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Preface

This area is in all probability unmatched, anywhere in the world, in its linguistic multiplicity and
diversity. A couple of thousand languages and dialects, at present divided into 17 large families and
38 small ones, with several hundred unclassified single languages, are on record. In one small portion of
the area, in Mexico just north of the Isthmus of Tehuantepec, one finds a diversity of linguistic type hard
to match on an entire continent in the Old World.
—McQuown (1955)
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qxoRef 1.0: A coreference corpus and mention-pair baseline
for coreference resolution in Conchucos Quechua

Elizabeth Pankratz
Department of Linguistics, Universität Potsdam

14476 Potsdam, Germany
pankratz1@uni-potsdam.de

Abstract

This paper introduces qxoRef 1.0, the first
coreference corpus to be developed for a
Quechuan language, and describes a baseline
mention-pair coreference resolution system de-
veloped for this corpus. The evaluation of this
system will illustrate that earlier steps in the
NLP pipeline, in particular syntactic parsing,
should be in place before a complex task like
coreference resolution can truly succeed. qxo-
Ref 1.0 is freely available under a CC-BY-NC-
SA 4.0 license.

1 Introduction

Coreference resolution is the task of identifying
and grouping the phrases in a text that refer to the
same real-life object, or in other words, grouping
the mentions in a text—the phrases that refer to
real-life objects—together into entities: clusters
which represent those real-life objects (Ng, 2010;
Jurafsky and Martin, 2020).

Coreference resolution has been an important
area of focus in NLP for the last thirty years. It is
often used as one component of an NLP pipeline:
it builds on information gained through tools like
syntactic parsers and semantic word embeddings,
yielding clusters of mentions that can be useful
for further NLP tasks like question answering and
sentiment analysis (Pradhan et al., 2012).

To succeed at coreference resolution requires the
synthesis of both linguistic and contextual (world)
knowledge. Current state-of-the-art coreference
systems accomplish this using deep learning (Lee
et al., 2018) and are trained on large coreference
corpora in majority languages like English, Chi-
nese, and Arabic (Weischedel et al., 2011). Al-
though the aims of the present paper are more mod-
est, it still makes two important contributions to
the field of coreference resolution for low-resource
languages.

The first contribution is qxoRef 1.0, the first
coreference corpus to be developed for a Quechuan

language. The name reflects the variety of Quechua
that appears in the corpus, namely (Southern)
Conchucos Quechua (ISO 639-3 code qxo). qxo-
Ref 1.0 is freely available under a Creative Com-
mons CC-BY-NC-SA 4.0 license.1 The second
contribution is a baseline coreference resolution
system trained on this corpus.

The term “Quechua” is generally used to refer
to the Quechuan language family, a large group
of related local varieties spoken widely in South
America (Adelaar and Muysken, 2004; Sánchez,
2010). The number of speakers of Quechuan lan-
guages around the turn of the millennium was esti-
mated at about eight million (Adelaar and Muysken,
2004), so it is not a small language family. How-
ever, it contains two branches of different sizes.
According to the classification of Torero (1964),
the smaller “Quechua I” is spoken in the Peruvian
Highlands, while the much larger “Quechua II” is
spoken throughout central and southern Peru as
well as in parts of Ecuador (Adelaar and Muysken,
2004). The two branches differ lexically, morpho-
logically, and orthographically.

The variety of Quechua appearing in qxoRef is
spoken in Conchucos, a district within the depart-
ment of Ancash in the Peruvian Highlands, and
it belongs to Quechua I. (An alternative division
of the language family is offered by Parker 1963,
who labels Quechuan varieties with A or B. In that
schema, Conchucos Quechua belongs to Quechua
B.)

One challenge of having chosen a Quechua I
variety to work with is the limited number of re-
sources for that branch of the family tree. Quechua
II, being much larger, has a handful of NLP tools
already, including a toolknit developed by Rios
(2015). This paper thus presents an exploratory
illustration of how to develop a coreference corpus
and baseline coreference system for a morphologi-
cally complex language in a low-resource situation.

1https://github.com/epankratz/qxoRef
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Most coreference corpora are created for mor-
phologically simple languages like English, but
this project shows that the standard format for mod-
ern coreference corpora (the CoNLL-2012 shared
task tabular format; Pradhan et al., 2012) can also
easily accommodate a morphologically complex
language like Quechua.

The paper will first discuss the creation of qxo-
Ref in Section 2, and then move on to the baseline
mention-pair system developed for it in Section
3. In the evaluation of this system in Section 4,
we will see the consequences of not having earlier
steps of the NLP pipeline in place before construct-
ing a coreference resolution system. While surface
features may passably substitute for some parts of a
deeper linguistic analysis (Durrett and Klein, 2013)
and are often the only type of feature that is avail-
able in a low-resource language, we will see that
the data in qxoRef would still benefit significantly
from linguistic analysis before the coreference res-
olution step takes place.

However, before turning to these details, a few
words on Quechuan grammar are in order.

1.1 Quechua Grammar
Quechuan languages can be described as agglu-
tinative (Sánchez, 2010, 10): words are morpho-
logically complex, and one morpheme generally
encodes a single meaning, although a handful of
syncretic morphemes also exist (e.g., -shayki in (1)
below).

A relevant feature of Quechua for the corefer-
ence resolution task is the use of null arguments
(Sánchez, 2010, 12); in other words, Quechua is a
pro-drop language. Consider the sentence in (1).

(1) cuenta-ri-shayki
tell-ITER-1.SUB>2.OBJ.FUT

huk
one

cuento-ta
story-ACC

‘I will tell you a story.’ (KP04, 2–7)2

Nothing explicitly fills the role of subject (I)
or indirect object (you) in this sentence. The suf-
fix -shayki, like all personal reference markers on
Quechua verbs, only indicates agreement and has
no pronominal function (Sánchez, 2010, 21). Ide-
ally, we would want to include null arguments in
the mention annotation, as other coreference cor-
pora of pro-drop languages do. However, as we will
see in the next section, no resources for Conchucos
Quechua exist that would make this possible.

2Examples from qxoRef will be referred to using the doc-
ument identifier, here KP04, and the range of indices in that
document that the example spans, here 2 to 7 (inclusive).

2 qxoRef 1.0

This section presents qxoRef 1.0, a coreference cor-
pus for Conchucos Quechua and, to the author’s
knowledge, the first such resource developed for a
Quechuan language. The section first explores how
earlier coreference corpora in other pro-drop lan-
guages are structured (Section 2.1). It then moves
on to the data that qxoRef is based on (Section
2.2), how the mentions in this data were annotated
(Section 2.3), and some remaining limitations of
the present version of the corpus (Section 2.4).

2.1 Coreference corpora for pro-drop
languages

Three pro-drop languages for which coreference
corpora have been developed are Czech, Span-
ish, and Catalan. Corpora in these languages—
PCEDT 2.0 (Nedoluzhko et al., 2016) for Czech,
AnCora (Recasens and Martí, 2010) for Spanish
and Catalan—incorporate null subjects by way of
syntactic annotation. All sentences in the corpora
receive syntactic parses, and crucially, the parser
introduces nodes that correspond to the null argu-
ments, so that those nodes can then be annotated
for coreference (Recasens and Martí, 2010, 319;
Nedoluzhko et al., 2016, 173).

Unlike many other Indigenous languages,
Quechua does have an NLP toolkit that includes
a dependency parser (Rios, 2015). Unfortunately,
two features of this toolkit make it inapplicable to
the current project. For one, it was developed for
Cuzco Quechua, a Quechua II variety, and Cuzco
Quechua differs enough from Conchucos Quechua
(Quechua I) that significant intervention would be
needed in order to apply the parser to the present
data. For another, while the parser does insert
dummy elements for phenomena like omitted cop-
ulas, verb ellipsis in coordinations, and internally
headed relative clauses, it does not insert anything
for null arguments (Rios, 2015, 62). Thus, even if
the parser were adapted for Conchucos Quechua,
it would not supply the null argument nodes that
would be needed for coreference annotation. We
are therefore forced to rely on the information al-
ready provided in the data. We turn to this next.

2.2 The data

The data in qxoRef consists of transcribed record-
ings of stories told by native Quechua speakers in
Huari, Peru in 2015 (Bendezú Araujo et al., 2019).
The recordings are a subset of a larger audio cor-
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Orthography huk runa oshqu ñawiwan tinkuskiyaan
Segmentation huk runa oshqu ñawi-wan tinku-ski-yaa-n

Glosses (Sp.) uno persona azul ojo-INST encontrar-ITER-PL-3
Glosses (En.) one person blue eye-INST find-ITER-PL-3

Translation (Sp.) se encuentra con una persona de ojos azules
Translation (En.) he meets a person with blue eyes

Table 1: A representation of the data’s original multi-tier annotation format

pus of Quechua speakers participating in various
experimental tasks.3 The chosen subset consists
of the “cuento” task, which mimics the children’s
game “telephone”: the experimenters first told the
Quechua speakers an invented story, and the speak-
ers were recorded while recounting this story to
one another in pairs. The “cuento” task was cho-
sen because the format of a story, with repeated
references to recurring entities, provides the most
suitable data for coreference resolution. qxoRef
contains the stories told by twelve participants, re-
sulting in twelve documents.

The contents of the stories are somewhat surreal:
one focuses on a healer’s journey to search for
medicinal plants, and the other is about a corpse’s
encounter with two woodpeckers. The unusual
content is due to the goals of the original research
project. The project studied Quechua prosody and
phonology, so the stories were built around words
chosen for their metrical properties in Quechua.
English translations of each of these stories are
given in Appendix A.

As Table 1 illustrates, the documents in their
original forms consist of a transcription of the au-
dio data, morphological segmentation and glossing,
and translations into English and Spanish. The tran-
scriptions, morphological segmentation and gloss-
ing, and translations into Spanish were done by
hand by Quechua speakers in Huaraz and Lima,
Peru. Further postprocessing, including normalis-
ing the orthography, unifying the morphological
analyses and glosses, and translating into English,
was done by the original researchers. The docu-
ments in this corpus are provided as .eaf files
that can be processed using the annotation software
ELAN (Sloetjes and Wittenburg, 2008).

3This corpus is provided under a CC-BY-NC-SA 4.0
licence at https://refubium.fu-berlin.de/
handle/fub188/25747, and its documentation, includ-
ing details about the “cuento” task used in qxoRef, can be
found at https://www.geisteswissenschaften.
fu-berlin.de/en/we05/forschung/
drittmittelprojekte/Einzelprojekte/
DFG-projekt-zweisprachige-Prosodie/
index.html.

Before converting these files to the standard
CoNLL-2012 shared task format (Pradhan et al.,
2012), problematic artefacts of speech data (filled
pauses within noun phrases, false starts, and utter-
ances marked as unintelligible) were removed. The
stems were also POS-tagged, the sentences divided,
and the (non-null) mentions manually annotated by
the author. The mention annotation will be the
focus of the next section.

Table 2 gives the number of words, morphemes,
and mentions in each of the documents in qxoRef
1.0, as well as the story that each document con-
tains, and Table 3 shows the same phrase from Ta-
ble 1 in the CoNLL format. The CoNLL-U guide-
lines4 define how morphologically complex units
can be split into smaller sub-word elements. The in-
dexing of these elements is done by sub-word unit,
with morphologically complex elements indexed
with the integer range of the elements they contain.
And as Table 3 illustrates, the gloss of each mor-
pheme is always attached to that morpheme, rather
than to the stem, for clarity and for easier access to
individual tags.

2.3 Mentions in qxoRef
The mentions in qxoRef 1.0 belong to two classes:
nouns and pronouns. The nominal mentions in-
volve nouns that may or may not host case endings,
that stand alone or next to other nouns, that are
preceded by numerals or demonstratives, or that be-
long to complex phrases with modifying elements.

Two types of pronouns appear in qxoRef: per-
sonal pronouns and demonstrative pronouns. Per-
sonal pronouns are rare, since they are generally
dropped; in fact, in all of qxoRef, there is only one
instance each of the first and third person pronouns,
nuqa and pay respectively, and a handful more of
the second person, qam.

There are two types of demonstrative pronouns:
proximal kay and distal tsay. Tsay is a multifunc-
tional element: it may be used as a determiner, and
it can also act as a deictic element in space and time

4https://universaldependencies.org/
format.html#words-tokens-and-empty-nodes
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Doc. ID Story Wd. Morph. Ment.

Training set

AZ23 H 121 294 22
HA30 W 42 90 12
KP04 H 197 420 52
QF16 H 151 305 35
SG15 H 79 176 14
XQ33 W 69 164 16
XU31 H 201 452 51
ZR29 W 146 309 38

Test set

LC34 W 82 190 24
OA32 H 105 224 26
TP03 H 136 334 27
ZZ24 H 84 179 15

Σ train 1006 2210 240
Σ test 407 927 92
Σ total 1413 3137 332

Table 2: The number of words, morphemes, and men-
tions in each document in qxoRef, along with the
train/test split and which story each document contains
(H: the healer’s journey; W: an encounter with wood-
peckers)

as in tsay-chaw ‘there’ (lit. DEM.DIST-LOC(ative);
AZ23, 55–56) and tsay-shi ‘then’ (lit. DEM.DIST-
REP(ortative); XU31, 8–9). Occasionally it is also
used as a filler in speech. Only the demonstrative
pronouns that are clearly referential (identifiable
by the case marking) are annotated as mentions.

In addition to the unambiguously referential pro-
nouns, all nominal phrases were annotated as men-
tions. The mentions spanned all morphemes con-
tained in those phrases so that the classifiers could
potentially use the case and number information to
establish coreference.

The annotation process was straightforward. It
was possible to annotate mentions at the lexical
level because Quechua has no referential sub-word
elements. (The agreement marking on verbs would
be the closest candidate, but as mentioned above,
they are only markers and not incorporated pro-
nouns, so they should not be considered mentions.)
In any cases where a pronoun could refer to mul-
tiple available entities, the English and Spanish
translations were used as a guideline for selecting
the correct antecedent.

2.4 Limitations of qxoRef 1.0

One limitation of the present version of the corpus
has already been discussed: since the data has not
been syntactically parsed to produce slots in the
sentences where the null arguments would be, those
arguments are not annotated as mentions.

The second limitation also concerns the mention
annotation. Since the project was fairly limited in
scope, the annotation was done only by the author.
Annotating only nouns and pronouns does not in-
volve as many degrees of freedom as the annotation
of a larger corpus like OntoNotes, which contains
many classes of coreference (cf. Pradhan et al.,
2012), but the mention annotation in qxoRef 1.0 is
still potentially idiosyncratic. And because reliable
annotation is crucial for creating robust coreference
systems that can be depended on in downstream
applications (Pradhan et al., 2012, 1–2), in future
iterations of this corpus, multiple annotators should
be involved.

3 A mention-pair baseline for Conchucos
Quechua

The data in qxoRef 1.0 was used to train a base-
line coreference resolution system for Conchucos
Quechua. How that system was implemented will
be the focus of the present section; afterward, Sec-
tion 4 will discuss its performance with an illustra-
tive error analysis.

3.1 The mention-pair approach to
coreference resolution

The idea behind the mention-pair approach is sim-
ple: given a pair of mentions—a candidate anaphor
and a candidate antecedent—a binary classifier is
trained to predict whether that pair is coreferential
(Ng, 2010; Jurafsky and Martin, 2020).

This method has been influential in the field of
coreference resolution since the earliest days, and
the motivation to apply it again here, despite the
availability of modern deep-learning-based meth-
ods, is twofold. For one, binary classification is a
simple task, and much less data is needed to train a
binary classifier than would be required for state-of-
the-art deep learning methods. For another, training
a classifier using an interpretable algorithm like a
random forest (Breiman, 2001) can tell us which
features are important for establishing coreference
in the available data: helpful information for con-
ducting an error analysis and determining how to
improve the system.
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138 huk P1 one NUM (12
139 runa P1 person NOUN -
140 oshqu P1 blue ADJ -
141-142 ñawiwan P1 _ -
141 ñawi P1 eye NOUN -
142 -wan P1 INST 12)
143-146 tinkuskiyaan P1 _ -
143 tinku P1 find VERB -
144 -ski P1 ITER -
145 -yaa P1 PL -
146 -n P1 3 -

Table 3: A sample sentence from qxoRef (AZ23, 138–146; ‘He meets a person with blue eyes’) in the CoNLL
format. Note that the null arguments are not annotated; there is no mention corresponding to the third-person
subject of tinkuskiyaan. (Columns: morpheme index, Quechua text, speaker ID, English translations of the stems,
POS tags of stems/glosses for each morpheme, coreference annotation)

3.2 Features

The coreference classifier was trained using 28 fea-
tures generated for every mention pair in the train-
ing data (see Section 3.3). These features included
information about each mention in the pair as well
as the relationship between them. The features can
be divided into three classes: string-based features,
grammatical features, and discourse features.

The string-based features include the Leven-
shtein edit distance between the two mention
strings, the length of the longest common sub-
string, whether the anaphor string contains the an-
tecedent string and vice versa, and whether or not
the anaphor is longer than the antecedent.

Next, the grammatical features have to do with
characteristics like the plurality of individual men-
tions; the type of individual mentions (whether
they are nouns or pronouns); and how many stems,
grammatical morphemes, and morphemes overall
they share.

Finally, the discourse features include the num-
ber of sentences between the two mentions in the
pair, the number of other mentions between the
mention pair, and whether or not the mentions were
produced by the same speaker.

Further classes of features are known to be im-
portant for establishing coreference (Ng, 2010),
such as syntactic features (e.g., what role the men-
tion plays in the sentence) and semantic features
(e.g., cosine similarity between embedding repre-
sentations of the head word). Here again, we feel
the effects of the lack of resources. If we had a syn-
tactic parser, we could to include syntactic features,
and if we had embeddings, we could include se-
mantic ones.5 Nevertheless, surface features have

5Sub-word embeddings for a Quechua II variety do exist
(Heinzerling and Strube, 2018), but as with the toolkit devel-

been shown to pick up on some linguistically rel-
evant information (Durrett and Klein, 2013), and
we will see below that the present selection does
an adequate job.

3.3 Creating training data
In order to learn whether two mentions are coref-
erential, the classifier was trained on a dataset in
which a pair of mentions is represented as an in-
stance. In general, creating training data by simply
taking all ordered pairs of mentions in a document
is not recommended, because then the data will
contain far more negative instances than positive
instances (i.e., many more non-coreferential pairs
than coreferential ones), and a skewed class dis-
tribution in the training data will lead to poorer
performance on the test data (Soon et al., 2001).

