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Abstract

We contribute to the ArgMining 2021 shared
task on Quantitative Summarization and Key
Point Analysis with two approaches for argu-
ment key point matching. For key point match-
ing the task is to decide if a short key point
matches the content of an argument with the
same topic and stance towards the topic. We ap-
proach this task in two ways: First, we develop
a simple rule-based baseline matcher by com-
puting token overlap after removing stop words,
stemming, and adding synonyms/antonyms.
Second, we fine-tune pretrained BERT and
RoBERTa language models as a regression clas-
sifier for only a single epoch. We manually
examine errors of our proposed matcher mod-
els and find that long arguments are harder
to classify. Our fine-tuned RoBERTa-Base
model achieves a mean average precision score
of 0.913, the best score for strict labels of all
participating teams.

1 Introduction

Arguments influence our decisions in many places
of our daily life (Bar-Haim et al., 2020a). But
with the increasingly larger amount of informa-
tion found on the Web1 and more effective argu-
ment mining, people often need to summarize ar-
guments (Lawrence and Reed, 2019; Bar-Haim
et al., 2020a). Bar-Haim et al. (2020a) see match-
ing key points to arguments as an intermediate
step towards automatically generating argumenta-
tive summaries (Section 2). The ArgMining 2021
shared task on Quantitative Summarization and
Key Point Analysis (Friedman et al., 2021) is the
first task on key point matching, which is an im-
portant step towards summarizing arguments. By
matching arguments with a pre-defined set of key
points, an argumentative text can be summarized
using the prevalence of the key points in it. Dif-
ferent approaches of matching argument key point

1https://internetlivestats.com/

pairs, here called matchers, should be proposed and
discussed. Given an argument and a key point, a
matcher should return a real value between 0 and 1
which represents the extent to which the argument
matches the key point.2 For evaluating different
argument key point matchers, the shared task orga-
nizers uses mean average precision evaluation as a
metric (Friedman et al., 2021) to evaluate the ap-
proaches and publish the ArgKP-2021 benchmark
dataset (Section 3) to compare matchers (Bar-Haim
et al., 2020a).

Pretrained language models like BERT and
RoBERTa are nowadays becoming standard ap-
proaches to tackle various Natural Language Pro-
cessing tasks (Devlin et al., 2019; Liu et al.,
2019). Because of their extensive pretraining, of-
ten fine-tuning these language models with even
a small task-specific dataset can achieve state-of-
the-art performance (Devlin et al., 2019). As the
ArgKP-2021 dataset (Bar-Haim et al., 2020a) used
in the ArgMining 2021 shared task on Quantitative
Summarization is relatively small (24 083 labelled
pairs), we decide to fine-tune BERT and RoBERTa
language models rather than train a neural classifier
from scratch (Section 4).

Contrasting this neural approach, we introduce a
simple rule-based baseline matcher that compares
preprocessed tokens of each argument to the tokens
of each key point (Section 4). For the baseline, we
compute token overlap after removing stop words,
adding synonyms and antonyms, and stemming the
tokens from both argument and key point using the
NLTK toolkit (Bird and Loper, 2004).

Our fine-tuned RoBERTa-Base matcher achieves
a mean average precision score of up to 0.967 and
ranks second in the shared task’s leaderboard (Sec-
tion 5). In a manual error analysis, we find that
the imbalanced ArgKP-2021 dataset causes neu-
ral models to predict non-matching argument key

2https://2021.argmining.org/shared_
task_ibm.html
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point pairs more precisely than matching pairs (Sec-
tion 6). We further observe a tendency that large
length differences between arguments and key
points can cause errors. To encourage researchers
to train more robust argument key point matchers,
we release our source code under a free license.

2 Related Work

Similar tasks to key point analysis include clus-
tering arguments (Reimers et al., 2019; Ajjour
et al., 2019), detecting similar arguments in a pair-
wise fashion (Misra et al., 2016) and matching ar-
guments to generic-arguments (Naderi and Hirst,
2017). Using points to summarize arguments were
approached by Egan et al. (2016) on online discus-
sion. Points were extracted by using the verbs and
their syntactic arguments and are then clustered
together to deliver a summary of the discussion.

