ICT’s System for AutoSimTrans 2021:
Robust Char-Level Simultaneous Translation

Shaolei Zhang ', Yang Feng

1,2%

'Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)
2 University of Chinese Academy of Sciences, Beijing, China
{zhangshaolei20z, fengyang} @ ict.ac.cn

Abstract

Simultaneous translation (ST) outputs the
translation simultaneously while reading the
input sentence, which is an important compo-
nent of simultaneous interpretation. In this
paper, we describe our submitted ST system,
which won the first place in the streaming tran-
scription input track of the Chinese-English
translation task of AutoSimTrans 2021. Aim-
ing at the robustness of ST, we first pro-
pose char-level simultaneous translation and
applied wait-k policy on it. Meanwhile, we
apply two data processing methods and com-
bine two training methods for domain adapta-
tion. Our method enhance the ST model with
stronger robustness and domain adaptability.
Experiments on streaming transcription show
that our method outperforms the baseline at all
latency, especially at low latency, the proposed
method improves about 6 BLEU. Besides, ab-
lation studies we conduct verify the effective-
ness of each module in the proposed method.

1 Introduction

Automatic simultaneous translation (ST) (Cho and
Esipova, 2016; Gu et al., 2017; Ma et al., 2019), a
task in machine translation (MT), aims to output the
target translation while reading the source sentence.
The standard machine translation is a full-sentence
MT, which waits for the complete source input and
then starts translation. The huge latency caused
by full-sentence MT is unacceptable in many real-
time scenarios. On the contrary, ST is widely used
in real simultaneous speech translation scenarios,
such as simultaneous interpretation, synchronized
subtitles, and live broadcasting.

Previous methods (Ma et al., 2019; Arivazha-
gan et al., 2019) for ST are all evaluated on the
existing full-sentence MT parallel corpus, ignor-
ing the real speech translation scenario. In the
real scene, the paradigm of simultaneous interpre-
tation is Automatic Speech Recognition (ASR) —

* Corresponding author: Yang Feng.

1

simultaneous translation (ST) — Text-to-Speech
Synthesis (TTS), in which these three parts are all
carried out simultaneously. As a downstream task
of simultaneous ASR, the input of ST is always not
exactly correct and in the spoken language domain.
Thus, robustness and domain adaptability become
two challenges for the ST system.

For robustness, since the input of the ST system
is ASR result (streaming transcription), which is in-
cremental and may be unsegmented or incorrectly
segmented, the subword-level segmentation result
(Ma et al., 2019) of the streaming transcription
seriously affect the ST result. Existing methods
(Li et al., 2020) often remove the last token after
segmentation to prevent it from being incomplete,
which leads to a considerable increase in latency.
Table 1 shows an example of the tokenization result
of the streaming transcription input with different
methods. In steps 4-7 of standard wait-2, the input
prefix is different from its previous step, while the
previous output prefix is not allowed to be modi-
fied in ST, which leads to serious translation errors.
Although removing the last token improves the ro-
bustness, there is no new input in many consecutive
steps, which greatly increases the latency.

For domain adaptability, the existing spoken lan-
guage domain corpus is lacking, while the general
domain corpus for MT and the spoken language
domain corpus for ST are quite different in terms of
word order, punctuation and modal particles, so ST
needs to efficiently complete the domain adaption.

In our system, we propose a Char-Level Wait-k
Policy for simultaneous translation, which is more
robust with streaming transcription input. Besides,
we apply data augmentation and combine two train-
ing methods to train the model to complete do-
main adaptation. Specifically, the source of the
char-level wait-k policy is a character sequence seg-
mented according to characters, and the target still
maintains subword-level segmentation and BPE op-
erations (Sennrich et al., 2016). When decoding,

Proceedings of the 2nd Workshop on Automatic Simultaneous Translation, pages 1-11
June 10, 2021. ©2021 Association for Computational Linguistics

Streaming Tokenization of Streaming. Transcription Input _
Transcription Standard Wait-2 Standard Wait-2 Char-Level Wait-2
Remove Last Token (Ours)
thy
fib 2 it/ 5%/ i/ it/ 5%/
il =2 B fth /52 1B/ it/ 52 / > Delay | fifh/ &/ /
2R fit/ 2 /B X | bR > Delay | /52 /8 /587
2R A it/ 52 /B AE X | A /52 > Delay | /& /8 /58147
fRBTFEY) | M R I R L X | AR R fih/ 2 B3I EE 11
MR | AR /TR | R B A B MR B

Table 1: An example of the tokenization result of standard wait-k, standard wait-k+remove last token and char-
level wait-k, when dealing with streaming transcription input (take ¥ = 2 as an example). Red mark: the source
prefix changes during streaming input. Green mark: no input in consecutive steps since the last token is removed.

the char-level wait-k policy first waits for k£ source
characters, then alternately reads a character, and
outputs a target subword. Table 1 shows the to-
kenization results of the char-level wait-k policy,
which not only guarantees the stability of the in-
put prefix but also avoids unnecessary latency. To
adapt to the spoken language domain, we first pre-
train an ST model on the general domain corpus
and perform fine-tuning on the spoken language do-
main corpus. To improve the effect and efficiency
of domain adaptation, we carry out data augmenta-
tion on both the general domain corpus and spoken
language domain corpus and combine two different
training methods for training.