Therefore, the literature proposes several dif-
ferent heuristics for creating training datasets for
mention-pair systems. For the sake of exploration,
this project used three of these heuristics to create
three different training sets, train one classifier on
each of these, and compare the performance of the
three classifiers. Will a larger training set lead to
better performance because there is simply more
data, or will a more selectively-chosen set lead to
better performance?

The first heuristic is the most common one in
the literature, proposed by Soon et al. (2001). This
method creates training instances by pairing each
mention with every preceding mention up to and
including the closest coreferential one, that is, up
to and including the closest true antecedent of the
given anaphor. Thus, for each mention, there is
one positive instance and some number of negative
instances (possibly zero).

oped by Rios (2015), the differences between Quechua I and
Quechua II make those embeddings inapplicable here.
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Heuristic Inst. Neg. inst. Prop.

Soon et al. 1358 1214 89.4%
Ng & Cardie 1194 1060 88.8%
Bengtson & Roth 3922 3463 88.3%

Table 4: Properties of the three training sets: the num-
ber of instances, the number of negative instances, and
the proportion of negative instances

The next heuristic is an adaptation to Soon
et al.’s method by Ng and Cardie (2002). They re-
fine this algorithm by excluding any mention pairs
in which the candidate anaphor is a noun and the
candidate antecedent a pronoun, because “it is not
easy for a human, much less a machine learner, to
learn from a positive instance where the antecedent
of a non-pronominal NP is a pronoun” (Ng, 2010,
1398). Like the method of Soon et al., this heuris-
tic yields one positive instance and zero or more
negative instances for each mention.

The final heuristic was proposed by Bengtson
and Roth (2008) and is more liberal than the pre-
vious two. This method simply uses all ordered
pairs of mentions going back to the beginning of
the document, but maintaining Ng and Cardie’s
stipulation that nouns not refer back to pronouns.
This heuristic yields multiple negative instances
and potentially multiple positive instances for each
mention.

The train/test split, shown in Table 2 above, is
approximately 70/30 in the number of words, mor-
phemes, and mentions. Table 4 shows some proper-
ties of the three training datasets created from the
eight training documents using the heuristics from
Soon et al., Ng and Cardie, and Bengtson and Roth.
The proportion of negative instances to positive
ones is comparable in all three cases, but the size
of the datasets ranges widely.

Finally, it should be noted that for all documents,
singleton mentions—those referring to entities that
are only mentioned once—were removed before
generating both training and test sets (in line with
the OntoNotes corpus, which does not annotate
singletons at all).

3.4 Creating test data

The mentions used in the test data are the original
gold mentions (rather than, say, those proposed by a
mention detection algorithm). Using gold mentions
is more appropriate for a baseline, since it keeps
the focus on the performance of the system, and

comparing mentions that have the same boundaries
also makes the evaluation more straightforward
(Ng, 2010, 1403).

Each of the four test documents was converted
into a test dataset following the method outlined by
Soon et al. (2001, 528): each mention serves as a
candidate anaphor, and each candidate anaphor is
paired with every mention that precedes it in the
given document.

3.5 The coreference classifier
As mentioned above, the coreference classifier used
in the present system was a random forest, continu-
ing the tradition of the widespread use of decision-
tree-based systems in coreference resolution (Ng,
2010). Random forests are ensemble learning meth-
ods that reduce error rates by taking the majority
vote from many individual decision trees trained
on random subsets of the data. A great strength
of random forests is their interpretability: we can
ascertain how important individual features are for
the classification decision based, roughly speaking,
on how high they appear in the decision trees used
in the ensemble (cf. Breiman, 2001).

The random forest was implemented in
Python using the machine learning library
scikit-learn (Pedregosa et al., 2011). Af-
ter training, the top-ranking features for all three
classifiers were both indicators of string similarity:
the Levenshtein edit distance and the length of the
longest common substring. This result is unsurpris-
ing, considering the kinds of mentions that were
included in qxoRef 1.0: mostly nouns (88% of all
mentions), a handful of pronouns (12%), and no
null arguments. Thus, coreferential mentions are
generally similar to one another at the level of the
string. Mentions that would require grammatical
or discourse-based information (pronouns and null
arguments) are rare or non-existent.

3.6 Clustering
The final step of the coreference resolution proce-
dure was to apply the trained classifiers to the test
data to predict which mention pairs contained in
those documents are coreferential. This was done
using the method used in Soon et al. (2001) that
was later called “closest-first clustering” (Ng, 2010;
Jurafsky and Martin, 2020).

This algorithm iterates through the test data one
anaphor at a time, looking at the pair that anaphor
makes with every mention that precedes it in the
document. The classifier is applied to each of these

6



MUC B3 CEAFe
Heur. Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1 Avg. F1

SO 55.51 88.82 68.2 47.43 91.53 62.3 64.98 67.45 65.75 65.41
NC 60.56 91.26 72.79 51.13 90.98 65.42 68.26 68.43 67.33 68.51
BR 58.73 86.9 70.04 49.48 86.84 62.93 60.9 63.76 61.08 64.68

Table 5: Evaluation results for the three training data creation heuristics (SO: Soon et al.; NC: Ng & Cardie; BR:
Bengtson & Roth)

mention pairs until a positive classification occurs.
Then, the algorithm skips the rest of the pairs con-
taining the current anaphor and moves on to the
next one. Importantly, if there is never a positive
classification decision, then the anaphor is not clas-
sified as coreferential with anything and is ignored.

This clustering algorithm was applied to predict
all the mention pairs in the test documents. Then,
to arrive at the representations of the entities in
each document, the transitive closure of all of the
predicted mention pairs was computed. The next
section compares the performances of the three
classifiers and analyses the errors that they made.

4 Evaluation and error analysis

The evaluation of each classifier’s performance
used the standard three coreference metrics—
MUC, B3, and CEAFe—as implemented in the
scoring scripts from the CoNLL-2012 shared task
(Pradhan et al., 2012). The results are given in
Table 5.

Strikingly, although the proportion of positive
to negative instances in the training data is nearly
identical (see Table 4), the resulting classifiers per-
formed quite differently. Even though the heuristic
from Ng and Cardie (2002) produced the small-
est amount of training data, it performed best—far
better, in fact, than the heuristic that produces the
largest amount of training data, Bengtson and Roth
(2008). By removing pronouns as antecedents, Ng
and Cardie’s algorithm was likely more faithful
to the actual imbalanced proportion of nouns to
pronouns in the data.

The general pattern, at least in the MUC and
B3 metrics, is high precision and low recall. In
other words, when the mentions were classified
as coreferential, this was generally done correctly.
However, the clustering procedure often failed to
identify coreference links between anaphors and
their true antecedents, leading to that anaphor’s
omission from the final entity representations. The

error analysis in the next section will explore why
this might have been the case.

4.1 Error analysis

The interpretability of random forests serves us
well in trying to understand the results of the eval-
uation. For example, we can see that, because the
classifiers favoured string and morpheme similar-
ity, they fell short when dealing with coreferential
mentions whose surface forms diverge.

For instance, hampi ashiq runaqa ‘person search-
ing for medicine’ (TP03, 316–320) is the same
person as tsay hampikuq runa ‘that healer per-
son’ (TP03, 213–215), and although the strings do
contain some overlap (runa ‘person’ and hampi
‘medicine’ appear in both), they are dissimilar
enough that none of the classifiers recognised these
two mentions as coreferential.

For the same reason, the classifiers also fre-
quently failed to identify an antecedent for demon-
strative pronouns, since often, the only commonal-
ity between the string of a demonstrative pronoun
and the antecedent was the case marking (and some-
times not even that). For example, tsayqa ‘that
one’ (ZZ24, 25–26) was not recognised by any of
the classifiers as coreferential with hampikuq runa
‘healer person’ (ZZ24, 3–4) because the strings
have very little in common.

Further, the corpus contains cataphoric construc-
tions like tsayqa, tsay, huk runaqa ‘that one, that, a
person’ (OA32, 147–152) in which tsayqa and huk
runaqa are coreferential (and the middle tsay acts
as a filled pause). None of the classifiers success-
fully identified the coreference there—not even the
Soon et al. classifier, which was the only one to
have seen pronouns as antecedents in its training
data.

These examples show that the classifiers all
failed on certain kinds of mention pairs. But were
there any systematic differences between the clas-
sifiers?

7



The feature importance scores of the classifiers
indicated that the importance of grammatical fea-
tures was, on average, higher for the Bengtson
and Roth classifier than for the other two. One
might therefore expect this classifier to be better at
identifying coreference involving pronouns. How-
ever, this prediction is not borne out; all classifiers
seemed to deal with pronouns equally poorly.

In sum, the low recall is probably due to the
nature of the mentions in qxoRef 1.0. The domi-
nance of explicit nominal mentions rewarded string
matching over grammatical knowledge, meaning
that connections between superficially dissimilar
mentions were often overlooked. If null arguments
were also included, however, the classifiers would
have to base their decisions on more broadly appli-
cable grammatical features. This would be a more
accurate representation of what is really involved
in the coreference resolution task.

5 Conclusion and outlook

This paper introduced qxoRef 1.0, a new corefer-
ence corpus for Conchucos Quechua, and presented
a mention-pair baseline for coreference resolution
with this corpus that obtains an average F1 score
of 68.51.

Several directions for future work are clear. First,
the coreference corpus should be improved. A
more reliable dataset should be created by hav-
ing mentions annotated by multiple annotators and
computing the inter-annotator agreement.

Further, the sentences should be syntactically
parsed. Not only would this allow a more sophisti-
cated feature representation for use in the classifier,
it would also allow null arguments to be annotated
as mentions. This should lead to higher recall, since
fewer mentions will be discarded because the coref-
erence connections are missed. (And until a parser
for Conchucos Quechua becomes available, an in-
terim measure of introducing empty slots where
the null arguments would be would already likely
lead to a more robust system, even without the
underlying syntactic structure.)

Additionally, other avenues for improving the
feature representations should be explored. For
example, embeddings for a compatible variety of
Quechua are not out of reach. Ancash Quechua is
a variety that subsumes Conchucos Quechua, and a
collection of texts in this variety is available on the
Ancash Quechua wikimedia page. This material
could be used to create sub-word embeddings, for

example following the procedure laid out in Heinz-
erling and Strube (2018), that could then be used
to encode semantic information about the mentions
for use in the classifier.

Overall, this project has highlighted some of
the issues involved in NLP for low-resource lan-
guages. To succeed at complex NLP tasks like
coreference resolution, certain steps in the text pro-
cessing pipeline should already have been achieved,
syntactic parsing being a prominent example. Im-
proving the basic NLP toolkits for low-resource
languages will lead to greater success on tasks like
coreference resolution, which is in turn important
for even more complex downstream tasks. Our fo-
cus should therefore first be on developing basic
tools and extending existing ones, and then we can
work upward from there.
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A Story translations

An encounter with woodpeckers (adapted from
ZR29): “They say a corpse met some woodpeck-
ers. When they met, the woodpeckers were below
an alder. Those woodpeckers were the children of
a healer. They were eating some lice. When they
met the corpse, the corpse asked the woodpeckers,
‘Is there a healer here? You are the children of the
healer. I believe I am sick, I want to be healed.’
When he said this, the woodpeckers laughed and
said, ‘How will we do that for you? You want to
be healed. But you are already dead.’”

The healer’s journey (adapted from TP03):
“It’s said that once upon a time, a healer went look-
ing for medicine. It was already afternoon when he
left, and while he was going, night came. He fin-
ished his meal: only corn and a little meat. While
he walked and it got dark, he got very cold, and
having nothing more to eat, he ate six flies that
had come to him. When it got dark, he stayed
where he was. Early the next day, he left and met
a squinty-eyed [or sometimes blue-eyed -EP] man.
This man was sitting on top of a chuchura plant.
The healer asked the man, ‘Where could I find
medicinal plants?’ The one sitting on the chuchura
said, ‘If you give me your soul, I will tell you.’
The healer was clever, so he gave him the souls of
the six flies instead. When he gave them to him,
the other man was suspicious that he was being
cheated, but he told him where to go anyway to
find the medicinal plants. The healer got there
quickly and laughed a lot.”

9



Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, pages 10–20
June 11, 2021. ©2021 Association for Computational Linguistics

A corpus of K’iche’ annotated for morphosyntactic structure

Francis M. Tyers
Department of Linguistics

Indiana University
ftyers@iu.edu

Robert Henderson
Department of Linguistics
University of Arizona

rhenderson@arizona.edu

Abstract
This article describes a collection of sentences
in K’iche’ annotated for morphology and syn-
tax. K’iche’ is a language in theMayan language
family, spoken in Guatemala. The annotation is
done according to the guidelines of the Univer-
sal Dependencies project. The corpus consists
of a total of 1,433 sentences containing approx-
imately 10,000 tokens and is released under a
free/open-source licence. We present a compar-
ison of parsing systems for K’iche’ using this cor-
pus and describe how it can be used for mining
linguistic examples.

1 Introduction
For some time, one of the fundamental resources
for language technology has been a part-of-speech
tagged (or morphologically annotated and disam-
biguated) corpus. Creating these resources has tra-
ditionally been a lengthy process, from defining an
annotation scheme to collecting texts, training an-
notators and performing the annotation. Recently
however advances in annotation schemes and end-
to-end linguistic processing pipelines mean that the
development of a single resource, a treebank can en-
able a whole pipeline of language analysis tools from
tokenisation to dependency parsing from a single re-
source.
In this paper we describe the annotation of such a

corpus for K’iche’, a Mayan language of Guatemala
and outline how the corpus can be used to train sys-
tems for linguistic annotation.
The remainder of the paper is laid out as fol-

lows: Section 2 gives a brief grammatical overview
of K’iche’; Section 3 gives an overview of related
work on K’iche’ syntax; Section 4 describes the cor-
pus and preprocessing steps; Section 5 describes
the annotation process; Section 6 describes a range
of syntactic constructions in K’iche’ and how they
were annotated. We evaluate parsing performance
using the corpus in Section 7 and show how mod-
els trained on the corpus can be used in finding lin-

guistic examples. Finally, we describe some future
work (Section 8) and present some concluding re-
marks (Section 9).

2 K’iche’
K’iche’ (ISO-639-3: quc, also K’ichee’, previously
Quiché) is a language within the Quichean-Mamean
branch of the Mayan language family. As of the
2018 Guatemalan census, it is documented to have
over 1.5 million native speakers, however the num-
ber is likely higher now and does not account for
speakers in the diaspora. There are roughly 23
variants of K’iche’ spoken throughout southwestern
Guatemala.
K’iche’ is a language with ergative-absolutive

alignment, basic verb-initial order of constituents,
and prefixes for agreement. The language is both
prefixing (for inflection) and suffixing (for deriva-
tion and some inflection). Neither subject nor ob-
ject need be overtly expressed when recoverable
from context.
An important part of the K’iche’ grammatical sys-

tem are the sets of agreement markers. These are
traditionally split into set A and set B. Set A, or the
ergative (ERG) markers, are used on nouns to cross-
reference, that is, agree with, their possessors and on
verbs to indicate a transitive subject. Set B markers,
or the absolutive (ABS) markers, are used to cross-
reference the transitive object or intransitive subject.
Table 1 shows the markers.

K’iche’ verbal morpho-syntax, like other Mayan
languages, is organised around transitivity. Root
verbs, i.e., verbs of the form CVC, and their de-
rived non-CVC counterparts are classified as either
transitive or intransitive, and this classification has
implications for the kinds of morphology the verb
can take. It controls the distribution of Set A and
Set B morphology that we have already seen, but it
also constrains what kinds of nominalisations a verb
stem allows (Can Pixabaj, 2009), a well as which
‘Status Suffixes’ a verb stem takes (see section 6.9
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Person Set A (ERG) Set B (ABS)
_ C _ V _

SG1 nu- inw- in-
SG2 a- aw- at-
SG3 u- r- ø-
PL1 qa- q- oj-
PL2 i- iw- ix-
PL3 ki- k- e-

Table 1: The Set A and Set B person and number agree-
ment markers for K’iche’. Set A markers are used on
nouns to indicate possession and on verbs to indicate
a transitive subject, and Set B markers are used on
nouns for predication and on verbs for transitive object
or intransitive subject. The third person singular Set B
marker is null. The Set A markers have phonological
variants before consonants, C and vowels, V . There are
also formal forms which appear as a combination of one
of the prefixes with a following particle, lal or alaj. The
Set B first person plural morph may also be uj-.

for more discussion of this unique aspect of Mayan
morphology).
While the basic word of K’iche’ is VOS, all pos-

sible word orders are attested, conditioned by dis-
course factors, the most important of which are
topic and focus. Focus involves marking the fo-
cused expression with a focus particle, and then
preposing it to a position before the verb. Topical-
isation involves morphologically unmarked prepos-
ing of the topicalised expression before the verb. If
a clause contains both topicalised and focused ex-
pressions, the topic comes before the focus.

3 Related work

Broadly, this work is a corpus of K’iche’ sentences,
morphosyntactically analysed and annotated in a
way to support downstream natural language pro-
cessing tasks like machine translation, relation ex-
traction, etc. While there are annotated corpora
of K’iche’, like the K’iche’ segment of the Oxla-
juuj Keej Maya’ Ajtz’iib’ Mayan Languages Collec-
tion (Oxlajuuj Keej Maya’ Ajtz’iib’, 2021) of Telma
Can Pixabaj’s 2018 annotated collection of cere-
monial discourse in K’iche’, these are not in easily
parsable formats that can be fed directly into ex-
isting NLP pipelines. The nearest analogs to the
work presented here are Sachse’s 2016 XML stan-
dard for morphological annotations of Mayan lan-
guages, including K’iche’, and Palmer’s 2010 IGT-
XML corpus of the related language Uspanteko.

While parseable, and annotated with grammatical
information like part-of-speech, these are not tree-
banks like the present work. In fact, ours is the first
treebank of any Mayan language.