Key point analysis is the task of matching a
given argument with one or more pre-defined key
points (Bar-Haim et al., 2020a). To develop models
for the task, Bar-Haim et al. (2020a) introduced a
dataset (ArgKP-2021) which contains 24 093 argu-
ment key point pairs on 28 topics. Each argument
and key point is labeled manually as match or
no-match. The authors experimented with sev-
eral unsupervised and supervised approaches to
perform the task in a cross-topic experimental set-
ting. BERT (Devlin et al., 2019) performed the best
in their experiments by reaching an F1 score of
0.68.

In a later work, Bar-Haim et al. (2020b) develop
a summarization approach for online discussions
that uses key point analysis. The summrization
approach takes as input a set of comments on a
given topic and extracts a set of representative key
points from them. The output of the summarization
approach is the set of extracts key points together
with the count of matched comments for each key
point. In its essence, the summarization approach
uses a matching model that gives a score for a given
comment and key point or a pair of key points. For
matching models, Bar-Haim et al. (2020b) compare
different variants of BERT (Devlin et al., 2019).
Among the tested models, ALBERT (Lan et al.,
2019) performed the best with an F1 score 0.809,
but RoBERTa (Liu et al., 2019) were chosen for
key point extraction at the end, which is 6 times
faster than ALBERT and still achieves an F1 score
of 0.773.

Our approaches for the key point analysis are

based on BERT and RoBERTa. BERT stands
for Bidirectional Encoder Representations from
Transformers and is an open-source bidirec-
tional language representation model published by
Google (Devlin et al., 2019). BERT is pre-trained
over unlabeled text to learn a language represen-
tation and can be fine-tuned on downstream tasks.
During pre-training, BERT is trained on two unsu-
pervised tasks: Masked Language Model and Next
Structure Prediction. RoBERTa is an improved
variant of BERT that is introduced by Facebook
in 2019 (Liu et al., 2019). Liu et al. (2019) mod-
ified BERT by using a larger training data size of
160GB of uncompressed text, more compute power,
larger batch-training size, and optimized hyper-
parameters. In comparison to BERT, pre-training
tasks for RoBERTa were done with full-length sen-
tences and include only Masked Language Model
while applying different masks in each training
epoch (dynamic masking). RoBERTa outperforms
BERT on all 9 GLUE tasks in the single-task setting
and 4 out of 9 tasks in the ensembles setting (Wang
et al., 2018; Liu et al., 2019).

3 Data

The dataset used in the ArgMining 2021 shared
task on Quantitative Summarization and Key Point
Analysis is the ArgKP-2021 dataset (Bar-Haim
et al., 2020a) which consists of 24 083 argu-
ment and key point pairs labeled as matching/non-
matching. They all belong to one of 28 controver-
sial topics, for example: “Assisted suicide should
be a criminal offence”. Every key point and argu-
ment pair is annotated with its stance towards the
topic.

The training split of the ArgKP-2021 dataset has
5 583 arguments belonging to 207 key points within
24 topics. This leaves the validation split with
932 arguments and 36 key points for 4 topics. Fried-
man et al. (2021) complement the ArgKP-2021
dataset’s training and validation split with a test
split that is used to evaluate submissions to the
shared task. The test split contains 723 arguments
with 33 key points from 3 topics.

3.1 Characteristics

Here, we do qualitative and quantative analyses of
the ArgKP-2021 dataset. Table 1 shows examples
of argument key point pairs from the ArgKP-2021
dataset (Bar-Haim et al., 2020a). In pair A from
Table 1, the argument matches the given key point.
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Table 1: Examples of argument key point pairs from the ArgKP-2021 dataset (Bar-Haim et al., 2020a)

# Argument Key point

A child actors can be overworked and they can miss out on their
education.

Being a performer harms the
child’s education

B as long as nuclear weapons exist, the entire world has to worry
about nations deciding to fire them at another or terrorists getting
hold of them and causing disaster

Nuclear weapons can fall
into the wrong hands

C ‘people reach their limit when it comes to their quality of life and
should be able to end their suffering. this can be done with little or
no suffering by assistance and the person is able to say good bye.

Assisted suicide reduces suf-
fering
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Figure 1: Lengths in characters for arguments and key points from the training and development set.

Both sentences discuss children actors and their
education. The word “actors” is not explicitly used
in the key point but is semantically similar to the
word “performer”. Such lexical variation can be
opposed by using WordNet (Miller, 1995) to find
synonyms and antonyms.