In the streaming transcription track for the Chi-
nese — English translation task of AutoSimTrans
2021, we evaluate the proposed method on the real
speech corpus (Zhang et al., 2021). Our method
exceeds the baseline model at all latency and per-
forms more prominently at lower latency.

Our contributions can be summarized as follows:

* To our best knowledge, we are the first to
propose char-level simultaneous translation,
which is more robust when dealing with real
streaming input.

* We apply data augmentation and incorporate
two training methods, which effectively im-
prove the domain adaptation and overcome
the shortage of spoken language corpus.

2 Task Description

We participated in the streaming transcription in-
put track of the Chinese-English translation task
of AutoSimTrans 2021 !. An example of the task

'nttps://autosimtrans.github.io/shared

Streaming Transcript

‘ Translation

WOH AR F K ENXE

Table 2: An example of streaming transcription output
track of the Chinese-English translation task.

is shown in Table 2. Streaming transcription is
manually transcribed without word segmentation.
Between each step, the source input adds one more
character. The task applies AL and BLEU respec-
tively to evaluate the latency and translation quality
of the submitted system.

3 Background

Our system is based on a variant of wait-k policy
(Ma et al., 2019), so we first briefly introduce wait-
k policy and its training method.

Wait-k policy refers to waiting for k source to-
kens first, and then reading and writing alternately,
i.e., the output always delays k tokens after the
input. As shown by ‘standard wait-k policy’ in
Figure 1, if k£ = 2, the first target token was output
after reading 2 source tokens, and then output a
target token as soon as a source token is read.

Define g (t) as a monotonic non-decreasing func-
tion of ¢, which represents the number of source

https://autosimtrans.github.io/shared

tokens read in when outputting the target token ;.
For the wait-k policy, g () is calculated as:

g(t)=min{k+t—-1,|x|},t=1,2,--- (1)

where x is the input subword sequence.

Wait-k policy is trained with “prefix-to-prefix
framework. In “prefix-to-prefix” framework, when
generating the t*" target word, the source tokens
participating in encoder is limited to less than g ().

LR

4 Methods

To improve the robustness and domain adaptability
of ST, we enhance our system from read / write
policy, data processing and training methods re-
spectively.

4.1 Char-Level Wait-k Policy

To enhance the robustness of dealing with stream-
ing transcription, we first proposed char-level si-
multaneous translation and applied the wait-k pol-
icy on it.

4.1.1 Char-Level Simultaneous Translation

Character-level neural machine translation (Ling
et al., 2015; Lee et al., 2017; Cherry et al., 2018;
Gao et al., 2020) tokenizes the source sentence and
target sentence according to characters, thereby
gaining advantages over subword-level neural ma-
chine translation in some specific aspects, such
as avoiding out-of-vocabulary problems (Passban
et al., 2018) and errors caused by subword-level
segmentation (Tang et al., 2020). In terms of trans-
lation quality, the character-level MT is still dif-
ficult to compare with the subword-level MT. An
important reason is that only one wrong generated
character will directly cause the entire target word
wrong (Sennrich, 2017).

To improve the robustness of the ST system
when dealing with unsegmented incremental input,
while avoiding the performance degradation caused
by character-level MT, we propose char-level si-
multaneous translation, which is more suitable for
streaming input. The framework of char-level ST
is shown in the lower part of Figure 1.

Different from subword-level ST, given the par-
allel sentence pair < X,Y >, the source of the ST
model in the proposed char-level ST is the charac-
ter sequence ¢ = (¢, - - , ¢,) after char-level tok-
enization, and the target is the subword sequence
y = (y1, - ,ym) after word segmentation and
BPE (Sennrich et al., 2016), where n and m are the
source and target sequence lengths respectively.

Standard wait-k policy:

Subword-level

streamin
input ﬂ 3 HUN@@H IT H R4 }

wait for k tokensl l

WelcomeH to HconcernH UNIT Hsystem

Char-level wait-k policy:

Char-level
streamin,
input j‘ b H H H E H UNIT H H }
wait for k tokensl l l
{WelcomeH to HconcernH UNIT Hsystem

Figure 1: Standard wait-k policy vs. our char-level
wait-k policy (take & = 2 as an example).

s “Predict

The word segmentation and BPE operation at
the target end are the same as subword-level MT
(Vaswani et al., 2017), and char-level tokenization
is similar to character-level MT (Yang et al., 2016;
Nikolov et al., 2018; Saunders et al., 2020) but not
completely consistent. The char-level tokenization
we proposed divides each source language char-
acter into a token, and other characters (such as
numbers, other language characters) are still di-
vided into a token according to complete words.
An example of char-level tokenization is shown in
Table 3. In the result of char-level tokenization,
each Chinese character is divided into a token, and
the number (12) and English (UNIT) are entirely
taken as a token, respectively. Char-level tokeniza-
tion is more suitable for streaming transcription,
which ensures that the newly input content at each
step in streaming transcription is a complete token,
and the input prefix does not change in any way.
The robustness of char-level ST is greatly improved
with the complete token and stable prefix.