4 Corpus
The corpus is composed of sentences from a range
of text types. Around two thirds are example sen-
tences either from a published dictionary (Medrano
Rojas, 2004) or from linguistic research (Can
Pixabaj, 2015; Henderson, 2012). To this we
added some language learning materials (Romero
et al., 2018), and religious, medical and legal texts
(Wycliffe Bible Translators, 2011; Wikimedia In-
cubator, 2017; Méndez López, 2020; Gobierno de
Guatemala, 2009). The remainder was from a
collection of folk tales (Ministerio de Educación,
2016a,b). The majority of the texts came with a
translation either in Spanish or in English. Some
texts, such as the linguistic examples additionally
came with interlinear glosses. For the texts that did
not have translations, we performed a rough-and-
ready glossing into Spanish with the aid of a pro-
totype machine translation system.1
The texts were chosen for their availability and

for the range of linguistic phenomena they exhib-
ited, as one of the aims of the work was to create
annotation guidelines that can be used in further an-
notation and adapted to other Mayan languages, this
was an important consideration.

4.1 Preprocessing
The texts were preprocessed using a freely-available
finite-state morphological analyser (Richardson and
Tyers, 2021). The morphological analyser returned,
for each token the set of possible morphological
analyses, including multiple output tokens in the
case of contractions. These analyses were then dis-
ambiguated by hand, and missing analyses added.
This disambiguated output was then converted to

the ten-column CoNLL-U format.2 Morphological
tags were converted to Feature=Value pairs by us-
ing a deterministic maximum-set-overlap matching
algorithm.

5 Annotation process
The annotation guidelines are based on Universal
Dependencies (Nivre et al., 2020), an international

1apertium-quc-spa: https://github.com/
apertium/apertium-quc-spa

2https://universaldependencies.org/
format.html
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Source Description Sentences Words Avg. length
Medrano Rojas (2004) Dictionary examples 657 4081 6.21
Romero et al. (2018) Language learning material 301 1838 6.11
Can Pixabaj (2015) Linguistic examples 268 1612 6.01
Ministerio de Educación (2016a,b) Folk tales 104 1525 14.66
Henderson (2012) Linguistic examples 57 286 5.02
Wycliffe Bible Translators (2011) Religious scripture 16 211 13.19
Wikimedia Incubator (2017) Encyclopaedic text 12 213 17.75
Gobierno de Guatemala (2009) Legal text 7 113 16.14
Méndez López (2020) Medical guidance 6 87 14.50
Total: 1433 10002 6.97

Table 2: Composition of the corpus. It is notable, but unsurprising that the example sentences and learning materials
are around three-times shorter than the other texts.

collaborative project to make cross-linguistically
consistent treebanks available for a wide variety of
languages. At time of writing, data for over 111
languages is available through the project in a stan-
dardised format and with a standardised annotation
scheme.
We chose the UD scheme for the annotation as

it provides pre-defined recommendations on which
to base annotation guidelines. This reduces the
amount of time needed to develop annotation guide-
lines for a given language, as where the existing uni-
versal guidelines are adequate, they can be imported
wholesale into the language-specific guidelines.

The treebank was annotated by the first author
and difficult cases were determined by discussion
between the first author and the second author.

6 Constructions

In the following subsections we describe some par-
ticular features of K’iche’ that are interesting or
novel with respect to the Universal Dependencies
annotation scheme, and our approach to annotating
them. Inline examples are given on three lines, with
the original text, a segmentation showing the inflec-
tional morphs, and an approximate translation in En-
glish. Glosses are provided when necessary for ex-
plaining some particular feature or construction.3
Where contractions are split, the split is indicated
with a hyphen on the both sides of the split, so for
example ch- followed by -we should be read chwe.

3The following is a list of glossing tags: Question parti-
cle QST, Passive PASS, Perfective PERF – also called completive,
Imperfective IMPF – also called non-completive, Negative NEG,
Classifier CLF, Relative REL, Relational noun RELN, Active ACT,
Antipassive AP, Status suffix SS, Directional DIR.

The focus is primarily on the relation between
syntactic words, so for example constructions such
as the morphological expression and annotation
of agreement, tense-aspect-mood prefixes, incorpo-
rated movement, and possessive prefixes are not out-
lined here. It suffices to say that these are encoded
with Feature=Value pairs.

6.1 Relational nouns
K’iche’ has two prepositions with locative meaning
chi ‘in’ and pa ‘in, at, on, to, towards, from’. Fol-
lowing the guidelines these are attached using the
case relation to their complement, as in (1).

(1)
Kinchʼaw pa le chʼawebʼal.
K-in-chʼaw pa le chʼawebʼal.
I speak on the telephone.

root obl

det
case

All other adpositional phrases are made using ei-
ther relational nouns or combinations of relational
nouns with these two prepositions.4 For readers
familiar with Indo-European languages, these rela-
tional nouns are similar in function to nouns of the

4The fact that we can have relational nouns co-occurring
with prepositions — cf. (4) overleaf — is a strong argument
that they should not be treated as sharing the category prepo-
sition. Instead, bona fide prepositions take nouns as comple-
ments, including this special subclass of relational nouns which
must bear agreement. Another argument for keeping prepo-
sitions and relational nouns separate concerns their behaviour
under questioning. Relational nouns can undergo pied-piping
with inversion—i.e., the question ruk’ jachin ’with whom’ can
also be jachin ruk’ lit. whom with. This inversion is impos-
sible with simple prepositions, which is unexpected if they
were structurally equivalent. We direct the reader to Svenonius
(2006) for a crosslinguistic survey of preposition-like expres-
sions that are not, in fact, prepositions.
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type front, top, side in English or frente ‘front’, cima
‘top’, lado ‘side’ in Spanish (e.g. al lado de la casa
‘at the side of the house’). However, they are more
extensive, used for encoding relations that in Indo-
European languages are encoded with prepositions,
such as with, by, of, etc. or even determiners or pro-
nouns, e.g. -onojel ‘all’.
Relational nouns agree with their complements

using possessive markers (set B affixes) and may
have an complement or not. For example, in (2)
the relational noun -ukʼ ‘with’ is used with a comple-
ment le nunan ‘my mother’.

(2)
Kinchʼaw rukʼ le nunan.
K-in-chʼaw r-ukʼ le nu-nan.
I speak with the my mother.

root

obl det
nmod

In (3) the same relational noun -ukʼ ‘with’ is used
without a nominal complement.

(3)
¿La katpe quk’ chwe’q?
La k-at-pe q-uk’ chwe’q
QST will you come with us tomorrow

root

obl
advmod

discourse

To maintain language-internal consistency these
are annotated with the relational noun as the head
of the construction, attached to predicates with
the obl oblique relation and to nominals with the
nmod relation.
It is worth noting that relational nouns can also be

used in conjunction with the true prepositions, as in
for example (4).

(4)
… kyajon chi kech ri ak’alab’.
… k-yajon chi k-ech ri ak’al-ab’.
… tells off PR B3PL-RELN the children.

root

case
obl

det
nmod

In this sentence, [Ri ajtij,] kyajon chi kech ri
ak’alab’. “[The teacher,] tells off the children.” (4),
the relational noun -ech is introduced by the true
preposition chi.

6.2 Nominal possession
In terms of nominal possession, Kʼicheʼ is a head
marking language. The schema for possession is a
noun with a possessive prefix followed by the pos-
sessor, POS-N1 N2 = N2 of N1. For example, utzij
ri ajqʼij “the daykeeper’s word” (lit. “his word the
daykeeper”.

(5)
Kʼax ri ubʼaqil nuqʼabʼ.
Kʼax ri u-bʼaqil nu-qʼabʼ.
Bad the its bone my arm.

root

det nmod
nsubj

Possession can also be expressed on multiple
nouns in series, as in the sentence Kʼax ri ubʼaqil
nuqʼabʼ. “The bones of my arms hurt” (5).

6.3 Relative clauses
Following Can Pixabaj (2021), relative clauses in
K’iche’ are post-nominal and come in two broad
types, headed (6) and headless (7). For the headed
example we can examine the sentence [Osea pa taq
wa’ le] komunidades jawi e k’ow le winaq “[That is
to say that in these] communities where these peo-
ple are in...” (Can Pixabaj, 2021, ex. 31).

(6) … komunidades jawi e k’ow le winaq
… komunidad-es jawi e k’o-w le winaq

obl
nsubj

det

acl

aux
advmod

In headless relatives, the head becomes the rel-
ative itself and the verb is attached to it as an ad-
nominal clause, as in the sentence Kojtzalijoq jawi
ri xojkanaj wi kan [junab’iir]. “Let’s go back where
we stayed [last year].” (Can Pixabaj, 2021, ex. 39)

(7)
Kojtzalijoq jawi ri xojkanaj …

K-oj-tzalij-oq jawi ri x-oj-kanaj …
Let’s return where that we stayed …

root

markobl
acl

Relative clauses embedded under a head nomi-
nal, like (6), can be further split into those that con-
tain an interrogative relative pronoun and those that
contain a determiner acting as a subordinating con-
junction. The reason for treating the latter as a sub-
ordinating conjunction and not a relative pronoun,
pointed out by Bridges Velleman (2014), is that the
two can co-occur, as in (8).

(8)
Chitatabʼej jas le kimbʼij.

Ch-ø-i-tatabʼej jas le k-ø-im-bʼij.
Listen what that I say.

root

obj
acl
mark

In (8), the relative clause jas le kimbʼij, lit. “what
that I’m saying” is introduced by the interrogative
relative pronoun jas which is given the relation of
object. It is then followed by a relative clause
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complementiser we give the mark relation. The
predicate in the relative clause is then attached to
the nominal it modifies with the relation acl, ad-
nominal clausal modifier.

(9)
… xuto ri xubʼij ri ratiʼt
… x-ø-u-to ri x-ø-u-bʼij ri r-atiʼt
… listen the say it the her mum

parataxis

obj acl
nsubj

det

In addition to headed and headless relatives, Can
Pixabaj (2021) also discusses so-called light-headed
relatives. In these, the noun head is usually modified
by relative not expressed, leaving only a determiner.
As shown in (9), in this case we promote the de-
terminer as head of the construction, and treat the
light-headed relative as adnominal clause modifica-
tion (namely acl).

6.4 Non-verbal predicates
In non-verbal predication, for example with nouns
or adjectives, the predicate is the root, and the sub-
ject, as the example Bʼixonel ri a Luʼ “Luʼ is a singer”
(10) andKʼax le kibʼe ri winaq. “The road of the peo-
ple is difficult” (11).

(10)
Bʼixonel ri a Luʼ.
Bʼixonel ri a Luʼ
Singer the CLF Luʼ

root
det

clf

nsubj

Note that there are three definite determiners in
K’iche’, ri, le and we. They are distinguished by
degree of definiteness and familiarity and proxim-
ity/visibility to the speaker (Can Pixabaj, 2015).

(11)
Kʼax le kibʼe le winaq.
Kʼax le ki-bʼe ri winaq.

Difficult the their road the people.

root

det
nsubj

det
nmod

For existential sentences in the affirmative and in
the negative, two non-inflecting words are used kʼo
in the case of existence and maj in the case of non-
existence. In these constructions, the non-inflecting
word is the head and the thing existing is the subject,
as inKʼo jun tzʼiʼ pa bʼe. “There is a dog in the street.”
(12)

(12)
Kʼo jun tzʼiʼ pa bʼe.
Kʼo jun tzʼiʼ pa bʼe.

There is a dog in street.

root

det
nsubj

case

obl

Another set of non-verbal predicates involve
forms such as rajawaxik ‘necessary’, kʼax ‘difficult’
with verbal subjects. These are analysed as nomi-
nals (nouns or adjectives), and the complement is
an embedded clausal subject.

(13)
Rajawaxik kqakoj utzij ri Ajqʼij.
Rajawaxik k-ø-qa-koj u-tzij ri Ajqʼij.
Necessary we listen his word the Ajqʼij.

root

csubj obj
nmod

det

In this example Rajawaxik kqakoj utzij ri Ajqʼij.
“We need to listen to the Ajqʼij.”5 (13) we see a
non-verbal predict with a single argument which is
itself a predicate.

6.5 Complement clauses
Our analysis of complement clauses is based on re-
search done by Can Pixabaj (2015), whose thesis
gives a thorough treatment of the topic. This section
is based on Chapter 3 of (Can Pixabaj, 2015, p.85).
In K’iche’, complements can be split into three sub-
categories: finite with complementiser, finite with-
out complementiser and non-finite.
In UD, the distinction in complements is between

those with obligatory control, xcomp and those
without control, ccomp. Each of the three types
defined in K’iche’ may have control or not. In (14)
the subordinate clause is introduced by a subordina-
tor, while in (15) there is no subordinator.

(14)
Wetaʼm chi p- -ulew xwar wi.

Ø-w-etaʼm chi pa ulew x-war wi
I know that on floor he slept

root mark
ccomp

oblcase advmod

(15)
Kawaj kimbʼe pa tinamit.

Ka-ø-w-aj k-im-bʼe pa tinamit
I want I go to village

root

ccomp
obl

case

Although in (15) the subjects happen to agree, the
fact that this is not a control construction can be seen
in (16) where the subordinate clause has a subject
not controlled by the matrix clause.

(16)
Kawaj na katbʼe taj .

Ka-ø-w-aj na k-at-bʼe taj
I want NEG you go NEG

root
ccomp

aux aux

5Ajqʼij, sometimes translated as ‘daykeeper’, a Maya spiri-
tual guide or shaman-priest.
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In (17) and (18) we see examples of obligatory
control.

(17)
Xenutaqchʼij kekil le akʼalabʼ.

X-e-nu-taqchʼi-j k-e-k-il le akʼal-abʼ
I forced them take care the children

root

xcomp
obj

det

(18)
Xuchap nukunaxik.
X-u-chap nu-kuna-x-ik
She began to cure me

root

xcomp

6.6 Adverbial clauses
There are a number of types of adverbial clauses in
K’iche’, including those introduced using word or-
der, by a subordinator (e.g. we ‘if’ or are taq ‘when’),
and using a relational noun (e.g. -umal ‘because’, -
ech ‘in order to’).

(19)
Kinbʼinik xinʼek.

K-in-bʼin-ik x-in-ʼe-k.
I was walking I left.

root

advcl

In (19) a manner clause k-in-bʼin-ik ‘IMPF-B3S-
walk-SS’ precedes its main clause. This ordering is
mandatory for manner clauses as is the lack of sub-
ordinator.

(20)
We keqbʼan ri qʼuch utz kujelik.
We k-e-q-bʼan ri qʼuch utz k-uj-el-ik.
If we practice the qʼuch well we come.

root
advcl

mark
obj

det advmod

Other kinds of adverbial clauses may precede or
follow the main clause. In We keqbʼan ri qʼuch utz
kujelik. ‘If we practice qʼuch6 it will be good for
us.’ (20) the conditional clause introduced by the
subordinator we ‘if’ appears before the main clause.

(21)
Xinkosik rumal xinchakunik.

X-in-kos-ik r-umal x-in-chakun-ik.
I am tired because I worked.

root

obl acl

Adverbial clauses can also be introduced by rela-
tional nouns, as in (21) where the relational noun
-umal ‘by’ has the function of obl standing in for a
manner oblique and the clause is dependent on it as
a adnominal clause.

6Qʼuch, mutual aid, or a group of persons who agree to help
each other at certain times

6.7 Valency changing
Transitive verbs in K’iche’ are subject to two main
valency changing operations, the passive and the an-
tipassive. These are morphological processes which
involve suffixation. For the passive, either the final
vowel is lengthened, or the suffix -x is added. For
the antipassive the suffixed morpheme is -Vn or -n.
In the passive, the subject is omitted and the

object promoted to subject position. This can be
seen in the comparison between the sentence Xkiku-
naj le ali ri ixoqibʼ. “The women cured the girl.”
(22) where the verb x-ø-ki-kuna-j ‘PERF-B3S-A3P-
cure-ACT’ has agreement for both subject and ob-
ject and the sentence Xkunax le ali kumal ri ixoqibʼ.
“The girl was cured by the women.” (23) where the
verb x-ø-kuna-x ‘PERF-B3S-cure-PASS’ agrees only for
the subject (previously object) and the subject is de-
moted to oblique using the relational noun -umal
‘by’.

(22)
Xkikunaj le ali ri ixoqibʼ.

X-ø-ki-kuna-j le ali ri ixoq-ibʼ.
Cured the girl the women.

root

det
obj

nsubj

det

(23)
Xkunax le ali kumal ri ixoqibʼ.

X-ø-kuna-x le ali k-umal ri ixoq-ibʼ.
Was cured the girl by the women.

root

det
nsubj

obl

det
nmod

In the antipassive, the subject is retained, but en-
coded with the absolutive, and the object is demoted
to oblique status using the preposition chi ‘to’ and
the relational noun -e(ch).

(24)
Kinuloqʼoj le nutat.

K-in-u-loqʼo-j le nu-tat.
He loves me the my father

root
nsubj

det

(25)
Kaloqʼon le nutat ch- -we.

Ka-ø-loqʼo-n le nu-tat chi we.
He loves the my father to me

root
nsubj

det case

obl

Compare the transitive sentence Kinuloqʼoj le nu-
tat. ‘My father loves me.’ (24) where the verb k-in-
u-loqʼo-j ‘IMPF-B1S-A3S-love-ACT’ has agreement for
both subject and object with the antipassive version
in (25) which exhibits agreement only for the sub-
ject, ka-ø-loqʼo-n ‘IMPF-B3S-love-AP’.
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6.8 Directionals
In Mayan languages there is a category of words
called directionals, which are grammaticalised
forms of intransitive verbs of motion (Can Pixabaj,
2017). Some examples are b’i(k) < -b’e ‘go’, qaj(oj)
< -qaj ‘go down’, and kan(oq) < -kan ‘stay’. The
part in parentheses after the directional is the sta-
tus suffix (see §6.9). They usually follow verbs and
other predicates to express movement, deictic or as-
pectual information and are related to the incorpo-
rated movement prefixes e’- < b’e ‘go’ and ul- <
ul ‘arrive’. Despite being derived from verbs, these
are not full predicates, being either modifiers or co-
predicates. We analyse them as adverbial modi-
fiers and provide a feature AdvType=Dir for lin-
guists interested in querying the corpus for this phe-
nomenon.

6.9 Status suffixes
Status suffixes are a particular feature of the Mayan
languages. These are suffixes that appear on verbs
(and directionals which historically come from
verbs). The particular status suffix a verb bears is
conditioned by an amalgamation of morphosyntac-
tic facts about the clause, including the transitivity
of the verb, whether the verb is a root verb (i.e.,
CVC form) or has undergone derivation, the tense-
aspect-mood of the clause, and whether the clause
is an independent or dependent clause. In K’iche’
there are four status suffixes, -ik, -oq, -u ∼ -o (with
vowel harmony) and -u’ ∼ -a’ ∼ -o’ (with vowel har-
mony).7

(26)
Kattzaq bʼi- -k chi upam ri jul.
K-at-tzaq bʼi ik chi u-pam ri jul.

