the different models
and experiments that we designed and evaluated
for the Consumer Health Question Summarization
(QS) task. The proposed models utilize the knowl-
edge of pre-trained NLP transformers to achieve
improved results when compared to conventional
deep learning models such as LSTM, RNN etc. The
proposed models are based on transfer learning and
fine tuning the dataset on different versions of NLP
transformers like BART (Lewis et al., 2019), T5
(Raffel et al., 2020) and PEGASUS (Zhang et al.,
2020). We have also benchmarked all the proposed
models against traditional Seq2Seq LSTM encoder-
decoder networks with attention.

The rest of this article is organized as follows. In
Section 2, we provide information about the data
used such as description of datasets, dataset aug-
mentation and pre-processing. Section 3 gives an
overview of transformer architecture and transfer
learning. In Section 4, we describe and compare re-
sults obtained from fine-tuning various transformer
models on our augmented dataset. In Section 5,
we compare the performance of our proposed mod-
els with different transformer models in detail, fol-
lowed by conclusion and directions for future work.

2 Data

2.1 MeQSum Dataset Description

The main dataset for the task was provided by the
organizers of MEDIQA 2021 (Ben Abacha et al.,
2021). The training set comprised of consumer
health questions (CHQs) and the corresponding
summaries. The validation set consisted of Na-
tional Library of Medicine (NLM) consumer health
questions and their respective summaries. In ad-
dition to the questions and summaries, the vali-
dation set contains question focus and question
type for each question. The MeQSum training
corpus consists of 1000 question-summary pairs
while the validation dataset provided has 50 NLM
question-summary pairs. To improve the perfor-
mance, the question focus in validation pairs has
been appended to the beginning of each question.

2.2 Dataset Augmentation

As the provided training and validation datasets for
the task add up to only a 1,050 question-summary
pairs, we decided to augment the data to achieve
better performance and solve over-fitting problems.

The following three datasets were added to the
training and validation datasets to broaden the cov-
erage.

TREC-2017 LiveQA: Medical Question An-
swering Task Dataset. The LiveQA dataset is
used for training consumer health question answer-
ing systems. The question pairs in this dataset are
very similar to those given for the task, however,
its small size was not conducive to performance
improvement. The test dataset (Ben Abacha et al.,
2017) comprises of 104 NLM Questions, out of
which 102 of them have an associated summary
annotation. Additionally, each question has focus,
type, and keyword annotations associated with it.
To increase the weight of significant parts of the
question, we added the question focus and keyword
annotations to the beginning of each question.

Recognizing Question Entailment (RQE)
Dataset. The RQE dataset (Ben Abacha and
Demner-Fushman, 2016) is used for automatic
question answering by recognizing similar ques-
tions in the medical domain. Out of the 8,588
training pairs and 302 validation pairs available in
the RQE corpus, we chose only those pairs which
entail each other, which resulted in 4,655 training
pairs and 129 validation pairs. Moreover, to ensure
that one of the questions in the pair is a summary
of the other, we selected those pairs where one
question has at least 2 sentences and the other has
only one sentence. This resulted in a total of 2,078
question-summary pairs. However, one of the
issues faced with this dataset is that the questions
in some pairs are almost similar to each other.

Medical Question Pairs (MQP) Dataset. The
MQP dataset (McCreery et al., 2020) consists a
total of 3,048 pairs of related and unrelated medical
questions. Half of the total questions i.e., 1,524
pairs are labeled as similar to each other. Among
the similar question pairs, we chose those pairs
where at least one of the questions has only one
sentence. In case both the questions have only
one sentence each, the question with lesser number
of words is considered as the summary. Finally,
the dataset resulted in 1,057 pairs. The advantage
of MQP dataset lies in the fact that it has more
generalized medical questions in contrast to the
previously mentioned datasets, which have many
esoteric terms.
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2.3 Dataset Preprocessing
The dataset preprocessing largely depends on the
data at hand and the type of output we antici-
pate. Some of the common techniques that we
incorporated include text case-folding to lower-
case, removal of special characters, numbers and
stop words etc. However, upon analyzing the
summaries, we found that they include uppercase
letters, certain special characters, numbers and
stop words. Therefore we did not proceed with
extensive data preprocessing, except for remov-
ing special characters which are absent the sum-
maries. The final cleaned corpus comprises of
4,287 question-summary pairs.

3 System Description

3.1 Transformer Architecture
Transformers have now become the state-of-the-art
solution for a variety of NLP tasks including lan-
guage understanding, translation, text generation,
text classification, question answering and senti-
ment analysis. Transformers continue to outper-
form other neural network architectures (RNN and
LSTM) by maintaining the attention while handling
sequences in parallel, i.e., they handle all words
at once (considered bidirectional) rather than one
by one and effectively learning inter-dependencies,
especially in the case of long sentences.

Figure 1: Encoder-Decoder transformer architecture
used by PEGASUS, BART and T5.

The transformer architecture as shown in Fig. 1
consists of the encoder and decoder mechanisms,
where the segments are connected by a cross-
attention layer. An encoder segment consists of

a stack of encoders in which each encoder reads
the text input and generates embedding vectors. It
outputs contextual and positional vectors of the in-
put sequence using attention mechanism. Similarly,
the decoder part is a stack of decoders where each
decoder takes target sequence and encoder output
as input. It generates contextual information from
the target sequence and then combines encoder out-
put with it. It models the conditional probability
distribution of the target vector sequence based on
the previous target vectors to produce an output
vector.

The sequence of input tokens is fed into the trans-
former encoder, which are then embedded into vec-
tors and processed by the neural network. The de-
coder produces a series of vectors, corresponding
to each token in the input sequence. Few examples
of existing transformers are BART, T5 etc. As deep
neural networks have a large number of parameters,
the majority of labelled text datasets are insufficient
for training these networks as training them on lim-
ited datasets would result in over-fitting. There-
fore, for downstream NLP tasks, we can utilize the
knowledge of transformers which are pre-trained
on large datasets using transfer learning. Trans-
fer learning is a method of using a deep learning
model that has been pre-trained on a huge corpus
to perform similar NLP tasks by fine-tuning on a
different dataset.

For fine-tuning the model with a different dataset,
we modify the model parameters like hidden states
and weights of the existing model to suit our dataset.
Towards this, we have fine-tuned transformer mod-
els such as BART, T5 and PEGASUS with our
augmented dataset to perform question summa-
rization, for the given task. Fine tuning BART
transformer for question summarization with our
dataset achieved the best ROUGE-2 scores when
compared to other transformer models. The details
of experiments and analysis of different models are
discussed in Section 4.

4 Models and Results

During the system development phase, we experi-
mented with various models for the task of question
summarization. The ranking for the task is based
on the ROUGE2-F1 score. ROUGE-2 (Recall-
Oriented Understudy for Gisting Evaluation), is
a metric which measures the overlap of bigrams
between the model-generated and reference sum-
maries in a summarization task. In the following
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sections, we discuss the various versions of the
models that we fine-tuned for the Question Sum-
marization task.

4.1 Seq2Seq models
This model uses a seq2seq bidirectional LSTM
based encoder and decoder. The encoder network
is combination of an embedding layer followed by
a stack of 3 bidirectional LSTM layers each with
128 hidden units and a dropout value of 0.2. The
encoder output and encoder states from the LSTM
network is given as input to the attention layer
(Bahdanau et al., 2016) to generate context vector
and attention weights. The generated vectors from
attention layer are given as input to decoder. The
decoder network is similar to the encoder, having a
combination of an embedding layer followed by a
stack of bidirectional LSTMs of 128 hidden units
and a softmax layer. The output from the decoder
network is a vector of tokens’ indexes from the
vocabulary.

We have experimented with the following varia-
tions of seq2seq - attention - coverage model.

1. Seq2seq + attention + coverage model with
Word2vec (N × 300) embeddings.

2. Seq2seq + attention + coverage model with
Scibert (N × 768) embeddings.

3. Seq2seq + attention + coverage model with
Glove (N × 300) embeddings.

However, the above mentioned seq2seq models
were not submitted for final evaluation because
of the lack of sufficient data to train such mod-
els from scratch. Since the size of our training
dataset is small (4,287 question-summary pairs),
these seq2seq models did not provide acceptable re-
sults, hence we omitted them from our submissions
for the question summarization task.

4.2 T5
Google’s T5 (Text-to-Text Transfer Transformer) is
a pre-trained encoder-decoder model that has been
trained on C4 (Colossal Clean Crawled Corpus)
dataset for unsupervised and supervised tasks. The
T5 transformer consists of an encoder, a cross at-
tention layer and an auto-regressive decoder. In
T5, every NLP problem is converted to a text-to-
text format and the data is augmented with a prefix
e.g., for summarization: ‘summarize: ’, for transla-
tion: “translate English to French: ". T5 achieves
benchmark performance for various tasks like sum-
marization, question answering, text classification

etc, and both supervised and unsupervised methods
can be applied for training. Two different versions
of T5 were finetuned for our augmented dataset for
the summarization task.

1. t5-base : T5 model with 12 encoder and
decoder layers, trained on C4 dataset, with
220M parameters.

2. t5-small : T5 model with 6 encoder and de-
coder layers, trained on C4 dataset, with 60M
parameters.

Table 1 shows the comparison of ROUGE scores
obtained for the T5 models we experimented with.
The model t5-small obtained a better ROUGE-2-F1
score when compared to t5-base. We submitted a
run each for the two models. In addition to these
two models, we also experimented with other varia-
tions of T5, such as t5-large and t5-base-finetuned-
summarize-news. On comparison of the summaries
produced by the various T5 models, t5-small gen-
erated the best summaries.

4.3 PEGASUS
Google AI released the PEGASUS model which
implements the sequence-to-sequence architecture.
The specialty of this model is its self-supervised
pre-training objective termed as “gap-sentence gen-
eration", where, certain sentences are masked in
the input for pre-training. The advantage is gained
by keeping the pre-training self-supervised objec-
tive closer to the required down-stream task. We
mainly focused on the following two versions of
the PEGASUS models and fine-tuned them on our
augmented dataset.

1. pegasus-xsum: pegasus-large model fine-
tuned on the XSum dataset having a size of
226k records.

2. pegasus-wikihow: pegasus-large model fine-
tuned on the WikiHow dataset having a size
of 168k records.

Table 1 shows the ROUGE scores obtained
for the PEGASUS models finetuned in our work.
Among the two, pegasus-wikihow gives better
scores than pegasus-xsum. We submitted one run
for each of the models. Additionally, we also exper-
imented with other pre-trained PEGASUS models
such as, pegasus-pubmed, pegasus-cnn_dailymail
and pegasus-multi_news. The summaries pro-
duced by these pegasus-cnn_dailymail and pegasus-
multi_news were almost similar and acceptable,
while those generated by pegasus-pubmed were
not up to the mark.
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Table 1: Scores and ROUGE values for various models benchmarked for the Question Summarization task

Model Score R1-P R1-R R1-F1 R2-P R2-R R2-F1 RL-R RL-F1
bart-large-xsum 0.139 0.358 0.346 0.333 0.152 0.144 0.139 0.318 0.308
bart-large-cnn 0.12 0.339 0.299 0.301 0.137 0.117 0.12 0.274 0.276
pegasus-xsum 0.107 0.329 0.284 0.289 0.128 0.104 0.107 0.261 0.267
pegasus-wikihow 0.129 0.321 0.349 0.307 0.143 0.142 0.129 0.304 0.271
t5-base 0.112 0.343 0.297 0.3 0.133 0.107 0.112 0.268 0.273
t5-small 0.114 0.293 0.31 0.281 0.124 0.121 0.114 0.272 0.25

4.4 BART

BART (Bidirectional and Auto-Regressive Trans-
formers) is based on the standard transformer archi-
tecture proposed by Facebook, having BERT (De-
vlin et al., 2019) like encoder and GPT (Radford
et al., 2019) like decoder. The denoising objective
of the encoder while the decoder that works to re-
produce the original sequence, using the previously
produced tokens and the encoder output, bring the
best of the two models. We experimented with the
following different BART pre-trained models by
fine-tuning them of our augmented dataset.

1. bart-large-xsum : bart-large (BART with
12 encoder & decoder layers) fine-tuned on
Xsum dataset with 400M parameters.

2. bart-large-cnn : bart-large (BART with 12
encoder & decoder layers) fine-tuned on
CNN/Dailymail dataset with 400M parame-
ters.

The ROUGE scores obtained for both the BART
based models are tabulated in Table 1. The bart-
large-xsum model gives a better performance than
the bart-large-cnn model. We have submitted 3 runs
for each of the two models, by varying the hyper-
parameters such as the summary length, learning
rate, length penalty and epochs. The best ROUGE
scores were obtained at a learning rate of 3e-5, sum-
mary length of 30 and with no length penalty run-
ning for 3 epochs. Besides these two models, we
have also experimented with other BART models,
such as bart-large-mnli and bart-large-gigaword,
however, the summaries generated were not at par
with those of the earlier two models.

5 Comparative Evaluation

During the testing phase, we experimented with
various models based on the transformer architec-

ture, such as BART, T5 and PEGASUS as men-
tioned previously. We were allowed to submit a
maximum of 10 runs per task. Therefore, we sub-
mitted two runs each for T5 and PEGASUS models,
and six runs for various approaches of the BART
model. The test set provided for the Question Sum-
marization task comprises of 100 NLM questions
with their associated question ids. The test set
was pre-processed in a similar fashion as the aug-
mented dataset we had used for training. Addition-
ally, certain tokens such as "[NAME]", "[LOCA-
TION]", "[CONTACT]", "[DATE]", "SUBJECT:
" and "MESSAGE: " were removed from the test
dataset to avoid their appearance in the generated
summaries.

Table 2 shows the summaries generated by vari-
ous transformer based models for a sample question
in the test set. From the table it can be observed
that, the summaries generated by t5-base and t5-
small are almost similar and don’t actually capture
the main focus of the question. The summary gen-
erated by pegasus-xsum is similar but longer than
those produced by the T5 models. However, the
summary generated by the pegasus-wikihow model
is quite apt. The bart-large-cnn model produced a
summary which is although grammatically correct,
the meaning is incorrect. The bart-large-xsum gen-
erated the best summary amongst all the models,
because it is both precise and short in length.

The HOLMS (Mrabet and Demner-Fushman,
2020) and BERTScores (Zhang* et al., 2020) for
the different models used are referenced in Table
3. Based on the experiments, it was observed that
the bart-large-xsum model achieved the best perfor-
mance in terms of both metrics. Based on this per-
formance, our team ranked 2nd in the BERTScore
metric and secured 6th position in HOLMS score,
on the leaderboard.
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Table 2: Sample summary generated by various models for the test question: "Gadolinum toxicity and MCS
relationship? I have 2 Genovia Labs test results years apart with seriously high Gadolinum toxicity. AND I am
very VERY VERY very challenged by MCS - Multiple Chemical Sensitivity. My question is: If I had multiple MARs
after an auto accident. And since then the MCS is debilitating. Certainly the symptoms of Gas level in my body
cause symptoms as well. But I am debilitated by Synthetic chemicals in the air. How can I find out if the Gas
exhaserbated my reaction to exhaust fumes, air fresheners, perfumes, dryer sheets(!!!!), food additives, and much
more. Many Thanks"

Model Generated Summary
bart-large-xsum What is the relationship between Gadolinum toxicity and MCS?
bart-large-cnn What are the causes of and treatments for Multiple Chemical Sensitivity?
pegasus-xsum How can I find out if synthetic chemicals in the air cause my reaction to exhaust

fumes, air fresheners, perfumes, dryer sheets, food additives?
pegasus-wikihow Where can I find information on Gadolinum toxicity and MCS relationship?
t5-base How can I find out if gas exhaserbated my reaction to exhaust fumes, air

fresheners, perfumes,?
t5-small How can I find out if the Gas exhaserbated my reaction to exhaust fumes, air

fresheners, perfumes?

Table 3: HOLMS and BERTScore F1 performance of the proposed models, for the Question Summarization task

Model HOLMS BERTScore-F1
bart-large-xsum 0.566 0.702
bart-large-cnn 0.556 0.692
pegasus-xsum 0.544 0.674
pegasus-wikihow 0.535 0.665
t5-base 0.550 0.681
t5-small 0.537 0.633

6 Conclusion and Future Work

In this paper, we presented models that explore the
use of transfer learning to utilize the knowledge of
NLP transformers like BART, T5 and PEGASUS
for the task of question summarization. The ob-
served scores and the sample summaries generated
by different transformer architecture based mod-
els clearly delineated the best performing model
among the ones proposed. The summaries pro-
duced by the bart-large-xsum achieved the best
score, followed by the pegasus-wikihow model.
This can be largely attributed to the transfer learn-
ing technique that was adapted, by utilizing models
which are pre-trained on massive datasets. As part
of future work for the question summarization task,
we plan to exploit question type feature, in addi-
tion to the currently used question focus feature for
further enhancing the performance.
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Abstract

This paper describes experiments undertaken
and their results as part of the BioNLP
MEDIQA 2021 challenge. We participated
in Task 3: Radiology Report Summarization.
Multiple runs were submitted for evaluation,
from solutions leveraging transfer learning
from pre-trained transformer models, which
were then fine tuned on a subset of MIMIC-
CXR, for abstractive report summarization.
The task was evaluated using ROUGE and our
best performing system obtained a ROUGE-2
score of 0.392.

1 Introduction

A BioNLP 2021 shared task, the MEDIQA chal-
lenge aims to attract research efforts in NLU across
three summarization tasks in the medical domain:
multi-answer summarization, and radiology report
summarization. We participated in the radiology
report summarization and offer experiments and
results. A radiology report describes an exam and
patient information resulting from trained clini-
cians(radiologists) interpreting imaging studies dur-
ing routine clinical care (Zhang et al., 2018). The
primary purpose of the report is for radiologists
to communicate imaging results to ordering physi-
cians (Gershanik et al., 2011). A standard report
will consist of a Background section which will
contain details of the patient and describe the ex-
amination undertaken, A findings section, in which
the radiologist has dictated the initial results into
the report, and an Impression section. The Impres-
sion section consists of a concise summarization
of the most relevant details from the exam based
on the dictated findings. Although guidelines for
the practice of generating radiology reports are
outlined by the American College of Radiology
(ACR), there is flexibility in the document in the
usage of terms for describing findings and where
they are documented. This can lead to referring
physicians focusing on just the impressions section

of the document (Hall, 2012). Additionally, the pro-
cess of writing the impressions from the dictation
of the findings is time-consuming and repetitive.
In this work we propose experiments to automate
the generation of the impressions section from the
findings of the radiology report, accelerating the
radiology workflow and improving the efficiency
of clinical communications. Experiments were per-
formed implementing sequence to sequence mod-
els with encoder-decoder architecture like BART
(Lewis et al., 2019), Pegasus (Zhang et al., 2020a),
and T5 (Raffel et al., 2020). These models were
then further fine-tuned on a subset of MIMIC-CXR
Dataset (Johnson et al., 2019), to generate abstrac-
tive summaries from the findings section of the
report. MIMIC-CXR is de-identified and Protected
health information (PHI) removed, large publicly
available dataset of chest radiographs in DICOM
format with free-text radiology reports. A subset
of MIMIC-CXR and Indiana datasets 1 used for
validation carried out using standard ROUGE (Lin,
2004) metrics.

2 Related Work

Initial efforts on summarization were mainly
focused on Extractive summarization. Extractive
summarization is the process involving extraction
of noteworthy words from the text to form a
summary. (Luhn, 1958; Kupiec et al., 1995)
The advent of Neural network models enabled
Abstractive summarization, which involves
producing new words to convey the meaning of the
text. This involves rephrasing the text in a shorter
and more succinct form using similar but not the
exact words used in the main text.
Nallapati et al. (2016) proposed an RNN based
approach to not only achieve state-of-the-art
results in extractive summarization but also enable
this model to be trained on abstractive summaries.

1https://openi.nlm.nih.gov/faq/collection
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Rush et al. (2015) described an attention-based
summarization approach where an encoder and a
generator model are jointly trained on article pairs.
Their work builds on attention-based encoders that
are used in neural machine translation (Bahdanau
et al. (2016)). Fan et al. (2018) build on the
previous work on abstractive summarization
to create length constrained summaries and
summaries concentrated on particular entities and
subjects in the text. Paulus et al. (2017) used
intra-temporal attention to produce state-of-the-art
results on CNN/Daily Mail dataset.
The work on summarizing radiology reports started
with the extraction of information from the text
(Friedman et al., 1995; Hassanpour and Langlotz,
2016). For instance, Cornegruta et al. (2016)
proposed using clinical language understanding
of a radiology report to extract Named entities.
A Bidirectional LSTM architecture was used to
achieve this. Zhang et al. (2018) describes one
of the first attempts at automatic summarization
of radiology reports. This work describes an
encoder-decoder architecture. Both the encoder
and decoder sides are made of Bidirectional
LSTMs using the attention framework (Bahdanau
et al., 2016).
With the advent of transformers, Pretraining
based language generation has been the norm in
summarization. Zhang et al. (2019) and Liu (2019)
used BERT (Devlin et al., 2019), a pre-trained
transformer model on extractive summarization,
and achieved state of the art results. Sotudeh et al.
(2020) proposed an approach to content selection
for abstractive text summarization in clinical
notes. Zhang et al. (2020b) presented a general
framework and a training strategy to improve
the factual correctness of neural abstractive
summarization models for radiology reports.
In this work, we fine-tune a pre-trained BART
architecture (Lewis et al., 2019) for the radiology
report summarization task.

3 Task Description & Dataset

The objective of this task is to generate summary
of a given radiology report. The training data for
the MEDIQA 2021 Radiology report summariza-
tion shared task is extracted from a subset from the
MIMIC-CXR Dataset (Johnson et al., 2019). The
training set contains around 91,544 examples of ra-
diology reports and the corresponding summaries.

Each example contains three fields; Findings field
contains the original human-written radiology find-
ings text, impression contains the human-written
radiology impression text and background contains
background information of the study in text for-
mat. One can use both the findings and the back-
ground fields to generate the summary. There are
two development sets that come from two different
institutes. The first development set from MIMIC-
CXR contains around 2000 examples. There is
another development set that also contains 2000
examples from the Indiana University radiology re-
port dataset (Johnson et al., 2019). In all our experi-
ments, we first trained our model on the training set
and tested on the validation set. For the actual task
submissions, we trained our models by combining
training set and both the development sets.