Why char-level simultaneous translation?
Motivating our use of char-level ST we consider
three desiderata. 1) With the incremental source
input, char-level ST is more robust since it avoids
unstable prefixes caused by word segmentation, as
shown in Table 1. 2) Char-level ST can obtain a
more fine-grained latency, because if one charac-
ter is enough to express the meaning of a entire
word, the ST system does not have to wait for the
complete word before translating. 3) Char-level
ST only performs char-level tokenization on the
source, while the target still retains subword-level
tokenization, so its translation performance will not
be affected too much, as shown in Table 7.

Input Sentence
Output Sentence

FGHRETUNIT A SR 1230 = JOREE -
welcome to the 12th advanced course on UNIT system .

subword-level MT
character-level MT
char-level tokenization

subword-level MT

W/ KE/UN@R@/IT/ R /KB /12@@ [B/ & 1 e/ -
W/ IR JUINIUTI RIS IR 121 881 & 15 R TR
/RSB JUNIT/ RG89 158 112180 & 1 9 R 2

welcome /to/the/12@ @ /th/advanced / course/on/UNIT/system/.

Table 3: An example of tokenization method applied by the char-level wait-k policy. For the source, we use
char-level tokenization, which separates each source language character into separate segments, and divides the
others by words. For the target, we apply the same operation as the conventional subword-level MT. The sentences
marked in red are the source and target of our proposed ST model.

4.1.2 Read/ Write Policy

For the read / write policy, we apply the wait-k pol-
icy on the proposed char-level ST. The difference
between char-level wait-k policy and standard wait-
k policy is that each token in standard wait-k policy
is a subword, while each token in char-level wait-k
policy is a character (other languages or Numbers
are still words), as shown in Figure 1.

We rewrite ¢ (t) in Eq.(1) into g (t) for char-
level wait-k policy, which represents the number of
source tokens (Character) read in when outputting
the target token y,, calculated as:

gr(t) =min{k+t—1,|c|},t=1,2,--- (2)

where c is the input character sequence.

Another significant advantage of the standard
wait-k policy is that it can obtain some implicit
prediction ability in training, and char-level wait-k
policy further strengthens the prediction ability and
improves the stability of prediction. The reason is
that the granularity of the char-level is smaller so
that the prediction of char-level is simpler and more
accurate than that of subword-level. As shown in
Figure 1, it is much simpler and more accurate
to predict “FR %" given “ZR”, since there are few
possible characters that can be followed by “Z&”.

4.2 Domain Adaptation

To improve the quality of domain adaptation, we
apply some modifications to all training corpus,
including general domain and spoken language do-
main, to make them more closer to streaming tran-
scription. Besides, we also augment the spoken
language corpus to make up for the lack of data.

4.2.1 Depunctuation

For training corpus, including general domain and
spoken language domain, the most serious dif-
ference from streaming transcription is that each

4

Original SO &RE - BNK
1, RETFEF!
* Depunctuation | ARAF&E ~ ZAAAK
1, KK T

Table 4: An example of depunctuation operation,
where the ending punctuation of the source sentence
is deleted.

sentence in streaming transcription usually lacks
ending punctuation, as shown in Table 2. Since
the punctuation in the training corpus is complete,
and the ending punctuation is often followed by
< eos >, the model trained with them tends to
wait for the source ending punctuation and then
generate the corresponding target ending punctua-
tion and < eos > to stop translating. As a result,
given the unpunctuated input in streaming transcrip-
tion, it is difficult for the model to generate target
punctuation and < eos > to stop the translation.
To this end, to strengthen the model’s ability to
translate punctuation from unpunctuated sentences,
we delete the ending punctuation of the source sen-
tence, and the target sentence remains unchanged,
as shown in Table 4. Note that our depunctuation
operation is limited to the ending punctuation at
the end of the source sentence (‘- °,! *,°?).

4.2.2 Data Augmentation

For the spoken language domain corpus, since the
data size is too small, we perform data augmen-
tation on the source sentence. For each source
sentence, we perform 5 operations: add a comma,
add a tone character, copy an adjacent character,
replace a character with its homophone, or delete a
character. Meanwhile, the target sentence remains
unchanged. The proposed method improves the
robustness of the model while augmenting the data.
An example of data augmentation is shown in Table
5.

Original ‘ 1957 FFALI R
Add 19574, FEIIbR F A
___Comma | -
. Add 19574E B b 30 b o2t
_Tone character | "~ "
ChCOPY 19574E FF b Ab B0 b o2
__ Character | 77 T
Replace | o7 tpapmiiriz |k
__Homophone | " 0
Delete 19574E TR F b 5 b Aoz
Character

Table 5: An example of data augmentation.