Fall DIR SS in its inside the hole.

root

caseadvmod aux:ss det
nmod

obl

In this example, the directional, itself derived
from a verb, bears the status suffix -ik, which indi-
cates that the verb is intransitive and non-dependent.
One might wonder why tzaq ‘fall’, the main verb
does not bear its own status suffix. This is because,
in K’iche’, these suffixes only appear at the edges of
certain prosodic phrases (Henderson, 2012). These
is no such phrase break between the verb and direc-
tional, and so only the latter bears the status suffix.

7Some linguists, e.g., Kaufman (1986) also treat the suffix
verbs bear in the perfect as a status suffix. We do not do so here,
instead treating these suffixes as deriving stative predicates.

We have chosen to link status suffixes to their
verbs with a flavour of the aux relation. The rea-
son is that status suffixes are function words accom-
panying the verb that express aspect and mood in-
formation like verbal auxiliaries do in more famil-
iar languages. For instance, swapping the -ik and
-oq status suffixes on an intransitive verb (in certain
aspects) is enough to change the interpretation from
conditional mood to imperative mood.

7 Experiments

Here we present two experiments using the corpus.
The first is an evaluation of three different parsing
pipelines and the second is an experiment in using
automatic parsing for mining linguistic examples.

7.1 Automatic parsing
In order to test the usage of the corpus for automatic
parsing, performed three experiments using three
off-the-shelf natural-language processing pipelines:
UDPipe 1.2 (Straka et al., 2016), UDPipe 2.0
(Straka, 2018) and UDify (Kondratyuk and Straka,
2019). Version 1.2 (Straka et al., 2016) of UDPipe
is a pipeline-based model where tokenisation is per-
formed by a BiLSTM, morphological analysis and
part-of-speech tagging are performed using an av-
eraged perceptron model and dependency parsing
uses a transition-based non-projective parser, where
transitions are predicted by a neural network. Ver-
sion 2.0 (Straka, 2018) is a complete rewrite of
the UDPipe parser. It implements a joint model
for part-of-speech tagging, morphological analysis,
lemmatisation and parsing. The parsing model is
graph-based using the Chu-Liu/Edmonds algorithm
for decoding. Finally, UDify (Kondratyuk and
Straka, 2019) is a multilingual model that supports
parsing 75 languages. This is also a joint model,
with a shared BERT representation for all 75 lan-
guages. The pre-trained model can be fine-tuned on
language data from a new language, and we provide
the results for fine-tuning on K’iche’. All parsers
were trained with default hyperparameters.

As there was not enough data to maintain a held
out test set of sufficient size, we performed ten-fold
cross validation. Table 3 presents the results of the
comparison. The evaluation was carried out using
the official evaluation script from the 2017 CoNLL
Shared Task (Zeman et al., 2017).
As can be seen from the results in Table 3, UD-

Pipe 2.0 performs significantly better than UDPipe
1.2 and UDify for all of the tasks. This comes at a
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Straka et al. (2016) Straka (2018) Kondratyuk and Straka (2019)
Training time 20:22 ± 00:32 636:19 ± 28:56 618:27 ± 18:49
Model size 2.3M 64M 760M
Tokens 99.8 ± 0.3 — —
Words 97.6 ± 0.4 — —
Lemmas 88.3 ± 1.1 94.9 ± 0.5 88.3 ± 0.9
UPOS 91.4 ± 1.4 96.5 ± 0.7 94.2 ± 1.1
Features 92.0 ± 1.2 96.6 ± 0.8 93.5 ± 0.7
UAS 82.8 ± 1.9 91.1 ± 2.0 85.2 ± 2.8
LAS 76.7 ± 2.5 86.5 ± 2.4 78.9 ± 2.5

Table 3: Results on tasks from tokenisation to dependency parsing. Standard deviation is obtained by running ten-fold
cross validation. The columns are F1 score: Tokens tokenisation;Words splitting syntactic words (e.g. contractions);
Lemmas lemmatisation; UPOS universal part-of-speech tags; Feats morphological features; UAS unlabelled attach-
ment score (dependency heads); LAS labelled attachment score (dependency heads and relations). Model size is in
megabytes, training time is in mm:ss, as run on a consumer-grade laptop.

substantial increase in model size and training time
compared to UDPipe 1.0, but results in a model that
is still tractable on a consumer-grade laptop.

7.2 Linguistic example mining
Using corpora of under-resourced languages to test
predictions pertinent to linguistic theory is often dif-
ficult. The reason is that the predictions are usually
highly structurally dependent, making it hard, or
even impossible, to search for relevant examples via
string matching. We show the utility of the present
treebank through a case study probing the distribu-
tion of phrase-final status suffixes (see section 6.9).
Henderson (2012) proposes that the status suffixes
that only appear phrase-finally are sensitive to in-
tonational phrase boundaries, which roughly map
onto clause boundaries. The generalisation is that
a phrase final status suffix should only appear if the
verb / directional bearing it is (i) utterance final, (ii)
directly before an embedded clause, (iii) directly be-
fore a functional head that itself embeds a clause.
Notice that to find counterexamples to this general-
isation, one must search for sentences that do not
satisfy a structural description—e.g., give me sen-
tences containing a status suffix that is not directly
followed by an embedded clause. This is impossible
to do without a treebank. It is not even possible to
do via string matching over a corpus with grammat-
ical annotations like part-of-speech tags.
We used the corpus to test the generalization in

Henderson (2012) against a larger set of K’iche’
texts. In order to produce a larger corpus of exam-
ples, we took all of the texts we had available from
the sourcesmentioned in Section 4 and to that added

the Crúbadán corpus of K’iche’ (Scannell, 2007)
and processed them with the UDPipe 2.0 model de-
scribed in the previous section.
We used the Grew (Guillaume, 2019) corpus

query language to extract all sentences where a verb
had both a dependent that was an auxiliary with the
relation of aux:ss and a noun with the relation
obj. The query can be seen schematically in (27).

(27) VERB AUX NOUN
aux:ss

obj

This lead to a total of 16,196 sentences contain-
ing 352,509 tokens. Note that the annotation for
these sentences was not hand annotated, but simply
the output of the data-driven parser. Although the
output contained errors, the number of false posi-
tives due to errors in the parse tree was unexpect-
edly low.
The result is that we discovered a series of ex-

amples with structures that have not yet been con-
sidered in the literature on status suffixes, including
direct counterexamples to Henderson (2012). For
instance, we see in the following example a direc-
tional bearing the phrase-final dependent status suf-
fix -oq. Yet, the directional is not at clause boundary
or before a functional head that embeds a clause. In-
stead, it occurs before a reflexive pronoun, which in
K’iche’ is a relational noun construction.

(28)
… e kakimiq’ ukoq kib’.
… e ka-ø-ki-miq’ uk-oq k-ib’.
… B3PL they warm DIR-SS themselves.

acl
nsubj advmod

obj
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An example like Kekanaj kan kuk’ chila’ [e
kakimiq’ ukoq kib’]. “They remained over there
with those [that were warming themselves].” (28)
is intriguing because while a counterexample, there
are plausible stories one could tell. For instance,
these reflexives are prosodic clitics. Perhaps the re-
quirement that the status suffix be phrase final ig-
nores expressions that are prosodically deficient be-
cause they do not count as independent phonolog-
ical words. While arguing for this account would
take more work, the fact that we have very quickly
found a theoretically interesting counterexample to
a prominent generalisation in literature shows the
utility of the treebank for example mining.

8 Future work
Wewould like to investigate the use of enhanced de-
pendencies8 to provide a more semantics-oriented
encoding of relational nouns. For example if we
take example (23), we could envisage an enhanced
obl link from the verbXkunax ‘was cured’ to the se-
mantic head of the agent phrase ixoqib’ ‘the women’
(29) where we indicate the differences with respect
to the basic tree in boldface. This would fall un-
der Case information in the enhanced schema and
would be an additional layer on top of the basic syn-
tax. The process could be partially automated using
the Grew tool.

(29)
Xkunax le ali kumal ri ixoqibʼ.

X-ø-kuna-x le ali k-umal ri ixoq-ibʼ.
Was cured the girl by the women.

root

det
nsubj

case
obl:umal

det

We also intend to expand the treebank and apply
the lessons learnt and annotation solutions to other
Mayan languages, this is a large group and we would
like to start with languages related to K’iche’ such as
Uspanteko and Kaqchikel.

9 Concluding remarks
We have presented the first syntactically annotated
corpus of sentences in K’iche’. Both the corpus
and the documentation of the annotation scheme
are freely available9 through the Universal Depen-

8https://universaldependencies.org/u/
overview/enhanced-syntax.html

9https://github.com/
UniversalDependencies/UD_Kiche-IU

dencies project.10 It is our hope that the work we
describe here will facilitate the annotation of, and
promote language technology for other Mayan lan-
guages.
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Abstract
We describe experiments with character-based
language modeling for written variants of Nahu-
atl. Using a standard LSTM model and pub-
licly available Bible translations, we explore how
character language models can be applied to the
tasks of estimating mutual intelligibility, identi-
fying genetic similarity, and distinguishing writ-
ten variants. We demonstrate that these simple
language models are able to capture similarities
and differences that have been described in the
linguistic literature.1

1 Introduction
The diversity of language variants2 in a linguistic
continuum presents an interesting challenge to the
development of language technology. For marginal-
ized and endangered languages, the general lack of
resources in the language as a whole exacerbates
this challenge.
Character-level features have been shown to be

effective for a wide range of textual NLP tasks,
including language identification (Dunning, 1994;
Veena et al., 2018), native language detection (Kul-
mizev et al., 2017), and machine translation (Lee
et al., 2017; Chen et al., 2018). Furthermore, they
offer the advantage of requiring little-to-no prepro-
cessing or linguistic engineering (e.g. word tok-
enization, morphological segmentation, etc.) other
than possibly orthographic normalization3.
In this paper we investigate the usefulness of char-

acter language models in addressing questions about
variation within a linguistic continuum. Specifi-
cally, we examine the extent to which these sim-

1Code is available at https://github.com/
Lguyogiro/nahuatl-variant-charlms-americasnlp

2We use the term variants to refer to instances of any kind
of intra-language variation, including variation based on region
(dialect), culture or ethnicity (ethnolect) etc. These may or may
not be considered the same language or separate languages.

3Subword tokenization methods, such as Byte-Pair Encod-
ing, also share this property. We leave the investigation of un-
supervised subword tokenization for written Nahuatl for future
experiments.

ple surface-level features of written language corre-
spond to structural phonological and grammatical
differences between different variants of Nahuatl.
We examine three tasks: variant identification, lin-
guistic sub-classification/genetic similarity, and the
prediction of mutual intelligibility.

2 Background

In this section we give some background on the lan-
guage, language modeling, and some relevant re-
lated work.

2.1 Nahuatl
Nahuatl is a polysynthetic, agglutinating Uto-
Aztecan language continuum spoken throughout
Mexico and Mesoamerica. The Mexican Govern-
ment’s Instituto Nacional de Lenguas Indígenas (IN-
ALI) recognises 30 distinct variants (INALI, 2009).
These variants have highly-variable levels of intelli-
gibility between them, and linguistic similarity and
mutual intelligibility is not always correlated with
geographic distance. Furthermore, the recognition
and treatment of Nahuatl’s linguistic diversity has
far-reaching impacts on language activism and revi-
talization projects (Pharao Hansen, 2013).
Nahuatl variants can differ along lexical ( totoltetl

vs. teksistli ‘egg’), phonological (common isoglosses
include t-tl-l and e-i), and morphological (e.g. the
presence or absence of word-initial o- for past tense
verbs) dimensions, and orthography can vary within
and across variants. Table 1 gives an example of
these types of variation.
Computational modeling of Nahuatl variants is

useful for many language technology applications.
Automatic variant detection may be useful for
grouping and categorizing texts in a large corpus
such as the Axolotl corpus (Gutierrez-Vasques et al.,
2016), where the provenance of the texts is not
always known. For automated dialogue systems,
variant modeling can be used to assess the degree
to which a generated turn will be understood by a
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user. Finally, for applications that generate text on a
user’s behalf, such as predictive keyboards and spell-
checking systems, it is vital to maintain consistency
in both language variant and orthographic norms.

2.2 Language Modeling
Language models are probability distributions over
sequences of vocabulary items with parameters
learned from data. They are ubiquitous in Nat-
ural Language Processing in areas including ma-
chine translation, automatic speech recognition, and
spelling correction, among others. Traditional n-
gram language models estimate the conditional
probability of each vocabulary item given contexts
of preceding vocabulary items based on their fre-
quency in the data. Neural language models repre-
sent each vocabulary item as a distributed feature
vector, and learn the joint probability function of
the sequence of feature vectors and the feature vec-
tors themselves simultaneously (Bengio et al., 2000).
We use the latter in the experiments presented in
this paper.

PP = e−
1
N

∑N

i=1
ln p(xi) (1)

A commonmetric for evaluating the performance
of a language model is perplexity (1), or how “sur-
prised” the model is when seeing a sequence of vo-
cabulary items (the more surprised, the worse the
model fits the data).
We specifically focus on character-based lan-

guage models for two reasons. First and foremost
is the simplicity of character-based tokenization,
which involves none of the assumptions about se-
quence groupings required by other tokenization
methods. Secondly, there are a number of mor-
phemes in Nahuatl that are written with a single
character, such as the past-tense prefix o:-4, some
realizations of the third-person singular object pre-
fix k-, and the singular-subject future tense suffix -s.
Since these single-character morphemes are linguis-
tically important, and subword tokenization meth-
ods risk merging them with arbitrary adjacent char-
acters, character tokenization is more appropriate.

2.3 Related Work
There has been a great deal of research into
computational approaches for assessing similar-
ity/intelligibility between related languages and lan-

4The augment, as it is often referred to in the literature, /oː/-
is not morphologically a prefix, but is typically written attached
to the verb. See Chapter 8.8 of Launey and Mackay (2011) for
a detailed description of its morphological status and behavior.

guage variants, most notably highlighted in the
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial) (Gaman et al., 2020). Partic-
ularly relevant to the work presented in this paper,
Gamallo et al. (2017) describe amethod for discrim-
inating between similar languages using word and
character n-gram language model perplexity. Char-
acter language models have also been shown to be
effective in distinguishing between dialects of writ-
ten Arabic (Sadat et al., 2014; Malmasi et al., 2015).
With respect to Nahuatl, Farfan (2019) analyzed

contemporary written Nahuatl variants for points
of convergence using a finite-state morphological
analyzer built from a grammar of Classical Nahu-
atl. Other efforts in developing language technology
for Nahuatl include a large parallel Nahuatl-Spanish
text corpus (Gutierrez-Vasques et al., 2016), and
a morphological analyzer for the Western Sierra
(nhi) variant (Pugh et al., 2021).

3 Data
The most widely available corpus of text in the
variants of Nahuatl is the Bible. We used trans-
lations into 10 different Nahuatl variants available
from scriptureearth.org5. The complete list
of variants employed in this study is: azz High-
land Puebla, ngu Guerrero, nch Central Huasteca,
nhe Eastern Huasteca, nhy Northern Oaxaca, ncj
Northern Puebla, nhiWestern Sierra, nsu Sierra Ne-
gra, ncl Michoacán, nhw Western Huasteca.
As translators merge verses differently in differ-

ent languages, to maintain data parity for all of the
variants being investigated we only included verses
which were present in all variants (7,363 verses).

3.1 Orthography
Nahuatl is commonly written in a range of different
orthographies. Phonemes /k/, /w/, and /h/ typically
have variable graphemic representations in different
orthographies. Vowel-length, which is phonemic in
many Nahuatl variants but has a low functional load,
can be written but is commonly ignored. See de la
Cruz Cruz (2014) for a more in-depth discussion of
Nahuatl orthography.
The different translations of the Bible do not ad-

here to a single orthographic norm, so we decided
to normalize them to remove the choice of orthog-
raphy as a confounding factor. Our normalization

5In fact, scriptureearth.org has translations in 11 variants,
but due to an error during processing, we excluded Isthmus-
Mecayapan Nahuatl (nhx). We plan to evaluate nhx in future
work
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Word Segmentation Gloss Language Code
quinilij ∅-quin-ilij S3SG-I3PL-tell azz
oquiniluic o-∅-quin-iluic PST-S3SG-I3PL-tell ncj
okinmilvi o-∅-kinm-ilvi PST-S3SG-I3PL-tell nsu
oquimiluih o-∅-quim-iluih PST-S3SG-I3PL-tell nhi

Table 1: The different forms of the ditransitive verb “to tell/say (s.t. to s.o.)” from 4 of the variants studied. Note the
variation in the use of a past-marking o- prefix, verb stem and object prefix, and different orthographies. These forms
came from Matthew 14:2, and correspond to the phrase ‘said unto (his servants)’ in the King James Bible: “And said
unto his servants, This is John the Baptist;”.

method makes the following changes to account for
well-known orthographic variation in contemporary
Nahuatl writing:

• Replaces hu, uh, and w with u;
• Replaces qu followed by front vowel and c fol-
lowed by back vowel or consonant (except h)
with k;

• Neutralizes vowel length.

3.2 Language codes
For two of our three case studies, we compare our
system’s analysis of Nahuatl variants with fieldwork.
Since each Bible translation is associated with an
ISO-639 code, and in many cases the mapping of
towns/locales described in fieldwork to the variants
indicated by ISO-639 codes is not clear-cut, we
needed to match the ISO codes in our corpus to the
variants described in the literature. To do this, we
(1) consulted Ethnologue (Eberhard et al., 2021) for
towns and municipalities associated with each ISO
code, (2) searched for matching locations in the re-
spective fieldwork descriptions, and (3) consulted a
map to identify the closest matching place name in
cases where there were no exact location matches.
For more details, see Appendix A.