4 Method & Results

Our proposed method leverages pretrained
summarization models. We finetuned three types
of pretrained models for the radiology report
summarization; BART (Lewis et al., 2019), T5
(Raffel et al., 2020) and Pegasus (Zhang et al.,
2020a). We used Huggingface Transformers (Wolf
et al., 2020) library for finetuning.

BART: Developed by Facebook, BART is a
denoising autoencoder. Since it uses the standard
transformer-based neural machine translation
architecture, it is a generalization of both BERT
and GPT3 (Brown et al., 2020). For pretraining,
it was trained by shuffling the order of sentence
(an extension of next sentence prediction) and text
infilling (an extension of the language masking).
During text infilling, random spans of text are
replaced by masked tokens. The job of the model
during training is to recreate this span. Due to its
flexible transformer architecture, the inputs to the
encoder do not need to be aligned with the outputs
of the decoder. This enables the BART model to be
trained on a variety of tasks such as token masking,
token deletion, sentence permutation, document
rotation, etc. Since BART has an autoregressive
decoder, it is better suited for sequence generation
tasks such as summarization.

T5: T5 stands for Text-To-Text Transfer
Transformer. It is a sequence-to-sequence model
that takes in text and outputs text. This text-to-text
framework enables one to use the same model, loss
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function, and hyperparameters on any NLP task,
which can range from document summarization
to classification. As a result, the way that data is
fed into the model is quite different from models
like BERT. The task description is used as a
prefix to the input. For example, to translate a
sentence from English to French, the input would
be prefixed with “translate English to French:”
Similarly, to summarize a passage, you would
add the prefix “summarize:" followed by the text
to be summarized. This text-to-text framework
uses the same model across a range of tasks.
T5 model made improvements on a wide range
of categories such as model architecture, and
pretraining objectives.
T5 uses the standard transformer architecture
(Vaswani et al., 2017). For pretraining, T5 was
trained on denoising, where spans of text are
replaced with the drop token. The model objective
is to reproduce the span of text given the drop
token.

Pegasus: PEGASUS (Pre-training with Extracted
Gap-sentences for Abstractive SUmmarization
Sequence-to- sequence) Pegasus starts with the
concept that if the pretraining task and fine-tuning
task are closely related, then the model will per-
form better. As a result, they designed a pretraining
task specifically for abstractive summarization.
This pretraining task, gap-sentence generation,
removes entire sentences from documents. The
model’s learning objective is to recover these
sentences in the concatenated model output.
Instead of randomly removing sentences, only
the important sentences are removed, so that
the model can reproduce these sentences that
summarize the text. As a result of this pretraining
task, Pegasus can achieve results like T5 with 5%
of the parameters.

Table 1 shows the model performance of each
participant in the leaderboard for the top 10 teams.
Only Rouge-2 F1 is shown because that was the
metric used to rank the teams in this task. Our
method ranked third on the leaderboard.

4.1 Experiments

We propose eight different runs for this task. Ta-
ble 2 shows the evaluation of different models we
experimented with on the development set. We
experimented with different versions of BART, T5

System Rouge-2 F1
Baidu 0.436
IBM 0.408

Optum 0.392
QIAI 0.378

Low-rank-AI 0.331
CMU 0.327

ChicHealth 0.324
healthAI 0.308

DAMO-ALI 0.276
Fudan University 0.274

Table 1: Top 10 teams on the leaderboard

Run Rouge 1 Rouge 2 Rouge L
1 60.51 48.14 57.65
2 52.35 40.98 50.41
3 35.72 22.69 31.53
4 63.47 51.35 60.54
5 56.14 44.65 53.98
6 37.8 24.73 33.80
7 58.59 46.5 56.01
8 62.85 51.22 60.25

Table 2: Evaluation of Radiology Report Summariza-
tion on the development set

and Pegasus on Huggingface Transformers. We
ended up using BART-base, T5-small, T5-base and
Pegasus-Pubmed due to memory limitations of our
GPUs. The following set of hyperparameters are
applied for the following runs. Learning rate=5e-
05 , number of epochs=15, gradient accumulation
steps=5. The evaluations results of various runs
for the radiology report summarization task are
summarized in Table 2.

1. Our first proposed method is based on BART-
base. We finetuned BART-base on the training
set and tested on the development set. We
used a batch size of 20 for both training and
validation sets.

2. In this run, we used T5-small and finetuned
on the training set. We used a batch size of 20
for both training and validation sets.

3. In our third run, we finetuned on pegasus-
pubmed. We were able to use only a smaller
batch size of 2.

4. The fourth run is similar to the first approach,
but we also used the background section in
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addition to findings. In this case, we were
able to use a batch size of 10.

5. This run is same as the fourth one, but we used
T5-small as our base model. A batch size of
10 was used.

6. In this run, but we used Pegasus-pubmed as
our base model. A batch size of 1 was used.

7. This run is same as the first run, but we used
T5-base as the base model. A batch size of 10
was used.

8. In this run also, we used T5-base as the base
model except that we also used background
section. A batch size of 2 was used.

Overall, the best results on the test set are achieved
using the BART-base as the pre-trained model. The
model is trained using just the findings section on
the test set. But on the development set, using
the background section in addition to the findings
helped.

5 Conclusion

In this paper, we present all our experiments of
fine-tuning pre-trained models for radiology report
summarization. Our experiments demonstrate how
an encoder-decoder architecture like BART, which
achieved state-of-the-art results in text generation
tasks outperforms other architectures in this par-
ticular task. Our methods proved effective on the
summarization task and were ranked third on the
leaderboard.
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Abstract

This paper describes the solution of the QIAI
lab sent to the Radiology Report Summariza-
tion (RRS) challenge at MEDIQA 2021. This
paper aims to investigate whether using multi-
modality during training improves the summa-
rizing performances of the model at test-time.
Our preliminary results shows that taking ad-
vantage of the visual features from the x-rays
associated to the radiology reports leads to
higher evaluation metrics compared to a text-
only baseline system. These improvements
are reported according to the automatic evalu-
ation metrics METEOR, BLEU and ROUGE
scores. Our experiments can be fully repli-
cated at the following address : https://
github.com/jbdel/vilmedic.

1 Introduction

Radiology report summarization is a growing area
of research. Given the Findings and Background
sections of a radiology report, the goal is to
generate a summary (called an impression section
in radiology reports) that highlights the key
observations and conclusion of the radiology
study. Automating this summarization task is
critical because the impression section is the
most important part of a radiology report, and
manual summarization can be time-consuming and
error-prone.

This paper describes the solution of the QIAI lab
sent to the Radiology Report Summarization (RRS)
challenge at MEDIQA 2021 (Ben Abacha et al.,
2021). This challenge aims to promote the de-
velopment of clinical summarization models that
generate radiology impression statements by sum-
marizing textual findings written by radiologists.
Since for most reports, the associated x-rays are
available, we aim to evaluate if incorporating visual
features from x-rays helps our systems for the re-
port summarization task. This task could be defined

as Multimodal Radiology Report Summarization
(MRRS) as depicted in Figure 1.

Figure 1: An example of Multimodal Radiology Report
Summarization.

2 Data Collection

The training set consists of 91,544 examples taken
from the MIMIC-CXR v2.0 dataset (Johnson et al.,
2019). Each training example is a free-text chest ra-
diology report that contains the Background, Find-
ings and Impression sections. Two validation sets,
each with 2,000 reports were used. One valida-
tion set was collected from MIMIC, and the other
was collected from the Indiana University Chest
X-Rays Report dataset (Indiana-University). The
test set contains 300 reports from the Indiana Uni-
versity dataset, and 300 reports from Stanford Uni-
versity School of Medicine. All report sections
were tokenized using the Stanford CoreNLP tok-
enizer (Manning et al., 2014).

split #report #report w/o image
mimic-train 91,544 0
mimic-dev 2,000 0
indiana-dev 2,000 53
stanford-test 300 300
indiana-test 300 4

Table 1: Splits statistics from the MEDIQA 2021 chal-
lenge.
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3 Model

This section describes the two architectures that
will be bench-marked in the result section. We start
by describing the text-based monomodal architec-
ture at section 3.1. This model only takes as input
the findings section and outputs the impression sec-
tion (the summary). In section 3.2, we incorporate
visual information into the monomodal architecture
to make it multimodal.

3.1 Monomodal architecture

Given the report’s Findings section of M words
X = (x1,x2, . . . ,xM ), an attention-based
encoder-decoder model (Bahdanau et al., 2014)
outputs its summary Y = (y1,y2, . . . ,yN ). If we
denote θ as the model parameters, then θ is learned
by maximizing the likelihood of the observed se-
quence Y or in other words by minimizing the
cross entropy loss. The objective function is given
by:

L(θ) = −
n∑

t=1

log pθ(yt|y<t, X) (1)

The encoder-decoder model consists of three
components : an encoder, a decoder and an
attention mechanism.

Encoder At every time-step t, an encoder cre-
ates an annotation ht according to the current em-
bedded word x′t and internal state ht−1:

ht = fenc(x
′
t,ht−1) (2)

Every word xt of the input sequenceX is an index
in the embedding matrix Ex so that the following
formula maps the word to the fenc size S:

x′t =W
xExxt (3)

The total size of the embeddings matrix Ex

depends on the source vocabulary size |Ys| and the
embedding dimension d such that Ex ∈ R|Ys|×d.
The mapping matrix W x also depends on the
embedding dimension becauseW x ∈ Rd×S .

The encoder function fenc is a bi-directional GRU
(Cho et al., 2014). The following equations define a
single GRU block (called fgru for future references)
:

zt = σ
(
x′t +W

zht−1
)

rt = σ
(
x′t +W

rht−1
)

ht = tanh
(
x′t + rt � (W hht−1)

)

ht = (1− zt)� ht + zt � ht−1 (4)

where ht ∈ RS . Our encoder consists of two
GRUs, one is reading the input sentence from
1 to M and the second from M to 1. Therefore
the encoder annotation ht for timestep t is the
concatenation of both GRUs annotations ht. The
encoder set of annotations H contains the an-
notations h of each timestep and is of sizeM×2S.

Decoder At every time-step t, a decoder outputs
probabilities pt over the target vocabulary Yd ac-
cording to previously generated word yt−1, internal
state st−1 and encoder annotationsH:

yt ∼ pt = fdec(y
′
t−1, st−1,H) (5)

Every word yt of the summarized report Y is an
index in the embedding matrix Ey so that the fol-
lowing formula maps the word in the fdec size D:

y′t =W
yEyyt−1 (6)

The decoder function fdec consists of two parts: a
conditional GRU (fcgru) and a bottleneck function
(fbot).
The following equations describe the cGRU func-
tion fcgru:

s′t = fgru1(y
′
t, st−1)

ct = fatt(s
′
t,H)

st = fgru2(s
′
t, ct) (7)

where fatt is the soft linguistic attention module
over the set of source annotationH:

a′t =W
a tanh(W ss′t +W

HH)

at =softmax(a′t)

c′t =
M−1∑

i=0

atihi

ct =W
cc′t (8)
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The bottleneck function fbot projects the cGRU out-
put st into probabilities over the target vocabulary.
It is defined as such:

bt = tanh(W bot[st, ct]

yt ∼ pt = softmax(W projbt) (9)

where [·, ·] denotes the concatenation operation.

3.2 Multimodal architecture
In the MIMIC dataset, a report can be associated
with multiple x-rays images. We pick only one
image according to the following priority: PA, AP,
LATERAL, AP AXIAL, LL. Using this setting, we
can select one image to each report. The Indiana
dataset has at most one image associated with each
report. In case no image is provided, we input a
representation of "zeros" to the pipeline.

For each image, we extract the "pool0" repre-
sentation of a DenseNet121 (Huang et al., 2017)
architecture pretrained on x-rays images made
available by the TorchXRayVision library (Cohen
et al., 2020). The representation for each image
is a vector of 1024 features that we call v in the
following equations.

We consider three approaches to integrate the vec-
tor v to the monomodal architecture presented in
Section 3.1. First, the encdecinit policy that con-
sists of initializing both the encoder and decoder
state h0 and s0 with the visual features as such:

h0 = tanh(W vh0v)

s0 = tanh(W vs0v) (10)

The second one is ctxmul that performs the
element-wise product of each encoder annotations
hi with v:

hi = hi �W vhiv for i = 1 to M (11)

Finally, the trgmul policy consists of the element-
wise product of each target embedding of equation
6 with v:

y′t = y
′
t �W vyv (12)

MatricesW vh0,W vs0,W vhi,W vy are trainable
weights that transform and map v to right dimen-
sion.

Finally, we define a fourth approach, allv, using all
the aforementioned interactions.

4 Settings

Both monomodal and multimodal architectures
use a 2-layered bi-directional GRU for the encoder,
and 1-layered GRU for the decoder. Each GRU has
a hidden size of 320 units and our embeddings are
of size 200. We apply dropout of 0.4 on the source
embeddings x′t, 0.5 on the source annotations H
and 0.5 on the bottleneck bt.

We chose Adam (Kingma and Ba, 2014) as the
optimizer with a learning rate of 0.0004 and
batch size 64. Model parameters are initialized
using the He initialization method (He et al.,
2015). We evaluate the model performance
using the ROUGE-2 F1 metrics (Lin, 2004),
which is commonly used for evaluating machine
summarization task. We stop training when the
ROUGE score does not improve for 10 evaluations
on the validation set. In the experiment section,
we also report the METEOR (Banerjee and Lavie,
2005) and BLEU metrics (Papineni et al., 2002).

In the scope of this paper, we only use the find-
ings section as input to our models and discard the
background section.

5 Experiments

The experiments are carried out as follows:

1. We define two settings for the dataset splits.
The first one is dictated by the challenge as
defined in Table 1. We call it regular-split.
The second setting consists of injecting 1500
out of the 2000 indiana-dev samples into the
training set. We keep the remaining 500 for
development. This setting allows more train-
ing homogeneity compared to regular-split,
we refer to it as the mix-split;

2. We use our monomodal architecture to pre-
dict summarization for both the stanford and
indiana test sets. We use the multimodal archi-
tecture to predict summarization only on the
indiana test set (the stanford test set having no
x-rays available). Note that both architectures
are trained with the same number of samples.

Figure 2 and 3 depict the results of the best scoring
configurations for the monomodal and multimodal
models on the development sets. Each results is
obtained by using beam-search with width vary-
ing from 8 to 12. Finally, E5 means results are
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from an ensemble of 6 trained models (i.e. model
ensembling).

Model BLEU METEOR R2-F1
indiana-dev

Mono 13.94 16.47 31.33
Multi allv 13.27 15.19 26.84
Mono E5 15.88 17.67 31.37
Multi E5 allv 15.27 17.12 30.42

mimic-dev
Mono 28.67 25.74 47.96
Multi allv 28.90 26.01 48.19
Mono E5 28.66 25.74 48.41
Multi E5 allv 29.31 26.24 48.86

Table 2: Results of our best multimodal and
monomodal architectures on the development sets
(regular-split).

Model BLEU METEOR R2-F1
indiana-dev

Mono 26.93 24.50 52.18
Multi allv 27.21 24.60 51.79
Mono E5 26.61 24.35 52.02
Multi E5 allv 28.32 25.30 54.38

mimic-dev
Mono 29.00 25.90 48.10
Multi allv 28.30 25.48 48.47
Mono E5 28.97 25.95 48.38
Multi E5 allv 28.97 26.10 48.98

Table 3: Results of our best multimodal and
monomodal architectures on the development sets
(mix-split).

A few observations can be made. First, three of
four best scoring models (highlighted in bold) is
the multimodal variant. Each time, the multimodal
model is using the allv interaction. It means
that injecting the visual features from the x-rays
in both the encoder and the decoder improves
summarization.

Secondly, the only instance where the monomodal
variant is better is on the indiana-dev set using
the regular-split. One could hypothesize that
the multimodal model is sensitive to distribution
shift; indeed no indiana samples (and therefore
indiana x-rays) are in the training set for this
configuration. Though using model ensembling
seems to mitigates the performance drop, it is still
lower that the monomodal baseline.

Finally, we underline the ROUGE scores from
systems that are significantly different (p-value ≤
0.05) than the baseline mono models using the ap-
proximate randomization test of multeval (Clark
et al., 2011). The underlined scores are all from
multimodal systems.

Figure 2: Effect of ensembling and beam-size width for
model Multi E5 allv (mix-split setting). Left concerns
split indiana-dev and right mimic-dev.

6 Related Work

Though relatively new, a few previous work
can be denoted in the field of radiology report
summarization. Zhang et al. (2018) first studied
the problem of automatic generation of radiology
impressions by summarizing textual radiology
findings, and showed that an augmented pointer-
generator model achieves high overlap with human
references. This model has been extended with
an ontologyaware pointer-generator and showed
improved summarization quality (MacAvaney
et al., 2019). RL-based approaches have been
investigated by Li et al. (2018) and (Liu et al.,
2019).

More recently, (Zhang et al., 2020) developed a
general framework where the evaluation of the
factual correctness of a generated summary is
done by factchecking it automatically against its
reference using an information extraction module.

To our knowledge, this work is the first attempt to
use multimodality for radiology report summariza-
tion.
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A Multimodal results

Model BLEU METEOR R2-F1
indiana-dev

Multi E5 allv 15.27 17.12 30.42
Multi E5 encdecinit 15.37 17.32 30.05
Multi E5 ctxmul 14.57 16.75 29.85
Multi E5 trgmul 15.26 16.75 29.75

mimic-dev
Multi E5 allv 29.31 26.24 48.86
Multi E5 trgmul 29.0 26.10 42.56
Multi E5 ctxmul 28.90 26.02 48.47
Multi E5 encdecinit 28.38 25.58 48.42

Table 4: Results of our multimodal architectures on the
development sets (regular-split).

Model BLEU METEOR R2-F1
indiana-dev

Multi E5 allv 28.32 25.30 54.38
Multi E5 trgmul 27.50 24.72 53.90
Multi E5 ctxmul 26.86 24.53 53.20
Multi E5 encdecinit 26.65 24.52 52.10

mimic-dev
Multi E5 allv 28.97 26.10 48.98
Multi E5 trgmul 28.83 25.90 48.98
Multi E5 ctxmul 28.83 25.87 48.81
Multi E5 encdecinit 28.31 25.65 48.39

Table 5: Results of our multimodal architectures on the
development sets (mix-split).
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Abstract

The quest for seeking health information has
swamped the web with consumers’ health-
related questions, which makes the need for
efficient and reliable question answering sys-
tems more pressing. The consumers’ ques-
tions, however, are very descriptive and con-
tain several peripheral information (like pa-
tient’s medical history, demographic informa-
tion, etc.), that are often not required for an-
swering the question. Furthermore, it con-
tributes to the challenges of understanding
natural language questions for automatic an-
swer retrieval. Also, it is crucial to pro-
vide the consumers with the exact and rele-
vant answers, rather than the entire pool of an-
swer documents to their question. One of the
cardinal tasks in achieving robust consumer
health question answering systems is the ques-
tion summarization and multi-document an-
swer summarization. This paper describes
the participation of the U.S. National Library
of Medicine (NLM) in Consumer Question
and Multi-Answer Summarization tasks of the
MEDIQA 2021 challenge at NAACL-BioNLP
workshop. In this work, we exploited the capa-
bilities of pre-trained transformer models and
introduced a transfer learning approach for the
abstractive Question Summarization and ex-
tractive Multi-Answer Summarization tasks by
first pre-training our model on a task-specific
summarization dataset followed by fine-tuning
it for both the tasks via incorporating medical
entities. We achieved the second, sixth and the
fourth position for the Question Summariza-
tion task in terms ROUGE-1, ROUGE-2 and
ROUGE-L scores respectively.

1 Introduction

Healthcare consumers often query over the web
to find a quick and reliable answer to their health-
care information needs. On average, 6 million peo-
ple only in the United States seek health-related

∗∗All the authors contributed equally to this work.

information on the Internet every day (Fox and
Rainie). One way to facilitate such information-
seeking activities is to build a natural language
question answering (QA) system that can extract
precise answers from the myriad of health-related
information sources (Sarrouti and Alaoui, 2020).
Though existing search engines respond to the gen-
eral health-related queries to some extent, users
often reach out to specialized medical websites or
online health communities for seeking personal-
ized high-quality, and trustworthy answers for their
complex health questions. Moreover, consumers
while expressing their medical concern on these
sources except the involvement of healthcare pro-
fessionals (HPs) for a quality suggestion and virtual
observation (Kummervold et al., 2002). However,
the participation of HPs in large-scale discussion
forums or medical websites is time-consuming and
expensive.

Furthermore, the consumers’ questions are very
descriptive and contain several peripheral informa-
tion (like patient’s medical history), which con-
tributes to the challenges of understanding natural
language questions for automatic answer retrieval
(Demner-Fushman et al., 2020). These elaborated
details are often not required for providing the rel-
evant answers. Hence, novel strategies should be
devised for automatic question simplifications and
answer retrieval.

Towards this, we study the tasks of Ques-
tion Summarization (QS) and Multi-Answer Sum-
marization (MAS) as a part of MEDIQA 2021
(Asma Ben Abacha, 2021) shared task challenge.
For the task of Question Summarization (QS), we
proposed the transfer learning approach by utilizing
multiple pre-trained Transformer (Vaswani et al.,
2017) models. In our best run, we fine-tuned the
pre-trained models on a variety of question summa-
rization datasets and proposed a medical entities
coverage technique to select the best question sum-
mary from the pool of question summaries obtained
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from the various transformer models.
We also explored the transfer learning approach

for the Multi-Answer Summarization task. Specif-
ically, the proposed method uses the Text-to-
Text Transfer Transformer (T5) relevance-based
re-ranking model (Raffel et al., 2020). In our best
system, we first fine-tuned T5 on MSMARCO pas-
sage and then MEDIQA-QA 2019 datasets. It first
ranks the sentences of the answers and then rejoins
the top-k sentences as a summary.

2 Related Work

Existing works on the summarization can be
broadly categorized into (i) extractive and (ii) ab-
stractive approach which are discussed as follows:

Extractive Summarization: The recent devel-
opment in the neural network and transformer
based models has led to the significant progress
in extractive document summarization. Majority
of the models focus on the encoder-decoder model
(Cheng and Lapata, 2016; Jadhav and Rajan, 2018;
Nallapati et al., 2017), recurrent neural network
(Nallapati et al., 2017; Zhou et al., 2018), and state-
of-the-art Transformers encoders (Zhong et al.,
2019b; Liu and Lapata, 2019). For instance, Cheng
and Lapata (2016) and Nallapati et al. (2016b) pro-
posed an encoder-decoder model as a binary clas-
sifier to decide whether the input sentence will
be part of the summary or not. Chen and Bansal
(2018) utilize a pointer generator network (Vinyals
et al., 2015) to sequentially select sentences from
the document for generating the extractive sum-
mary. Other decoding techniques, such as ranking
(Narayan et al., 2018) has also been utilized for
content selection. Recently several studies have
explored pre-trained language models in summa-
rization for contextual word representations (Zhong
et al., 2019a; Liu and Lapata, 2019).