4.3 Training Methods

Our method is based on Transformer (Vaswani
et al., 2017), and the training is divided into two
stages. First, we pre-train an ST model on the gen-
eral domain MT corpus, and then fine-tune the ST
model on the spoken language domain corpus. For
pre-training, we apply multi-path (Elbayad et al.,
2020) and future-guided (Zhang et al., 2020b), to
enhance the predict ability and avoid the huge con-
sumption caused by training different models for
each k. For fine-tuning, we apply the original
prefix-to-prefix framework (Ma et al., 2019).

4.3.1 Pre-training

To improve the predictive ability of the ST model,
we apply the future-guided training proposed by
(Zhang et al., 2020b). Besides the incremental
Transformer for simultaneous translation with char-
level wait-k policy, we introduce a full-sentence
Transformer, used as the teacher of the incremental
Transformer for ST through knowledge distillation.
The full-sentence Transformer is trained with cross-
entropy loss:

[yl

Z Z log pa,,,, (Ut | y<t,c)

(cy)ED, =1
(3)

where 0y, is the parameter of full-sentence Trans-
former, D, is the general domain corpus.

For the incremental Transformer for ST, since it
applies char-level wait-k policy, the source tokens
participating in translating are limited to less than
gr. (t) when decoding the " target token. For each
k, the decoding probability is calculated as:

L(Opun) = —

lyl

= Hpemcr (v | y<ts c<goy) @
t=1

p(ylek)

5

where c and y are the input character sequence and
the output subword sequence, respectively. c<g, (1)
represents the first gy (¢) tokens of ¢. 0y, is the
parameter of incremental Transformer.

Following Elbayad et al. (2020), to cover all
possible k during training, we apply multi-path
training. k is not fixed during training, but ran-
domly and uniformly sampled from K, where
K =[1,---,]|c]|] is the set of all possible values
of k. Incremental Transformer is also trained with
cross-entropy loss:

L (eincr) =
lyl

SDDREDY

(e.y)€Dg t=1,k~U(K)

Ingemm (yt | Y<t, ngk(t))

&)

For the knowledge distillation between full-
sentence Transformer and incremental Transformer,
we apply Lo regularization term between their en-
coder hidden states, calculated as:

r (zincr’ full) _ ’c‘ Z‘

where 2" and 2% represent the hidden states of
incremental Transformer and full-sentence Trans-
former, respectively.

Finally, the total loss L is calculated as:

L= L (Oiner) + L (Oran) + AL (z” 2! “”)
@)

where) is the hyper-parameter, and we set A = 0.1
in our system.

incr _ full

\ ©6)

4.3.2 Fine-tuning

After pre-training an ST model, we use spoken lan-
guage domain corpus for fine-tuning. The spoken
language domain corpus is a small dataset, and
meanwhile most of the word order between the
target and the source is the same, so we do not con-
tinue to use multi-path and future-guided training
methods. We fix k£ and use the original prefix-to-
prefix framework for training, and train different
models for each k. Given k, the incremental Trans-
former is trained with cross-entropy loss:

L (eincra k) =
[yl

Z Z log pe,,... (yt | y<t, C§gk(t))

(c,y)EDS t=1,

®)

where D; is the spoken language domain corpus.
Finally, for each &, we fine-tuned a ST model.

Datasets Domain | #Sentence Pairs
CWMTI19 General 9,023,708
Transcription | Spoken 37,901
Dev. Set Spoken 956

Table 6: Statistics of Chinese — English datasets.

5 Experiments

5.1 Dataset

The dataset for Chinese — English task provided
by the organizer contains three parts, shown in Ta-
ble 6. CWMT19 ? is the general domain corpus
that consists of 9,023,708 sentence pairs. Tran-
scription consists of 37,901 sentence pairs and
Dev. Set consists of 956 sentence pairs >, which
are both spoken language domain corpus collected
from real speeches (Zhang et al., 2021).

We use CWMT19 to pre-train the ST model,
then use Transcription for fine-tuning, and finally
evaluate the latency and translation quality of our
system on Dev. Set. Note that we use the streaming
transcription provided by the organizer for testing.
Streaming transcription consists of 23,836 lines,
which are composed by breaking each sentence in
Dev. Set into lines whose length is incremented by
one word until the end of the sentence.

We eliminate the corpus with a huge ratio in
length between source and target from CWMT19,
and finally got 8,646,245 pairs of clean corpus.
We augment the Transcription data according to
the method in Sec.4.2.2, and get 227,406 sentence
pairs. Meanwhile, for both CWMT19 and Tran-
scription, we remove the ending punctuation ac-
cording to the method in Sec.4.2.1.

Given the processed corpus after cleaning and
augmentation, we first perform char-level tokeniza-
tion (Sec.4.1) on the Chinese sentences, and to-
kenize and lowercase English sentences with the
Moses*. We apply BPE (Sennrich et al., 2016) with
16K merge operations on English.