Pair B in Table 1 is a harder example, since
the argument matches the key point but are ex-
pressed differently. The key point makes usage of
“wrong hands” as figurative meaning for “nations”
and “terrorists” from the argument. In comparison
to pair A, the linguistic variation in pair B goes
beyond finding synonyms and requires a deep un-
derstanding of the semantics of the argument and
key point.

Figure 1 shows the average length of the argu-
ments and key points in the training and devel-
opments splits. As shown, the arguments in the
ArgKP-2021 dataset are substantially longer than
key points. In the training set, the average length of
arguments is 109 characters. Compared to that, key
points are on average only half as long (52 char-
acters). In the validation set, the key points have
an average length of 41 characters and therefore
key points are shorter than those in the training set.

The average length of arguments remains almost
the same at 108 characters. The proportion of argu-
ments that are 67 characters longer than key points
constitute 39 % of the training set and 44 % of the
validation set. We can see that there are more short
key points in the validation set. This length differ-
ence might be a challenge for the models in key
point matching (Section 6). Pair C is an example of
an argument and key point pair with a large length
difference.

All in all, we identify the following major dif-
ficulties in matching key points to arguments: se-
mantically similar words, meaning understanding,
and the length difference between the arguments
and key points. In the following section, we ap-
proach the first two problems while developing our
baseline and approaches. In Section 6, we analyze
the errors made by our approaches with regard to
the length difference between the arguments and
key points.

4 Approach

To match key points to arguments, we propose two
different approaches. First, we discuss a simple
yet effective baseline measuring token overlap be-
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tween key points and arguments. Second, to im-
prove upon this simple baseline, we introduce an
approach based on BERT and RoBERTa (Devlin
et al., 2019; Liu et al., 2019). We fine-tune both
language models in standard configuration with
only minor changes highlighted below.

4.1 Token Overlap Baseline

To be able to compare more sophisticated matchers,
we first propose a very simple token overlap base-
line using preprocessed tokens from each argument
and key point, as parsed by the NLTK toolkit (Bird
and Loper, 2004). In general, key points summa-
rize ideas of their matched arguments. Our intu-
ition, therefore, is that certain words or tokens from
an argument are also likely to be present in its
matched key points. Rather than using completely
new words for summarization of arguments, a hu-
man would tend to reuse important words from the
argument. For example, in the argument and key
point pair C from Table 1 both, the argument and
key point, contain the token “suffering”.

We can further increase the token overlap be-
tween arguments and key points by preprocess-
ing their tokens as following: First, we remove
stop words for reducing noise within all argu-
ments. Initially, this can seem counterproductive
because with fewer words the highest possible over-
lap would also decrease and therefore could lead
to worse performance. However, a lot of argu-
ments and key points contain functional words like
“the”, “and” or “as”. Removing these results in sen-
tences that contain more specific information and
thus leads to less confusion with the token overlap
matcher. As a second preprocessing step, we re-
duce tokens to their corresponding stems by apply-
ing stemming using the Snowball stemmer (Porter,
1980). We expect the token overlap matcher to
be able to generalize more when comparing to-
kens. For example, the words “assistance” and
“assisted” from the above example (Table 1, C)
are both stemmed to “assist” with the Snowball
stemmer. Consequently, stemming creates an over-
lap between different forms of the same word and,
for instance, increases the probability that an argu-
ment containing “assistance” is associated with a
key point containing “assisted”. Last, we increase
generalization for token overlap even further by
supplementing the set of tokens with synonyms
and antonyms (Miller, 1995). This step should also
increase the chance of overlapping tokens.

To compute the similarity between an argument
and a key point, let tokensa be the set of prepro-
cessed tokens from an argument a and tokensk the
set of tokens from a key point k. We calculate the
set of overlapping tokens like this:

overlapa,k = {t : t ∈ tokensa∧ t ∈ tokensk} (1)

The token overlap matcher returns matching scores
based on the overlap size weighted against the min-
imum size of either the argument or the key point:

scorea,k =
|overlapa,k|

min{|tokensa|, |tokensk|}
(2)

That is, pairs with a higher proportion of tokens that
appear both in the argument as well as in the key
point are classified with a higher matching score.