Abstractive Summarization (AS): With the de-
velopment of large-scale datasets on abstractive
summarization, there has been a significant ad-
vancement in AS techniques in the open domain,
from traditional sequence to sequence (seq2seq)
models, pointer generator network to Transformer
based models. Few earlier studies utilize the
seq2seq learning approach, trained on the large
corpus of news articles for AS (Takase et al., 2016;
Rush et al., 2015; Chopra et al., 2016). Later, Li
et al. (2018) exploited the seq2seq models on multi-
sentence document summarization. However, it

was observed that the seq2seq model often gen-
erates out-of-vocabulary (OOV) words, factually
incorrect details, and repetitions. To mitigate the
issues of the seq2seq model, the pointer genera-
tor network was introduced that has the capability
of handling OOV words with the copy mechanism
(Gu et al., 2016; Nallapati et al., 2016a). Further, to
address the repetition problem, Chen et al. (2016)
proposed Distraction-based attention model. The
additional coverage mechanism (See et al., 2017)
ensures the generation of non-hallucinated sum-
maries. Although these methods are good at gen-
erating readable summaries to a certain extent, the
problem of factual inconsistencies persists with
them. To alleviate this issue, several new methods
(Lebanoff et al., 2020; Huang et al., 2020) has been
proposed to generate more factually correct sum-
maries. Few other recent works (Falke et al., 2019;
Kryściński et al., 2019; Wang et al., 2020a) have
exploited question answering and natural language
inference (NLI) models to identify factual coher-
ence in the generated summary. Recently several
new models (Gehrmann et al., 2019) have been
proposed that investigates the use of the transfer
learning approach. Most recently the pseudo-self
attention method (Ziegler et al., 2019) has been
developed, which enables transfer learning to be
applied in abstractive summarization.

Recently, with the availability of benchmark
clinical data sets (MIMIC-CXR, and OpenI),
there have been some prominent advancements
in abstractive summarization of radiology reports.
Zhang et al. (2018) utilized the pointer-generator
network to generate the summary of radiology im-
pressions and observed very high overlap with the
human summaries. MacAvaney et al. (2019) fur-
ther advanced the performance of the pointer gen-
erator model by augmenting medical-ontologies.
Ben Abacha and Demner-Fushman (2019) has fo-
cused on the consumer health question summariza-
tion task. They created the corpus of 1, 000 ques-
tion summaries and exploited seq2seq and pointer
generator model to generate the consumer-health
question summaries.

This work advances the pre-trained models for
the summarization of consumers’ questions and
introduces new approaches to preserve the intent
and the salient medical entities of the original ques-
tions.
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3 Methods

3.1 Question Summarization

We tackle the first task of MEDIQA 2021, con-
sumer health questions (CHQ) summarization with
the goal of generating summarized questions that
contain the key focus and semantics of the original
question. Formally, given a consumer health ques-
tion Q having m words q1, q2, . . . , qm, the task is
to generate the summary sentence Ŝ having a se-
quence of n words Ŝ = {s1, s2, . . . , sn} express-
ing the key focus and semantics of the original
question Q. Mathematically,

Ŝ = argmax
S

prob(S|Q;φ)

= argmax
S

prob(S|q1, q2, . . . qm;φ)
(1)

where φ are network parameters.

Pre-trained Transformer Models: We utilized
the following pre-trained models and uses the trans-
fer learning-based approach to fine-tune them on
the task of question summarization.

• ProphetNet (Qi et al., 2020): It is a sequence-
to-sequence model which is pre-trained us-
ing the self-supervised objective called fu-
ture n-gram prediction. The ProphetNet is
pre-trained by predicting the next n tokens
simultaneously based on previous context to-
kens at each time step thus optimizing n-step
ahead predictions of the model. The n-step
ahead predictions encourage the model to
plan for the future tokens and prevent over-
fitting on strong local correlations. We chose
ProphetNet because it is specifically designed
for sequence-to-sequence training and it has
shown near state-of-the-art results on natural
language generation tasks.

• PEGASUS (Zhang et al., 2020a): It is a large
Transformer-based encoder-decoder model
which is pre-trained on massive text corpora
with a novel self-supervised objective called
Gap Sentences Generation. This object is spe-
cially designed to pre-trained the transformer
model for abstractive summarization. The
important sentences from the document are
masked and are generated together as one out-
put sequence from the remaining sentences of
the document.

• T5 (Raffel et al., 2020): This is another pre-
trained model developed by exploring the
transfer learning techniques for natural lan-
guage processing (NLP) by introducing a uni-
fied framework that converts all text-based lan-
guage problems into a text-to-text format. The
T5 model is an Encoder-Decoder Transformer
with some architectural changes as discussed
in detail in Raffel et al. (2020).

Pre-processing: To summarize the test ques-
tions, we followed certain pre-processing steps to
transform the input consumer health question into
a well-formed question. We applied the following
pre-processing steps to the input test questions.

1. Spelling Correction: As consumer health
questions are often ill-formed and contain
multiple misspelled words particularly the
medical terms (entities), therefore, we per-
formed spelling correction on the original con-
sumer health questions. Specifically, we uti-
lized the CSpell1, that aims to correct spellings
from consumer health text.

2. Abbreviation Expansion: In order to gen-
erate the factually complete summaries, we
first detect the medical entities and later ex-
pand the abbreviated entities using the ‘An-
other database of abbreviations in MEDLINE’
(ADAM2) (Zhou et al., 2006).

Post-processing: Our analysis on the generated
summary from the validation dataset using the pre-
trained model reveals the following: (1) The T5
model generates a long summary and ended up with
better coverage of the key entities present in the
original question; (2) For the longer and complex
questions, the T5 model generates the extractive-
type summary; (3) Unlike T5, PEGASUS generates
the short and succinct summaries which are often
abstractive in nature; (4) The ProphetNet model
often generates the moderate length summaries but
approximately cover the key information from the
original questions.

The correct summary of the consumer health
questions must contain the key medical entities and
question semantics of the original question. Moti-
vated by the aforementioned observations, we ob-
tained the generated summary from the pre-trained

1https://lsg3.nlm.nih.gov/LexSysGroup/
Projects/cSpell/current/web/index.html

2http://arrowsmith.psych.uic.edu/
arrowsmith_uic/index.html
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Transformer models and performed the following
steps to ensure the maximum coverage of medical
entities so that it captures the key question-focus,
and select the best question summary from the pool
of generated summaries.

1. Medical Entities Extraction: We ex-
tracted the medical entities using the
Metamap3 (Aronson and Lang, 2010)
and Scispacy4 medical entity recognizer
(en_ner_bionlp13cg_md). We removed
some false entities (‘False Interventions’,
‘False Anatomy’, ‘False Problems’) using the
Unified Medical Language System (UMLS)
(Bodenreider, 2004) based filters5. Given a
question Q, we obtained the list of medical
entities as follows:

ent(Q) =MetaMap(Q) ∪ Scispacy(Q)

entities(Q) = ent(Q)− False(ent(Q))

(2)

where, MetaMap(; ) and Scispacy(; ) are
the medical entities extracted using MetaMap
and Scispacy respectively, False(; ) is a
method which provided the list of False enti-
ties. The final entities of the question is ob-
tained using the entities(; ) method, which
filters the false entities from the union of the
list of both the entities.

2. Medical Entities Coverage: Given the orig-
inal question Q and candidate question sum-
mary C, we extracted the medical entities EQ

and EC using the approach discussed in Eq 2.
We computed the medical entities coverage as
follows:

coverage(Q,C) =
|EQ ∩ EC |
|EQ|

(3)

where |x| is the cardinality of the set x ∈
{EQ, EQ ∩ EC}. We computed the cover-
age score for each candidate question sum-
mary generated using the different pre-trained
Transformer models. We sort the candidate
question summary based on the coverage
score and passed the list to check the sanity of
generated questions.

3https://metamap.nlm.nih.gov/
4https://allenai.github.io/scispacy/
5https://gist.github.com/h4ste/

14b10d412d0d3c043c1d123c75c6ad29

3. Checking well-formed Question: We
check the list of generated questions against
the well-formedness of the questions. For-
mally, we check:

(a) Whether the generated questions starts
with Wh words6 or not.

(b) Whether the generated question ends
with the question word (‘?’).

If the generated question having maximum
coverage score is a well-formed question then
we select the generated question as the final
summary of the original question. Otherwise,
we skip the non-well-formed candidate ques-
tion and check against the next candidate ques-
tion. In the case of the same coverage score
among all three models, we selected the sum-
mary generated from PEGASUS, as it is more
abstractive in nature.

3.2 Multi-Answer Summarization

To address the Multi-Answer Summarization
(MAS) task at the MEDIQA 2021 challenge, we
introduce an extractive method based on the T5
relevance-based re-ranking model (Raffel et al.,
2020). The proposed method consists of extracting
important and most relevant sentences from the an-
swers and rejoining them to form a summary. To
evaluate the importance of a sentence, we used T5
relevance-based ranking model. To do so, we first
split the multiple answers of a given question into
sentences using NLTK7, and then ranked these sen-
tences based on the relevance score that determines
how relevant a candidate sentence is to a question.
The sentences are ranked by a pointwise re-ranker
(Nogueira et al., 2020) which uses T5, a sequence-
to-sequence model that uses traditional transformer
architecture, and BERT’s masked language model-
ing (Devlin et al., 2019). We adopt the approach
to sentence ranking by using the following input
sequence:

Question : q Sentence : s Relevant : (4)

The model is first fine-tuned to generate the to-
kens “true” when the sentence is relevant to the
question and “false” when the sentence is not rel-
evant to the question. It then applies softmax on

6https://en.wikipedia.org/wiki/
Interrogative_word

7https://www.nltk.org/
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the logits of the “true” and “false” words and ranks
the sentences using the probabilities of the “true”
token. More details about this approach appear in
(Nogueira et al., 2020).

The model is fine-tuned on (1) MS MARCO
passage (Bajaj et al., 2018), (2) MS MARCO MED
(MacAvaney et al., 2020), and (3) MEDIQA-QA
2019 dataset (Ben Abacha et al., 2019). We used
the question-answer pairs in MEDIQA-QA with
scores 1 and 2 (i.e., incorrect and related answers)
as negative instances and the question-answer pairs
with scores 3 and 4 (i.e., incomplete and excellent
answers) as positive instances.

We form the summary by rejoining the selected
top-k sentences. We also used Metamap8 (Aronson
and Lang, 2010) to replace the abbreviations by
their definitions.

4 Experimental Results and Discussion

4.1 Evaluation Metrics
The performance of the question summarization
and multi-answer summarization are evaluated
against the ROUGE (Lin, 2004) score. We re-
ported the results in terms of ROUGE-1 (R-1),
ROUGE-2 (R-2), ROUGE-L (R-L). The organizer
also release scores using the BERTScore (Zhang
et al., 2020b) and HOLMS (Mrabet and Demner-
Fushman, 2020).

4.2 Datasets
Question Summarization: For the task of ques-
tion summarization, we use the following dataset
to fine-tuned the pre-trained Transformer models.

1. MeQSum (Ben Abacha and Demner-
Fushman, 2019): We use the 1, 000 consumer
health question summarization dataset created
by the medical experts. The questions are
selected from a collection distributed by the
U.S. National Library of Medicine (Kilicoglu
et al., 2018).

2. Clinical Questions (Ely et al., 2000): We also
utilized the 4, 655 clinical questions dataset,
which contains the clinical questions and their
short summaries.

3. MEDIQA-RQE (Ben Abacha et al., 2019):
This dataset is released in the BioNLP 2019
shared task. The dataset is derived from con-
sumer health questions (CHQs) and frequently

8https://metamap.nlm.nih.gov/

asked questions (FAQs) from the U.S. Na-
tional Library of Medicine and National In-
stitute of Health respectively. We use the
MEDIQA-RQE training dataset and choose
only the entailed question pairs to form the
silver-standard training dataset. We choose
the longer question as the source question and
the other as the target question. With this
process, we formulated the 4, 655 additional
training question pairs to train the question
summarization model.

4. MedNLI (Romanov and Shivade, 2018): We
also used the MedNLI - a dataset annotated by
doctors, performing a natural language infer-
ence task, grounded in the medical history of
patients. We augment training, validation, and
test datasets and choose only the entailed ques-
tion pairs to form the silver-standard training
dataset. Similar to MEDIQA-RQE, we choose
the longer question as the source question and
the other as the target question. We obtained
the 4, 683 question pairs from this dataset to
include in the question summarization train-
ing dataset.

5. LiveQA17 (Ben Abacha et al., 2017): We
also utilized the 104 questions and their sum-
mary from the LiveQA17 test dataset as it
contains the gold summaries of the source
questions.

Multi-Answer Summarization: We used the
following datasets to fine-tuned the T5 model for
the multi-answer summarization task:

1. MS MARCO Passage (Bajaj et al., 2018): It
is a large dataset for passage ranking. It con-
tains 8.8M passages retrieved by Bing search
engine for around 1M natural language ques-
tions.

2. MSMARCO MED (MacAvaney et al., 2020):
This dataset contains the medical subset of
MS MARCO. It includes only medical-related
queries.

3. MEDIQA-QA 2019 (Ben Abacha et al.,
2019): It is a dataset for medical question
answering obtained by submitting medical
questions to the consumer health QA system
CHiQA. The answers for the questions were
manually ranked by medical experts.
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4.3 Implementation Details
For question summarization task, we used the T5-
large9, ProphetNet-large-uncased10 and pegasus-
large11 pre-trained models. The models are fine-
tuned with maximum source question length of
120 and target summary length of 20. We train
the model for 10 epochs and choose the best
model based on the model performance (in terms
of ROUGE-2) on the MEDIQA 2021 validation
dataset. In our MAS experiments, we used the T5-
base implementations provided in HuggingFace’s
Transformers package version 2.10 (Wolf et al.,
2020). All models were trained with a batch size
of 8 and a maximum sequence length of 512 to-
kens for 20 epochs using single P100 GPUs (16
GB VRAM) on a shared cluster. We use the beam
search method to generate the summarized ques-
tions. For both the task Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 1e-5 was used
for the parameters updates.

4.4 Results and Discussion
We devise multiple runs to assess (1) the ability of
pre-trained Transformer model to summarize con-
sumer health questions, (2) the role of additional
datasets to improve the performance of CHQs sum-
marization systems, and (3) the effect of the medi-
cal entities coverage to effectively select the best
summarized questions from the pool of multiple
summarized questions generated by pre-trained
Transformer models. For the Question Summa-
rization task, we submitted multiple runs which are
described below:

1. Run-1: In this run, we fine-tuned the MiniLM
(Wang et al., 2020b) model on the MeQSum
(only 500 question-summary pairs) and Clin-
ical Questions datasets. The summaries are
generated using a beam of size 4.

2. Run-2: This run is similar to the Run-1, ex-
cept we generated the summaries with the
beam of size 6.

3. Run-3: For this run, we fine-tuned the
ProphetNet model on the MeQSum and Clin-
ical Questions datasets. The summaries are
generated using a beam of size 4.

4. Run-4: We fine-tuned the T5 model on the
MeQSum and Clinical Questions datasets.

9https://huggingface.co/t5-large
10https://huggingface.co/microsoft/

prophetnet-large-uncased
11https://huggingface.co/google/

pegasus-large

The summaries are generated using a beam of
size 4.

5. Run-5: The PEGASUS model is fine-tuned
on the MeQSum and Clinical Questions
datasets. The summaries are generated using
a beam of size 4.

6. Run-6: The T5 model is fine-tuned on the
MeQSum, Clinical Questions, and MEDIQA-
RQE datasets. The summaries are generated
using a beam of size 4.

7. Run-7: We fine-tuned the T5, PEGASUS,
ProphetNet models on the MeQSum, Clinical
Questions, MEDIQA-RQE, LiveQA17, and
MedNLI datasets. We also performed the pre-
processing and post-processing steps (without
well-formed questions) discussed in Section
3.1. The summaries are generated using a
beam of size 4.

8. Run-8: The PEGASUS model is fine-
tuned on the MeQSum, Clinical Questions,
MEDIQA-RQE, LiveQA17, and MedNLI
datasets. We also performed the pre-
processing step discussed in Section 3.1. The
summaries are generated using a beam of size
4, Top-K Sampling (Fan et al., 2018) with
K = 50 and Top-p (nucleus) Sampling (Holtz-
man et al., 2019) with p = 0.97.

9. Run-9: The run is similar to Run-7 however,
we performed both the pre-processing and
post-processing steps as described in Section
3.1 and the beam of size 5 is used to generate
the summaries.

10. Run-10: This is final run similar to Run-9,
however, we also included a subset (10, 324)
of questions from Quora duplicate ques-
tion detection dataset12 to fine-tuned the pre-
trained models. We choose only those ques-
tions from the Quora dataset which are dupli-
cates. We consider the question having more
than 2 sentences and longer than the associ-
ated duplicate question as the source question
and other duplicate question as target sum-
mary question.

For all our runs, we kept the maximum length
of generated summary is 20. We have shown
the detailed performance evaluation based on dif-
ferent metrics in Table 1. Our best submission
(Run-9) achieved the maximum of ROUGE-1
(35.58), ROUGE-2 (15.14), HOLMS (56.59) and

12http://qim.fs.quoracdn.net/quora_
duplicate_questions.tsv
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Run# ROUGE-1 ROUGE-2 ROUGE-L HOLMS BERTScore
1 26.24 9.06 23.68 53.74 63.07
2 25.88 8.76 23.23 53.27 63.25
3 30.38 11.25 26.58 54.54 65.62
4 33.01 12.91 27.61 52.26 65.58
5 33.24 13.87 28.77 55.69 67.35
6 34.10 13.71 29.65 55.17 68.54
7 35.58 15.12 31.16 56.51 68.90
8 33.73 14.38 29.79 56.21 68.22
9 35.56 15.14 31.10 56.49 68.92

10 35.28 15.08 30.79 56.59 68.94
Our Best Run 35.58 15.14 31.16 56.59 68.94

Best Participants 35.80 16.08 31.49 57.87 70.27
Average Participants 29.55 11.59 26.60 53.25 64.93

Table 1: Official results of MEDIQA 2021: NLM runs for the Question Summarization task.

Run# ROUGE-1 ROUGE-2 ROUGE-L HOLMS BERTScore
1 0.524 0.410 0.322 0.674 0.758
2 0.504 0.414 0.302 0.640 0.772
3 0.507 0.417 0.303 0.643 0.773
4 0.547 0.468 0.328 0.657 0.764
5 0.524 0.446 0.309 0.633 0.786

Our Best Run 0.547 0.468 0.328 0.657 0.764
Best Participants 0.585 0.508 0.435 0.704 0.803

Average Participants 0.524 0.422 0.353 0.668 0.751

Table 2: Official results of MEDIQA 2021: NLM runs for the Multi-Answer Summarization task.

BERTScore (68.94). Run-7 achieves the maximum
ROUGE-L score of 31.16. Our best run achieved
the ROUGE-2 score of 15.14, which is slightly
(0.94) lower than the best run submitted for the
Question Summarization task in MEDIQA 2021.
Similarly, our best run obtained the improvement
of 3.55 ROUGE-2 points over the average ROUGE-
2 score obtained by all the participant’s runs. We
achieved the second-best result (35.58) in terms
of the ROUGE-1 score over all the submitted runs
for the Question Summarization task in MEDIQA
2021. We also show the best and average results
among all the participants against various evalua-
tion metrics in Table 1.

Qualitative Analysis: We carried out an in-
depth analysis of the generated summaries of the
models (Run 3,4,5,7,9) as shown in Table-3 for
the question summarization task. We randomly se-
lected 20 summaries from the test set and manually
evaluated the summaries generated by the models.
Table-3 shows that for question #1 and #2, our

best run (#9) generates the readable summaries
with the correct question focus and type. However,
for the question #3, our best run is only able to cap-
ture partial question type and therefore generated
the partially correct summary. We also observed
that though T5 and PEGASUS generate factually
correct summaries, sometimes it fails to generate
a fully correct summary. Overall, the pre-trained
models generate readable and succinct summaries
which can be further enhanced by integrating the
information about question focus and types.

Discussion: Our results confirms the role of addi-
tional datasets in fine-tuning the pre-trained Trans-
former models to improve the performance of
CHQs summarization task. Run-1 and Run-2
which are based on fine-tuning the pre-trained
Transformer models with the MeQSum dataset
achieve low R-2 scores (8.76 and 9.06). The addi-
tional Clinical Questions dataset helps to improve
the performance of the pre-trained model in Run-3,
4, and 5. The additional datasets (MEDIQA-RQE,
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Question #1 Hi to whom this may concern: I have a non alcoholic fatty liver and when I seen my consultant he say
I don’t have to see Him again for 5 years and advised me to drink 3 cups of coffee a day, But I can’t
drink coffee at all, So I email a consultant asking if he new of a coffee tablet, So he email me back
saying it properly glutathione S-transferases (GSTs) in the coffee so am looking for a cheap tablet which
contains.these enzymes to help repair my liver I also only have one kidney which am on long term
antibiotics for I do hope you can help. I look forward to your reply

Run-3 how can i find physician(s) who specialize in non alcoholic fatty liver disease?
Run-4 Where can I buy a tablet containing glutathione-s-transferase enzymes to
Run-5 Is there a coffee tablet which contains glutathione-s-transferase enzymes?
Run-7 Where can I buy cheap tablets containing glutathione-s-transferase enzymes?
Run-9 Where can I buy cheap tablets containing glutathione-s-transferase enzymes?
Question #2 Can Irritable bowel syndrome (IBS) be cured with the patent Medicines say Mebverine or others as

prescribed the Doctor. Does Probiotics are helpful in controlling the Irritable bowel syndrome (IBS).
Some says Peeper Mint can also be suitable. These are few general questions as regards Irritable bowel
syndrome (IBS) and not personal.