5.2 System Setting

We set the standard wait-k policy as the baseline
and compare our method with it. We conducted
experiments on the following systems:

2casia2015, casict2011, casict2015, datum2015, da-
tum2017 and neu2017. http://mteval.cipsc.org.
cn:81/agreement/AutoSimTrans

*https://dataset-bj.cdn.bcebos.com/
gianyan%$2FAST_Challenge.zip

*http://www.statmt.org/moses/

BLEU
AL Greedy Beam4
subword | Pre-train | 24.93| 20.24 20.35
level +FT 24.93| 24.79 25.39
~ char | Pre-train | 24.93| 20.14 2028
level +FT 2493 24.60 25.13

Table 7: Results of offline model. ‘+FT’: +fine-tuning.

Offline: offline model, full-sentence MT based
on Transformer. We report the results of the
subword-level / char-level offline model with
greedy / beam search respectively in Table 7.

Standard Wait-k: standard subword-level wait-
k policy proposed by Ma et al. (2019), used as
our baseline. For comparison, we apply the same
training method as our method (Sec.4.3) to train it.

Standard Wait-k + rm Last Token: standard
subword-level wait-k policy. In the inference time,
the last token after the word segmentation is re-
move to prevent it from being incomplete.

Char-Level Wait-k: our proposed method, refer
to Sec.4 for details.

The implementation of all systems is based on
Transformer-Big, and adapted from Fairseq Library
(Ott et al., 2019). The parameters are the same as
the original Transformer (Vaswani et al., 2017). All
systems are trained on 4 RTX-3090 GPUs.

5.3 Evaluation Metric

For evaluation metric, we use BLEU ° (Papineni
et al., 2002) and AL® (Ma et al., 2019) to measure
translation quality and latency, respectively.

Latency metric AL of char-level wait-k policy is
calculated with gy, (¢) in Eq.(2):

1 t—
AL==3 ge(t) = —; ©)
t=1 lc]
where 7 = argmax (g, (t) = |c]) (10)
t

where c and y are the input character sequence and
the output subword sequence, respectively. Note
that since the streaming transcription provided by
the organizer adds a source character at each step,
for all systems, we use character-level AL to evalu-
ate the latency.

>The script for calculating BLEU is provided by the
organizer from https://dataset-bJj.cdn.bcebos.
com/gianyan%2FAST_Challenge.zip.

The calculation of AL is as https://github.com/

autosimtrans/SimulTransBaseline/blob/
master/latency.py.

http://mteval.cipsc.org.cn:81/agreement/AutoSimTrans
http://mteval.cipsc.org.cn:81/agreement/AutoSimTrans
https://dataset-bj.cdn.bcebos.com/qianyan%2FAST_Challenge.zip
https://dataset-bj.cdn.bcebos.com/qianyan%2FAST_Challenge.zip
http://www.statmt.org/moses/
https://dataset-bj.cdn.bcebos.com/qianyan%2FAST_Challenge.zip
https://dataset-bj.cdn.bcebos.com/qianyan%2FAST_Challenge.zip
https://github.com/autosimtrans/SimulTransBaseline/blob/master/latency.py
https://github.com/autosimtrans/SimulTransBaseline/blob/master/latency.py
https://github.com/autosimtrans/SimulTransBaseline/blob/master/latency.py

--=-- Offline (Beam4)
—-==- Offline (Greedy)
—&— Char-Level Wait-k
—&— Standard Wait-k
e

Standard Wait-k
+rm Last Token

-2 0 2 4 6 8 10 12 14 16 18
Average Lagging

Figure 2: Translation quality (BLEU) against latency
(AL) on Chinese — English simultaneous translation,
showing the results of proposed char-level wait-k, stan-
dard wait-k, standard wait-k+rm last token and offline
model with greedy/beam search.

5.4 Main Result

We compared the performance of our proposed
char-level wait-k policy and subword-level wait-k
policy, and set k = 1,2, ..., 15 to draw the curve
of translation quality against latency, as shown in
Figure 2. Note that the same value of % for char-
level wait-k policy and subword-level wait-k policy
does not mean that the latency of the two are sim-
ilar, because lagging k tokens in char-level wait-
k means strictly waiting for k characters, while
for subword-level wait-k, it waits for & subwords,
which contain more characters.

‘Char-Level Wait-k’ outperforms ‘Standard
Wait-k’ and ‘Standard Wait-k+rm Last Token’ at
all latency, and improves about 6 BLEU at low
latency (AL=1.10). Besides, char-level wait-k per-
forms more stable and robust than standard wait-k
when dealing with streaming transcription input,
because char-level wait-k has a stable prefix while
the prefix of standard wait-k may change between
adjacent steps due to the different word segmen-
tation results. ‘Standard Wait-k+rm Last Token’
solves the issue that the last token may be incom-
plete, so that the translation quality is higher than
Standard Wait-k under the same k, which improves
about 0.56 BLEU (average on all k). However,
‘Standard Wait-k+rm Last Token’ increases the la-
tency. Compared with ‘Standard Wait-k’, it waits
for one more token on average under the same k.
Therefore, from the overall curve, the improvement
of ‘Standard Wait-k+rm Last Token’ is limited.