4.2 Transformers Fine-tuning
To improve upon this simple token overlap base-
line, we fine-tune BERT and RoBERTa Trans-
former models for classifying argument key point
matches (Devlin et al., 2019; Liu et al., 2019).
While BERT is pretrained on a very large docu-
ment corpus (16GB of raw data), RoBERTa is pre-
trained on an even larger corpus (160GB). Thus
RoBERTa models can be fine-tuned on higher
end task performance (Liu et al., 2019). We to-
kenize both the arguments and the key points
with BERT’s default WordPiece tokenizer and the
resulting sequences are trimmed to 512 tokens
for both models. We then fine-tune the BERT-
Base and RoBERTa-Base variants in the standard
sentence-pair regression setting using the Simple
Transformers library.3 The input to the models is
formatted as [CLS] argument [SEP] key
point [SEP] for BERT and <s> argument
</s></s> key point </s> for RoBERTa
respectively. For classification, we interpret the
regression output value as the probability of an ar-
gument matching a key point. That is, the training
labels are always 0 or 1, depending on whether the
corresponding pair in the training set matches or
not. Both model variants contain 12 hidden layers
with a hidden size of 768 and 12 attention heads.
We train each of the two models for one single
epoch at a learning rate of η = 2 · 10−5. We use an
AdamW optimizer with β = (0.9, 0.999) and zero
weight decay (Loshchilov and Hutter, 2019). The
optimizer is warmed up with a ratio of 6 % of the
training data, and we fine-tune both models with

3https://simpletransformers.ai/

https://simpletransformers.ai/
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the binary cross-entropy loss. We explore three
ways of handling argument key point pairs in the
training set with missing ground-truth label. In the
first way, we remove those pairs completely from
the traning dataset. In the second and third ways,
we assume all the arguments and key points with
missing labels to be either a match or no-match.
By comparing the effectiveness of the models, we
find that the first way lead to the best effectiveness
on the validation set. Similarly, we experiment with
textual data augmentation4 (swapping synonyms,
randomly omitting words) to increase the amount
of training data, leading to no improvement on
validation scores either. Thus, for the submitted
model, we consider only training pairs that have
an associated ground-truth label and do not over-
sample. We don’t restrict the models output to the
interval [0, 1]—like we did for the baseline—, as
the shared task did not mention constraints on the
score value that should be returned by a matcher.

5 Results

Submissions to the ArgMining 2021 shared task on
Quantitative Summarization and Key Point Analy-
sis are evaluated with respect to mean average pre-
cision (Friedman et al., 2021). The organizers cal-
culate the score by pairing each argument with the
best matching key point according to the predicted
matching probabilities. Within each topic-stance
combination, only 50 % of the arguments with the
highest predicted matching score are then consid-
ered for evaluation. The task organizers claim that
this removal of 50 % of the pairs is necessary be-
cause some arguments do not match any of the
key points, which would influence mean average
precision negatively (Friedman et al., 2021). For
the remaining argument key point pairs in each
topic-stance combination, the average precision is
calculated and the final score is computed as the
mean of all average precision scores.

The task organizers consider two evaluation set-
tings: strict and relaxed. Both settings are based
on the ground-truth labels from the ArgKP-2021
dataset (Bar-Haim et al., 2020a). The two eval-
uation settings are created to account for argu-
ment key point pairs in the ArgKP-2021 with un-
decided labels (i.e. not enough agreement be-
tween annotators). In the strict setting, the shared
task organizers consider those undecided pairs as
no-match. In the relaxed setting, however, the

4https://github.com/makcedward/nlpaug

shared task organizers consider the undecided pairs
as match (Friedman et al., 2021). The mean av-
erage precision score is then calculated in the two
settings based on the ground-truth labels and the de-
rived labels for the undecided pairs. We stress that
in this complex evaluation setup, the mean average
precision score in the relaxed setting would favor
assuming matches in case of model uncertainty.
In comparison, in the strict setting mean average
precision would favor assuming no-match be-
tween an argument and key point. However, we
find that because only the most probable match-
ing key point is being considered for evaluation,
this effect is minor. The evaluation score in gen-
eral favors matchers that can match a single key
point for each argument with high precision. It is
however not important if a matcher does predict
non-matches with high certainty.