Run-3 can ibs be cured with the patent medicines mebverine or others as prescribed?
Run-4 Can IBS be cured with the patent Medicines Mebverine or others as prescribed the Doctor. Does Pro
Run-5 Can IBS be cured with the patent Medicines say Mebverine or others?
Run-7 Can Irritable bowel syndrome (IBS) be cured with the patent Medicines say Mebverine or others?
Run-9 Can Irritable Bowel Syndrome (IBS) be cured with the Mebverine ?
Question #3 SUBJECT: I NEED PARENT TRAINING. MESSAGE: My 9 year old son has oppositional defiant

disorder (ODD) and attention deficit disorder (ADHD). I’m in desperate need of an extensive parent
training class. I don’t know what to do anymore and really need help. My son says I do nothing for him
after spending the entire day taking him places. He yells and screams at me and tells me I’m a terrible
mother. He refuses to listen and I have to ask 10 times before he reacts. He will not do homework.. I
have tried positive reinforcement. . . . . . Please I need someone that know their stuff..

Run-3 what is the treatment for a child with odd and adhd?
Run-4 Is there a parent training program for ODD and ADHD that I can take with my 9-year-old?
Run-5 What are the treatments for obsessive-compulsive disorder and attention-deficit-hyperactivity disorder?
Run-7 what are the treatments for oppositional defiant disorder (odd) and attention deficit disorder (adhd)?
Run-9 what are the treatments for oppositional defiant disorder (odd) and attention deficit disorder (adhd)?

Table 3: Qualitative Analysis: Examples showing models generated summaries.

LiveQA17, and MedNLI) with the pre-processing
and post-processing steps further boost the perfor-
mance of the question summarization as shown in
Run-7 and Run-9. We also fine-tuned the Trans-
formers model with the Quora duplicate question
detection dataset in Run-10, in order to generate
more diverse summaries. However, it could not
improve the question summarization performance
compare to the Run-9. It is because Quora dataset
is a open domain dataset, which may not be well
suited for the medical summarization task.

Multi-answer Summarization Task: We sub-
mitted the following runs for the multi-answer sum-
marization task at MEDIQA 2021:

• Run-1: We fine-tuned the T5 model on the
MSMARCO passage. We ranked the sen-
tences of the answers based on the T5 rele-
vance score and rejoined the top-10 sentences
as a summary. We also identified the long-
form of abbreviations in the test set.

• Run-2: We fine-tuned the T5 model on the
MSMARCO passage. We ranked the sen-
tences of the answers based on the T5 rele-
vance score and then concatenated the top-10
sentences to form the summary.

• Run-3: We fine-tuned the T5 model on the
MSMARCO passage. We ranked the sen-
tences of the answers based on the T5 rele-
vance score and rejoined the top-20 sentences
as a summary.

• Run 4: We fine-tuned the T5 model on MS-
MARCO passage and then MEDIQA-QA
2019 dataset. The top-20 sentences are con-
catenated to form the summary.

• Run-5: We fine-tuned the T5 model on
MEDMSMARCO and then MEDIQA-QA
2019 dataset. The top-20 sentences are con-
catenated to form the summary.

Table 2 presents the official results of our sys-
tems in the multi-answer summarization task of
the MEDIQA 2021 challenge. Out of the five runs,
our best result was obtained by the run #4, achiev-
ing 0.547, 0.468, and 0.328 in terms of ROUGE-1,
ROUGE-2, and ROUGE-L respectively. In terms
of BERTScore, our run #5 achieved the best re-
sults among our runs. On the other hand, run #1
achieved the highest HOLMS. The obtained results
also showed that our T5-based system is more com-
petitive in terms of various evaluation metrics over
the other participant’s systems.

298



5 Conclusion and Future Work

In this paper, we describe our submissions for the
tasks of Question Summarization and Multi An-
swer Summarization at MEDIQA 2021 shared task.
For the Question Summarization task, our best run
achieved the second-best ROUGE-1 score among
all the submitted runs in the shared task. We also
obtained the competitive scores in terms of various
evaluation metrics over the other participant’s runs.
For the Multi-Answer Summarization task, our T5-
based approach achieved good performances com-
pared to participants’ systems. In the future, we
will explore the techniques to integrate the medi-
cal entities and semantics in the pre-trained trans-
former models for the task of question summariza-
tion. Further, we will also explore the abstractive
approaches for multi-answer summarization.
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Abstract

Although recent advances in abstractive sum-
marization systems have achieved high scores
on standard natural language metrics like
ROUGE, their lack of factual consistency re-
mains an open challenge for their use in sensi-
tive real-world settings such as clinical prac-
tice. In this work, we propose a novel ap-
proach to improve factual correctness of a
summarization system by re-ranking the can-
didate summaries based on a factual vector of
the summary. We applied this process dur-
ing our participation in MEDIQA 2021 Task
3: Radiology Report Summarization, where
the task is to generate an impression sum-
mary of a radiology report, given findings and
background as inputs. In our system, we
first used a transformer-based encoder-decoder
model to generate top N candidate impres-
sion summaries for a report, then trained an-
other transformer-based model to predict a 14-
observations-vector of the impression based
on the findings and background of the report,
and finally, utilized this vector to re-rank the
candidate summaries. We also employed a
source-specific ensembling technique to ac-
commodate for distinct writing styles from dif-
ferent radiology report sources. Our approach
yielded 2nd place in the challenge.

1 Introduction

The radiology report is a crucial instrument in pa-
tient care and an essential part of every radiological
procedure, serving as the official interpretation of a
radiological study and the primary means of com-
munication between the radiologist and referring
physician. According to the American College of
Radiology, a radiology report should contain cer-
tain components, such as relevant clinical informa-
tion, imaging findings, limitations of the study, and
an impression or conclusion (American College
of Radiology, 2020). Of these, the impression is
the most important component of the radiology re-
port, containing conclusions based on the pertinent

findings and suggestions for additional diagnostic
studies if warranted (Wallis and McCoubrie, 2011).
Previous studies have shown that oftentimes it is
the only part of the report that is read; one previ-
ous study found that 43% of referring physicians
only read the impression if the report was longer
than one page (Clinger et al., 1988), while another
study found that 23.1% of clinicians agreed with
the statement “I usually only read the conclusion
of a radiology report” (Bosmans et al., 2011).

In an effort to support radiologists in writing
impressions in radiology reports, Zhang et al.
(2018) introduced the task of automatic genera-
tion of radiology impression statements by sum-
marizing textual findings written by radiologists.
MEDIQA 2021 (Asma Ben Abacha, 2021), as part
of NAACL-BioNLP 2021 workshop, aims to fur-
ther research efforts in summarization in the med-
ical domain. Task 3 of the challenge, Radiology
Report Summarization (RRS), focuses specifically
on radiology impression generation. The basic task
setup is as follows: given the findings and back-
ground sections of a radiology report, predict the
impression or summary.

In this paper, we detail our participation in
MEDIQA 2021 RRS challenge. We developed
an approach that utilizes a structured label vector
of the impression as our proxy for facts for the im-
pression (predicted using findings and background
of the report), to re-rank the generated abstractive
summaries from a trained encoder-decoder model.
We further employed a source-specific ensembling
technique utilizing models fine-tuned to each radi-
ology report source to accommodate for distinct
language patterns in each source. Our system per-
formed well in the challenge, placing us 2nd on the
leaderboard.

2 Related Work

Abstractive Summarization Systems. Abstrac-
tive text summarization has been intensively stud-
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ied in recent literature. Rush et al. (2015) in-
troduces an attention-based sequence-to-sequence
(seq2seq) model for abstractive sentence summa-
rization. Recent models (e.g. Lewis et al. (2019);
Zhang et al. (2020)) employ techniques like de-
noising or Gap Sentence Generation task for pre-
training, to help generation tasks including summa-
rization. However, there are a few domain-specific
versions of these state-of-the-art models. Other
works like Liu and Lapata (2019); Rothe et al.
(2020) have demonstrated the effectiveness of ini-
tializing encoder-decoder models from pre-trained
encoder-only models, such as BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019), for seq2seq
tasks providing competitive results in summariza-
tion tasks. Our works builds on these findings and
utilizes a pre-existing domain-specific pretrained
transformer model in an encoder-decoder setting
for our summarization task.

Summarization and Factual Correctness in Ra-
diology Reports. Zhang et al. (2018) first stud-
ied the problem of automatic generation of radiol-
ogy impressions by summarizing textual radiology
findings, and showed that an augmented pointer-
generator model achieves high overlap with human
references. They also found that about 30% of the
radiology summaries generated from neural mod-
els contain factual errors. Research scholars also
integrated Radlex ontology into seq2seq models
(MacAvaney et al., 2019) to enhance the clinical
validity of automated impression prediction sys-
tems within the radiology workflows. In their next
work, Zhang et al. (2019b) improved upon the prob-
lem of factual correctness in radiology reports by
optimizing fact scores defined in radiology reports
with reinforcement learning methods. They also
introduced a new metric Factual F1 comparing the
predicted summaries using a descriptor vector of
the gold summary. In our work, we extend the ideas
put forward by Zhang et al. (2019b) by utilizing a
descriptor vector (generated using off-the-shelf sys-
tems like CheXpert (Irvin et al., 2019) or CheXbert
(Smit et al., 2020)) to re-rank the automatically
generated summaries.

3 Task Description and Dataset

The MEDIQA-2021 RRS task is defined as fol-
lows: given a passage of findings represented as a
sequence of tokens x = {x1, x2, . . . , xN}, with N
being the length of the findings, and a passage of
background represented as a sequence of tokens y

Type Source-specific Size Total
SizeMIMIC-CXR Indiana

Training 91,544 0 91,544
Validation 2,000 2,000 4,000
Test ? ? 600

Table 1: Dataset statistics.

= {y1, y2, . . . , yM} with M being the length of
the background, find a sequence of tokens z = {z1,
z2, . . . , zL} that best summarizes the salient and
clinically significant findings in x, with L being an
arbitrary length of the impression or summary1.

Datasets for training and validation of summa-
rization models provided by the MEDIQA orga-
nizers consisted of radiology reports with findings,
background, and impression sections. The train-
ing set consists of 91,544 radiology reports from
the MIMIC-CXR database (Johnson et al., 2019),
while the validation set consists of an additional
4,000 radiology reports - 2,000 from MIMIC-CXR
and 2,000 from the Indiana Network for Patient
Care (Indiana) (Demner-Fushman et al., 2016). As
part of the shared task rules, the rest of the pub-
licly available MIMIC-CXR and Indiana radiology
reports were not allowed for use in training or val-
idation. However, the organizers allowed the use
of validation data for training. At the conclusion
of the shared task, to evaluate participant systems,
a test set of 600 radiology reports containing only
findings and background sections were released
with their sources unknown at the time of the chal-
lenge. Dataset statistics are presented in the Table
1.

4 System Description

Our system is a three-step process in which we
(1) utilize pre-trained transformer-based language
models in an encoder-decoder setting to get our
base summarization models, (2) improve the fac-
tual correctness of our base models’ predictions
by incorporating a re-ranking methodology, and
(3) utilize a source-specific ensembling technique
which identifies the source of a radiology report,
and chooses the prediction of the best performing
source-specific model accordingly. We detail the
above three steps in the following sections.

1Throughout this paper we use terms “impression” and
“summary” interchangeably.
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4.1 Base Models

Previous work by Liu and Lapata (2019); Rothe
et al. (2020) have demonstrated the effectiveness
of initializing encoder-decoder models from pre-
trained encoder-only models, such as BERT and
RoBERTa, for seq2seq tasks. Inspired by this work,
we experimented with pre-trained transformer mod-
els used as both encoder and decoder with param-
eters shared between encoder and decoder. Using
this setup, we experimented with RoBERTa-large,
which showed promising results in Rothe et al.
(2020), and BioMed-RoBERTa-base, a domain-
specific version of RoBERTa that is publicly avail-
able2 from AllenNLP (Gururangan et al., 2020),
and fine-tuned both models using the training set
of 91,544 MIMIC-CXR reports. Of the two mod-
els, BioMed-RoBERTa-base achieved better results
and was therefore used as our initial model for
subsequent experiments.

Next, we conducted experiments to evaluate the
performance of this initial model on different ra-
diology report sources. As the provided training
and validation data contains two sources, MIMIC-
CXR and Indiana, each with their distinct lan-
guage (more details in Section 4.3) and official
test data could be any source, we further developed
two more base models. Using the initial BioMed-
RoBERTa-base model fine-tuned on MIMIC-CXR
training set, we further fine-tuned the initial model
in two settings: (1) with a subset of reports in the
Indiana validation dataset, and (2) with a subset of
reports in the Indiana and MIMIC-CXR validation
dataset.

Our end result is three base models tuned for 3
source categories:

• BioRoBERTa(M): BioMed-RoBERTa-base
fine-tuned on MIMIC-CXR training data.
This is the base model for MIMIC-CXR
source.

• BioRoBERTa(M+I): BioRoBERTa(M) further
fine-tuned on Indiana validation data. This is
our base model for Indiana source.

• BioRoBERTa(M+M+I): BioRoBERTa(M) fur-
ther fine-tuned on both MIMIC-CXR and In-
diana validation data. This is our base model
for unknown sources.

2https://huggingface.co/allenai/
biomed_roberta_base

4.2 Fact-Aware Re-ranking (FAR)

Previous works in extracting structured labels from
free-text radiology reports have identified 14 obser-
vations based on clinical relevance and the preva-
lence in the reports, and have developed automated
systems to predict a 14-observations-vector for an
impression summary of a radiology report (Irvin
et al., 2019; Smit et al., 2020). The 14 observations
are: “Atelectasis”, “Cardiomegaly”, “Consolida-
tion”, “Edema”, “Enlarged Cardiomediastinum”,
“Fracture”, “Lung Opacity”, “Lung Lesion”, “No
Finding”, “Pneumonia”, “Pneumothorax”, “Pleural
Effusion”, “Pleural Other”, and “Support Devices”.
“Pneumonia”, despite being a clinical diagnosis,
was included as a label in order to represent the im-
ages that suggested primary infection as the diagno-
sis. The 13 observations (excluding “No Finding”)
take on one of the following classes: blank, posi-
tive, negative, and uncertain. The 14th observation,
“No Finding”, is intended to capture the absence of
all pathologies, and takes on only one of the two
following classes: blank or positive.

Utilizing this 14-observations-vector we devel-
oped an approach to improve the factual correct-
ness of our base models by incorporated a factual
re-ranking component that re-ranks our N highest
scoring summaries predicted from a base model.
We achieve this in the following steps, we (1) first
fine-tune a transformer-based language model to
predict the 14-observation-vector of the impres-
sion given the finding and background of a radiol-
ogy report, (2) obtain top N highest scoring candi-
date summaries predicted from our base encoder-
decoder model (3) use CheXbert to obtain the 14-
observation-vector for each of the N candidate sum-
maries, and (4) use a similarity function between
predicted 14-observation-vector for impression (ob-
tained in step 1) and each vector for N candidate
summaries obtained in step 3 to re-rank these sum-
maries. Finally, we use the highest similarity scor-
ing candidate summary as our impression summary.
We detail our impression 14-observation-vector pre-
diction and our similarity function in the following
sections.

We apply our FAR methodology on
the three base models introduced in sec-
tion 4.1 to get our three source-specific
models, and denote the new models as
BioRoBERTa(M),FAR, BioRoBERTa(M+I),FAR,
and BioRoBERTa(M+M+I),FAR, respectively.
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Source Finding Background Impression

MIMIC-
CXR

There is hyperexpansion of both lungs with se-
vere underlying emphysema. Minimal blunt-
ing of the right costophrenic angle may reflect
underlying atelectasis. No pleural effusion or
pneumothorax identified. The size the cardio-
mediastinal silhouette is within normal limits.

INDICATION: ___ year old woman
with COPD exacerbation // evaluate lung
sizes, look for PNA TECHNIQUE: AP
portable chest radiograph COMPARI-
SON: No prior radiographs available.
Comparison is made to the CT torso
from ___

No radiographic evi-
dence of acute car-
diopulmonary disease.
Hyperexpanded lungs
with severe underlying
emphysema.

Indiana Heart size and mediastinal contours appear
within normal limits. Hyperinflated lungs
with flattening of diaphragms, compatible
with emphysema. No focal consolidation,
pleural effusion or pneumothorax. No acute
bony abnormality.

Indication: Short of breath. Comparison:
None.

1. Emphysema. 2. No
acute cardiopulmonary
abnormality.

Table 2: Example depicting the difference in language between MIMIC-CXR and Indiana reports for findings,
background and impression sections.

4.2.1 Impression 14-Observations-Vector
Prediction

We utilize the 14-observation-vector representation
of the impression section of a radiology report pre-
dicted by CheXbert as our ground truth label in a
prediction task given the finding and background
section of the report as inputs. In this process, for
each given radiology report that has findings, back-
ground and impression section, we (1) first utilize
CheXbert to obtain 14-observations-vector repre-
sentation of the impression section, (2) convert the
multiple values of each of the 14 observations to
be binary (i.e. presence or absence of the obser-
vation)3, (3) train a transformer-based language
model using finding and background (concate-
nated) as input to predict 14-observations-vector of
the impression section.

4.2.2 Similarity Function

Among the 14 observations categories predicted in
CheXbert, “No Finding” is intended to capture ab-
sence of all pathologies, i.e. if “No Finding” is pos-
itive then all other observations must be negative.
Therefore, we constructed our similarity function
in cases where (1) “No Finding” is not matched, we
assign a similarity score of 0, (2) “No Finding” is a
match, the similarity score is the cosine similarity
between the rest of the vector representing the 13
other observations.

3CheXbert outputs for 13 observations one of the following
classes: blank, positive, negative, and uncertain. For the 14th
observation corresponding to No Finding, the labeler only
outputs one of the two following classes: blank or positive.
We convert uncertain to positive and blank to negative to get
binary positive and negative output for all 14 observations.

4.3 Source-specific Ensemble

We observed in the provided training and valida-
tion data that MIMIC-CXR and Indiana reports
use distinctly different language when expressing
findings, background, and impression, even when
the conveyed content is very similar. As shown
in Table 2, although both the MIMIC-CXR report
and Indiana report convey the same two key find-
ings in their impression, “emphysema” and “no
acute cardiopulmonary disease”, the MIMIC-CXR
report describes these findings with more detail in
prose form, while the Indiana report lists the find-
ings more concisely using a numbered list form.
This variation in language between different health-
care organizations is common in the clinical NLP
domain, resulting in a need to adapt algorithms
depending on the applicable dataset (Carrell et al.,
2017).

To address this, we trained a BERT-based source-
specific classifier which predicts the source given
the findings and background as input. We trained
this model using a subset MIMIC-CXR and Indiana
reports. However, during prediction or evaluation
phase, we chose a higher threshold of 0.7 for pre-
dicting a source i.e. if an input is predicted to be
Indiana or MIMIC-CXR with a probability of 0.7
or higher, we predict it to be Indiana or MIMIC-
CXR respectively, otherwise it is marked to be of an
unknown source. Based on the predicted source of
a test sample (MIMIC-CXR, Indiana or unknown),
the source-specific models’ output is chosen as the
prediction for that sample.

4.4 Evaluation Metrics

We use two sets of metrics to evaluate model per-
formance at the corpus level, ROUGE and Factual

305



Model MIMIC200 Indiana200 Combined400

R-1 R-2 R-L F-F1 R-1 R-2 R-L F-F1 R-1 R-2 R-L F-F1

RoBERTa-large(M) 0.634 0.509 0.602 0.768 0.425 0.259 0.415 0.634 0.533 0.390 0.516 0.725
BioRoBERTa(M) 0.642 0.513 0.617 0.770 0.449 0.273 0.437 0.638 0.541 0.391 0.520 0.729
BioRoBERTa(M),FAR 0.647 0.524 0.623 0.781 0.455 0.276 0.442 0.665 0.546 0.394 0.523 0.734
BioRoBERTa(M+I) 0.499 0.356 0.472 0.694 0.691 0.605 0.677 0.678 0.594 0.480 0.574 0.709
BioRoBERTa(M+I),FAR 0.507 0.362 0.481 0.717 0.701 0.626 0.685 0.685 0.596 0.480 0.577 0.716
BioRoBERTa(M+M+I) 0.585 0.463 0.563 0.712 0.685 0.597 0.671 0.660 0.642 0.539 0.623 0.719
BioRoBERTa(M+M+I),FAR 0.592 0.469 0.570 0.719 0.687 0.601 0.676 0.667 0.647 0.544 0.629 0.726
Ensemble 0.632 0.519 0.611 0.768 0.692 0.604 0.672 0.679 0.670 0.568 0.650 0.741

Table 3: Results of our base model, factually correct re-ranking and source-specific ensembling experiments on
our internal test data of 200 MIMIC-CXR and 200 Indiana radiology reports. Combined presents results for each
model when both the sources (400 reports) are considered together. R-1, R-2, R-L and F-F1 represent ROUGE-1,
ROUGE-2, ROUGE-L and Factual F1 scores respectively.

F1. The organizers used ROUGE and CheXbert F1

metrics for evaluation. ROUGE-2 F1 metric was
used for the task leaderboard.

ROUGE We use the standard ROUGE scores
(Lin, 2004), and report the F1 scores for ROUGE-
1, ROUGE-2 and ROUGE-L, which compare the
word-level unigram, bigram and longest common
sequence overlap with the reference summary, re-
spectively.

Factual F1 For factual correctness evaluation,
we use a Factual F1 score as proposed by Zhang
et al. (2019b). The Factual F1 scores are calculated
by 1) running the CheXbert labeler on both the
reference and generated summaries to obtain the
binary presence values of a collection of disease
variables 2) calculating the F1 score for each of the
variables over the entire test set, using reference val-
ues as oracle; and 3) obtaining the macro-averaged
F1score over all variables. Following the process
in Zhang et al. (2019b), we exclude some variables
due to their small sample sizes (with less than 5%
positive ratio in the entire dataset). We included
only Cardiomegaly, Lung Opacity, Lung Lesion,
Pneumonia, Atelectasis, Pleural Effusion and No
Finding in our calculation of Factual F1 scores.

CheXbert F1 The organizers used CheXbert F1

score to calculate the factual correctness, which
follows the same process as Factual F1. However,
in their calculation they considered a different set
of observations which were found prominent in
the official test data: Cardiomegaly, Lung Opacity,
Edema, Pneumonia, Atelectasis, Pleural Effusion
and No Finding.