Char-level wait-k is particularly outstanding at

16 ===- Offline (Beam4)

14 —-==- Offline (Greedy)
—S— Char-Level Wait-k

12 —=— w/o Data Augmentation
—<— w/o Depunctuation

10

-4 -2 0 2 4 6 8
Average Lagging

10 12 14

Figure 3: Result of our method without depunctuation
or data augmentation.

low latency, and it achieves good translation qual-
ity even when the AL is less than 0. It is worth

mentioning that the reason why the AL is less than

lyl

0 is that the generated translation is shorter and el

in Eq.(9) is greater than 1.

5.5 Effect of Data Processing

To analyze the effect of data processing, includ-
ing ‘Depunctuation’ and ‘Data Augmentation’, we
show the results without them in Figure 3.

We notice that data augmentation improves the
translation quality of the model by 1.61 BLEU (av-
erage on all k), and the model becomes more stable
and robust. ‘Depunctation’ is even more important.
If we keep the ending punctuation in the training
corpus, the translation quality of the model drops
by 2.27 BLEU, and the latency increase by 2.83 (av-
erage on all k). This is because streaming transcrip-
tion input has no ending punctuation, which makes
the model hard to generate target ending punctua-
tion and tend to translate longer translations since
it is difficult to generate < eos > without target
ending punctuation.

5.6 Ablation Study on Training Methods

To enhance the performance and robustness under
low latency, we combine future-guided and multi-
path training methods in pre-training. To verify
the effectiveness of the two training methods, we
conducted an ablation study on them, and show the
results of removing one of them in Figure 4.
When removing one of them, the translation
quality decreases, especially at low latency. When
the ‘Future-guided’ is removed, the translation
quality decreases by 1.49 BLEU (average on all

=
22
20

2

=18

m
16 - Offline (Beam4)

—-==- Offline (Greedy)
14 —&— Char-Level Wait-k
! —<— w/o Multi-path

12 w/o Future-guided

-4 -2 0 2 4 6 8 10 12
Average Lagging

Figure 4: Ablation study on two training methods.

k), and when the ‘Multi-path’ is removed, the trans-
lation quality decreases by 0.76 BLEU (average
on all k). This shows that two training methods
can both effectively improve the translation quality
under low latency, especially ‘Future-guided’.

6 Related Work

Previous ST methods are mainly divided into pre-
cise read / write policy and stronger predictive abil-
ity.

For read / write policy, early policies used seg-
mented translation, and applied full sentence trans-
lation to each segment (Bangalore et al., 2012; Cho
and Esipova, 2016; Siahbani et al., 2018). Gu
et al. (2017) trained an agent through reinforce-
ment learning to decide read / write. Dalvi et al.
(2018) proposed STATIC-RW, which first perform-
ing S’s READs, then alternately performing RW’s
WRITEs and READs. Ma et al. (2019) proposed
wait-k policy, wherein first reads & tokens and then
begin synchronizing write and read. Wait-k pol-
icy has achieved remarkable performance because
it is easy to train and stable, and is widely used
in simultaneous translation. Zheng et al. (2019a)
generated the gold read / write sequence of input
sentence by rules, and then trained an agent with
the input sentences and gold read / write sequence.
Zheng et al. (2019b) introduces a “delay” token {¢}
into the target vocabulary to read one more token.
Arivazhagan et al. (2019) proposed MILK, which
uses a Bernoulli distribution variable to determine
whether to output. Ma et al. (2020) proposed MMA,
the implementation of MILK based on Transformer.
Zheng et al. (2020) proposed a decoding policy that
uses multiple fixed models to accomplish adaptive

decoding. Zhang et al. (2020a) propose a novel
adaptive segmentation policy for ST.

For predicting future, Matsubara et al. (2000)
applied pattern recognition to predict verbs in ad-
vance. Grissom II et al. (2014) used a Markov
chain to predict the next word and final verb. (Oda
et al., 2015) predict unseen syntactic constituents
to help generate complete parse trees and perform
syntax-based simultaneous translation. Alinejad
et al. (2018) added a Predict operation to the agent
based on Gu et al. (2017), predicting the next word
as an additional input. Elbayad et al. (2020) en-
hances the wait-k policy by sampling different k to
train. Zhang et al. (2020b) proposed future-guided
training, which introduces a full-sentence Trans-
former as the teacher of the ST model and uses
future information to guide training through knowl-
edge distillation.

Although the previous methods performed well,
they were all evaluated on the traditional MT cor-
pus instead of the real streaming spoken language
corpus. Therefore, the previous methods all ig-
nore the robustness and domain adaptation of the
ST model in the face of real streaming input. Our
method bridgs the gap between the MT corpus and
the streaming spoken language domain input, and is
more robust and adaptable to the spoken language
domain.