4 Methods
In order to analyze the three case studies described
below, we evaluated the cross-variant perplexity of
character language models for each Nahuatl vari-
ant in our corpus. Specifically, we split the data
by verse into train (6,258 verses), dev (552 verses),
and test (552 verses) partitions. For each variant,
we trained a character language model on the train-
ing data for 50 epochs (this was manually verified to
be sufficient for convergence). The epoch with the
lowest perplexity on the dev set was selected, and
the perplexity of the model at that epoch on the test
set was calculated for all variants. We used PyTorch
(Paszke et al., 2019) to train a unidirectional LSTM

language model with 100-dimension character em-
beddings (with dropout) and a single recurrent layer
with 1024 hidden units.

5 Case studies
In this section we present three case studies using
character-based language models.

5.1 Variant identification
In order to test the usefulness of character language
models for predicting the variant of a text, we com-
bined the test set verses for all variants and cal-
culated the perplexity for each variant’s language
model on the entire data set. To produce predic-
tions, for each verse we simply chose the variant
with the lowest perplexity.

This approach yields near-perfect results (accu-
racy=0.99). The few errors were confusions be-
tween the different Huasteca variants, (nhw, nhe,
and nch). This is unsurprising given their high sim-
ilarity. In fact many of the verses our system incor-
rectly identified were identical to the same verse in
the correct variant. The near-perfect performance
is likely due to the restricted domain of our corpus,
and the fact that the same translator(s) produced all
of the verses for a given variant. Thus, it is likely
that many of the patterns exploited by the language
models are not language-specific (e.g. presence or
absence of the o- prefix in the preterite) but au-
thor/document/domain specific (e.g. stylistic deci-
sions such as word choice).

5.2 Sub-classification and genetic similarity
There are a number of different systems for sub-
classification of Nahuan languages. Lastra (1986),
in an analysis based on synchronic lexical and gram-
matical similarities in 93 surveyed locations, sug-
gests grouping Nahuatl variants into four groups:
“Central”, “Huasteca”, “Western Periphery” and
“Eastern Periphery”.
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Figure 1: A dendrogram showing the variants studied, hierarchically clustered by relative perplexity. Our character
language-modeling approach appears to be quite well-suited for capturing synchronic linguistic similarities between
Nahuatl variants, but is less effective at identifying historical, genetic variant relationships.
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Figure 2: A force atlas diagram showing relative perplex-
ity. Longer edges indicate higher perplexity. Node color
corresponds to the clusters in Figure 1

The “East-West Split” (Canger and Dakin, 1985;
Canger, 1988; Pharao Hansen, 2014) is a widely-
held grouping of Nahuatl variants based on histor-
ical evidence of two waves of migration of early
Nahuatl-speakers to Mexico. The first wave is
thought to have resulted in what are known as
the “Eastern” variants (the Huasteca and High-
land Puebla variants among others), and the sec-
ond in the “Western” variant group (including vari-
ants spoken near present-day Mexico City, North-
ern Sierra Puebla, Southeastern Puebla, and Mi-
choacán). Importantly, many of the measurable in-
dicators of similarity in the above two groupings,
such as the existence of lexical cognates and phono-
logical/morphological isoglosses, are often recover-
able from the written form.
We grouped the variants by hierarchically cluster-

ing the vectors of cross-variant perplexity.

Central-Periphery Clustering based on the
cross-variant perplexity shows a general corre-
spondence to the Central-Periphery grouping of
Lastra (1986), with some exceptions. Lastra’s
Central group is prominently represented in both
Figure 1 (the orange lines, with the exception of
the outermost azz) and Figure 2 (the cluster of
nodes at the bottom right). The Huasteca group
also stands out in our data as a cluster of three
variants (nhw, nhe, nch) distinct from the Central
group. In fact, of all variant-pairs in our data,
Eastern Huasteca (nhe) and Western Huasteca
(nhw) have the lowest cross-variant perplexity
(clearly illustrated in Figure 1). The two Periphery
groups, Western Periphery and Eastern Periphery,
were not represented by any clear grouping in the
cross-variant clustering, other than being separate
from the Central group. This may be due to the lack
of representation of these groups in our dataset,
with only one variant from the Eastern Periphery
(azz), and one from the Western Periphery (ncl).

East-West Split The distinction between Eastern
and Western variants is less pronounced when clus-
tering on cross-variant perplexity, though the dis-
tinction between the Huasteca variants and Central
variants mentioned above does overlap substantially
with the East-West split. The variants whose posi-
tion in our grouping most contradicts the East-West
sub-classification are ngu, azz, and ncl6. One pos-
sible explanation for a lack of clear distinction be-
tween the East and West groups is the fact that cer-
tain variants may tend to be more “innovative” than
others, leading to new linguistic forms that set them

6As Pharao Hansen (2014) points out, the status of Guer-
rero variants within the “East-West” grouping remains unclear.
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Figure 3: A plot of mutual intelligibility of variant-pairs and the corresponding cross-variant perplexity.

apart from otherwise related variants.

5.3 Mutual intelligibility
The primary systematic study of mutual intelli-
gibility between Nahuatl varieties is Egland and
Bartholomew (1978), which involved surveying
speakers from 58 different communities throughout
Mexico. Mutual intelligibility was assessed by play-
ing a recording of a narrative by a speaker from a
different community and asking the listener a series
of comprehension questions. The results were ad-
justed and reported as percentages7.
The resulting mutual intelligibility numbers are

reported for community-pairs (e.g. “Tetlalpan-
Xochiatipan: 99%”). In order to compare these
numbers to our variant models, we assigned each
community to an ISO-639 code as described in 3.2,
giving us code pairs (“nhw-nhe: 99%”).
To evaluate whether our character language mod-

els can tell us something about mutual intelligibil-
ity, we compared each available ISO code pair’s mu-
tual intelligibility percentages with the correspond-
ing cross-variant perplexity. We essentially treat our
language model as if it were a speaker, such that
(in keeping with the above example) to compare the
understanding of an nhw speaker listening to a nar-
ration from an nhe speaker, we take the language
model trained on nhw Bible translation and evalu-
ate its perplexity on nhe Bible translation. When
a single language code contained multiple measure-
ments, we used the average.
The results of this comparison, which in-
7We recommend consulting the first two sections of this

work for details about arriving at the final percentages.

cludes all relevant measurements from Egland and
Bartholomew (1978) as well as any additional re-
ported intelligibility numbers from Ethnologue8,
are plotted in Figure 3. We found the reported
mutual intelligibility between two variants and their
cross-variant perplexity to be moderately negatively
correlated in our data, r(19) = -0.734, p = .0002.
The relationship is particularly strong for the vari-
ants with the lowest cross-variant perplexity (the
Huasteca variants). However, this method is less
effective at distinguishing between the mutual in-
telligibility of less similar variants as seen by the
bunching in the center of the graph.

6 Concluding remarks
Our three case studies suggest that a simple charac-
ter language model can capture a non-trivial amount
of information about some of the linguistic proper-
ties, relationships, and similarities of written Nahu-
atl variants. The experiments also support existing
literature on the utility of character features in the
computational modeling of similar languages. We
note the limitations of our data set, i.e. that each
variant is represented by a parallel text published by
the same organization (and likely by a single author
per variant), and that our approach may not yield
similar results on non-parallel or comparable text.
We are also interested in exploring languagemod-

els under various tokenization schemes, such as un-
supervised subword tokenization and morphologi-
cal segmentation.

8Measurements reported with less than 5 speakers were ex-
cluded. Two of the measurements, nhi-nsu and nhi-ncj,
were reported as “50-60%” in Ethnologue. For these data
points we used 55%.

25



References
Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.

2000. A neural probabilistic language model. In Pro-
ceedings of the 13th International Conference on Neu-
ral Information Processing Systems, pages 893–899.

Una Canger. 1988. Subgrupos de los dialectos nahuas.
In J. Kathryn Josserand and Karen Dakin, editors,
Smoke and Mist: Mesoamerican Studies in Memory of
Thelma D. Sullivan, volume 402 of BAR lnternational,
pages 473–498. BAR, Oxford.

Una Canger and Karen Dakin. 1985. An inconspicuous
basic split in nahuatl. International Journal of Ameri-
can Linguistics, 51(4):358–361.

Huadong Chen, Shujian Huang, David Chiang, Xinyu
Dai, and Jiajun Chen. 2018. Combining charac-
ter and word information in neural machine transla-
tion using a multi-level attention. In Proceedings of
the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers),
pages 1284–1293, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Victoriano de la Cruz Cruz. 2014. La escritura náhuatl y
los procesos de su revitalización. Contribution in New
World Archaeology, 7:187–197.

Ted Dunning. 1994. Statistical identification of lan-
guage. Technical Report 94-273, New Mexico State
University.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig, editors. 2021. Ethnologue: Languages of the
World. Twenty-fourth edition. SIL International. On-
line version: http://www.ethnologue.com.

S. Egland and D. Bartholomew. 1978. La inteligibilidad
inter-dialectal en mexico: Resultados de algunos son-
deos. Technical report.

J.I.E. Farfan. 2019. Nahuatl Contemporary Writing:
Studying Convergence in the Absence of a Written
Norm. University of Sheffield.

Pablo Gamallo, José Ramom Pichel Campos, and Inaki
Alegria. 2017. A perplexity-based method for similar
languages discrimination. In Proceedings of the fourth
workshop on NLP for similar languages, varieties and
dialects (VarDial), pages 109–114.

Mihaela Gaman, Dirk Hovy, Radu Tudor Ionescu,
Heidi Jauhiainen, Tommi Jauhiainen, Krister Lindén,
Nikola Ljubešić, Niko Partanen, Christoph Purschke,
Yves Scherrer, et al. 2020. A report on the vardial
evaluation campaign 2020. In Proceedings of the 7th
Workshop on NLP for Similar Languages, Varieties
and Dialects. International Committee on Computa-
tional Linguistics.

Ximena Gutierrez-Vasques, Gerardo Sierra, and
Isaac Hernandez Pompa. 2016. Axolotl: a web
accessible parallel corpus for spanish-nahuatl. In

Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 4210–4214.

INALI. 2009. Catálogo De Las Lenguas Indígenas
Nacionales: Variantes Lingüísticas De México Con
Sus Autodenominaciones Y Referencias Geoestadísti-
cas. Instituto Nacional de Lenguas Indígenas, Méx-
ico, D.F.

Artur Kulmizev, Bo Blankers, Johannes Bjerva, Malvina
Nissim, Gertjan van Noord, Barbara Plank, and Mar-
tijn Wieling. 2017. The power of character n-grams
in native language identification. In Proceedings of the
12th workshop on innovative use of NLP for building
educational applications, pages 382–389.

Yolanda Lastra. 1986. Las areas dialectales del nahuatl
moderno. Universidad Nacional Autónoma de Méx-
ico, Instituto de Investigaciones Antropológicas.

M. Launey and C. Mackay. 2011. An Introduction to
Classical Nahuatl. Cambridge University Press.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully character-level neural machine transla-
tion without explicit segmentation. Transactions of
the Association for Computational Linguistics, 5:365–
378.

Shervin Malmasi, Eshrag Refaee, and Mark Dras. 2015.
Arabic dialect identification using a parallel multidi-
alectal corpus. In Conference of the Pacific Asso-
ciation for Computational Linguistics, pages 35–53.
Springer.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc.

Magnus Pharao Hansen. 2013. Nahuatl in the plural: Di-
alectology and activism in Mexico. In Proceedings
of the American Anthropological Association, Annual
Meeting.

Magnus Pharao Hansen. 2014. The East-West split in
Nahuan dialectology: Reviewing the evidence and
consolidating the grouping. In Friends of Uto-Aztecan
Workshop.

Robert Pugh, Francis Tyers, andMarivel HuertaMendez.
2021. Towards and open source finite-state morpho-
logical analyzer for zacatlán-ahuacatlán-tepetzintla
nahuatl. In Proceedings of the Workshop on Computa-
tional Methods for Endangered Languages, volume 1,
pages 80–85.

26



Fatiha Sadat, Farzindar Kazemi, and Atefeh Farzindar.
2014. Automatic identification of arabic language va-
rieties and dialects in social media. In Proceedings of
the Second Workshop on Natural Language Processing
for Social Media (SocialNLP), pages 22–27.

PV Veena, M Anand Kumar, and KP Soman. 2018.
Character embedding for language identification in
hindi-english code-mixed social media text. Com-
putación y Sistemas, 22(1):65–74.

A Language variants
In Table 2 we give the equivalences between ISO-
639 language codes, variant names and locations
where the variant is reported to be spoken.

Code Variant Locations
azz Highland Puebla Chichiquila

Tatóscac
Zacatipan
Zautla

nch Central Huasteca Las Balsas
ncj Northern Puebla Cuaohueyalta

Masacoatlán
Tlaxpanaloya
Xaltepuxtla

ncl Michoacán Pómaro
ngu Guerrero Copalillo

Zitlala
nhe Eastern Huasteca Cuautenáhuatl

Ixcatepec
Jaltocan
Xochiatipan
Yahualica

nhi Western Sierra Tlalitzlipa
nhw Western Huasteca Casotipan

Macuilocatl
Tampacan
Tetlalpan

nhy Northern Oaxaca —
nsu Sierra Negra —

Table 2: A listing of the locations tested for mutual intel-
ligibility in Egland and Bartholomew (1978) as assigned
to specific variants and language codes. The variants nhy
and nsu did not appear in the report, but mutual intelli-
gibility scores are available from Ethnologue (Eberhard
et al., 2021).
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Abstract
This paper presents and discusses the first Uni-
versal Dependencies treebank for the Apurinã
language. The treebank contains 76 fully an-
notated sentences, applies 14 parts-of-speech,
as well as seven augmented or new features
– some of which are unique to Apurinã. The
construction of the treebank has also served as
an opportunity to develop finite-state descrip-
tion of the language and facilitate the transfer
of open-source infrastructure possibilities to
an endangered language of the Amazon. The
source materials used in the initial treebank
represent fieldwork practices where not all to-
kens of all sentences are equally annotated.
For this reason, establishing regular annotation
practices for the entire Apurinã treebank is an
ongoing project.

1 Introduction

Apurinã (ISO code apu) is an endangered language
spoken in the Amazon Basin. The language has
around 2,000 native speakers and it is definitely
endangered according to the UNESCO classifica-
tion (Moseley, 2010). This paper is dedicated to
describing the first ever Universal Dependencies
(UD) treebank for Apurinã1. We describe how the
treebank was created, and what exact decisions
were made in different parts of the process.

The UD project (Zeman et al., 2020) has the goal
of collecting syntactically annotated corpora con-
taining information about lemmas, parts-of-speech,
morphology and dependencies in such a fashion
that the annotation conventions are shared across
languages, although there may be inconsistencies
between languages (see Rueter and Partanen 2019).
As the number of South American languages repre-
sented in the Universal Dependencies project has
grown rapidly in the last years (see i.e. Vasquez
et al., 2018; Thomas, 2019), the descriptions of in-
dividual treebanks are thereby also a very valuable

1https://github.com/UniversalDependencies/UD_Apurina-
UFPA

resource that helps to maintain consistency in the
treebanks of this complex linguistic regions.

The advantage of UD treebanks is that they can
be used directly in many neural NLP applications
such as parsers (Qi et al., 2020) and part-of-speech
taggers (Kim et al., 2017). Although the endan-
gered languages have a very different starting point
in comparison with large languages (Hämäläinen,
2021), there has been recent work (Lim et al., 2018;
Ens et al., 2019; Hämäläinen and Wiechetek, 2020;
Alnajjar, 2021) showcasing good results on a vari-
ety of tasks even for the few endangered languages
that have a UD treebank.

The fact that UD treebanks can be used with neu-
ral models to build higher level NLP tools is one
of the key motivations for us to build this resource
for Apurinã. In addition to NLP research, UD
treebanks have been used in many purely linguisti-
cally motivated research papers (Croft et al., 2017;
Levshina, 2017, 2019; Sinnemäki and Haakana,
2020). We believe such developments will only
grow stronger, and believe that easily available
treebanks in the UD project, covering continuously
better the world’s linguistic diversity, will continue
widening their role as suitable and valuable tools
for both descriptive linguistic research and compu-
tational linguistics. This goal will be achievable
only by creating an open discussion about the con-
ventions and choices done in different treebanks,
which can be adjusted and refined at the later stage.
This study aims to provide such description about
Apurinã treebank. An example of a UD annotated
sentence in Apurinã can be seen in Figure 1.

2 Modelling the Apurinã Language in
UD

The Apurinã language has a rich morphology with
regular correlation between numerous formatives
and semantic categories. One challenge in the con-
version from fieldwork/typology style annotation
to that used in the UD project is to choose what
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Figure 1: An example of a UD tree for an Apurinã sentence meaning ‘They had it, had meat, manioc, fish, fruit’.

features should or can be highlighted with specific
transferability to other UD projects and which ones
should only be represented as language specific
morphology.

The task has also been contemplated from a
finite-state perspective, where regular inflection
plays a decisive role in determining lemma and reg-
ular inflection strategies. Finite-state description
also entails the use of the open-source GiellaLT in-
frastructure (Norwegian Arctic University, Tromsø)
(Moshagen et al., 2014), which introduces a large
number of mutual tag definitions and practices that
can be applied to Apurinã with ample analogy from
the morphologically challenging Uralic and other
languages of the Circum-Polar region.

Solutions for dealing with the categories of case,
number, person and gender are available in the
GiellaLT infrastructure. Extensions, however, have
been required for Apurinã in the categories of
number, person and gender. Unlike some Indo-
European and Uralic languages, the category of
gender must also be applied to the subjects and ob-
jects of verbs; subject and object marking for num-
ber (see Facundes et al. 2021) and person categories
could have been adapted directly from description
work in the Erzya (Rueter and Tyers, 2018) and
Moksha (Rueter, 2018) UD treebanks.

2.1 Case

The Feature of CASE, for example, permeates many
of the individual language projects, and some at-
tempts are made to align case documentation with
principles adapted in the Unimorph project (Kirov
et al., 2018). In the instance of Apurinã, paral-
lel case categories have been adapted with names
familiar to those used in work with languages of
the Uralic language family. This was done princi-

pally because the team involved in the annotation
was most familiar with this language family: at the
same time the Uralic UD annotations, especially for
the minority languages, are already closely adapted
to the UD project at large. Whether such general-
izations work is also one test for the cross-linguistic
suitability of the current annotation model.