5 Experiments & Results

5.1 Data
As noted in section 3, training and validation
datasets provided in MEDIQA 2021 can be com-
bined and re-split. We set aside 200 radiology
reports each, randomly chosen from MIMIC-CXR
validation dataset and Indiana validation dataset,
to form our combined internal test dataset. The
remaining 1,800 reports each from MIMIC-CXR
validation data and Indiana validation data, along
with 91,544 of MIMIC-CXR training data are uti-
lized for training.

For the clarity of reading, from here onward,
we will refer to the original MIMIC-CXR dataset
with 91,544 reports as MIMICtrain. The 200 re-
ports randomly selected each from the original
MIMIC-CXR and Indiana validation sets will be
denoted as MIMIC200 and Indiana200, respectively.
Together, these 2 new sets formed our internal test
set Combined400. The remaining reports from the
original MIMIC-CXR and Indiana validation sets
will be denoted as MIMIC1800 and Indiana1800, re-
spectively. We present results on this internal test
data under 3 settings (1) results on MIMIC200, (2)
results on Indiana200, and (3) results on the com-
bined internal test dataset, Combined400. Most of
the following results (Tables 3, 4 & 5) are presented
on the internal test dataset. The official results pre-
sented in Table 6 are on the official external test
data of 600 radiology reports.

5.2 Base Models
We conducted four experiments to get our three
base models specific to MIMIC-CXR, Indiana
and unknown sources. We utilized MIMICtrain
to train our first two models, RoBERTa-large(M)

306



and BioRoBERTa(M). We used Indiana1800 for the
model BioRoBERTa(M+I), and used Indiana1800 and
MIMIC1800 for the model BioRoBERTa(M+M+I). In
each setting we split the available dataset into 90/10
for training and validation splits. We evaluated all
our models on the internal test set of 400 radiology
reports. Each of our models uses a seq2seq archi-
tecture with encoder and decoder both composed of
Transformer layers. For both encoder and decoder,
we inherited the RoBERTa Transformer layer im-
plementations. We also added an encoder-decoder
attention mechanism. All models were fine-tuned
on the target task using Adam optimizer with a
learning rate of 0.05. We used Huggingface’s trans-
formers library4 (Wolf et al., 2019) for executing
our experiments. In our encoder-decoder setup, our
input was capped at 128, output summary at 40,
beam size was 10, our length penalty was set as
0.8. Finally, in our summary generation, trigram
and higher length phrases were not repeated.

Table 3 presents results of the 4 experiments.
Between the 2 models that were trained us-
ing only MIMICtrain, BioRoBERTa(M) consis-
tently outperform RoBERTa-large(M) in this task,
likely due to BioRoBERTa(M) utilizing a do-
main adapted version of RoBERTa. Among
the 3 BioMed-RoBERTa-base based models,
BioRoBERTa(M) performs better for MIMIC200,
and BioRoBERTa(M+I) provides better performance
for Indiana200. BioRoBERTa(M+M+I) fine-tuned on
both MIMIC-CXR and Indiana provides better per-
formance on the Combined400 but performs poorly
when we consider each source separately.

5.3 Fact-aware Re-ranking (FAR)

For the prediction of the 14-observations-vector we
combined MIMICtrain, MIMIC1800, and Indiana1800
to form our training and validation splits. Table
4 presents our F1 scores for our impression 14-
observations-vector prediction model evaluated on
the internal test dataset Combined400. We utilized
Smit et al. (2020)’s publicly available implementa-
tion5 to train the domain-specific RoBERTa model
(BioMed-RoBERTa-base) for predicting impres-
sion 14-observations-vector. In this setup, the trans-
former architecture was modified with 14 linear
heads, corresponding to 14 observations. We con-
catenate Findings and background of a radiology

4https://github.com/huggingface/
transformers

5https://github.com/stanfordmlgroup/
CheXbert

Category Macro F1 Micro F1

Atelectasis 0.839 0.915
Cardiomegaly 0.803 0.943
Consolidation 0.809 0.973
Edema 0.930 0.963
Enlarged Cardiom. 0.634 0.990
Fracture 0.783 0.988
Lung Opacity 0.848 0.911
Lung Lesion 0.829 0.982
No Finding 0.881 0.881
Pneumonia 0.898 0.950
Pneumothorax 0.939 0.996
Pleural Effusion 0.899 0.950
Pleural Other 0.640 0.990
Support Devices 0.918 0.969

Average 0.832 0.957

Table 4: Impression observations-vector prediction re-
sults.

Label P R F1

MIMIC200 0.987 0.993 0.989
Indiana200 0.993 0.987 0.990

Table 5: Source-specific classifier results

report to be our input, which is then tokenized and
the input is capped at 128. The hidden state of
the CLS token is fed as input to each of the linear
heads. The model is trained using cross-entropy
loss and Adam optimization with a learning rate
of 2 × 10-5. The cross-entropy losses for each of
14 observations are added to produce the final loss.
During training, the model was periodically evalu-
ated and the best performing model averaged over
14 observations was saved.

For fact-aware re-ranking we utilize the model
trained above to re-rank the top 10 (N=10 was
empirically determined) generated summaries
from our three base models presented in sec-
tion 5.2. Table 3 presents results for our follow-
ing three factually correct re-ranking experiments,
BioRoBERTa(M),FAR, BioRoBERTa(M+I),FAR, and
BioRoBERTa(M+M+I),FAR. As BioRoBERTa(M),FAR
shows best performance for MIMIC-CXR radi-
ology reports (MIMIC200), BioRoBERTa(M+I),FAR
exhibits best performance for Indiana radi-
ology reports (Indiana200) and the combined
BioRoBERTa(M+M+I),FAR shows best performance
for the combined test data (Combined400), these
models are chosen to be our source-specific models
for MIMIC-CXR, Indiana and unknown sources
respectively.
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Model R-1 R-2 R-L CheXbert
F1

Ensemble 0.5252 0.4002 0.5060 0.6823
+post-processing 0.5328 0.4082 0.5134 0.6774

Table 6: Official submission and results.

5.4 Source-specific Ensemble

For training our source-specific classifier we used
a downsampled subset of MIMICtrain of 10,000
radiology reports and Indiana1800 and formed 90/10
training and validation splits. We evaluated the
model on MIMIC200 and Indiana200 and present our
results in Table 5. We again utilized Huggingface
transformers library to conduct our experiments.
In this setup, we used the BERT-base architecture
with a single linear head for our classification of the
source. We concatenate Findings and background
for a radiology report to be our input, which is
then tokenized and input is capped at 512. The
model is trained using cross-entropy loss and Adam
optimization with a learning rate of 2 × 10-5. Our
model was trained for 3 epochs.

Utilizing the above model we identify the source
of a radiology report and apply the source-specific
models. Ensemble results in Table 3 presents our
results after we apply source-specific ensembling
technique to our internal test dataset. Our ensem-
bled results show a slight drop in performance for
individual source MIMIC200 and Indiana200 (due
to classification errors), but show best performance
on the combined dataset (Combined400).

5.5 Official Submissions & Results

Table 6 presents our top 2 official submission
results. Ensemble presents our best performing
source-specific ensemble technique applied to the
official test data. In our another submission (En-
semble + post-processing) we remove certain to-
kens (like “1.”, “2.”, “__”) to clean up our source-
specific ensemble technique output which slightly
improved the rouge scores.

6 Discussion

In this section, we present two major findings of
our approach. First, we find that radiology re-
ports from different sources have distinct language,
and fine-tuning a model trained on source A with
a small amount of data from source B provides
significant gains in performance on source B, al-
lowing the model to be transferable. As it can

be seen in Table 3, zero-shot application of our
model BioRoBERTa(M), which is fine-tuned only
on MIMIC-CXR (MIMICtrain), shows lower perfor-
mance on the Indiana dataset. However, on further
fine-tuning BioRoBERTa(M) on a small dataset of
1,800 Indiana reports (Indiana1800) leads to huge
gains in performance on Indiana dataset (model
BioRoBERTa(M+I) on Indiana200).

Second, fact-aware re-ranking methodology im-
proves performance of the models on natural lan-
guage metrics (ROUGE) as well as factual correct-
ness of our predictions, but metrics beyond lexical
overlap are needed. As shown in Table 3, mod-
els using FAR outperform the base models when
measured in ROUGE even through FAR’s objective
is not to optimize ROUGE. Table 7 shows exam-
ples of the most probable predictions from base
model compared with the predictions after FAR,
and the human-generated ground-truth impressions.
ROUGE scores for both predictions compared to
the ground-truth are shown at the end of each ex-
ample. In the first example, FAR chooses a better
ROUGE scoring prediction over the most proba-
ble prediction by the base model. However, in the
second example, FAR doesn’t choose the higher
ROUGE scoring prediction but rather the more
factually correct one. With the current evaluation
metric ROUGE, this would lead to a drop in perfor-
mance. Developing and adopting new metric that
consider both lexical as well as factual correctness
jointly (Mrabet and Demner-Fushman, 2020) is
crucial to steer the research community to develop
systems that ensure factual correctness as well as
readability.

Limitations and Future Work. We acknowl-
edge several limitations to our work. First, we
recognize our dependence on an external struc-
tured label generator. As we use CheXbert labels
as our proxy for ground truth for training our 14-
observations-vector predictor, as well as in our sim-
ilarity function, any errors in CheXbert have a di-
rect impact on our system’s performance. Second,
though FAR methodology has shown significant
gains in performance in Factual F1 and ROUGE
scores, the system is limited by the generated candi-
date summaries. We aim to build on this approach
by incorporating this methodology during training
as a modified version of beam search. Third, all
of our presented results are evaluated using a rel-
atively small set of internal test data, due to the
limitations on data during the challenge. Though
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Base Model’s Prediction Prediction after FAR Human-generated Impression

No acute cardiothoracic process.
R-1: 0

No acute cardiopulmonary pro-
cess. Tiny right pleural effusion.
R-1: 0.6

Tiny right pleural effusion.

No acute cardiopulmonary process.
R-1: 0.6

Normal chest radiograph.
Mild cardiomegaly.
R-1: 0.3

Mild cardiomegaly, new since ___. No
acute cardiopulmonary process.

Table 7: Examples depicting the most probable prediction from base model, re-ranked prediction using our FAR
methodology compared to the ground truth (human-generated impression).

our approach has translated into similar good per-
formance on the official test data, we aim to further
evaluate our approach on an increased test data.
Finally, as ROUGE has been shown to be an im-
perfect metric for radiology report summarization
evaluation (Zhang et al., 2019b), we aim to fur-
ther evaluate our system (1) using other automated
metrics such as BERTScore (Zhang et al., 2019a),
BLEURT (Sellam et al., 2020), and HOLMS (Mra-
bet and Demner-Fushman, 2020), (2) by conduct-
ing qualitative evaluation of our system’s predic-
tions by involving human annotators such as radi-
ologists or subject matter experts.

7 Conclusion

We have presented our system developed during our
participation in MEDIQA 2021 RRS challenge. We
found that radiology reports from different sources
have distinct language and fine-tuning a trained
model with a small amount of data from another
source leads to gains in performance and allows
the models to be transferable. Further, techniques
like fact-aware re-ranking, which utilizes a factual
vector of the summary to re-rank candidate sum-
maries, not only improves factual correctness of the
summary but also improves the performance of the
model on the traditional natural language metrics
like ROUGE. We have also identified limitations of
our work, and discussed promising areas of future
research.
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Abstract

This paper describes a system developed to
summarize multiple answers challenge in the
MEDIQA 2021 shared task collocated with
the BioNLP 2021 Workshop. We propose an
extractive summarization architecture based
on several scores and state-of-the-art tech-
niques. We also present our novel prosper-
thy-neighbour (PtN) strategies to improve per-
formance. Our model has been proven to
be effective with the best ROUGE-1/ROUGE-
L scores, being the shared task runner-up
by ROUGE-2 F1 score (over 13 participated
teams).

1 Introduction

Biomedical documents are available with the
tremendous amount on the Internet, together with
several search engines (e.g., Pubmed®1) and
question-answering systems (e.g., CHiQA2) de-
veloped. However, the returned results of these
systems still contain a lot of noise and duplication,
making them difficult for users without medical
knowledge to quickly grasp the main content and
get the necessary information. Hence, generating
a shorter condensed form with important informa-
tion would benefit many users as it saves time and
can retrieve massive useful information. This mo-
tivation leads to the growing interest among the
research community in developing automatic text
summarization methods. The BioNLP-MEDIQA
2021 shared task3 (Ben Abacha et al., 2021) aims
to attract further research efforts in text summa-
rization and their applications in medical Question-
Answering (QA). This shared task is motivated by
a need to develop relevant methods, techniques,
and gold standards for text summarization in the

∗Contributed equally & Names are in alphabetical order
†∗Corresponding author

1https://pubmed.ncbi.nlm.nih.gov/
2https://chiqa.nlm.nih.gov/
3https://sites.google.com/view/

mediqa2021

medical domain and their application to improve
the domain-specific QA system. Task 2 - Summa-
rization of Multiple Answers focuses on develop-
ing multi-document summarization approaches that
could synthesize and compress information from
answers to a medical question.

According to Radev et al. (2002) a summary
is defined as ‘a text that is produced from one
or more texts, that conveys important information
in the original text(s), and that is no longer than
half of the original text(s) and usually, significantly
less than that’. Automatic text summarization is
the task of condensing the document(s) and gen-
erating a compressed summary, which is shorter
but preserves key information content and overall
meaning. A summary can be generated through
extractive or abstractive approaches (or hybrid).
Typically, to produce an abstractive summariza-
tion, we need to use advanced linguistic techniques
to ‘understand’ the text as well as re-generate the
summary in natural language from useful infor-
mation. Up to now, the research community is
focusing more on extractive summarization. This
approach tries to achieve coherent and meaningful
summaries in a more simple and faster way than
the abstractive approach. Extractive summarization
chooses important sentences (or phrases) from the
original documents (without any modification) and
merges them to generate a summary.

Our proposed model for the multi-answer sum-
marization task follows extractive summarization
approaches. We try to select sentences contain-
ing the most important information in the original
answers. Our novel contributions are: (i) Propos-
ing the question-driven scores to ensure that the
summary is the answer to the question, (ii) Propos-
ing Prosper-thy-neighbour (PtN) strategies, which
increase the constraint of neighbouring sentences,
to take advantage of paragraph information in the
answer. (iii) Combining several scores that success-
fully applied for summarization problem, includ-
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ing TF-IDF, Lexrank, and Textrank with optimized
weights, (iv) Improving the maximal marginal rele-
vance technique (MMR) for multi-document sum-
marization with BERT-based embedding to im-
prove the performance.

The remaining of this paper is organized as fol-
lows: Section 2 gives a brief introduction to some
state-of-the-art related works. Section 3 describes
task data and our proposed model. Section 4 is
the experimental results and our discussion. And
finally, the conclusion.

2 Related works

From the early 1950s, various methods have been
proposed for extractive summarization (Allahyari
et al., 2017). Some of them are based on the idea of
using scores to choose the most important phrases
in the documents. Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) (Hovy et al., 1999;
Christian et al., 2016) is a frequency-based score to
detect important sentences by calculating the scores
of its words. Lexrank (Erkan and Radev, 2004)
and Textrank (Mihalcea and Tarau, 2004) are two
graph-based methods that rank sentences/words
using their degree centrality. Maximal Marginal
Relevance (MMR) (Carbonell and Goldstein, 1998;
Bennani-Smires et al., 2018) is one of the most
well-known approaches for multi-document sum-
marization. It is a diversity-based re-ranking
method based on the document similarities and can
be used to remove redundancy in the summaries.
Although encouraging results have been reported,
most of these scores are applied individually. Since
each score type has its unique contribution, com-
bining them may help to improve the performance.
Hence, we propose an architecture to take advan-
tage of several scores with weights and calculate a
final combined score.

With the advent of machine learning techniques
in NLP, many research projects tried to apply ma-
chine learning methods to extractive summarization
tasks, from the Naive Bayes, Decision tree, Sup-
port vector machine (Gambhir and Gupta, 2017)
to deep learning models. Most recently, Savery
et al. (2020) improved the Bidirectional auto regres-
sive transformer (BART) with a question-driven
approach, but it is more well-known for abstractive
summarization, which is not discussed in-depth in
this paper.

3 Materials and Methods

3.1 Shared task data
The MEDIQA-AnS Dataset (Savery et al., 2020) is
used as the training data set. The validation and the
test sets are the summaries that were created by the
experts from the original answers generated by the
question-answering system namely CHiQA4. Ta-
ble 1 gives our statistics on the given datasets (see
(Ben Abacha et al., 2021) for detailed description
of shared task data).

An important observation is that answers often
tend to have related sentences in a passage that
makes an important ‘point’. Some adjacent sen-
tences are structured in a deductive manner (e.g.,
several explanatory sentences follow after a stated
sentence) or inductive (e.g., the last sentence is the
conclusion of previous sentences). Extracting these
whole pieces of text ensures a complete summary
while enhancing fluency and natural language re-
semblance. Our prosper-thy-neighbour strategies
are proposed to take advantage of this characteris-
tic.

Table 1: Statistics of the datasets.

Statistic
aspects

Training Validation TestArticle Section
Questions 156 156 50 80
Average
A per Q 3.54 3.54 3.85 3.80
Sent per A 84.93 29.07 14.50 13.03
Sent per SSum 6.31 6.31 - -
Sent per MSum 10.30 10.30 11.06 -
Compression ratio
SSum 0.12 0.49 - -
MSum 0.06 0.18 0.33 -

A: Answer, Q: Question, Sent: Sentence,
SSum: Single-answer Summary,
MSum: Multi-answer Summary

3.2 Proposed model
The overall architecture of our Prosper-thy-
Neighbour (PtN) summarization model is shown
in Figure 1. It comprises four main phases: pre-
processing, single document summarization, multi-
document summarization and post-processing
phases.

3.2.1 Pre-processing
The pre-processing phase receives question Q and
a set of corresponding answers (documents) D =
{di}ni=1 as the input. ScispaCy (Neumann et al.,
2019), which is based on SpaCy (Honnibal et al.,

4https://chiqa.nlm.nih.gov
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Figure 1: The proposed Prosper-thy-neighbour model.

2020) models, is used for the typical pre-processing
techniques (i.e. segmentation and tokenization) in
terms of biomedical, scientific and clinical text. We
also construct two normalization modules. (i) The
coarse-grained normalization is applied to the an-
swer only. It removes noise from the raw text (non-
ASCII characters, HTML tags, duplicate spacing,
etc.) (ii) The fine-grained normalization includes
stop-words removing, lower-casing, stemming, and
full form generation (Schwartz and Hearst, 2002)
for biomedical abbreviations. Finally, BioBERT
(Lee et al., 2020), which is designed for multiple
biomedical text mining tasks, is used for part-of-
speech tagging, named entities/keywords recog-
nizing and embedding generating. BioBERT-based
embeddings are 768− dimensional vectors used for
calculating the similarity of words and sentences.

3.2.2 Single-answer extractive
summarization

Using information from the pre-processing phase,
the single-document extractive summarization
phase generates the summary for every single an-

swer. Our extractive summarization model tries
to determine which sentences are important to the
document by sentence scoring.

Sentences scoring: Since it is difficult to identify
the importance of sentences from a single point of
view, hence, we use three different types of scores:
Frequency-based scores, graph-based scores and
question-driven scores.

Frequency-based score: Term Frequency - In-
verse Document Frequency (TF-IDF) (Salton and
McGill, 1986) is the probabilistic method that re-
flects the importance of words in a set of documents
by a float number. The TF-IDF score of a word
w contained in document d of document set D is
defined as tfidf(w, d,D). We apply two rules to
improve TF-IDF: (i) Boosting the TF-IDF score of
keywords, and (ii) Assigning TF-IDF score to 0 if
it is lower than a pre-selected threshold. The TF-
IDF score of a sentence is the cumulative TF-IDF
scores of its component words.

Graph-based scores are used to determine
which sentences and words seem to be the core
of a document. Lexrank and Textrank are two of
the most well-known methods of this approach.

Lexrank (Erkan and Radev, 2004) computes sen-
tence importance based on the concept of eigenvec-
tor centrality in a graph representation of sentences.
A document is considered as a graph, each node
represents a sentence. Two nodes have a weighted
edge depending on the similarity of their corre-
sponding sentences. Cosine similarity is used to
calculate the similarity between two sentences x
and y (see Formula 1). In which, x and y are rep-
resented by TF-IDF vectors of n dimensions, i.e.,
X and Y respectively (n is the number of distin-
guished tokens in two sentences).

sim(x, y) =
X · Y

‖X‖ × ‖Y ‖ (1)

To calculate the centrality of a node, we analyze the
weight of its connected edges and the centrality of
adjacent nodes (Formula 2). If a sentence is similar
to many other sentences, it has higher centrality
and conceived having a certain ability to represent
other sentences.

p(u) =
d

n
+(1−d)

∑

v∈adju

sim(u, v)∑
z∈adjv sim(z, v)

p(v)

(2)
where adju is the set of nodes that adjacent to u, n
is the number of nodes and d is the damping factor.
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Textrank (Mihalcea and Tarau, 2004) is mostly
similar to Lexrank. It calculates the centrality of
terms instead of the centrality of sentences as in
Formula 3. In the PtN model, if the Textrank score
is lower than a predefined threshold, we assign it
to 0. The Textrank score of a sentence is the sum
of Textrank scores of its participated terms.

sim(X,Y ) =
|w|w ∈ X and w ∈ Y |
log(|X|) + log(|Y |) (3)

in which w is the token andX and Y are two terms.
Question-driven scores are used to give higher

priorities to sentences that are related to the ques-
tions. These scores are proposed to focus on the
answer summarization task, ensuring that the sum-
mary is a suitable answer to the question.

Question-similarity score uses the BioBERT and
Cosine distance (Formula 1) to calculate the simi-
larities between the question and sentences in all of
its answers. Formally, qb(sentence), the question-
similarity score of a sentence is defined as:

qb(sentence) = sim(sentence, question) (4)

Keyword-based score is determined by the per-
centage of question keywords that appear in a sen-
tence. Let K is the set of question keywords,
kw(sentence) is the keyword-based score of a sen-
tence, it is defined by the following formula:

kw(sentence) =
|{k : k ∈ K}|

|K| (5)

Scores combination: All scores are normalized
in the range [0− 1] by using Min-Max normaliza-
tion. We then combine them into a final sentence
score by using optimized weights (see Formula 6.

score =w1 × tfidf
+ w2 × lexrank + w3 × textrank
+ w4 × querybase+ w5 × keywords

(6)

in which, wi is the weight of each score. They are
fine-tuned on the validation set.