7 Conclusion and Future Work

Our submitted system won the first place in Au-
toSimTrans 2021, which is described in this paper.
For streaming transcription input from the real sce-
narios, our proposed char-level wait-k policy is
more robust than standard subword-level wait-k.
Besides, we also propose two data processing op-
erations to improve the spoken language domain
adaptability. For training, we combine two existing
training methods that have been proven effective.
The experiment on the data provided by the orga-
nizer proves the superiority of our method, espe-
cially at low latency.

In this competition, we implemented the char-
level wait-k policy on the Chinese source. For some
language pairs with a large length ratio between
the source (char) and the target (bpe), we can read
multiple characters at each step to prevent the issue
caused by the excessively long char-level source.
We put the char-level simultaneous translation on
other languages (such as German and English) for
both fixed and adaptive policy into our future work.

Acknowledgements

We thank all the anonymous reviewers for their
insightful and valuable comments.

References

Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar.
2018. Prediction improves simultaneous neu-
ral machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3022-3027, Brussels,
Belgium. Association for Computational Linguis-
tics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic Infinite Lookback Attention for Simulta-
neous Machine Translation. pages 1313—1323.

Srinivas Bangalore, Vivek Kumar Rangarajan Srid-
har, Prakash Kolan, Ladan Golipour, and Aura
Jimenez. 2012. Real-time incremental speech-to-
speech translation of dialogs. In Proceedings of the
2012 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 437-445,
Montréal, Canada. Association for Computational
Linguistics.

Colin Cherry, George Foster, Ankur Bapna, Orhan
Firat, and Wolfgang Macherey. 2018. Revisiting
Character-Based Neural Machine Translation with
Capacity and Compression. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4295-4305, Brussels,
Belgium. Association for Computational Linguis-
tics.

Kyunghyun Cho and Masha Esipova. 2016. Can neural
machine translation do simultaneous translation?

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and
Stephan Vogel. 2018. Incremental decoding and
training methods for simultaneous translation in neu-
ral machine translation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 493-499, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Maha Flbayad, Laurent Besacier, and Jakob Verbeek.
2020. Efficient wait-k models for simultaneous ma-
chine translation.

Yingqiang Gao, Nikola I. Nikolov, Yuhuang Hu, and
Richard H.R. Hahnloser. 2020. Character-Level
Translation with Self-attention. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1591-1604, On-
line. Association for Computational Linguistics.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simul-
taneous machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1342-1352,
Doha, Qatar. Association for Computational Lin-
guistics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053—-1062, Valencia, Spain.
Association for Computational Linguistics.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully Character-Level Neural Machine Trans-
lation without Explicit Segmentation. Transactions
of the Association for Computational Linguistics,
5:365-378.

Minqgin Li, Haodong Cheng, Yuanjie Wang, Sijia
Zhang, Liting Wu, and Yuhang Guo. 2020. BIT’s
system for the AutoSimTrans 2020. In Proceedings
of the First Workshop on Automatic Simultaneous
Translation, pages 37—44, Seattle, Washington. As-
sociation for Computational Linguistics.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.

Black. 2015. Character-based Neural Machine
Translation. arXiv:1511.04586 [cs]. ArXiv:
1511.04586.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqgiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wau,
and Haifeng Wang. 2019. STACL: Simultaneous
translation with implicit anticipation and control-
lable latency using prefix-to-prefix framework. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3025-3036, Florence, Italy. Association for Compu-
tational Linguistics.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Pu-
zon, and Jiatao Gu. 2020. Monotonic multihead
attention. In International Conference on Learning

Representations.

Keiichi Matsubara, Shigeki Iwashima, Nobuo
Kawaguchi, Katsuhiko Toyama, and Yasuyoshi
Inagaki. 2000. Simultaneous japenese-english
interpretation based on early predictoin of english
verb. In Proceedings of the 4th Symposium on
Natural Languauge Processing(SNLP-2000), pages
268-273.

Nikola I. Nikolov, Yuhuang Hu, Mi Xue Tan, and
Richard H.R. Hahnloser. 2018. Character-level
Chinese-English Translation through ASCII Encod-
ing. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 10—
16, Brussels, Belgium. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/p19-1126
https://doi.org/10.18653/v1/p19-1126
https://www.aclweb.org/anthology/N12-1048
https://www.aclweb.org/anthology/N12-1048
https://doi.org/10.18653/v1/D18-1461
https://doi.org/10.18653/v1/D18-1461
https://doi.org/10.18653/v1/D18-1461
http://arxiv.org/abs/1606.02012
http://arxiv.org/abs/1606.02012
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
http://arxiv.org/abs/arXiv:2005.08595
http://arxiv.org/abs/arXiv:2005.08595
https://doi.org/10.18653/v1/2020.acl-main.145
https://doi.org/10.18653/v1/2020.acl-main.145
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://www.aclweb.org/anthology/E17-1099
https://www.aclweb.org/anthology/E17-1099
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.18653/v1/2020.autosimtrans-1.6
https://doi.org/10.18653/v1/2020.autosimtrans-1.6
http://arxiv.org/abs/1511.04586
http://arxiv.org/abs/1511.04586
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://openreview.net/forum?id=Hyg96gBKPS
https://openreview.net/forum?id=Hyg96gBKPS
https://doi.org/10.18653/v1/W18-6302
https://doi.org/10.18653/v1/W18-6302
https://doi.org/10.18653/v1/W18-6302

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2015. Syntax-based
simultaneous translation through prediction of un-
seen syntactic constituents. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 198-207, Beijing,
China. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics
(Demonstrations), pages 48—53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages
311-318, Philadelphia, Pennsylvania, USA. Associ-
ation for Computational Linguistics.