The concept of case in Apurinã is most salient
in oblique marking. While the subject, object and
adposition complements show no special marking,
there are at least six oblique marker to deal with
(Facundes, 2000, 385–390). The labeling of these
cases also underlines a problem not new to UD,
namely, every language research tradition tends to
apply its own terms for similar functions. Apur-
inã, as in the Uralic languages, shows evidence
of case-like formatives associated not only with
nominals but verbs, as well. In the first version
of the Apurinã UD treebank, the formative case
name pairs have been assigned as follows: munhi =
Dat (dative, allative, goal), kata = Com (comitative,
associative), ã = Loc (locative, instrumental), Ø =
Nom (nominative). Subsequent work in the dataset
will introduce the additional case formative sawaky
= Temp (temporal), and show the extent of shared
morphology across parts-of-speech.

2.2 Possession

One complexity of Apurinã morphology is encoun-
tered in the expression of possession. While the
possessor of a noun may be indicated morphologi-
cally on the possessum, it is not obligatory. A pre-
ceding personal pronoun, for example, also serves
as a marker of possession, to which the morphol-
ogy of the possessum reacts and shows indication
of being possessed. Hence, there are four basic
categories that can be expressed on the possessum:
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person, number and gender of the possessor, on the
one hand, and indication of whether the entity is a
possessum or not, on the other. These categories
are expressed as feature and value pairs in the UD
project:

• Gender[psor]=Masc|Fem

• Number[psor]=Plur|Sing

• Person[psor]=1|2|3

• Possessed=Yes|No

While matters of gender, number and person are
directly attested in the morphology of the posses-
sum, the feature POSSESSED identifies the individ-
ual noun as to whether there is or is not marking
indicating that it is possessed. This particular is-
sue of research is dealt with extensively in Freitas,
2017.

Apurinã nouns can be split into four groups on
the basis of how their morphology is affected by
possession. There are nouns that never take pos-
session or possessive affixes. Such nouns include
proper names (Freitas, 2017, 179–180). The re-
maining nouns, however, take possessive affixes,
on the one hand, and additional marking to indi-
cate whether the word is possessed or not. First,
there are nouns, such as kinship terms, that vir-
tually always appear with possessive affixes and
no morphology to indicate that they are possessed.
These nouns may only be construed as not pos-
sessed in some verbal incorporations where the
noun is non-specific by nature. A formative -txi is
present to indicate the noun is not possessed. Other
words in this group, including terms for body parts
and individual belongings, for example, take the
-txi formative to indicate the item is not possessed
more freely, e.g. kywy ’head (possessed)’ vs kywı̃txi
’head (possessed)’ (Freitas, 2017, 163-171; Facun-
des, 2000, 199-204,228-236). Second, there are
noun categories that take the formatives -ne, -te
and -re1 to indicate the item is possessed, but they,
in contrast, have no morphology to indicate that
the item is not possessed. Third, there is group
of nouns which actually mark both the possessed
with the formative -re2 and the non-possessed with
the formative -ry2. This alternation is described
in Facundes, 2000, and explicitly Freitas, 2017,
(112-123) (see Table 1)

The Apurinã treebank solution has been to intro-
duce the possessed feature with Yes and No values.
Nouns that cannot be possessed are simply left
without the feature Possessed.

Possessed Not Possessed translation
body part kywy kywı̃-txi ’head’
person sytu-re sytu ’woman’
other kuta-re2 kuta-ry2 ’basket’

Table 1: Marking of possessed feature

2.3 Intransitive descriptive verbs
Apurinã verbs can bear morphology indicating sub-
ject and object, be that simultaneously or separately.
What is interesting, however, is that a specific sub-
class of intransitive descriptive verbs attest to the
use of object marking to indicate congruence with
the subject (Facundes, 2000, 278–283). There are,
in fact, certain verbs that distinguish object and
subject marking strategies for the same intransitive
verbs, such that subject marking indicates a short
temporal frame, and object marking indicates per-
manency (cf. Chagas, 2007; Freitas, 2017, 70–71).

The solution here has been to refer to object-
looking morphology with subject congruence as
subject marking:

• Gender[subj]=Fem|Masc

• Number[subj]=Plur|Sing

• Person[subj]=1|2|3

To cope, an additional feature value set has
been introduced to distinguish verbs of the intran-
sitive descriptive (Vid) nature, and this subset is
subsequently split on the on basis of whether the
formative entails object-identical Vido or subject-
identical marking Vids.

2.4 Derivations
Fieldwork annotations of certain derivational mor-
phology are minimalistic, and their conversion in
the UD treebank calls for more specific representa-
tion. Whereas some formatives have been referred
to using the same terms, e.g. nominalizer, gerund,
we have been obliged to elaborate. Only one fea-
ture has been provided for Derivation, Proprietive
(ka-). The proprietive construction is one of many
annotated as atrib in the fieldwork materials.

2.5 Lemmatization
The Apurinã language is spoken in 18 indigenous
communities of the Purus basin (Lima Padovani
et al., 2019). Grammar descriptions from Facun-
des, 2000 to Freitas, 2017 demonstrate a change in
orthographic development, on the one hand, and
actual variation in forms of the same words in rela-
tion to geographic location, on the other. Materials
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in the treebank alone show some vacillation with
regard to stem-initial h and word-internal e vs i.
Since the orthographic standard is still in a devel-
opmental state, lemma forms have been chosen on
a basis of whether they occur in the manuscript
dictionary (Lima-Padovani and Facundes, 2016) or
not, and a preference for longer word forms, i.e., h-
initial stems are forwarded, since it easier to drop a
letter in the description than to automatically insert
one. Thus the form hãty ’one’ is given as a lemma
instead of its variant ãty (as given in the dictionary),
and herãkatxi (given as a variant) is forwarded as
a lemma over both erãkatxi and erẽkatxi (given in
the examples of the alphabet), arẽkatxi. The high
vowel i is preferred over the middle e such that
tiwitxi ’thing’ is given as a lemma for the forms
teetxi and tiitxi. Fortunately, work with Apurinã
variation is continuing (Lima Padovani et al., 2019),
and an updated version of the Apurinã-Portuguese
dictionary is forthcoming.

3 Treebanks in figures

There were 76 valid and dependency-annotated sen-
tences in the first release. Broken into figures, these
sentences contain 574 tokens and a 454 word count,
which can be further broken down into features,
parts-of-speech and dependency relations.

The most salient features are Case (101), Gen-
der (96), Number (73), but the newly introduced
Gender[obj] (47) is also well attested. The Case
feature owes its prominence to the presence of all
nouns not marked for oblique cases, i.e. Nom; this
leaves a total of 25 obliques (see Table 2).

Feature № Feature №
AdvType=Tim 1 Number[obj]=Plur,Sing 1
Aspect=Prog 1 Number[obj]=Sing 51
Case=Com 4 Number[psor]=Sing 10
Case=Dat 7 Number[subj]=Plur 1
Case=Loc 11 Number[subj]=Sing 7
Case=Nom 76 Person=3 53
Case=Temp 3 Person[obj]=3 52
Derivation=Proprietive 2 Person[psor]=3 8
Gender=Fem 14 Person[subj]=3 8
Gender=Masc 82 Possessed=No 27
Gender[obj]=Masc 47 Possessed=Yes 8
Gender[psor]=Fem 3 PronType=Prs 53
Gender[psor]=Masc 11 VerbForm=Conv 2
Gender[subj]=Masc 8 VerbForm=Vnoun 9
Number=Plur 16 VerbType=Vido 2
Number=Sing 57

Table 2: Features

The most prominent parts-of-speech the NOUN

(170) and VERB (137) classes, followed by PRON

(59) and ADV (39), whereas two instances of the
same unknown word pekana outnumber the ADJ,
CCONJ and PROPN, each at one (see Table 3).

PoS № PoS № PoS №
ADJ 1 DET 11 PROPN 1
ADP 3 NOUN 170 SCONJ 3
ADV 39 NUM 9 VERB 137
AUX 6 PART 13 X 2
CCONJ 1 PRON 59

Table 3: Part-of-speech Figures

An important dependency relation (deprel) is
nsubj (83), which is made possible through the ex-
tensive use of the conj relation. Language-specific
deprels have extensions such as: lmod = locative
modifier, neg = negation, poss = possession, relcl
= relative clause tcl = temporal clause and tmod =
temporal modifier (see Table 4).

deprel № deprel № deprel №
acl 10 mark 3 advmod:lmod 1
advcl 5 nmod 18 advmod:neg 13
advmod 22 nsubj 83 advmod:tmod 13
aux 5 nummod 9 nmod:poss 2
case 3 obj 63 nsubj:cop 2
cc 3 obl 15 obj:agent 1
conj 48 root 76 obl:lmod 19
dep 2 xcomp 1 obl:tmod 4
det 24 acl:relcl 5
csubj 2 advcl:tcl 2

Table 4: Dependency relations

4 Future work

Due to the size and orientation of the dataset some
features of the Apurinã language have been ne-
glected. It will also be a challenge to apply recent
studies in noun incorporation annotation for UD in
Tyers and Mishchenkova, 2020 to what Facundes
and Freitas, 2015 describe for Apurinã noun and
classifier incorporation.

Another obvious goal for further work is to make
Apurinã treebank so large that it can be split into
train, test and dev portions. The goal to expand
the treebank is connected to the availability of re-
sources. Currently the sentences used in the tree-
bank come mainly from the grammatical descrip-
tions. As a language documentation corpus exists2,
an important consideration is whether the treebank
sentences could be more closely connected to audio
and video recordings as well, and, of course, the
main corpora in Belém, as multimodal resources
are valuable in language documentation.

2https://elar.soas.ac.uk/Collection/
MPI1029704
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Abstract

In linguistics, interlinear glossing is an essen-
tial procedure for analyzing the morphology of
languages. This type of annotation is useful
for language documentation, and it can also
provide valuable data for NLP applications.
We perform automatic glossing for Otomi, an
under-resourced language. Our work also com-
prises the pre-processing and annotation of the
corpus.

We implement different sequential labelers.
CRF models represented an efficient and good
solution for our task (accuracy above 90%).
Two main observations emerged from our
work: 1) models with a higher number of pa-
rameters (RNNs) performed worse in our low-
resource scenario; and 2) the information en-
coded in the CRF feature function plays an im-
portant role in the prediction of labels; how-
ever, even in cases where POS tags are not
available it is still possible to achieve competi-
tive results.

1 Introduction

One of the important steps of linguistic documenta-
tion is to describe the grammar of a language. Mor-
phological analysis constitutes one of the stages
for building this description. Traditionally, this is
done by means of interlinear glossing. This is an
annotation task where linguists analyze sentences
in a given language and they segment each word
with the aim of annotating the morphosyntactic cat-
egories of the morphemes within this word (see
example in Table 1).

This type of linguistic annotated data is a valu-
able resource not only for documenting a language
but it can also enable NLP technologies, e.g., by
providing training data for automatic morphologi-
cal analyzers, taggers, morphological segmentation,
etc.

However, not all languages have this type of an-
notated corpora readily available. Glossing is a

Sentence hí tó=tsogí
Glossing NEG 3.PRF=leave
Translation ’I have not left it’

Table 1: Example of morpheme-by-morpheme glosses
for Otomi

time consuming task that requires linguistic exper-
tise. In particular, low-resource languages lack of
documentation and language technologies (Mager
et al., 2018).

Our aim is to successfully produce automatic
glossing annotation in a low resource scenario. We
focus on Otomi of Toluca, an indigenous language
spoken in Mexico (Oto-Manguean family). This
is a morphological rich language with fusional
tendency. Moreover, it has scarcity of digital re-
sources, e.g., monolingual and parallel corpora.

Our initial resource is a small corpus transcribed
into a phonetic alphabet. We pre-process it and
we perform manual glossing. Once we have this
dataset, we use it for training an automatic glossing
system for Otomi.

By using different variations of Conditional Ran-
dom Fields (CRFs), we were able to achieve good
accuracy in the automatic glossing task (above
90%), regardless the low-resource scenario. Fur-
thermore, computationally more expensive meth-
ods, i.e., neural networks, did not perform as well.

We also performed an analysis of the results
from the linguistics perspective. We explored the
automatic glossing performance for a subset of la-
bels to understand the errors that the model makes.

Our work can be a helpful tool for reducing the
workload when manually glossing. This would
have an impact on language documentation. It can
also lead to an increment of annotated resources
for Otomi, which could be a starting point for de-
veloping NLP technologies that nowadays are not
yet available for this language.
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2 Background

As we have mentioned before, glossing comprises
describing the morphological structure of a sen-
tence by associating every morpheme with a mor-
phological label or gloss. In a linguistic gloss, there
are usually three levels of analysis: a) the segmen-
tation by morphemes; b) the glosses describing
these morphemes; and c) the translation or lexical
correspondences in a reference language.

Several works have tried to automatize this task
by using computational methods. In Snoek et al.
(2014), they use a rule-based approach (Finite State
Transducer) to obtain glosses for Plains Cree, an
Algonquian language. They focus only on the anal-
ysis of nouns. Samardzic et al. (2015) propose a
method for glossing Chintang language; they di-
vide the task into grammatical and lexical gloss-
ing. Grammatical glossing is approached as a su-
pervised part-of-speech tagging, while for lexical
glossing, they use a dictionary. A fully automatized
procedure is not performed since word segmenta-
tion is not addressed.

Some other works have approached the whole
pipeline of automatic glossing as a supervised tag-
ging task using machine learning sequential mod-
els, and they have particularly focused on under-
resourced languages (Moeller and Hulden, 2018;
Anastasopoulos et al., 2018; Zhao et al., 2020). In
Anastasopoulos et al. (2018), they make use of
neural-based models with dual sources, they lever-
age easy-to-collect translations.

In Moeller and Hulden (2018), they perform au-
tomatic glossing for Lezgi (Nakh-Daghestanian
family) under challenging low-resource condi-
tions. They implement different methods, i.e., CRF,
CRF+SVM, Seq2Seq neural network. The best re-
sults are obtained with a CRF model that leverages
POS tags. The glossing is mainly focused on tag-
ging grammatical (functional) morphemes. While
the lexical items are tagged simply as stems.

This latter approach especially influences our
work. In fact, Moeller and Hulden (2018) highlight
the importance of testing these models on other lan-
guages, particularly polysynthetic languages with
fusion and complex morphonology. Our case of
study, Otomi, is precisely a language highly fu-
sional with complex morphophonological patterns,
as we will discuss on Section 3.

Finally, automatic glossing is not only crucial
for aiding linguistic research and language docu-
mentation. This type of annotation is also a valu-

able source of morphological information for sev-
eral NLP tasks. For instance, it could be used
to train state-of-the-art morphological segmenta-
tion systems for low-resource languages (Kann and
Schütze, 2018). The information contained in the
glosses is also helpful for training morphological
reinflection systems (Cotterell et al., 2016), this
consists in predicting the inflected form of a word
given its lemma. It also can help in the automatic
generation of morphological paradigms (Moeller
et al., 2020).

These morphological tools can then be used to
build downstream applications, e.g., machine trans-
lation, text generation. It is noteworthy that these
are language technologies that are not yet available
for all languages, especially for under-resourced
ones.

3 Methodology

3.1 Corpus

Otomi is considered a group of languages spoken
in Mexico (around 300,000 speakers). It belongs
to the Oto-Pamean branch of the Oto-Manguean
family (Barrientos López, 2004). It is a morpho-
logically rich language that shows particular phe-
nomena (Baerman et al., 2019; Lastra, 2001):

• fusional patterns for the inflection of the verbs
(it fuses person, aspect, tense and mood in a
single affix);

• a complex system of inflectional classes;

• stem alternation, e.g., dí=pädi ‘I know’ and
bi=mbädi ‘He knew’;

• complex morphophnological patterns, e.g.,
dí=pädi ‘I know’, dí=pä-hu

¯
‘We know’;

• complex noun inflectional patterns.

Furthermore, digital resources are scarce for this
language.

We focus on the Otomi of Toluca variety.1 Our
starting point is the corpus compiled by Lastra
(1992), which is comprised of narrations and dia-
logues. The corpus was originally transcribed into
a phonetic alphabet. We pre-processed this corpus,
i.e., we performed digitization and orthographic

1An Otomi language spoken in the region of San Andrés
Cuexcontitlán, Toluca, State of Mexico. Usually regarded as
ots (iso639).
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normalization.2 We used the orthographic standard
proposed by INALI (INALI, 2014), although we
had problems in processing the appropriate UTF-8
representations for some of the vocals (Otomi has
a wide range of vowels).

The corpus, then, was manually tagged,3 i.e.,
interlinear glossing and Part Of Speech (POS). We
followed the Leipzig glossing rules (Comrie et al.,
2008).

Domain Count
Narrative 32
Dialogues 4
Total sentences 1769
Total words (tokens) 8550

Table 2: General information about the Otomi corpus

In addition to this corpus, we included 81 extra
short sentences that a linguist annotated; these ex-
amples contained particularly difficult phenomena,
e.g., stem alternation, reduction of the stem and
others. Table 2 contains general information about
the final corpus size.

We also show in Table 3 the top ten most com-
mon POS tags and gloss labels in the corpus. We
can see that the size of our corpus is small com-
pared to the magnitude of resources usually used
for doing in NLP in other languages.

POS tags freq
V 2579
OBL 2443
DET 973
CNJ 835
DEM 543
UNKWN 419
NN 272
NEG 176
P.LOC 81
PRT 49

Gloss freq
stem 7501
DET 733
3.CPL 444
PSD 413
LIM 370
PRAG 357
3.ICP 341
LIG 287
1.ICP 270
DET.PL 269

Table 3: More frequent POS tags and gloss in corpus

3.2 Automatic glossing

We focus on the two first levels of glossing, i.e.,
given an Otomi sentence, our system will be able
to morphologically segment each word and gloss

2The digitized corpus, without any type of annotation, can
be consulted in https://tsunkua.elotl.mx/.

3The manual glossing of this corpus was part of a linguis-
tics PhD dissertation (Mijangos, 2021).

each of the morphemes within the words, as it is
shown in the Example 1. Translation implies a
different level of analysis and, due to the scarce
digital resources, it is not addressed here.

Similar to previous works, we use a closed set of
labels, i.e., we have labels for all the grammatical
(functional) morphemes and a single label for all
the lexical morphemes (stem). We can see in the
Example 1 that morphemes like tsogí (‘leave’) are
labeled as stem.