Prosper-thy-neighbour strategies:
As described in Section 3.1, an important sentence
may need some adjacent sentences to clarify or
support it. Hence, answers often tend to have con-
tinuous segments of sentences that make important
‘points’. Since the aforementioned scores do not

consider the neighbours of a sentence, our prosper-
thy-neighbour strategies are proposed to take ad-
vantage of this characteristic. There are three dif-
ferent prosper-thy-neighbour strategies: cluster-
boosting, relative-boosting and centre-boosting.

Cluster-boosting: We calculate the averaged
scores of n continuous sentences (n = 3, 4, 5) as
cluster scores. We then select top-k clusters with
the highest average scores. The sentence score is
set equal to its highest cluster score. Sentences that
are not selected in any clusters are assigned the
score of 0.

Relative-boosting is performed by three steps:

• Step 1: Find top-n highest-score sentences
with their original orders.

• Step 2: For consecutive selected sentences, let
L is the position of the preceding sentence, R
is the position of the following sentence. If
R − L + 1 ≤ k (k is predefined), step 3 is
executed.

• Step 3: Let scorei be the score of the i-th
sentence. The final scores finali of all sen-
tences having the position between L and R
are updated by the following formula:

finali = maxRj=L(scorej) (7)

Centre-boosting: Let scorei be the score of
i-th sentences. The final score finali of sentence
i-th is updated by the following formula:

finali = max
min(i+R−1,n)
j=max(i−L+1,1)scorej (8)

in which, n is the number of sentences, L and R
is the number of sentences that impact the current
sentence i in two directions: left and right. With
centre-boosting, the important sentence strongly
affects its adjacent sentences.

However, with these prosper-thy-neighbour
strategies, the selected neighbour sentences can
bring redundant information, i.e., we may keep too
many sentences to the left/right of an important
sentence. Those redundancies can be cut off in the
post-processing phase (Section 3.2.4).

Ranking and and Filtering Sentences We
use the final score boosted by the prosper-thy-
neighbour strategy to rank the sentences. There
are several ways to choose sentences for the single-
document extractive summary: getting top-n or
top-p% of sentences, using the threshold to fil-
ter unimportant sentences. In the proportion- and

314



threshold-based approach, the number of sentences
depends on the document length and sentence scor-
ing. It might probably cause an unexpected bias
in the next multi-document summarization phase.
Based on the experimental results on the validation
set, we fix the number of selected sentences in each
document.

3.2.3 Multi-answer extractive summarization
Multiple extractive single-answer summaries from
the previous phase are merged into a single docu-
ment. Since the previous phase chooses an equal
number of sentences for all answers, there might
be some redundant sentences. Since the current
sentence scores are based on separate documents,
we re-calculate them as in the merged document by
using the proposed score described in Section 3.2.2.
The filtering step then removes some lowest-score
sentences.

Maximal Marginal Relevance (MMR): (Car-
bonell and Goldstein, 1998) is also used to re-
duce redundancy while maintaining query rele-
vance. MMR works in the selected appropriate
sentence in merged documents. It is the combina-
tion of the relevance and diversity concepts, in a
controllable way. Let Si is the i-th sentence, its
MMR score is calculated based on the similarities
between Si, the answer D and the question Q (For-
mula 9). The similarity to the question and the
duplication with other sentences affects the MMR
score through the ratio λ. In which, BioBERT is
used to represent sentences and question and Co-
sine distance is used to calculate the similarities.
We use the MMR score to discard duplicated and
question-irrelevant sentences, i.e., remove m sen-
tences having the lowest MMR score.

MMRi =argmax
Si∈D

[λ(sim(Si, Q)

− (1− λ)maxj 6=isim(Si, Sj))] (9)

3.2.4 Post-processing
For each segment of continuously selected sen-
tences, we find the position of the most important
sentence which has the highest combined score.
Then, for other sentences in the segment, if the dis-
tance from their position to the important sentence
exceeds a predefined k parameter, those should be
eliminated in the final multi-document extractive
summary.

4 Experimental results

4.1 Evaluation metrics
We adopt the official task evaluations with ROUGE
scores (Lin and Och, 2004) including ROUGE-1,
ROUGE-2 and ROUGE-L. ROUGE-n Recall (R),
Precision (P ) and F1 between predicted summary
and referenced summary are calculated as in For-
mulas 10, 11 and 14, respectively. Choosing
correct sentences help to increase ROUGE-n R
and P .

ROUGE-n P =
|Matched N-grams|

|Predict summary N-grams|
(10)

ROUGE-n R =
|Matched N-grams|

|Reference summary N-grams|
(11)

ROUGE-L P =
Length of the LCS

|Predict summary tokens| (12)

ROUGE-L R =
Length of the LCS

|Reference summary tokens|
(13)

ROUGE-L recall (R), precision (P ) and F1 are
calculated as in Formula 12, 13 and 14, respec-
tively. ROUGE-L uses the Longest Common Sub-
sequence (LCS) between predicted summary and
referenced summary and they are normalized by
the tokens in the summary.

F1 = 2× R×R
P +R

(14)

4.2 Comparative models
We use the official results of the MEDIQA shared
task as a comparison to other participated teams on
the multi-answer summarization task.

For a detailed evaluation of the effectiveness of
the single-answer summarization phase, we also
make some comparisons with related works:

• Lead-3: First three sentences of an article
were taken as a summary.

• k-random sentences: k random sentences
were selected as a summary.

• k-best ROUGE: k sentences with the highest
ROUGE-L score relative to the question were
selected.
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Table 2: Official results of the MEDIQA 2021: Task 2 - Multi-Answer Summarization.

Team ROUGE-1 ROUGE-2 ROUGE-L
F1 HOLMS BERTscore

F1P R F1 P R F1
paht_nlp 0.471 0.878 0.585 0.407 0.767 0.508 0.435 0.706 0.804
UETrice 0.528 0.814 0.611 0.432 0.680 0.504 0.441 0.738 0.796
XIaoHouZi 0.464 0.864 0.577 0.395 0.748 0.495 0.431 0.699 0.797
ChicHealth 0.474 0.842 0.578 0.398 0.718 0.489 0.426 0.703 0.792
I_have_no_flash 0.472 0.843 0.573 0.397 0.719 0.488 0.425 0.745 0.791

Only show results of top-5 participated teams.
The highest results in each column are highlighted in bold.

• Bidirectional long short-term memory (BiL-
STM) network (Hochreiter and Schmidhuber,
1997): The most relevant sentences in an arti-
cle were selected by a BiLSTM.

• Pointer-generator network (See et al., 2017):
A hybrid sequence-to-sequence attention
model which creates summaries with two ap-
proaches: copying text and create new text
from the source documents.

• Bidirectional auto-regressive transformer
(BART) (Savery et al., 2020): A transformer-
based encoder-decoder model improved with
a question-driven approach.

The results of these comparative models are taken
from experimental results reported in Savery et al.
(2020).

4.3 Task final results and comparison
Based on the validation set experiments, the num-
ber of selected sentences in single-answer sum-
marization is 7 per answer. In the multi-answer
summarization phase, the score-based filter selects
top-20 sentences in the merged document, then
MMR removes 5 lowest-score sentences. There-
fore, our multi-answer document summaries have
15 sentences (or less, based on the length of the
original answers). Post-processing with distance
value k = 3 often removes 2-4 sentences. The
final outputs often have ∼13 sentences. Since both
cluster-boosting and relative-boosting show their
drawbacks with the lower F1-score performance
on the validation set, we use the centre-boosting
strategy in our optimal model.

4.3.1 Official results of the multi-answer
extractive summarization

Table 2 shows the shared task official results of top-
5 competitors. ROUGE-2 F1 is used as the main
metric to rank the participating teams. We also
show several other evaluation metrics for detailed

Table 3: The comparative results of single-document
summarization models.

Model ROUGE-1
F1

ROUGE-2
F1

ROUGE-L
F1

Lead-3 0.23 0.11 0.08
3-random
sentences

0.20 0.08 0.06

3-best ROUGE 0.16 0.08 0.06
BiLSTM 0.22 0.10 0.08
Pointer-
generator

0.21 0.09 0.07

BART 0.24 0.10 0.07
BART +
Query-based

0.29 0.15 0.12

PtN model w/o
post-processing

0.26 0.22 0.24

PtN model 0.30 0.22 0.25
All results are reported on the training data set.

The highest results in each column are highlighted in bold.

results: ROUGE-1 F1, ROUGE-L F1, HOMLS
F1 and BERT-based F1. We are the runner-up
in the leader board, with ROUGE-2 F1 at 0.504
(0.004 less than the rank No.1 team). However, our
ROUGE-1 F1 and ROUGE-L F1 are the highest
of all participating teams.

4.3.2 Result of the single-answer extractive
summarization

Table 3 shows the performances of our model and
comparative models at the single-answer level. Be-
cause the results of the comparative models are
reported in the training dataset, all results are re-
ported on the training dataset. To ensure the com-
parisons are fair, we report both model results with
and without the post-processing phase. The results
show that our model outperforms all comparative
models. To ensure the comparisons are fair, we
report both model results with and without the post-
processing phase. The results show that our model
outperforms all comparative models.
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4.4 Contribution of model components

We study the contribution of each model compo-
nent to the system performance by ablating each
of them in turn from the model and afterward eval-
uating the model on the validation set. Validation
data are used for evaluation because we use valida-
tion data to optimize the model’s hyperparameters.
We compare these experimental results with the
full system results and then illustrate the changes
of ROUGE-2 F1 in Figure 2. The changes of
ROUGE-2 F1 show that all model components
help the system to boost its performance (in terms
of the increments in ROUGE-2 F1).The contri-
bution, however, varies among components, TF-
IDF and MMR have the biggest contribution while
Lexrank/Textrank brings the smallest contribution.
The prosper-thy-neighbour strategy also demon-
strates its effectiveness to improve the ROUGE-2
F1. Centre-boosting seems to be the most suitable
strategy for this task since the results increase dra-
matically if we replace it with cluster-boosting or
relative-boosting.

Frequency-based 
scoring

Graph-based 
scoring

Question-driven
scoring

Prosper-thy-neighbor
strategy

Post-
processing

MMR

Relative-boosting
Centre-boosting

Cluster-boosting
Centre-boosting

0 0.2 0.4 0.6 0.8 1 1.2 1.4
ROUGE-2 F1 reduction (%)

Figure 2: Ablation test results on validation data set for
various components and Prosper-thy-neighbour strate-
gies. Cluster-boosting and relative-boosting: Replace
centre-boosting by another strategy.

We also investigate the change of results at differ-
ent compression ratios. Figure 3 shows the change
of ROUGE-2 P , R and F1 on the validation set
when taking 2-20 sentences to the summary (ex-
cluding the post-processing step). We observed that
P and F have trade-off results while increasing the
number of sentences. F1 got the best results at
15 sentences, due to the balance between P and
F . Therefore, we choose this configuration for our
official runs on the test set.

2           4            6            8           10           13         15          17        20

Figure 3: System performance with different com-
pressed ratios.

4.5 Errors analysis

To further evaluate the performance of the proposed
system, we have analyzed the results of the best
model on the validation set. Table 4 provides some
examples of the model problems and their effects.

Firstly, because of using a fixed statistical-based
maximum number of output sentences, we ran into
problems with too long or too short documents.
Question #56 is an example of the redundancy in
the output summary that there are only 5 important
sentences but our model keeps fixed 13 sentences.
On the contrary, in Question #91, the answer to
‘How can I stop being allergic to caffeine?’ are
summarized in 23 sentences. However, many rel-
evant sentences have been filtered out to ensure a
fixed size of the output.

Although we have combined many different
ranking methods for tokens and sentences, some
final scores did not meet our expectation. The
frequency-based scores (TF-IDF) are failed in
Question 82, in which the token ‘Hirschsprung’
is over-weighted due to repeated occurrence. In
addition, the popular keywords like ‘treatment’,

‘medicine’ have too low weight. As a result, in
Question #19 about ’the cure for pulsatile tinni-
tus’, all of the sentences related to treatment and
medicine were filtered out.

Some other issues related to the driven question
are illustrated in Question #22 and Question #36.
In the first example, the question analyzer failed
to extract the keyword ‘safe’. For this reason, the
summary phase went in the wrong direction – the
content is only related to ‘defibrillator’. In the
second one, the proposed model did not focus on
the driven question so that the summary does not
contain the desired information.

Besides the problems related to the model com-
ponents, we also noticed some problems related to

317



Table 4: Examples of some errors in validation set.

# Question Problems Effect
56 How can we improve fertility in Klinefel-

ter syndrome karyotype 47 XXY?
Fixed number of out-
put sentences

Redundant output sentences
(low precision)

91 How can I stop being allergic to caffeine? Fixed number of out-
put sentences

Missing output sentences (low
recall)

82 Where can i find information for adults
with Hirschsprung’s disease?

Imperfect ranking
scores

Ranking of irrelevant sentences
are too high (low precision)

19 Is there a cure for pulsatile tinnitus? Imperfect ranking
scores

Ranking of important sentences
are low (low recall)

22 Is it safe to have ultrasound with a defibril-
lator?

Missing keywords
and NER

Summary is on the wrong di-
rection (poor precision and re-
call)

53 Is there a way to improve kidneys in a
person on twice-weekly dialysis?

Not focus on driven-
question

Summary is not contain the de-
sired information (poor preci-
sion and recall)

36 Are there herbal medicines for rheumatoid
arthritis?

Problem in chiQA
answers

Not enough information to sum-
marize

78 Can spinal surgery cause hydrocephalus
and blindness in adults?

Problem in neigh-
bour boosting

Adding some irrelevant sen-
tence (decreasing precision)

28 Can you help me find a clinic that special-
izes in treatment for atopic eczema?

Problem in post-
processing

Removal of important sentence
(decreasing recall)

the input data for which Question #36 is an exam-
ple. The question is about ‘herbal medicines for
rheumatoid arthritis’ while the chiQA answers do
not mention this topic. Therefore, our model as
well as other machine learning models do not have
enough linguistic information to summarize these
documents.

Some other errors seem attributable to our
model’s limitations (Example #28 and #78). We
listed here some highlight problems to prioritize fu-
ture researches: (i) The neighbour boosting method
needs to be improved to only increase the weight of
related sentences instead of all neighbouring sen-
tences; (ii) Post-processing rules need to be stricter
to avoid eliminating important sentences.

5 Conclusions

This paper presents a systematic study of our ex-
tractive approach to the MEDIQA 2021 - Task 2:
Multi-answer summarization. We combined and
optimized several scoring criteria such as TF-IDF,
Lexrank, Textrank, query-based, keywords-based
and MMR scores. We also developed a strategy
called Prosper-thy-neighbour to take advantage
of adjacent sentences in the answers. The pro-
posed model has a potential performance, being the
runner-up of the shared task. Our best performance
achieved a ROUGE-2 F1 is 0.504, comparable to

that of the highest-ranked system with 0.507.
Experiments were also carried out to verify the

rationality and impact of model components and
the compressed ratio. The results demonstrated the
contribution and robustness of all techniques and
hyper-parameters. The error analysis was made
to analyze the sources of the errors. The evidence
pointed to some imperfection of the sentence select-
ing strategy, the ranking score combination and the
question analyzer. Our proposed system is exten-
sible in several ways: applying machine learning
model, deeply question-analyzing, sentences clus-
tering, etc. We will release our source code on the
public repository to support the re-producibility of
our work and facilitate other related studies.
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Abstract

This paper details a Consumer Health Ques-
tion (CHQ) summarization model submitted to
MEDIQA 2021 for shared task 1: Question
Summarization. Many CHQs are composed
of multiple sentences with typos or unneces-
sary information, which can interfere with au-
tomated question answering systems. Ques-
tion summarization mitigates this issue by re-
moving this unnecessary information, aiding
automated systems in generating a more accu-
rate summary. Our summarization approach
focuses on applying multiple pre-processing
techniques, including question focus identifi-
cation on the input and the development of
an ensemble method to combine question fo-
cus with an abstractive summarization method.
We use the state-of-art abstractive summariza-
tion model, PEGASUS (Pre-training with Ex-
tracted Gap-sentences for Abstractive Summa-
rization), to generate abstractive summaries.
Our experiments show that using our ensem-
ble method, which combines abstractive sum-
marization with question focus identification,
improves performance over using summariza-
tion alone. Our model shows a ROUGE-2
F-measure of 11.14% against the official test
dataset.

1 Introduction

The MEDIQA 2021 shared task consists of sev-
eral independent tasks: task 1 is Question Sum-
marization, task 2 is multi-answer summarization,
and task 3 is Radiology Report Summarization.
We participated in task 1, Question Summariza-
tion. We approached the task by developing an
ensemble learning method that combines informa-
tion from automatic question focus identification
with information from a state-of-the-art summariza-
tion model. We also studied the effects of different
preprocessing techniques for this challenge. The

*These authors contributed equally to this work

descriptions of the dataset are shown in the task
guidelines (Ben Abacha et al., 2021). The train-
ing datasets are from Ben Abacha and Demner-
Fushman (2019b) along with the focus of each
question. The test dataset contains consumer health
questions only.

2 Related Works

The goal of Consumer Health Question Answering
(CHQA) is to construct an automated question an-
swering system aimed toward answering questions
from individuals who are unlikely to possess pro-
fessional medical knowledge. Typical consumer
health questions include requests for information
regarding symptoms of particular diseases, queries
regarding possible diseases from individuals experi-
encing symptoms, and whether an individual would
be safe to mix specific medications and so forth.
In this field, there are circumstances in which indi-
viduals submit straightforward questions, but there
are many cases where people list extra background
and other unnecessary information which are not
required to answer their question. In fact, this addi-
tional information can essentially serve as a source
of noise which can reduce the effectiveness of the
QA system as a whole.

Recent CHQA systems employ pipeline architec-
tures that utilize Question Understanding, Informa-
tion Retrieval and Answer Generation components
sequentially (Demner-Fushman et al., 2019). This
architecture facilitates modular optimization. Fur-
thermore, it allows individual components to be
swapped, either for need or to provide special fea-
tures. This allows the entire QA system to adapt to
the specific nature of the problem at hand. As previ-
ously mentioned, many CHQs possess extraneous
information in addition to the primary question.
Therefore, the Question Understanding component
of such an architecture is especially important, and
improvements to it can be particularly beneficial
to the overall CHQA system. Facilitating Ques-
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Figure 1: System Architecture.

tion Understanding through summarizing the con-
sumer health questions has demonstrated signifi-
cant improvement as shown by Ben Abacha and
Demner-Fushman (2019b) and Ben Abacha and
Demner-Fushman (2019a). Thus, given the ben-
efits to the overall QA system, improving upon
existing summarization methods was selected as
task 1 in MEDIAQA 2021. In this component, the
extraneous information can be removed via prepro-
cessing prior to inputting into further stages of the
QA system. Different preprocessing methods have
also been explored to perform this task, and a per-
formance improvement on deep learning models
has been shown (Camacho-Collados and Pilehvar
2017; Husain et al. 2020).

2.1 Consumer Health Question
Understanding

Robust CHQA systems could serve as a component
in a broader solution to inform the public of the
latest medical updates and breakthroughs, leading
to more optimal outcomes for both individuals and
the public as a whole.

In Question Understanding, recent break-
throughs relevant to CHQA have included: Ben
Abacha and Demner-Fushman (2019), which
demonstrated that retrieving entailment answers
for CHQA systems many not gather any answers;
Ben Abacha and Demner-Fushman (2019b), which
studied the role of summarization on CHQA;
and Roberts et al. (2014) proposes decomposi-
tion methods and techniques for consumer health
datasets.They suggest decomposing the questions
into focus of the question, exemplification, ques-
tion sentence(s), background sentence(s) and “ig-
nore” sentence(s).

2.2 Abstractive Summarization

Abstractive Summarization aims to re-write the
given input in a shorter form. This is opposed
to Extractive Summarization, which aims to se-
lect essential sentences from the given input only.
There are different approaches to Abstractive Sum-
marization, such as structured-based, semantic-
based, deep learning-based, discourse, and rhetoric-
based (Gupta and Gupta, 2019).

In this paper, we selected a deep learning ap-
proach. Deep learning methods include Pointer
Generator Networks See et al. (2017), Pre-training
with Extracted Gap-sentences for Abstractive Sum-
marization (PEGASUS) (Zhang et al., 2019), Multi-
Document Summarization by Niu et al. (2017) and
others (Kouris et al., 2019; Khatri et al., 2018).
We selected Pointer Generator Networks as our
baseline method, because it showed high per-
formance in summarizing consumer health ques-
tions Ben Abacha and Demner-Fushman (2019b)
and compare the results with PEGASUS.

3 Methodology

Our model follows a traditional language gener-
ation pipeline: pre-processing, abstractive sum-
marization, and post-processing. We experi-
mented with several different combinations of pre-
processing to generate multiple summaries from a
single given question. We selected the best sum-
mary in the post-processing stage from these nu-
merous generated summaries, which use ensemble
learning.
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3.1 Dataset
The MEDIQA 2021 event organizers provided
three different datasets: a training set, a valida-
tion set, and a testing set. The training dataset,
called MeQSum, is from Ben Abacha and Demner-
Fushman (2019b) and consists of 1000 pairs of
consumer health questions and corresponding sum-
maries. Of the questions in the training dataset,
658 questions had both SUBJECT and MESSAGE
entered by users, while 342 Questions lacked
a SUBJECT. Information such as [SUBJECT],
[CONTACT], [NAME] and [LOCATION] were
de-identified. The validation dataset consists of 50
raw consumer health questions with corresponding
summaries, focus, and type for each question. The
testing dataset consists of 100 raw consumer health
questions.

3.2 Pre-processing
The goal of pre-processing is 1) to make the ab-
stractive summarization model focus on the impor-
tant information by removing the redundant strings
from both the training and validation/test set, and
2) minimize the difference between the training
dataset versus both the validation and test datasets
as described in 3.1. We try multiple pre-processing
techniques for the training dataset and both the val-
idation and test datasets. The outputs generated
by the different combinations of pre-processing
techniques served as inputs into our ensemble post-
processing stage.

3.2.1 Simple Pre-processing
We employed two different simple pre-processing
steps:

1. “Simple0” which removes the text "SUB-
JECT: " and "MESSAGE: ", replaces "\n" by
" ", and removes already tagged named enti-
ties: [LOCATION], [NAME], [CONTACT],
[DATE], [PROFESSION], [AGE], [ID] from
the training set.