Peyman Passban, Qun Liu, and Andy Way. 2018. Im-
proving Character-Based Decoding Using Target-
Side Morphological Information for Neural Ma-
chine Translation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 58-68, New Orleans, Louisiana. Association
for Computational Linguistics.

Danielle Saunders, Weston Feely, and Bill Byrne.
2020. Inference-only sub-character decomposition
improves translation of unseen logographic charac-
ters. In Proceedings of the 7th Workshop on Asian
Translation, pages 170-177, Suzhou, China. Associ-
ation for Computational Linguistics.

Rico Sennrich. 2017. How Grammatical is Character-
level Neural Machine Translation? Assessing MT
Quality with Contrastive Translation Pairs. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 376-382,
Valencia, Spain. Association for Computational Lin-
guistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715—
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Maryam Siahbani, Hassan Shavarani, Ashkan Alinejad,
and Anoop Sarkar. 2018. Simultaneous translation
using optimized segmentation. In Proceedings of
the 13th Conference of the Association for Machine

10

Translation in the Americas (Volume 1: Research
Papers), pages 154-167, Boston, MA. Association
for Machine Translation in the Americas.

Gongbo Tang, Rico Sennrich, and Joakim Nivre.

2020. Understanding Pure Character-Based Neu-
ral Machine Translation: The Case of Translat-
ing Finnish into English. In Proceedings of the
28th International Conference on Computational
Linguistics, pages 4251-4262, Barcelona, Spain
(Online). International Committee on Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5998-6008. Curran
Associates, Inc.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2016.

A Character-Aware Encoder for Neural Machine
Translation. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 3063-3070,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Ruiqing Zhang, Xiyang Wang, Chuangiang Zhang,

Zhongjun He, Hua Wu, Zhi Li, Haifeng Wang, Ying
Chen, and Qinfei Li. 2021. Bstc: A large-scale
chinese-english speech translation dataset. arXiv
preprint arXiv:2104.03575.

Ruiqging Zhang, Chuangiang Zhang, Zhongjun He, Hua

Wu, and Haifeng Wang. 2020a. Learning adaptive
segmentation policy for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2280-2289, Online. Association for Computa-
tional Linguistics.

Shaolei Zhang, Yang Feng, and Liangyou Li. 2020b.

Future-guided incremental transformer for simulta-
neous translation.

Baigong Zheng, Kaibo Liu, Renjie Zheng, Mingbo

Ma, Hairong Liu, and Liang Huang. 2020. Simul-
taneous translation policies: From fixed to adaptive.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
2847-2853, Online. Association for Computational
Linguistics.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and

Liang Huang. 2019a. Simpler and faster learn-
ing of adaptive policies for simultaneous transla-
tion. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the Sth International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 1349-1354, Hong Kong, China. Association
for Computational Linguistics.

https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/N18-1006
https://doi.org/10.18653/v1/N18-1006
https://doi.org/10.18653/v1/N18-1006
https://doi.org/10.18653/v1/N18-1006
https://www.aclweb.org/anthology/2020.wat-1.21
https://www.aclweb.org/anthology/2020.wat-1.21
https://www.aclweb.org/anthology/2020.wat-1.21
https://www.aclweb.org/anthology/E17-2060
https://www.aclweb.org/anthology/E17-2060
https://www.aclweb.org/anthology/E17-2060
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/W18-1815
https://www.aclweb.org/anthology/W18-1815
https://www.aclweb.org/anthology/2020.coling-main.375
https://www.aclweb.org/anthology/2020.coling-main.375
https://www.aclweb.org/anthology/2020.coling-main.375
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.aclweb.org/anthology/C16-1288
https://www.aclweb.org/anthology/C16-1288
https://doi.org/10.18653/v1/2020.emnlp-main.178
https://doi.org/10.18653/v1/2020.emnlp-main.178
http://arxiv.org/abs/arXiv:2012.12465
http://arxiv.org/abs/arXiv:2012.12465
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/2020.acl-main.254
https://doi.org/10.18653/v1/D19-1137
https://doi.org/10.18653/v1/D19-1137
https://doi.org/10.18653/v1/D19-1137

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019b. Simultaneous translation with flex-
ible policy via restricted imitation learning. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5816-5822, Florence, Italy. Association for Compu-
tational Linguistics.

11

https://doi.org/10.18653/v1/P19-1582
https://doi.org/10.18653/v1/P19-1582