5.1 Discussion

In Table 2, we report mean average precision in the
strict and relaxed settings of the training, valida-
tion, and test set in the ArgKP-2021 dataset. We
complement the mean average precision scores by
adding precision and recall scores of the match
label, both in the strict and relaxed setting. To cal-
culate precision and recall, we label an argument
and key point pair as match if their score is higher
than 0.5 and as no-match otherwise. To aggre-
gate results of the strict and relaxed settings, we
also report the average score of the two variants.
The reported scores should allow for automated
and unbiased evaluation of our models and easier
comparison with competitive approaches. We re-
port all 27 scores for the token overlap baseline
model as well as for the fine-tuned BERT-Base
and RoBERTa-Base models. To make our results
more comparable, we add a second baseline, where
matches between arguments and key points of same
topic and stance are predicted with uniform ran-
dom probability. That random baseline represents
a worst-case matcher and any weak matcher should
exceed its evaluation scores.

The token overlap baseline achieves a mean aver-
age precision of 0.483 in the strict setting and 0.575
in the relaxed setting on the test set. Thus, it is
nearly twice as good as a random matcher with re-
spect to mean average precision. Even though this
baseline has reasonably good scores on all datasets,
we are concerned about the large discrepancies be-
tween its scores on the validation set and the train-

https://github.com/makcedward/nlpaug
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Table 2: Performance of the random and token overlap baseline, BERT-Base, and RoBERTa-Base models with
respect to mean average precision (mAP), precision (P), and recall (R) of the match label. Precision and recall are
calculated by deriving boolean labels from the matching scores with a threshold of 0.5 for all approaches. We report
scores for the training, validation, and test set in the strict and relaxed label settings, as well as the averages of the
two settings. The best result per set is highlighted bold.

Approach Strict Relaxed Average

mAP P R mAP P R mAP P R

Training set

Random 0.260 0.173 0.500 0.409 0.330 0.501 0.335 0.252 0.501
Token Overlap 0.541 0.269 0.323 0.653 0.435 0.275 0.597 0.352 0.299
BERT-Base 0.889 0.703 0.864 0.981 0.936 0.607 0.935 0.819 0.736
RoBERTa-Base 0.915 0.702 0.820 0.979 0.927 0.572 0.947 0.814 0.696

Validation set

Random 0.232 0.180 0.523 0.430 0.364 0.524 0.331 0.272 0.524
Token Overlap 0.643 0.219 0.390 0.802 0.416 0.366 0.722 0.317 0.378
BERT-Base 0.717 0.397 0.802 0.928 0.648 0.649 0.822 0.522 0.725
RoBERTa-Base 0.879 0.567 0.799 0.984 0.816 0.569 0.932 0.692 0.684

Test set

Random 0.237 0.150 0.545 0.355 0.286 0.549 0.296 0.218 0.547
Token Overlap 0.483 0.232 0.225 0.575 0.350 0.178 0.529 0.291 0.201
BERT-Base 0.827 0.326 0.848 0.940 0.526 0.721 0.883 0.426 0.784
RoBERTa-Base 0.913 0.490 0.741 0.967 0.716 0.569 0.940 0.603 0.655

ing and test dataset. The rather simple baseline
captures the similarity between an argument and a
key point on the token level and might be sensative
against more complicated parphrases.

Both fine-tuned matchers outperform the base-
lines by a large margin. While the BERT-Base
matcher achieves higher relaxed mean average pre-
cision on the training set than the RoBERTa-Base
matcher, the RoBERTa-Base matcher is overall bet-
ter than BERT, especially with strict labels. The
RoBERTa-Base matcher achieves a mean average
precision of 0.913 in the strict setting on the test set,
and 0.967 in the relaxed setting. As these scores on
the test set are nearly as high as on the training set,
we argue that RoBERTa is a more robust language
model and generalizes better than BERT. Also the
RoBERTa-Base matcher performs better in terms
of precision, while the BERT-Base matcher is better
with respect to recall for all dataset splits in both
the strict and relaxed settings.