2. “Simple1” which removes the text "SUB-
JECT: " and "MESSAGE: " and replace "\n"
by " " from the training set.

3.2.2 De-identification
[SUBJECT], [CONTACT], [NAME] and [LOCA-
TION] terms are de-identified in training set, but
not in the validation/test set. For consistency and
to reduce variation between these terms, we ap-
ply de-identification on the dataset with Spark

NLP (Kocaman and Talby, 2021). The Spark De-
identification model was trained on n2c2 2014: De-
identification and Heart Disease Risk Factors Chal-
lenge (Stubbs and Uzuner, 2015). This model al-
lows us to mask information such as [LOCATION],
[NAME], [CONTACT], [DATE], [PROFESSION],
[AGE] and [ID], which were de-identified. To pre-
vent inadvertently masking essential medical terms,
we used stanza Bio NER models (Zhang et al.,
2020) to identify these medical terms and omit
them from masking.

3.2.3 Sentence Exclusion
Sentences such as "Hi", "Thank you in advance,
regards", "kindly advise me" and others do not im-
prove summarization performance, yet also exhaust
the computational time and resources by increasing
the input sequence size. Thus, before input into the
summarization model, we remove these sentences.
For this effort, we used 10 different Stanza Bio
NER models. The differentiating factors between
these models are the datasets they were trained on.
The datasets consist of one of 8 biomedical datasets
or 2 clinical datasets, specifically: i2b2-2010, Ra-
diology, NCBI-Disease, BC5CDR, BioNLP13CG,
JNLPBA, AnatEM, BC4CHEMD, Linnaeus, and
S800. If none of these 10 models found any medi-
cal terms in a sentence, we excluded that sentence
from the dataset. The models are ordered by pri-
ority, high to low, and once an entity was found
using one model, we kept the sentence and began
processing the next.

3.2.4 Focus Extraction
Roberts et al. (2014) defines Focus as a Noun
Phrase indicating the theme of the consumer health
question. We believe that by incorporating the
focus into our summarization model, we can in-
crease the overall performance. We test focus im-
pact on both pre-processing and post-processing.
We added the focus in front of the question during
pre-processing and used the combined strings as
an input of the abstractive summarization model.
During post-processing, we used focus to rank the
output accuracy as described in more detail in Sec-
tion 3.4.

To extract a focus, we explored two different
methods: Focus Detection and Focus Generation.
For Focus Detection, we employed Named Entity
Recognition (NER) with hybrid of two neural net-
works suggested by Chiu and Nichols (2015). The
paper shows high performance with bidirectional
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Long Short-term Memory (Bi-LSTM) and Convo-
lutional Neural Network(CNN) architecture with
the CoNLL-2003 dataset (Tjong Kim Sang and
De Meulder, 2003). The architecture automatically
detects word and character level features by having
the CNN extract features from words and by using
a Bi-LSTM to tag Named Entities. We test Bi-
LSTM with CNN and Recurrent Neural Network
(RNN) with CNN, LSTM with CNN, and Gated
Recurrent Unit (GRU) with CNN.

The risk of using NER methods to detect fo-
cus is that there is a possibility of not extract-
ing any focus from a given question. However,
focus generation uses language generation tech-
niques, which ensures there is a focus for each
given question, though the accuracy of focus is of-
ten lower compared to NER techniques. We chose
Pointer Generator Networks (PG) (Ben Abacha
and Demner-Fushman, 2019b) for focus generation.
The model is hybrid of a sequence-to-sequence
model (Sutskever et al., 2014) and a pointer net-
work (Vinyals et al., 2017). This hybrid model
allows copying words from the source text via
pointing that handles out-of-vocabulary words effi-
ciently while retaining the ability of generating new
words. The Question Decomposition dataset pro-
vided by Roberts et al. (2014) was used to train and
evaluate the focus extraction. The dataset includes
manually annotated 1496 questions.

3.2.5 Spell Correction

Consumer health questions tend to include mis-
spelled words. This can lead to many problems
in downstream question processing. A problem
unique to summarization models is that summariza-
tion models generate summaries based on words it
has seen in the dataset before. Therefore the model
may generate summaries with misspellings. To re-
duce incorrect word generation, we use Microsoft
Bing Spell Check API (Microsoft, 2016) to correct
misspelled words. This API recognizes misspelled
words in the input sentence and provides sugges-
tions with confidence scores. We replace these
words with the suggested words with the highest
confidence score.

3.3 Abstractive Summarization

We compare two different abstractive summariza-
tion models, Pointer Generator (PG) networks and
PEGASUS.

3.3.1 PEGASUS
PEGASUS (Zhang et al., 2019) is a Sequence-
to-Sequence model based on Transformer. It is
pre-trained on massive text corpora with a self-
supervised objective called Gap Sentences Gen-
eration (GSG). This objective is tailored for ab-
stractive text summarization because the authors of
PEGASUS model hypothesize that a pre-training
objective that more closely resembles the down-
stream task leads to better and faster fine-tuning
performance. In fact, PEGASUS model using this
GSG objective pre-trained on newswire C4 and
HugeNews corpora push forward state-of-the-art
models on 12 summarization tasks.

In real-world practice, to generate summaries on
a specific domain such as news, science, emails,
and patents, PEGASUS should be fine-tuned using
some supervised samples in that specific domain.
Particularly in our shared task, the biomedical ques-
tions which need summarizing are related to the
biomedical domain. To generate summarized an-
swers on the validation dataset, we use a pretrained
model that is fine-tuned on the PubMed dataset by
continuing training the model with the MedQSum
dataset to obtain a biomedical question summarizer.
Hyperparameters we used to fine-tune PEGASUS
are described in Table 1.

3.3.2 Pointer Generator Networks
We compare PEGASUS with the Pointer Genera-
tor Network described in Section 3.2.4. We train
this model with the pre-processed dataset. Pointer
Generator Networks (Ben Abacha and Demner-
Fushman, 2019b) generate summaries using 128
dimensions of word embedding trained with the
summary dataset, hidden state vectors of 256 di-
mensions, a learning rate of 0.15, and with beam
search of size 4. For our experiment, we use the
hidden vector size of 256 dimensions, learning rate
of 0.01 and 210 size of word vectors. We use pre-
trained word vectors with the size of 200. The
vectors are from BioWordVec (Yijia et al., 2019),
which are trained on PUBMED and MIMIC-III.
10 vectors are zeros and ones of Named Entities
(NE). If a word is a medical-related entity, it is set
as ones. Otherwise, it is set as zeros. The NEs
are decided using spaCy pretrained NER models.
Detailed hyperparameters are shown in Table 1.

3.4 Post-processing
For the post-processing, we employ an ensemble
learning technique. Ensemble learning aims to re-
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PG Networks PEGASUS

Dataset QD MeQSum MeQSum

LR 0.01 0.01 1e-4
Batch # 25 25 1
Training
steps - - 20 K

Beam size 8 8 8
Beam α N/A N/A 0.8
Max input 155 155 512
Max target 6 35 64
Min target 1 6 N/A

Table 1: Hyperparameters used in the PG Network
(Baseline) and PEGASUS model. In PG Networks, QD
indicates Question Decomposition Dataset used to train
the question focus model, MeQSum is used to train the
abstractive summarization model. LR is Learning Rate.
We stop training PG Networks when the loss score con-
verges less than 0.1, where the number of epochs varies
from 5K to 150K depends on the architecture of Neu-
ral Network or different input pre-processing. Thus the
epoch number is omitted for PG Networks.

duce the variance of a single model by training mul-
tiple models with different parameters or dataset
and then selecting the optimal result. This method
is widely used in predictive models (Huang et al.
2020; Dang et al. 2020).

Our ensemble method generates multiple out-
puts by training our model numerous times on the
same data. We vary the number of training steps
and create one model trained for 80,000 steps, and
another model trained for 150,000 steps. Due to
the limitation of our resources, we do not further
increase the number of steps. We consider the out-
puts of these two systems and select the optimal
output based on Equation 1. We hypothesized that
this would balance drawbacks caused by potentially
over-fitting and under-fitting the training data.

Score = α ∗ Similarity(Focus, Y )

+β ∗ Similarity(X,Y )
(1)

As mentioned, Equation 1 is used to determine
which generated output is optimal. This equation
calculates the similarity between the generated out-
put (question summary) and the given question and
the generated output and the focus of the question.
We do this because, in our error analysis, we found
frequent problems where the generated text was
syntactically and often factually correct but was the
focus of the summary was incorrect. We set α and
β set as 0.5 to equally balance the importance of
similarity between focus and question.

In Equation 1, the function Similarity() mea-
sures the similarity between two strings. X is
given question, Y is generated summary of given
question X and Focus is Focus phrase extracted
from the given question X . α and β were used to
impose the weight of each score. The Sum of α
and β is 1. We use the same method used in sec-
tion 3.2.4. We use spaCy (Honnibal et al., 2020), a
library for advanced natural language processing,
which includes state-of-the-art neural network mod-
els for similarity measures and NER. To measure
the similarities for our output, which determines
the similarity by comparing word vectors, we used
the "en_core_web_lg" model for the word vectors.
This model has 684,830 unique vectors with 300
dimensions.

4 Results

All experiments are done on Google Colab Pro
with Tesla V100 GPU, RAM 25.51 GB0, CPU of
Intel(R) Xeon(R) (2.20GHz). Pointer Generator
Networks training took up to 1 hour for both Focus
Extraction and Abstractive Summarization. To fine-
tune PEGASUS took 1.5 hours for 20K training
steps, 12 hours for 80K steps, and 23 hours for
150K steps.

4.1 Performance of the Summarization

4.1.1 Pre-processing Combination Testing
We train our models on the training dataset and
report results on the provided validation dataset
(Table 2). We withheld the test set from all model
development and hyper-parameter tuning and re-
port results in Table 3.

Accuracy is measured using Recall-Oriented Un-
derstudy for Gisting Evaluation (ROUGE) (Lin,
2004) measuring overlapping words between ref-
erence and summaries. We use ROUGE-1 (R-
1), ROUGE-2 (R-2) and ROUGE-L (R-L). R-L
refers to the longest common subsequence-based
ROUGE score, R-1 is 1-gram based, and R-2 is
bi-gram based ROUGE score.

Among all pre-processing combinations, we
found Simple1, Spell Check, De-identification, and
Sentence Exclusion applied on both validation and
training datasets produced the highest score across
all ROUGE metrics. Pre-processing with PEGA-
SUS output provides higher accuracy generally
compared to pre-processing with PG Networks.
We choose the PEGASUS model for abstractive
summarization to generate output with the official
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test dataset. During the manual evaluation, we
found not only ROUGE scores are higher with PE-
GASUS, but also outputs of PG Networks tend to
generate repetitive words within an output, while
PEGASUS outputs mostly have grammatically cor-
rect form. Scores of all 11 experiments can be
found in a Table 2.

4.1.2 Official Results
Our highest-scoring submission produced an R2-F
score of 11.14%. This submitted system consists
of 3 steps: (1) pre-processing, which corrects mis-
spelling words, removes sentences without biomed-
ical/clinical related terms, (2) abstractive summariz-
ing by PEGASUS with 150k training iteration, (3)
post-processing where we ensembled the outputs
of two systems together. System 1 was trained for
80K training steps, while system 2 was trained for
150K training steps. Our other submitted system
performed only the first two steps. No ensemble
method was used. As shown in Table 3, we see
there is an increase in performance by ensembling
the two outputs rather than relying on the output
of a single model. We used both the training and
validation dataset to train the models to generate
the summaries for the test dataset.

4.2 Performance of Focus Extraction

4.3 Performance of Focus Extraction

We measure Focus Detection with precision, re-
call, and f-measure, and Focus Generation with
ROUGE-1, ROUGE-2, and ROUGE-L. The exact
scores are shown in Table 4. Experiments No 1, 2,
and 3 are Focus Detection results, and No 4 and 5
are Focus Generation results. Model No.5 is Fo-
cus Generation using PG Network with duplicated
term removal resulted in an accuracy of 85%. We
choose the Focus Generation method over Focus
Detection, even though Focus Detection accuracy
is considerably high to avoid the possibility of not
detecting any focus, which may occur for some
questions if the NER technique were to be used.
As mentioned previously, Focus Generation will
always generate focus for every question.

5 Discussion and Future Work

We found many incorrect summaries with the
wrong focus during the experiment of different
combinations of pre-processing. For example,
given input question "I have chronic renal disease
and worry that Magnesium silicofluoride treat-

ment of moth infestation of a large living room
rug will be harmful to my health. If the rug is
treated in house how long before any toxic fumes
or skin contact would be a hazard .", PEGASUS
generated output (a) and (b):

(a) What are the side effects of silicofluoride treatment?

(b) What is the treatment for moth infestation of a rug?

In the given question, we see that the person is
concerned with the effect of Magnesium silicoflu-
oride on individuals with chronic renal disease.
Thus, the focus of the given question would be
chronic renal disease and Magnesium silicofluo-
ride. In contrast, both generated output (a) and (b)
summaries are built on incorrect focus. We believe
extracting the correct focus and studying how to
incorporate the focus would improve accuracy. In
this paper, we applied focus in the post-processing
step. We ranked the output using the Equation 1,
and then select the output with the highest score.

The limitation of Equation 1 is that the ex-
tracted focus may not be accurate. If the ex-
tracted focus is not correct, the ensemble model
may choose a non-relevant output. For example, in-
put "hydroxychloroquine for rheumatoid arthri-
tis. Can you tell me if this medication that my
doctor put me on could make me sweat profusely
at the slightest little strenuous activity I’m also
methotrexate 6 2.5 mg once a week ." gives the
following answers:

(a) Can hydroxychloroquine and methotrexate be taken
together?

(b) What are the dosage side effects and drug interactions
for rheumatoid arthritis?

The question asks if the hydroxychloroquine for
rheumatoid arthritis and methotrexate be taken
together. The generated summary (a) shows a rea-
sonably accurate answer. In contrast, the focus
extraction model assumed rheumatoid arthritis
to be a focus, which leads the model to choose
summary (b) over (a).

Despite this limitation, our experiments showed
performance improvements after applying fo-
cus detection and the ensemble method in post-
processing. The post-processing effect is limited to
the performance of the summarization model, ac-
curacy of focus for each question, and the number
of outputs from the summarization models. Due
to time limitations, we use two outputs in the en-
semble process, while typical ensemble learning
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No. Preprocessing on Training Data Preprocessing on Validation
Data

R-1 R-2 R-L

1 Simple0 - 29.69 13.23 28.91
2 - Simple1 + Deid 29.28 13.48 28.72
3 Simple1 + Deid + SE Simple1 + Deid 31.03 14.46 29.26
4 Simple1 + Deid + SE + Merge(Subject, Message) Simple1 + Deid +

Merge(Focus(FD), Question)
28.35 11.69 26.96

5 Simple1 + Deid + SE + Merge(Focus, Subject, Message) Simple1 + Deid +
Merge(Focus(FD), Question)

27.47 11.25 26.31

6 Simple1 + Spell Check + Deid + SE * 31.60 13.93 30.55
7 Simple1 + Deid + SE + Merge(Focus(FG), Question) * 28.41 11.90 26.27
8 Simple1 + Deid + SE + Merge(Focus(Gold), Question) * 26.26 10.65 25.51
9 Simple1 + Spell Check + Deid + SE + Message Only * 28.93 12.47 27.83

10 Simple1 + Spell Check + Deid + SE * 18.98 10.50 17.32
11 Simple1 + Spell Check + Deid + SE + Message Only * 19.22 10.31 18.23

Table 2: Performance testing with validation dataset. ’-’ indicates no pre-processing technique applied, ’*’ in-
dicates that the method applied for the training dataset was applied to validation data. SE is an abbreviation of
Sentence Exclusion. Deid is De-identification. Merge() is concatenating strings. FD is Focus Detection, and FG is
focus generation. Experiments 1-9 are done with PEGASUS, and 10-11 are done with PG Networks.

No. Method R1-P R1-R R1-F1 R2-P R2-R R2-F1 RL-R RL-F1

1 Pre-processing + PEGASUS (150K) 0.321 0.285 0.283 0.120 0.105 0.106 0.257 0.257

2 Pre-processing + PEGASUS (150K &
80K) + Ensemble 0.315 0.291 0.284 0.123 0.112 0.111 0.265 0.259

Table 3: Performance testing with official test dataset. Experiment 1 output is with 150K training epochs. Experi-
ment 2 were ensemble of outputs of the model trained for 80K epochs and the model trained for 150K epochs.

No. FD Method P R F

1 GRU + CNN 75.56 81.13 78.24
2 RNN + CNN 67.89 64.21 66
3 LSTM + CNN 78.79 82.21 80.47

No. FG Method R-1 R-2 R-L

4 PG 0.64 0.37 0.63
5 PG-duplicates 0.85 0.58 0.84

Table 4: Performance of Focus Extraction. Experiment
No 1, 2, 3 are the results of Focus Detection and Ex-
periment No 4 and 5 are results of Focus Generation.
PG is short for PG Network and PG-duplicates is PG
Network with removal of duplicated terms in generated
output.

models use considerably larger numbers than 2.
Thus, we believe there is a significant potential im-
provement by investigating: 1) Methods to generate
more trained models with different parameters and
datasets 2) Method to generate multiple models
with less training time 3) Method to increase the
performance of the focus extraction 4) Develop
better methods for incorporating question focus
information into the summary generation system.
The current ensemble method is applied at a fairly
late stage in the process. Study the effect of incor-
porating ensembling as early as the training step is

an area of exploration.

6 Conclusion

In this paper, we present our Question Summariza-
tion system for Consumer Health Questions(CHQ).
We explored effect of multiple pre-processing meth-
ods (De-Identification, Sentence Exclusion and Fo-
cus Extraction) and on state-of-art Abstractive Sum-
marization. Our results show the best F-measure
score of 11.14% through applying Ensemble Learn-
ing to different combinations of the pre-processing
outputs. In our analysis, we identified future di-
rections, including investigating the use of Ex-
tracted Focus, Ensemble Learning for the gener-
ative model.

References
Asma Ben Abacha and Dina Demner-Fushman. 2019a.

On the role of question summarization and informa-
tion source restriction in consumer health question
answering. AMIA Joint Summits on Translational
Science proceedings. AMIA Joint Summits on Trans-
lational Science, 2019:117–126.

Asma Ben Abacha and Dina Demner-Fushman. 2019b.
On the summarization of consumer health questions.
In Proceedings of the 57th Annual Meeting of the

326



Association for Computational Linguistics, pages
2228–2234, Florence, Italy. Association for Compu-
tational Linguistics.

Asma Ben Abacha and Dina Demner-Fushman. 2019.
A question-entailment approach to question answer-
ing. CoRR, abs/1901.08079.

Asma Ben Abacha, Yassine Mrabet, Yuhao Zhang,
Chaitanya Shivade, Curtis Langlotz, and Dina
Demner-Fushman. 2021. Overview of the mediqa
2021 shared task on summarization in the med-
ical domain. In Proceedings of the 20th SIG-
BioMed Workshop on Biomedical Language Pro-
cessing, NAACL-BioNLP 2021. Association for
Computational Linguistics.

José Camacho-Collados and Mohammad Taher Pile-
hvar. 2017. On the role of text preprocessing in neu-
ral network architectures: An evaluation study on
text categorization and sentiment analysis. CoRR,
abs/1707.01780.

Jason P. C. Chiu and Eric Nichols. 2015. Named en-
tity recognition with bidirectional lstm-cnns. CoRR,
abs/1511.08308.

Huong Dang, Kahyun Lee, Sam Henry, and Özlem
Uzuner. 2020. Ensemble BERT for classifying
medication-mentioning tweets. In Proceedings of
the Fifth Social Media Mining for Health Appli-
cations Workshop & Shared Task, pages 37–41,
Barcelona, Spain (Online). Association for Compu-
tational Linguistics.

Dina Demner-Fushman, Yassine Mrabet, and Asma
Ben Abacha. 2019. Consumer health information
and question answering: helping consumers find
answers to their health-related information needs.
Journal of the American Medical Informatics Asso-
ciation : JAMIA, 27.

Som Gupta and S. K Gupta. 2019. Abstractive summa-
rization: An overview of the state of the art. Expert
Systems with Applications, 121:49–65.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Tongwen Huang, Qingyun She, and Junlin Zhang.
2020. Boostingbert:integrating multi-class boosting
into bert for nlp tasks.

Fatemah Husain, Jooyeon Lee, Sam Henry, and Ozlem
Uzuner. 2020. SalamNET at SemEval-2020 task
12: Deep learning approach for Arabic offensive
language detection. In Proceedings of the Four-
teenth Workshop on Semantic Evaluation, pages
2133–2139, Barcelona (online). International Com-
mittee for Computational Linguistics.

Chandra Khatri, Gyanit Singh, and Nish Parikh. 2018.
Abstractive and extractive text summarization using
document context vector and recurrent neural net-
works. CoRR, abs/1807.08000.

Veysel Kocaman and David Talby. 2021. Spark nlp:
Natural language understanding at scale.

Panagiotis Kouris, Georgios Alexandridis, and Andreas
Stafylopatis. 2019. Abstractive text summarization
based on deep learning and semantic content gener-
alization. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5082–5092, Florence, Italy. Association for
Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Microsoft. 2016. Bing spell check.

J. Niu, H. Chen, Q. Zhao, L. Su, and M. Atiquzzaman.
2017. Multi-document abstractive summarization
using chunk-graph and recurrent neural network. In
2017 IEEE International Conference on Communi-
cations (ICC), pages 1–6.

Kirk Roberts, Halil Kilicoglu, Marcelo Fiszman, and
Dina Demner-Fushman. 2014. Decomposing con-
sumer health questions. In Proceedings of BioNLP
2014, pages 29–37, Baltimore, Maryland. Associa-
tion for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. CoRR, abs/1704.04368.

Amber Stubbs and Özlem Uzuner. 2015. Annotating
risk factors for heart disease in clinical narratives for
diabetic patients. Journal of biomedical informatics,
58 Suppl:S78—91.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2017. Pointer networks.

Zhang Yijia, Qingyu Chen, Zhihao Yang, Hongfei
Lin, and Zhiyong lu. 2019. Biowordvec, improv-
ing biomedical word embeddings with subword in-
formation and mesh. Scientific Data, 6.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. PEGASUS: pre-training with ex-
tracted gap-sentences for abstractive summarization.
CoRR, abs/1912.08777.