(1) hí
NEG

tó=tsogí
3.PRF=stem

Once we have a gloss label associated to each
morpheme, we prepare the training data, i.e., we
pair each letter with a BIO-label. BIO-labeling
consists on associating each original label with a
Beginning-Inside-Outside (BIO) label. This means
that each position of a morpheme is declared either
as the beginning (B) or inside (I). We neglected O
(outside). BIO-labels include the morpheme cate-
gory (e.g. B-stem) or affix glosses (e.g. B-PST, for
past tense). For example, the labeled representation
of the word tótsogí would be as follows:

(2) t
B-3.PRF

ó
I-3.PRF

t
B-stem

s
I-stem

o
I-stem

g
I-stem

í
I-stem

As we can see, BIO-labels help to mark the
boundaries of the morphemes within a word, and
they also assign a gloss label to each morpheme.
We followed this procedure from Moeller and
Hulden (2018). Once we have this labeling, we can
train a model, i.e., predict the labels that indicate
the morphological segmentation and the associated
gloss of each morpheme.

In this task, the input would be a string of char-
acters c1, ..., cN and the output is another string
g1, ..., gN which corresponds to a sequence of la-
bels (from a finite set of labels), i.e., the glossing.
In order to perform automatic glossing, we need to
learn a mapping between the input and the output.

3.2.1 Conditional Random Fields
We approach the task of automatic glossing as a
supervised structured prediction. We use CRFs for
predicting the sequence of labels that represents
the interlinear glossing. In particular, we used a
linear-chain CRF.

The CRFs need to represent each of the char-
acters from the input sentence as a vector. This
is done by means of a feature function. In order
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to map the input sequence into vectors, the fea-
ture function need to take into account relevant
information about the input and output sequences
(features).

Feature functions play a major role in the perfor-
mance of CRF models. In our case, we build these
vectors by taking into account information about
the current letter, the current, previous and next
POS tags, beginning/end of words and sentences,
letter position, and others (see Section 4.1).

LetX = (c1, ..., cN ) be a sequence of characters
representing the input of our model (a sentence),
and Y = (g1, ..., gN ) the output (a sequence of
BIO-labels). The CRF model estimates the proba-
bility:

p(Y |X) =
1

Z

N∏

i=1

exp{wTφ(Y,X, i)} (1)

Here Z is the partition function and w is the
weights vector. φ(Y,X, i) is the vector represent-
ing the ith element in the input sentence. This
vector is extracted by the feature function φ.

The features taken into account by the feature
function depend on the experimental settings, we
specify them below (Section 4.1). Training the
model consists in learn the weights contained in w.

Following Moeller and Hulden (2018), we used
CRFsuite (Okazaki, 2007). This implementa-
tion uses the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) optimization algo-
rithm in order to learn the parameters of the CRF.
Elastic Net regularization (consisting of L1 and
L2 regularization terms) were incorporated in the
optimization procedure.

3.2.2 Other sequential models
We explored three additional sequential models: 1)
a traditional Hidden Markov Model; 2) a vanilla Re-
current Neural Network (RNN); and 3) a biLSTM
model.

Hidden Markov Model: A hidden Markov
Model (HMM) (Baum and Petrie, 1966; Rabiner,
1989) is a classical generative graphical model
which factorizes the joint distribution function into
the product of connected components:

p(g1, ..., gN , c1, ..., cN ) =
N∏

t=1

p(ct|gt)p(gt|gt−1)

(2)

This method calculates the probabilities using
the Maximum Likelihood Estimation method. Like-
wise, the tagging of the test set is made with the
Viterbi algorithm (Forney, 1973).4

Recurrent Neural Networks: In contrast with
HMM, Recurrent Neural Networks are discrimi-
native models which estimate the conditional prob-
ability p(g1, ..., gN |c1, ..., cN ) using recurrent lay-
ers. We used two types of recurrent networks:

1. Vanilla RNN: For the vanilla RNN (Elman,
1990) the recurrent layers were defined as:

h(t) = g(W [h(t−1);x(t)] + b) (3)

Here, x(t) is the embedding vector represent-
ing the character ct, t = 1, ..., N , in the se-
quence and [h(t−1);x(t)] is the concatenation
of the previous recurrent layer with this em-
bedding vector.

2. biLSTM RNN: The bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) or biL-
STM uses different gates to process the recur-
rent information. However, it requires of a
higher number of parameters to train. Each
biLSTM layer is defined by:

h(t) = biLSTM(h(t−1), x(t)) (4)

where h(t−1) = [
−→
h (t−1);

←−
h (t−1)] is the con-

catenation of the forward and backward recur-
rent layers.

In each RNN model we used one embedding
layer previous to the recurrent layers in order to ob-
tain vector representations of the input characters.

4 Experiments

4.1 Experimental Setup

For CRFs we propose three different experimental
settings.5 Each setting varies in the type of fea-
tures that are taken into account. We defined a
general set of features that capture different type of
information:

1. the current character in the input sentence;

4We used Natural Language Toolkit (NLTK) for the HMM
model.

5The code is available on https://github.com/
umoqnier/otomi-morph-segmenter/
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2. indication if the character is the beginning/end
of word;

3. indication if the word containing the character
is the beginning/end of a sentence;

4. the position of the character in the word;

5. previous and next characters (character win-
dow);

6. the current word POS tag, and also the previ-
ous and the next one; and

7. a bias term.6

To sum up, the CRF takes the information of the
current character as input; but in order to obtain
contextual information, we also take into consider-
ation the previous and next character. Grammatical
information is provided by the POS tag of the word
in which the character appears. In addition to this,
we add the POS tag of the previous and next words.
These are our CRF settings:

• CRFlinear: This setting considers all the
information available, i.e., the features that
we mentioned above.

• CRFPOSLess: In this setting we excluded
the POS tags.

• CRFHMMLike: This setting takes into ac-
count the minimum information, i.e. infor-
mation about the current letter and the im-
mediately preceding one. We use this name
because this configuration contains similar in-
formation as the HMMs but using CRFs to
build them.7

As previously mentioned, we included other se-
quential methods for the sake of comparison, i.e.,
a simple Hidden Markov Model, which can be see
as the baseline since it is the simpler model, and
two neural-based models: a basic vanilla RNN and
a biLSTM model.

The embedding dimension was 100 units for
both the vanilla RNN and the biLSTM models.8

In both neural-based models we used one hidden,
6The bias feature captures the proportion of a given label

in the training set, i.e., it is a way to express that some labels
are rare while others not.

7The maximum number of iterations in all cases was 50.
8Both RNN models were trained in similar environments:

150 iterations, with a learning rate of 0.1 and Stochastic Gra-
dient Descent (SGD) as optimization method.

recurrent layer; the activation for the vanilla RNN
was the hyperbolic tangent. The dimension of the
vanilla and LSTM hidden layers was 200.9

The features used in the CRF settings are implic-
itly taken into account by the neural-based models.
Except for the POS tags, we did not include that in-
formation in the neural settings. In this sense, these
last neural methods contain the same information
as the CRFPOSLess setting.

4.2 Results

We evaluated our CRF-based automatic glossing
models by using k-Fold Cross-Validation. We used
k = 3 due to the small dataset size.

For the other sequential methods, we performed
a hold-out evaluation.10 In all cases we preserved
the same proportion between training and test
datasets (see Table 4).

Instances (sentences)
Train 1180
Test 589

Table 4: Dataset information for every model

We report the accuracy, we also calculated the
precision, recall and F1-score for every label in the
corpus. Table 5 contains the results for all settings.

We can see that the CRF based models outper-
formed the other methods in the automatic glossing
task. Among the CRF settings, CRFHMMLike was
the one with the lowest accuracy (and also preci-
sion and recall), this CRF used the least informa-
tion/features, i.e., the current character of the input
sentence and the previous emitted label.

This is probably related to the fact that Otomi
has a rich morphological system (with prefixes and
suffixes), therefore, the lack of information about
previous and subsequent characters affects the ac-
curacy in the prediction of gloss labels.

The CRF settings CRFPOSLess and the
CRFlinear are considerably better. The variations
between these two settings is small, although the
accuracy of CRFlinear is higher. Interestingly, the
lack of POS tags does not seem to affect the ac-
curacy that much. If the glossing is still accurate
(above 90%) after excluding POS tags, this could
be convenient, especially in low-resource scenarios,

9The code for the neural-based models is available
on https://github.com/VMijangos/Glosado_
neuronal

10We took this decision due to computational cost.
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Accuracy Precision
(avg)

Recall
(avg)

F1-score
(avg)

CRFlinear 0.962 0.910 0.880 0.870
CRFPOSLess 0.948 0.909 0.838 0.856
CRFHMMLike 0.880 0.790 0.791 0.754
HMM 0.878 0.877 0.851 0.858
Vanilla RNN 0.741 0.504 0.699 0.583
biLSTM 0.563 0.399 0.654 0.489

Table 5: Results for the different experimental setups

where this type of annotation may not always be
available for training the model.

We do not know if this observation could be gen-
eralized to all languages. In the case of Otomi, the
information encoded in the features could be good
enough for capturing the morphological structure
and word order that is important for predicting the
correct label.

Additionally, we tried several variations on
the hyperparameters of Elastic Net regularization
(CRFs), however, we did not obtain significant im-
provements (see Appendix A).

The model that we took as the baseline, the
HMM, obtained a lower performance compared to
the CRF settings (0.878). However, if we take into
consideration that HMM was the simpler model,
its performance is surprisingly good.

The performance of CRFHMMLike is very simi-
lar to that of HMM. As we mentioned before, these
two settings make use of the same information, but
their approach is different: CRFs are discriminative
while HMMs are generative.

The neural approaches that we implemented
were not the most suitable for our task. They ob-
tained the lowest accuracy, 0.741 for the vanilla
RNN and 0.563 for the biLSTM. This result might
seem striking, especially since neural approaches
are by far the most popular nowadays in NLP.

5 Discussion

5.1 CRFs vs RNNs
We have several conjectures that could explain why
neural approaches were not the most accurate for
our particular task. For instance, we observed that
the performance of the RNN models (vanilla and
biLSTM) was highly sensitive to the frequency of
the labels. Both neural models performed better for
high frequency labels (such as stem).

In principle, the models that we used for auto-
matic glossing have conceptual differences. HMMs

are generative models, while CRFs and neural mod-
els are discriminative. This distinction, however,
does not seem to influence the results. The HMM
performed better than the neural-based models but
it was outperformed by the CRFs.

CRFs and neural networks mainly in the way
they process the input data. While CRFs depend on
the initial features selected by an expert, neural net-
works process a simple representation of the input
data (one-hot vectors) through a series of hidden
layers which rely on a large number of parameters.

The number of parameters is a key factor in neu-
ral networks, they usually have a large number of
parameters that allows them to generalize well in
complex tasks. For example, the biLSTM model
has the highest number of parameters, while the
vanilla RNN has a considerably reduced number of
parameters.

However, theoretically, a model with higher ca-
pacity will also require a larger number of examples
to generalize adequately (Vapnik, 1998). The ca-
pacity on neural-based models depends on the num-
ber of parameters (Shalev-Shwartz and Ben-David,
2014). This could be problematic in terms of low-
resource scenarios. In fact, in our experiments, the
model with the highest number of parameters, the
biLSTM, performed the worst. Models with fewer
parameters, such as HMM and CRFs outperformed
the neural-based models by a large margin.

It is worth mentioning that we are aware that
hyperparameters and other factors can strongly in-
fluence neural model’s performance. There could
be variations that result in more suitable solutions
for this task. However, overall, this would proba-
bly represent a more expensive solution than using
CRFs (or even a HMM).

Our results seem consistent with previous works
for the same task where neural approaches fail
to outperform CRFs in low-resource scenarios
(Moeller and Hulden, 2018).
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Complex models with many parameters might
not be the most efficient solution in these types of
low-resource scenarios. However, we leave this as
an interesting research question for the future.

Finally, our proposed models, CRFlinear and the
CRFPOSLess, seemed to be the best alternative for
the task of automatic glossing of Otomi.

5.2 Linguistic perspective

In this section we focus on the results from a more
qualitative point of view. We discuss some inguis-
tic particularities of Otomi and how they affected
the performance of the models. We also present
an analysis of how the best evaluated method, i.e.
CRFlinear, performed for a selected subset of gloss
labels.

As we mentioned in previous sections, the in-
formation comprised in the features seems to be
decisive in the performance of the CRF models.
When some of these features were removed, per-
formance tended to decay.

For the correct labeling of Otomi morphology,
contextual information (previous and next charac-
ters in the sentence) did have an impact in perfor-
mance. This may be attributed to the presence of
both prefixes and affixes in Otomi words. Stem
alternation, for example, is conditioned by the pre-
fixes in the word. Stem reduction is conditioned by
the suffixes. In order to correctly label both stem
and affixes, the system must consider the previous
and next elements.

There exist morphological or syntactic elements
in the sentence that contributes to identify words
category. For example, most of the nouns are pre-
ceded by a determiner (ri

¯
, singular, or yi

¯
, plural).

This kind of information is captured in the features
and can help in the performance of the automatic
glossing task.

Frequency of labels is a factor that influence the
performance of the models. Labels with high fre-
quency are better evaluated. For the neural-based
models the impact of frequency was more pro-
nounced. However, despite of the low-resource
scenario we were able to achieve good results with
the CRFs (above 90%).

Languages exhibit a wide range of complexity
in their morphological systems. Otomi has several
phenomena that may seem difficult to capture by
the automatic models. However, even when lan-
guages have complex morphological systems, there
are frequent and informative patterns (e.g. inflec-

tional affixes) that can help to the recognition of
them. This hypothesis is reflected in the low en-
tropy conjecture (Ackerman and Malouf, 2013),
which concerns the organization of morphological
patterns in order to make morphology learnable.
This hypothesis points out that morphological or-
ganization seeks to reduce uncertainty.

Label Precision Recall F1-score Instances
DET 1 0.99 1 228

DET.PL 0.99 0.99 0.99 91
3.CPL 0.96 1 0.98 144
PRAG 0.97 0.99 0.98 116
stem 0.96 0.97 0.96 2396
CTRF 0.95 0.97 0.96 89
3.ICP 0.93 0.94 0.94 118
3.PLS 1 0.86 0.92 28
3.PSS 0.80 1 0.89 8
PRT 0.50 0.22 0.31 18

Table 6: Results from the CRFlinear model on a subset
of the glossing labels

Table 6 presents the evaluation results for a sub-
set of the labels used for the automatic glossing.
These labels are linguistically interesting as there
is a contrast between productive and unproductive
elements.

We can observe that labels like stem, 3.CPL

(third person completive) or CTRF (counterfactual)
were correctly labeled most of the time, as they
were systematic and very frequent.

Items like PRT (particle) had lower frequency, a
lower recall and lower precision. The lower recall
could be attributed to the fact that PRT is not sys-
tematic, i.e. multiple forms can take the same label.
Therefore, it is more difficult to discriminate.

PRAG (pragmatic mark) appears only in verbs,
and always in the same position (at the end of the
word), this probably made this mark more easy
to discriminate, thus, more easy to predict by the
model. It is interesting that this morpheme was
relatively frequent but it did not bear semantic in-
formation as it only provided discursive nuances
(it can be translated as the filler word ‘well’).

The 3.ICP (third person incompletive) label rep-
resents an aspect morpheme which is used very
often since it is applied in the present tense and
habitual situations. It always appears before the
verb and in the same position, it seemed easier to
predict. Therefore, this label has a high precision
and recall.

The 3.PLS (third person pluscuamperfect) label
also shows a systematic use before the verb; how-
ever, the latter did have a lower frequency on the
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corpus, what seems to have caused a lower recall.
Otomi has two determiner morphemes: one for

singular number (DET) and one for plural number
(DET.PL). The one for the plural is clearly distin-
guished from other morphemes as it has the form
yi
¯
. However, for the singular number, the form is ri

¯which is the same as the form for the third person
possessive (3.PSS). We believe that this fact made
the label 3.PSS more prone to be incorrectly labeled
(it showed a lower precision). In some cases, the
model tended to incorrectly label the form ri

¯
by

preferring the most frequent label DET. This could
explain the lower accuracy of 3.PSS compared to
DET.

In general, productive affixes were correctly la-
beled by our automatic system. This may represent
a significant advantage in terms of aiding linguis-
tic manual annotation. Productive and frequent
morphemes may represent a repetitive annotation
task that can be easily substituted by an automatic
glossing system.

Even in the understanding that the glossing sys-
tem is not 100% accurate, it is probably easier for
a human annotator to correct problematic misla-
bels than to do all the process from scratch. In this
sense, automatic glossing can simplify the task of
manually glossing, and, therefore, it can help in the
process of language documentation.

6 Conclusion

We focused on the task of automatic glossing for
Otomi of Toluca, an indigenous language with com-
plex morphological phenomena. We faced a low-
resource scenario where we had to digitize, nor-
malize and annotate a corpus available for this lan-
guage.

We applied a CRF based labeler with different
variations in regard to the features that were taken
into account by the model. Moreover, we included
other sequential models, a HMM (baseline) and
two RNN models.

CRFs outperfomed the baseline (HMM) but also
the RNN models (Vanilla RNN and biLSTM). The
CRF setting that took into account more informa-
tion (encoded by the feature function) had the best
performance. We also noticed that excluding POS
tags do not seem to harm the system’s performance
that much. This could be an advantage since auto-
matic POS tagging is a resource not always avail-
able for under resourced languages.

Furthermore, we provided a linguistically moti-

vated insight of which labels were easier to predict
by our system.

Our automatic glossing labeler was able to
achieve an accuracy of 96.2% (and 94.8% with-
out POS tags). This sounds promising for reducing
the workload when manually glossing. This can
represent a middle step not only for strengthen lan-
guage documentation but also for facilitating the
creation of language technologies that can be useful
for the speakers of Otomi.
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A Appendix

The following are the detailed results of the three
different settings for CRF models. We report
average accuracy score. The prefixes in the
model names mean whether regularization terms
L1 and/or L2 were configured.

For example, the prefix reg means that both
terms were present and conversely noreg means
that no term is considered. Finally, l1_zero and
l2_zero means if L1 or L2 term is equal to zero.

The variation of regularization parameters
probed slight improvements between models of
the same setting as can be showed in tables 7, 8
and 9.