6 Error Analysis

To find errors of the two trained matchers, BERT-
Base and RoBERTa-Base, in Figure 2 we show
histograms of predicted match scores with respect
to ground-truth labels. Both matchers classify most
pairs correctly, which can be seen because the his-

togram spikes around 0 for the true no-match
label and around 1 for the true match label. We
also observe that predictions on the training set are
closer to the true label than on the development
set for both RoBERTa-Base and BERT-Base. Even
though we expect any machine-learned matcher to
perform better on training data than on validation
data, we see this as a room for improvement with
better generalization. We notice that in Figures 2a
and 2c both approaches predict non-matching ar-
gument key point pairs better than matching key
points. This effect is likely to occur because of
the higher amount of non-matching pairs provided
in the training dataset. Most arguments match
with only a few or even just a single key point.
But nonetheless each argument is compared to all
other key points; hence, the underlying data to
learn from is imbalanced (Barandela et al., 2004).
Even though experiments with using textual data
augmentation or simple oversampling to balance
the dataset were unsuccessful (Dietterich, 1995),
more advanced oversampling or undersampling ap-
proaches could possibly resolve this issue. We
further identify that the predicted matching scores
of BERT-Base are spread a bit more than scores
from RoBERTa-Base.

In Figure 2b, we observe that the BERT-Base
matcher falsely predicts certain non-matching pairs
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(a) Predictions with BERT-Base on the training set.
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(b) Predictions with BERT-Base on the validation set.
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(c) Predictions with RoBERTa-Base on the training set.
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(d) Predictions with RoBERTa-Base on the validation set.

Figure 2: Histograms of predicted labels on the training and validation sets for argument key point pairs with the
BERT-Base and RoBERTa-Base classifiers. For good classifiers, predicted labels should approximately equal the
true label (0 or 1).

Table 3: Examples of argument key point pairs from the ArgKP-2021 dataset (Bar-Haim et al., 2020a) where the
predicted score is off the ground truth label (True) with either the BERT-Base or RoBERTa-Base matcher.

# Argument Key point True BERT RoBERTa

D School uniforms can be less comfortable than
students’ regular clothes.

School uniforms
are expensive

0 0.48 0.03

E affirmative action discriminates the majority, pre-
venting skilled workers from gaining employ-
ment over someone less qualified but considered
to be a member of a protected minority group.

Affirmative
action reduces
quality

1 -0.05 0.03
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with scores around 0.5. An example of such un-
certain pair is the argument key point pair D from
Table 3. This argument which is in the training
dataset has no matching key points. For this argu-
ment, the BERT-Base matcher has not learned well
how to classify matches for that type of argument,
and therefore predicts a neutral score of 0.48. How-
ever, the RoBERTa-Base matcher does not make
that error.

Both, the BERT-Base matcher and RoBERTa-
Base falsely predict some argument key point pairs
as no-match that are in fact labelled as a match.
For example, it seems to be difficult to predict a
match for the argument key point pair E from Ta-
ble 3. The argument from the example is longer
than most arguments and especially much longer
than the key point (431 % more characters). It
might be more challenging to reduce such longer
arguments, that contain more complex informa-
tion, to very compact key points. We confirm that
observation by comparing the squared classifica-
tion error with respect to the absolute difference
between argument and key point lengths.

7 Conclusion and Future Work

We approach the practical problem of matching
arguments with short key points with the goal of
summarizing arguments. Although our token over-
lap baseline approach is very simple, it achieves a
mean average precision of up to 0.575 on the test
set, nearly double the score of a random matcher.
The baseline approach is straightforward to imple-
ment but can not eliminate the problem of con-
text understanding. RoBERTa-Base and BERT-
Base have achieved good performance, because
they can overcome the context understanding chal-
lenge. Our fine-tuned RoBERTa-Base model also
performed better than BERT-Base in this task and
scores a mean average precision of up to 0.967.
With strict ground truth labels it achieves a mean
average precision score of 0.913 on the test set,
which is the best score of the participating teams in
the shared task. This again shows the importance
of architecture, training objectives, and hyperpa-
rameter selection.

7.1 Future Work

In Section 3, we observed that transformer models
tend to misclassify argument key point pairs if the
argument and key point largely differ in length. As
an extension to our approach, we propose to com-

bine transformer models with the overlap baseline
in an ensemble. Another possible improvement
are recent improvements in language models (Sun
et al., 2021). If a language model is even more
robust than, for example, RoBERTa, we expect a
fine-tuned matcher to outperform the RoBERTa-
Base matcher as well.
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