Yuhao Zhang, Yuhui Zhang, Peng Qi, Christo-
pher D. Manning, and Curtis P. Langlotz. 2020.
Biomedical and clinical english model packages
in the stanza python nlp library. arXiv preprint
arXiv:2007.14640.

327



Proceedings of the BioNLP 2021 workshop, pages 328–335
June 11, 2021. ©2021 Association for Computational Linguistics

UETfishes at MEDIQA 2021: Standing-on-the-Shoulders-of-Giants Model
for Abstractive Multi-answer Summarization

Hoang-Quynh Le1, Quoc-An Nguyen1, Quoc-Hung Duong1, Minh-Quang Nguyen1

Huy-Son Nguyen1, Tam Doan Thanh2, Hai-Yen Thi Vuong1 and Trang M. Nguyen1

1VNU University of Engineering and Technology, Hanoi, Vietnam.
{lhquynh, 18020106, 18020021, 19020405}@vnu.edu.vn

{18021102, yenvth, trangntm}@vnu.edu.vn
2doanthanhtam283@gmail.com

Abstract

This paper describes a system developed to
summarize multiple answers challenge in the
MEDIQA 2021 shared task collocated with
the BioNLP 2021 Workshop. We present
an abstractive summarization model based
on BART, a denoising auto-encoder for pre-
training sequence-to-sequence models. As
focusing on the summarization of answers
to consumer health questions, we propose a
query-driven filtering phase to choose useful
information from the input document automat-
ically. Our approach achieves potential results,
rank no.2 (evaluated on extractive references)
and no.3 (evaluated on abstractive references)
in the final evaluation.

1 Introduction

In the past several decades, biomedicine and hu-
man health care have become one of the major
service industries. They have been receiving in-
creasing attention from the research community
and the whole society. The rapid growth of volume
and variety of biomedical scientific data make it an
exemplary case of big data (Soto et al., 2019). It is
an unprecedented opportunity to explore biomedi-
cal science and an enormous challenge when fac-
ing a massive amount of unstructured and semi-
structured data. The development of search engines
and question answering systems has assisted us in
retrieving information. However, most biomedi-
cal retrieved knowledge comes from unstructured
text form. Without considerable medical knowl-
edge, the consumer is not always able to judge the
correctness and relevance of the content (Savery
et al., 2020). It also takes too much time and labour
to process the whole content of these documents
rather than extracting the useful compressed con-
tent. Automatic summarization is a challenging
application of biomedical natural language process-
ing. It generates a concise description that cap-
tures the salient details (called summary) from a

more complex source of information (Mishra et al.,
2014). Summarization can be particularly bene-
ficial for helping people easily access electronic
health information from search engine and ques-
tion answering systems.

MEDIQA 20211 (Ben Abacha et al., 2021) tack-
les three summarization tasks in the medical do-
main. Task 2- Summarization of Multiple An-
swers challenge aims to promote the development
of multi-answer summarization approaches that
could simultaneously solve the aggregation and
summarization problems posed by multiple rele-
vant answers to a medical question.

There are two approaches to summarization: ex-
tractive and abstractive. Extractive summarization,
i.e., choose important sentences from the original
text, is extensively researched but have several lim-
itations: (i) it is unable to keep the coherence of
the answer, (ii) the information compressed may
be incomplete because information may take many
sentences to expose, and (iii) it must include non-
relevant part of a relevant sentence. Recently, the
research has shifted towards more promising ap-
proaches, i.e. abstractive summarization, which
can overcome these problems give higher preci-
sion than extractive summaries (Gupta and Gupta,
2019). Abstractive text summarization is the task
of generating a short and concise summary that cap-
tures the salient ideas of the source text. The gen-
erated summaries potentially contain new phrases
and sentences that may not appear in the source
text. Abstractive summarization helps resolve the
dangling anaphora problem and thus helps gener-
ate readable, concise and cohesive summaries. In
abstractive summary, we can merge several relate
sentences or make them shorter, i.e., removing the
redundancy part.

Our proposed model for the multi-answer sum-
marization task follows abstractive summarization

1https://sites.google.com/view/
mediqa2021
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approaches. We try to process original answers
as a shorter representation while preserving in-
formation content and overall meaning. We take
advantage of BART, a pre-trained model combin-
ing bidirectional and auto-regressive transformers
(Lewis et al., 2020). We construct an architecture
with two filtering phases to choose the more con-
cise input for BART. Since the summary should
be question-oriented, the coarse-grained filtering
phase removes question-irrelevant sentences. The
fine-grained filtering phase is then used to cut-off
noise phases.

The remaining of this paper is organized as fol-
lows: Section 2 gives brief introduction of some
state-of-the-art related work. Section 3 describes
task data and our proposed model. Section 4 is
the experimental results and our discussion. And
finally, the Conclusion.

2 Related work

Because of the complexity of natural language, ab-
stractive summarization is a challenging task and
has only been of interest in recent years. Gerani
et al. (2014) proposed an abstractive summariza-
tion system for product reviews by taking advan-
tage of their discourse tree structure. A impor-
tant subgraph in the discourse tree were then se-
lected by using PageRank algorithm. A natural
language summary was then generated by applying
a template-based NLG framework.

According to current research trends, witnessing
the success of deep learning in other NLP tasks, re-
searchers have started considering this framework
as an promising solution for abstractive summa-
rization. Nallapati et al. (2016) used an atten-
tional encoder-decoder recurrent neural networks
and several models such as key-words modeling,
sentence-to-word hierarchy structure, and emitting
rare words, etc. Song et al. (2019) proposed an
LSTM-CNN based ATS model to construct new
sentences by exploring fine-grained phrases from
source sentences (of CNN and DailyMail) and
combining them. Gehrmann et al. (2018) used
a bottom-up attention technique to improve the
deep learning model by over-determining phrases
in a source document that should be part of the
summary. Inspired by the successful application of
deep learning methods for machine translation, ab-
stractive text summarization is specifically framed
as a sequence-to-sequence learning task. BART is
a transformer-based pretrained denoising encoder-

decoder model that is applicable to a very wide
range of end tasks, includes summarization. It com-
bines a bidirectional encoder and an auto-regressive
decoder (Lewis et al., 2020). There are several
BART-based model, example includes DistilBart2

and Question-driven BART (Savery et al., 2020).
Question-driven BART re-trained BART on ob-
jectives designed to improve its general ability to
understand the content of text (including document
rotation, sentence permutation, text-infilling, to-
ken masking and token deletion) and fine-tuned
the model for biomedical data. Another recently
published abstractive summarization framework is
PEGASUS (Zhang et al., 2020), it masks impor-
tant sentences and generates those gap-sentences
from the rest of the document as an additional pre-
training objective.

3 Materials and Methods

3.1 Shared task data
The shared task suggested to use the MEDIQA-
AnS Dataset (Savery et al., 2020) as the training
Data. The validation and test sets includes the orig-
inal answers are generated by the medical question
answering system system CHiQA3 . In these data
sets, extractive and abstractive summaries are man-
ually created by medical experts. Table 1 gives our
statistics on the given datasets (see (Ben Abacha
et al., 2021) for detailed description of shared task
data).

Table 1: Statistics of the datasets.

Statics aspects Training Valid-
ation TestArticle Section

Question 156 156 50 80
Average
A per Q 3.54 3.54 3.85 3.80
T per A 152.35 532.83 219.44 240.22
T per SSum 70.51 70.51 - -
T per MSum 119.04 119.04 81.18 -
Compression radio
SSum 0.07 0.32 - -
MSum 0.04 0.13 0.15 -

A: Answer, Q: Question, T: Token
SSum: Single-answer summary,
MSum: Multi-answer summary.

3.2 Proposed model
As a team participating in MEDIQA - Task 2,
we proposed an abstractive summarization sys-

2https://huggingface.co/sshleifer/
DistilBart-cnn-12-6

3https://chiqa.nlm.nih.gov
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Figure 1: The proposed ‘Standing-on-the-Shoulders-of-Giants’ model.

tem based on BART - the denoising sequence-to-
sequence model. We designate this as a ‘Standing-
on-the-Shoulders-of-Giants’ (SSG) model because
BART is the recently state-of-the-art model for ab-
stractive summarization task. To improve the per-
formance, we propose to apply two filtering phases
to make the condensed question-driven input for
BART. In addition, the BART-based model only
receives a limited length document (with 1024 to-
kens), and our original input is too large to fit. Our
model requires a cut-off strategy to reduce length.
The overall architecture of the system is described
in Figure 1 which includes five main phrases: pre-
processing, coarse-grained filtering, fine-grained
filtering phase and BART-based summary genera-
tion.

3.2.1 Pre-processing

The pre-processing phase receives question Q and
a set of corresponding answers (documents) D =
{di}ni=1 as the input. The pre-processing phase
removes html tags, non-utf-8 characters and re-
dundant signs/spaces. scispaCy (Neumann et al.,
2019), a powerful tool for biomedical natural lan-
guage processing, is also used for the typical pre-
processing steps (i.e. segmentation and tokeniza-

tion).

3.2.2 Coarse-grained filtering

The original BART summarizes a text by gener-
ating a shorter text with the same semantic. It
processes all information with the same priority
and does not take the question into account. There-
fore, its output may lose the function of answering
the question. We orient BART to question-driven
by filtering out less valuable sentences, increasing
the rate of question-related sentences in the BART
input. There are two strategy to choose sentences
that are highly related to the questions:

(i) Top-n query-driven sentences: The main
idea of this method is to choose sentences that
most likely can answer the questions. We calculate
the cosine similarity between two bioBERT embed-
ding vectors (Lee et al., 2020) of the question and
each sentence. We assume that the sentence with
higher cosine similarity might be a good answer for
the question. The top-n sentences of each answer
with the highest scores are kept with their original
orders.

(ii) Top-n query-driven passages: Some pas-
sages are structured in an deductive manner (e.g.,
several explanatory sentences follow after a stated
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sentence) or inductive (e.g., the last sentence is the
conclusion of previous sentences). Extracting these
whole text pieces may help an important sentence
have some adjacent sentences to clarify or sup-
port it, making it more coherence and informative.
There are three factors to determine an important
passage:

• Central sentence: A passage is chosen if and
only if it has at least one sentence likely an-
swering the question. Cosine similarity with
BioBERT embedding vector is used to find
these sentences.

• Passage length: A passage must not exceed k
sentences.

• Break point: If the similarity between two
adjacent sentences is lower than a pre-defined
threshold, a breakpoint is addressed.

• Passage score: is calculated by the sum of its
sentences similarity scores.

Top-n best passages are then combined with
their original order.

In addition to two aforementioned strategies, we
also use two other simple strategies as the baseline:

(iii) n first sentences: Taking n first sentences
from each answers.

(iv) n random sentences: Taking n random sen-
tences from each answers.

In which, the number of passages/sentences is
not limited which satisfies that the whole length of
final document is fit of smaller than the allowed
input size of BART model. It should take as much
information as possible.

3.2.3 Fine-grained filtering
The nature of BART is to convert one piece of text
into another with the same semantics. If the input
contains too much noise and is difficult to under-
stand, it may negatively affect the output quality.
Therefore, we try to filter out the noise phrases to
get the most concise input to BART, thereby getting
better results. Through the data surveying, there are
two approaches to reduce noises and ambiguous
information:

(i) Biomedical text uses many abbreviations, of
which many do not follow a standard convention
and are only used locally within the scope of au-
thors’ articles. Unfortunately, these local abbre-
viations might be the keywords and lead to the
ambiguous to the system. We identify and generate

the full form of all local abbreviation use the Ab3P
tool (Sohn et al., 2008).

(ii) we apply some rules to cut redundant ele-
ments of sentences. Examples include:

• Cut-off listed text that follows ‘such as’.

• Cut-off text that follows ‘for example’.

• Cut-off text that appears in the brackets ().

• Cut-off text that follows a colon and is not in
enumerated form.

3.2.4 BART-based summary generation
All sentences are selected and cut-off from afore-
mentioned filtering phases are then combined into
a single document. This is the input to the BART-
based summary generation phase.

BART is implemented as a standard sequence-to-
sequence Transformer-based model. It is a denois-
ing autoencoder that maps a corrupted document
to the original document it was derived from (Lee
et al., 2020). Special power of this model is that it
can map the input string and output string with dif-
ferent lengths. BART consists of two components:
Encoder and Decoder that combines the advantages
of BERT and GPT.

Encoder: BART uses a bidirectional encoder
over corrupted text taken from BERT (Devlin et al.,
2019). As the strength of BERT lies in capturing
two-dimensional contexts, BART can encode the
input string in both directions and get more context
information. In the abstractive text summarization
problem, the input sequence is the collection of all
token in the answers. Each word is represented by
xt, where i is its ordinal. The ht hidden states are
calculated with the formula:

ht = f(W hh · ht−1 +W hx · xt) (1)

in which, the hidden states are computed by the
corresponding input xt and the previous hidden
state ht−1. Encoder vector is the hidden state at the
end of the string, calculated by the encoder. It then
acts as the first hidden state of the decoder.

Decoder: BART uses a left-to-right auto-
regressive decoder. Its decoder is similar to
GPT (Radford et al.) with the capability of self-
regression, can be used to reconstruct the input
noise. A stack of subnets is the element of the
RNN that predicts the output yt at time t. Each of
these words takes input as the previously hidden
state and produces its own output and hidden state.
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For the abstractive text summarization problem, the
output sequence is the set of words of the summa-
rized answer. Each word is represented by yt where
i is the word order. The hidden state is calculated
by the preceding state. So, the hi hidden states are
calculated by the formula:

ht = f(W hh · ht−1) (2)

We compute the output using the corresponding
latency at the present time and multiply it by the
corresponding weight WS . Softmax is used to cre-
ate a probability vector that helps us to determine
the final output. The output yt are calculated by the
formula:

yt = softmax(WS · ht) (3)

BART uses Beam Search algorithm for decoding.

4 Experimental results

4.1 Evaluation metrics
We adopt the official task evaluations with ROUGE
scores (Lin and Och, 2004) including ROUGE-1,
ROUGE-2 and ROUGE-L. ROUGE-n Recall (R),
Precision (P ) and F1 between predicted summary
and referenced summary are calculated as in For-
mular 4, 5 and 8, respectively. Choosing correct
sentences help to increase ROUGE-n R and P .

ROUGE-n P =
|Matched N-grams|

|Predict summary N-grams|
(4)

ROUGE-n R =
|Matched N-grams|

|Reference summary N-grams|
(5)

ROUGE-L P =
Length of the LCS

|Predict summary tokens| (6)

ROUGE-L R =
Length of the LCS

|Reference summary tokens|
(7)

ROUGE-L recall (R), precision (P ) and F1 are
calculated as in Formular 6, 7 and 8, respec-
tively. ROUGE-L uses the Longest Common Sub-
sequence (LCS) between predicted summary and
referenced summary and normalized by the tokens
in summary.

F1 = 2× R× R
P + R

(8)

4.2 Comparative models
We use the official results of the MEDIQA shared
task as a comparison to other participated teams
on the multi-answer summarization task. For a fur-
ther comparison, we also make the comparisons
with three state-of-the-art abstractive summariza-
tion models:

• The orginal BART (Lewis et al., 2020).

• DistilBart4: A very effective model for text
generation task release by HuggingFace.

• PEGASUS (Zhang et al., 2020) is state-of-the-
art abstractive summarization model provided
by Google AI.

4.3 Task final results and comparison
Based on the experimental results on the validation
set, we choose top-n query-driven passages as a
coarse-grained filter to run our official output. In
our model, Beam Search uses beamwidth = 5 and
uses sampling instead of greedy decoding. Beam
Search is stopped when at least 5 sentences finished
per batch. After two filtering phases, the input often
have 10-15 sentences and less than 1024 tokens.
On average, the total token in a summary is equal
to ∼75% of the number of tokens in the BART
input.

4.3.1 Official results of the multi-answer
abstractive summarization

Table 2 show the shared task official results of ac-
cepted competitors. ROUGE-2 F1 is used as the
main metric to rank the participating teams. We
also show several other evaluation metrics for fur-
ther comparison: ROUGE-1 F1, ROUGE-L F1,
HOMLS F1 and BERT-based F1. The organizers
offer two rankings, one on the extractive references,
the other on the abstractive references. Evaluated
on extractive references, our team is the runner-up.
On the evaluation using abstractive references, we
ranked third.

4.3.2 Comparison with other state-of-the-art
models

Table 3 shows the comparison between our pro-
posed model and two other state-of-the-art text gen-
eration models, i.e., DistilBart and Pegasus. Our
SSG model yields much better results than Distil-
Bart and PEGASUS in this data. Since both models

4https://huggingface.co/sshleifer/
distilbart-cnn-12-6
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Table 2: Official results of the MEDIQA 2021: Task 2 - Multi-Answer Summarization

Team ROUGE-1
F1

ROUGE-2
F1

ROUGE-L
F1 HOLMS BERTscore

F1
Evaluated on extractive references
paht_nlp 0.585 0.508 0.436 0.554 0.653
UETfishes 0.572 0.470 0.400 0.520 0.646
UCSD-Adobe 0.592 0.460 0.417 0.493 0.632
yamr 0.516 0.445 0.384 0.536 0.636
I_have_no_flash 0.523 0.422 0.360 0.542 0.615
Evaluated on abstractive references
paht_nlp 0.386 0.162 0.232 0.554 0.653
UCSD-Adobe 0.384 0.160 0.212 0.494 0.632
UETfishes 0.381 0.147 0.202 0.520 0.647
I_have_no_flash 0.384 0.133 0.222 0.478 0.615
yamr 0.271 0.131 0.160 0.388 0.636

Only show results of top-5 participated teams for each type of evaluation.
The highest results in each column are highlighted in bold.

Table 3: Comparison with other state-of-the-art mod-
els.

Model ROUGE-2
P R F1

DistilBART 0.0825 0.1031 0.0874
Pegasus 0.0401 0.0597 0.0450
Our SSG 0.0977 0.1274 0.1062
All results are reported on the validation data set.

are very strong competitors, our higher outcome
may because they are not suitable with the charac-
teristics of the data (biomedical domain, question-
driven answers).

4.4 Contribution of model components

We study the contribution of each model compo-
nent to the system performance by ablating each of
them in turn from the model and afterwards evalu-
ating the model on the validation set. We compare
these experimental results with the full system re-
sults and then illustrate the changes of ROUGE-2
F1 in Figure 2. The changes of ROUGE-2 F1
show that all model components help the system to
boost its performance (in terms of the increments in
ROUGE-2 F1). The contribution, however, varies
among components. The coarse-grained filtering
phase has the biggest contribution, while abbrevia-
tion processing and cut-off rules of the fine-grained
phase bring very small effectiveness. We also inves-
tigate the effectiveness of components/configures
in the BART-based summary generation. Compo-
nents that have a pronounced effect on the result
are shown in Figure 2 : Preventing 3-gram repeater,
sampling, early stopping and beam search. Pre-

venting 3-gram repeater and using sampling also
improves results.

(Fine-grained)
Cut-off rules

(Fine-grained)
Abbreviation

Coarse-grained 
filtering

0 0.01 0.02 0.03 0.04 0.05
ROUGE-2 F1 reduction (%)

(BART)
Early stopping

(BART)
Sampling

(BART) Preventing 
3-gram repeater

(BART)
Beam search

Figure 2: Ablation test results for model components.

Considering the results of three different ap-
proaches in the coarse-grained filtering phase (Fig-
ure 3), top-n question-driven passage seems the
most promised way. Other approaches do not take
advantages of the semantic relation between ad-
jacent sentences, which leads to losing important
information.

4.5 Error analysis

In order to improve the proposed model, we have
analyzed the output on the validation set to find
out problems that need to be taken into account.
All the evidence points to five biggest problems,
including content generalization, synonyms and
antonyms, paraphrasing, cosine similarity problem,
and aggressive cut-out strategy.
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Figure 3: Comparison of different coarse-grained filter-
ing strategies based on ROUGE-2 scores.

The biggest problem with our proposal model
and other text summary models is the generaliza-
tion of the input content. In particular, for the
answer summary system, this issue is emphasized
more and more. The responses may contain a va-
riety of content related to the directional question.
However, the summary should draw conclusions
to answer that question. For example, in Ques-
tion #22, to answer the question ‘Is it safe to have
ultrasound with a defibrillator?’, our model per-
formed well that carried out the summary ‘Most of
the time, ultrasound procedures do not cause dis-
comfort. The conducting gel may feel a little cold
and wet. Current ultrasound techniques appear
to be safe.’ However, the expected outcome was

‘There are no known risks or contraindications for
ultrasound tests.’ For which, our model gets a 0.0
ROUGE-2 F1 score for this example.

Another problem is that golden data depends on
the style and language usage of the abstractor. The
writer may use different expressions, synonyms,
antonyms to paraphrase and summarise, leading to
the inconsistency of ground truth data. Take Ques-

tion #8 for example, the sentence ‘This treatment
leads to remission in 80% to 90% of patients’ is
paraphrased into ‘Remission is possible in up to
90% of the patients.’

The analysis process also raises some imperfec-
tions of the proposed model in sentence selection
and sentence cutting strategies. Cosine similar-
ity metric does not really perform well with doc-
uments containing many sentences. In particular,
many sentences contain important content but do
not have high similarity to the question. Besides,
fine-grained filtering strategies also filter some im-
portant information in the sentence. We leave these
problems to be addressed in future work.

5 Conclusion

This paper presents a systematic study of our ab-
stractive approach to question-driven summariza-
tion problem, specifically depending on MEDIQA
2021 - Task 2: Multi-answer summarization. We
present a model improved and optimized based on
BART - a state-of-the-art method for abstractive
summarization called SSG (Standing on the shoul-
ders of giants). The proposed model has a potential
performance, being the runner-up of the shared
task. Our best performance achieved a ROUGE-2
F1 is 0.470 evaluated on extractive summarization
references and 0.147 evaluated on abstractive sum-
marization references .

Experiments were also carried out to verify the
rationality and impact of model components and
the compressed ratio. The results demonstrated
the contribution and robustness of all techniques
and hyper-parameters. Besides, the error analy-
sis was made to analyze the sources of the errors.
The evidence pointed out some imperfection of
the sentence selecting strategy, the ranking score
combination, and the question analyzer. In further
works, there could be several ways: applying ma-
chine learning model, deeply question-analyzing,
sentence clustering, etc. applied to extend the abil-
ity of the model.

Our source code will be released publicly to sup-
port the reproducibility of our work and facilitate
other related studies.
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