Accuracy
CRFHMMLike_l2_zero 0.8800

CRFHMMLike_reg 0.8760
CRFHMMLike_noreg 0.8710

CRFHMMLike_l1_zero 0.8707

Table 7: CRFHMMLike setting results

Accuracy
CRFPOSLess_reg 0.9482

CRFPOSLess_l2_zero 0.9472
CRFPOSLess_l1_zero 0.9442
CRFPOSLess_noreg 0.9407

Table 8: CRFPOSLess setting results

Accuracy
CRFlinear_reg 0.9624

CRFlinear_l2_zero 0.9598
CRFlinear_l1_zero 0.9586
CRFlinear_noreg 0.9586

Table 9: CRFlinear setting results
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Abstract

We study the performance of several popu-
lar neural part-of-speech taggers from the Uni-
versal Dependencies ecosystem on Mayan lan-
guages using a small corpus of 1435 anno-
tated K’iche’ sentences consisting of approx-
imately 10,000 tokens, with encouraging re-
sults: F1 scores 93%+ on lemmatisation, part-
of-speech and morphological feature assign-
ment. The high performance motivates a cross-
language part-of-speech tagging study, where
K’iche’-trained models are evaluated on two
other Mayan languages, Kaqchikel and Uspan-
teko: performance on Kaqchikel is good, 63-
85%, and on Uspanteko modest, 60-71%. Sup-
porting experiments lead us to conclude the rel-
ative diversity of morphological features as a
plausible explanation for the limiting factors in
cross-language tagging performance, providing
some direction for future sentence annotation
and collection work to support these and other
Mayan languages.

1 Introduction

This paper presents a survey of approaches to part-
of-speech tagging for K’iche’, a Mayan language
spoken principally in Guatemala. The Mayan lan-
guages are a group of related languages spoken
throughout Mesoamerica. K’iche’ belongs to the
Eastern branch, which contains 14 other languages,
including Kaqchikel in the Quichean subgroup and
Uspanteko which belongs to its own subgroup.
Part-of-speech tagging has wide usage in corpus

and computational linguistics and natural language
processing, and is often considered part of a toolkit
for basic natural language processing.
In the definition of part-of-speech tagging we

subsume the tasks of determining the part of speech,
morphological analysis and lemmatisation. That is,
given a sentence such as in (1) part-of-speech tag-
ging would return both the sequence of part-of-
speech tags [VERB, DET, NOUN] but also the

lemmata [qʼojomaj, le, qʼojom] and the
set of feature value pairs for each of the forms.1

(1) Kinqʼojomaj
k-∅-in-qʼojomaj
IMP-B3SG-A1SG-play

le
le
the

qʼojom.
qʼojom.
marimba.

‘I play the marimba.’

A brief reading guide: prior work, on Mayan
and other languages of the Americas and on cross-
language part-of-speech tagging, is reviewed in sec-
tion 2. Our experimental design including the math-
ematical model used for analysing performance are
given section 3. Universal dependencies annotation
for K’iche’ and the systems tested are described in
section 4, and results are presented and analysed in
section 5.

2 Prior work
Palmer et al. (2010) exploremorphological segmen-
tation and analysis for the purpose of generating in-
terlinearly glossed texts. They work with Uspan-
teko, a language of the Greater Quichean branch,
and the closest language to K’iche’ we were able
to identify with published studies of computational
morphology. They explore several different sys-
tems: inducing morphology from parallel texts, an
unsupervised segmentation+clustering strategy, and
an interactive training strategy with a linguist.
In Sachse and Dürr (2016), a set of preliminary

annotation conventions for Mayan languages in gen-
eral, and K’iche’ in particular, are proposed.
A maximum-entropy part-of-speech tagger is

presented in Kuhn and Mateo-Toledo (2004) for
Q’anjob’al, which, like K’iche’, is a Mayan language
of Guatemala. They work with a custom selection

1For example for the VERB it would re-
turn Aspect=Imp, Number[obj]=Sing,
Number[subj]=Sing, Person[obj]=3,
Person[subj]=1, Subcat=Tran,
VerbForm=Fin.
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of 60 tags, and trained on an annotated corpus of
4100 words (no lemmatisation is performed). In
contrast to the systems we will study, Kuhn and
Mateo-Toledo (2004) perform feature engineering
and end up with F1 scores between 63% and 78%,
depending on the features chosen.
There is much work on part-of-speech tagging

for languages of the Americas outside of the Mayan
family: statistical lemmatisation and part-of-speech
tagging systems are described by Pereira-Noriega
et al. (2017) and a finite-state morphological anal-
yser by Cardenas and Zeman (2018) for Shipibo-
Konibo, a Panoan language of the Amazonian re-
gion of Peru.
In Rios (2010) and Rios (2015), respec-

tively, finite-state morphology and support vec-
tor machine-based tagging+parsing systems are de-
scribed for Quechua. The latter uses a corpus that
comprises 2k sentences.
Cross-language part-of-speech tagging through

parallel corpora, sometimes called annotation pro-
jection, is well-studied; inMayan languages, Palmer
et al. (2010) use a parallel corpus as a bridge to
a higher-resourced language for which a part-of-
speech tagger already exists.
In the absence of such a corpus, so-called “zero-

shot” methods are created from other (presumably
higher-resourced) languages and applied to the tar-
get language. The main balance to strike is be-
tween specificity of resources (how closely-related
are the other languages) and quantity of resources
(how much linguistic data is accessible). UDify
of Kondratyuk and Straka (2019) is an example
of preferring the latter: a deep neural architec-
ture is trained on all of the Universal Dependen-
cies treebanks. The former strategy can be seen
in Huck et al. (2019), where in addition to anno-
tation projection, authors attempt zero-shot tagging
of Ukrainian with a model trained on Russian.

3 Methodology
We used a corpus of K’iche’2 annotated with part-
of-speech tags and morphological features (Tyers
and Henderson, 2021). The corpus consisted of
1,435 sentences comprising approximately 10,000
tokens from a variety of text types and was anno-
tated according to the guidelines of the Universal
Dependencies (UD) project (Nivre et al., 2020).
An example of a sentence from the corpus can be

2https://github.com/
UniversalDependencies/UD_Kiche-IU

seen in Table 1.
We studied the performance of several popular

part-of-speech taggers within the Universal Depen-
dencies ecosystem; these are reviewed in section 4.
Performance was computed as F1 scores for lem-
matisation, universal part-of-speech (UPOS), and
universal morphological features (UFeats). We per-
formed 10-fold cross validation to obtain mean and
standard deviation of F1. We also recorded training
time and model size to compare the resource con-
sumption of the models in the training process.
We selected the best-performing system and per-

formed a convergence study (see section 5.3 for re-
sults). We decimated the training data of one of the
test-train splits from the cross-validation, and plot-
ted the performance of models trained on the deci-
mations.
We make the following assumption about the

performance: additional training data provides ex-
ponentially decreasing performance improvement.
Under this assumption, we obtain the formula:

F1(n) = F1(∞)−∆F1 · e−n/k. (1)

Here F1(n) is the performance of a model trained
on n tokens, F1(∞) is the asymptotic performance,
and ∆F1 is the gap between F1(∞) (estimated
maximum performance) and F1(0) (zero-shot per-
formance).
The parameter k is the characteristic number of

tokens; each additional k tokens of training data
causes the gap ∆F1 = F1(∞) − F1(n) to shrink
by a factor of 1/e ≈ 36%. This can be used to es-
timate the training data n required to meet a given
performance target F target

1 :

n = k · log ∆F1

F1(∞)− F
target
1

(2)

We fit this curve against our convergence data and
estimate peak performance and characteristic num-
ber. Error propagation is used with the error in pa-
rameter estimation to compute the error bands in
the graph:

(δF1)
2 =

∑(
∂F1

∂x
δx

)2

(3)

Here x runs over the parameters of F1(n): F1(∞),
∆F1 and k.
We also studied the best-performer in cross-

language tagging on the related Kaqchikel and Us-
panteko languages. The 10 models trained in
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cross-validation were all evaluated on small part-of-
speech-tagged corpora of 157 (Kaqchikel) and 160
(Uspanteko) sentences. For results and overviews
of the languages, see section 6.

4 Systems
We tested morphological analysis on three systems
designed for Universal Dependencies treebanks:
UDPipe (Straka et al., 2016), UDPipe 2 (Straka,
2018), and UDify (Kondratyuk and Straka, 2019).
Of these, only UDPipe had a working tokeniser.
For other taggers we trained, we trained the UD-
Pipe tokeniser and other tagger together. We thus
present combined tokeniser-tagger systems.
UDPipe (Straka et al., 2016) is a language-

independent trainable tokeniser, lemmatiser, POS
tagger, and dependency parser designed to train on
and produce Universal Dependencies-format tree-
banks. It uses gated linear units for tokenisation, av-
eraged perceptrons for part-of-speech tagging, and
a neural network classifier for dependency parsing.
It is the least resource-hungry model in our study
by an order of magnitude or more, and we trained it
from-scratch using the K’iche’ corpus in section 3.
UDPipe 2 (Straka, 2018) is a Python prototype

for a Tensorflow-based deep neural network POS-
tagger, lemmatiser, and dependency parser. It won
high rankings in the CoNLL 2018 shared task on
multilingual parsing (Zeman et al., 2018), taking
first place by one metric. Deep neural methods
have achieved impressive performance results in re-
cent years, but take considerable computational re-
sources to train. We used UDPipe 2 without pre-
trained embeddings, and trained it from-scratch us-
ing the K’iche’ corpus in section 3.
UDify (Kondratyuk and Straka, 2019) is a

AllenNLP-based multilingual model using BERT
pretrained embeddings and trained on the combined
Universal Dependencies treebank collection; we
fine-tuned this pretrainedmodel on our K’iche’ data.
This was our most resource-intensive model, even
though we only fine-tuned on K’iche’; our initialisa-
tion was the UDify-distributed BERT+UD model.

5 Results
5.1 Energy efficiency
Resource utilisation for the three systems is sum-
marised in Table 2. Model production is reported
in kilojoules for each of our systems; these were
estimated by taking the reported runtime and mul-
tiplying it by the thermal design power (TDP) of

the reported hardware. Error could be introduced
into these estimates from many sources: only the
reported device is considered, ignoring many other
components of the machine; devices are assumed to
run at their TDP the entire runtime; the UDify num-
bers as reported by Kondratyuk and Straka (2019)
are approximate.

5.2 Task performance
We evaluated the performance of the models on five
tasks: tokenisation (Tokens), word segmentation
(Words), lemmatisation (Lemmas), part-of-speech
tagging (UPOS) and morphological tagging (Fea-
tures). The difference between tokenisation and
word segmentation can be explained with reference
to Table 1. The word chqawach ‘to us’ counts as a
single token, but two syntactic words. So the perfor-
mance of tokenisation is recovering the tokens, and
the performance of word segmentation is recover-
ing the words.
We performed 10-fold cross validation on the

1435 analysed sentences, with F1 scores for lem-
matisation, part-of-speech tagging, and morpholog-
ical features computed using the evaluation scripts
from Zeman et al. (2018), modified to not ignore
language-specific morphological features. Results
are summarised in Table 3; the winner is UDPipe2.
While both UDPipe 2 and UDify have deep neu-

ral architectures, it seems UDify is unable to over-
come non-K’iche’ biases from the BERT embed-
dings and initial training on Universal Dependen-
cies releases; neither of these components incorpo-
rate Mayan languages. We speculate that training
on data with a better representation of languages of
the Americas would enable UDify to surpass UD-
Pipe 2.
The original UDPipe makes an impressively

resource-efficient performance: it obtains 95%,
97%, and 96% the performance of UDPipe 2 on
lemmatisation, part-of-speech tagging, and feature
assignment, all with 3.5% of the training time and
3.6% of the model size.

5.3 Convergence
We performed a convergence study on the best sys-
tem, UDPipe 2. Results are shown in Figure 1.
AsymptoticF1 scores are 95.4±1.9%, 97.4±2.2%,
and 95.7± 2.1% for lemmatisation, part-of-speech
tagging, and feature assignment, respectively. Gaps
at full use of the 1292 sentence-, 9559-token train-
ing set are 2.5%, 2.9%, and 3.8%, respectively, and
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# sent_id = utexas:123.2
# text = Xukʼut le Kʼicheʼ chʼabʼal le al Nela chqawach.
# text[spa] = Manuela nos enseñó el idioma kʼicheʼ
# labels = tijonik-17 complete
1 Xukʼut kʼut VERB _ […]1 _ _ _ _
2 le le DET _ _ _ _ _ _
3 Kʼicheʼ kʼicheʼ ADJ _ _ _ _ _ _
4 chʼabʼal chʼabʼal NOUN _ _ _ _ _ _
5 le le DET _ _ _ _ _ _
6 al ali NOUN _ Gender=Fem|NounType=Clf _ _ _ _
7 Nela Nela PROPN _ Gender=Fem _ _ _ _
8-9 chqawach _ _ _ _ _ _ _ _
8 ch chi ADP _ _ _ _ _ _
9 qawach wach NOUN _ […]2 _ _ _ _
10 . . PUNCT _ _ _ _ _ _

1 Aspect=Perf|Number[obj]=Sing|Number[subj]=Sing|Person[obj]=3|Person[subj]=3|Valency=2|VerbForm=Fin
2 NounType=Relat|Number[psor]=Plur|Person[psor]=1

Table 1: An example sentence from Romero et al. (2018) that has been included in the corpus. Here it is displayed
annotated in 10-column CoNLL-U format. The sentence is Xukʼut le Kʼicheʼ chʼabʼal le al Nela chqawach. “Manuela
taught us the K’iche’ language”. This demonstrates: the treatment of contractions, e.g. chqawach ‘to us’ → chi +
qawach, the lemmatisation and parts of speech and the morphological features.

Model Energy (kJ)
UD K’iche’

UDPipe 0 50
UDPipe 2 0 1400
UDify 540000 1300

Table 2: Energy cost expended, per-source. K’iche’
training costs are estimated as runtime × TDP of the
processor, while UD training costs are runtime × TDP
of the graphics card used in training.

characteristic numbers are 4700, 4800 and 4700 to-
kens. Using (2), we can use this to compute how
much more training data would be required to close
this gap; for example, to bringF1 to within 1%of its
maximum, we would need to annotate an additional
4400, 4500, and 5900 tokens, respectively.

6 Cross-language tagging

There are around 32 Mayan languages spoken in
Mesoamerica, in the countries of Guatemala, Mex-
ico, Honduras, El Salvador and Belize. Given the
impressive performance of the best-performing sys-
tem on K’iche’ data, we decided to test it on two
related languages spoken in Guatemala: Kaqchikel
and Uspanteko. UDify is also reported as being
suited to zero-shot inference, so we include two

UDify-based models: fine-tuned on K’iche’ (re-
ferred to as “UDify-FT”) and the original UDify
model (simply “UDify”).

6.1 Kaqchikel
Kaqchikel (ISO-639: cak; previously Cakchiquel)
is a Mayan language of the Quichean branch. It
is spoken in Guatemala, to the south and east of
the K’iche’-speaking area (see Figure 2) and has
around 450,000 speakers. Some notable differ-
ences between Kaqchikel and K’iche’ are the lack
of status suffixes on verbs, no pied-piping inver-
sion (Broadwell, 2005), and SVO order in declar-
ative sentences (Watanabe, 2017).
For the Kaqchikel corpus, we extracted glossed

example sentences from a number of published
sources, including papers discussing topics in mor-
phology and syntax (Henderson, 2007; Broadwell
and Duncan, 2002; Broadwell, 2000) and grammar
books (Garcia Matzar et al., 1999; Guaján, 2016).
These sentences were then analysed with a morpho-
logical analyser (Richardson and Tyers, 2021) and
manually disambiguated using the provided glosses.

6.2 Uspanteko
Uspanteko (ISO-639: usp; also referred to as Us-
pantek, or Uspanteco) is a Mayan language of the
Greater Quichean branch. The language is spoken
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UDPipe UDPipe 2 UDify
Training time 12.5 ± 0.1 356 ± 4 323 ± 2
Model size 2.3M 64M 760M
Tokens 99.7 ± 0.4 — —
Words 98.6 ± 0.5 — —
Lemmas 88.3 ± 1.1 93.2 ± 0.6 88.3 ± 0.9
UPOS 91.4 ± 1.4 94.5 ± 0.8 94.2 ± 1.1
Features 88.8 ± 1.1 92.9 ± 0.8 89.2 ± 1.2

Table 3: Results on tasks from tokenisation to morphological analysis. Standard deviation is obtained by running
ten-fold cross validation. The columns are F1 score: Tokens tokenisation;Words splitting syntactic words (e.g. con-
tractions); Lemmas lemmatisation; UPOS universal part-of-speech tags; Features morphological features. Model
size is in megabytes, training time is in mm:ss, as run on a machine with AMD Ryzen 7 1700 8-core CPU and 32GiB
of memory.

2000 4000 6000 8000 10000
Training corpus size (tokens)

75

80

85

90

95

100

F
1
 (%

) 

Model convergence
UPOS: 97.4 ± 2.2
Features: 95.7 ± 2.1
Lemmas: 95.4 ± 1.9

Figure 1: Convergence of the F1 scores of the UDPipe 2 combined system for lemmas, universal part-of-speech, and
universal feature tags, as a function of total number of tokens in training. The plotted points (p, s) are the decimation
data: measurements of F1 score p when given a training corpus of s tokens. Curves are obtained by constrained
least-squares fitting of this data against (1). The shaded regions represent the propagation of the standard error (3) in
the fit parameters through the curve; under hypothesis of the normal distribution,≈ 68% of observations are expected
to lie within this region. The numbers in the legend are the asymptotic performance given by the fitting procedure; as
more training data is supplied, model performance should converge to the asymptotic performance.
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Figure 2: A map of Guatemala with approximate lo-
cations of speaker areas of Mayan languages. K’iche’,
Kaqchikel and Uspanteko are highlighted in purple (grid-
hatched), green (forward slash-hatched), and red (back-
ward slash-hatched), respectively.

in an area adjacent to the K’iche’-speaking area in
Guatemala. It has around 2,000 speakers and is one
of the few Mayan languages to have developed con-
trastive tone.
Palmer et al. (2010) present a large interlinearly-

glossed corpus of Uspantek with approximately
3400 sentences and 27000 tokens. We selected
160 sentences from this corpus, totalling 1003 to-
kens and annotated them with part of speech, lem-
mas and morphological features. The lemmas were
given by a morphological analyser3 created from a
lexicon provided by OKMA.

6.3 Results
The results of our cross-language tagging study are
shown in Table 4; in general the winner is UDify-
K’iche’; the original UDify model itself performs
very poorly. UDPipe 2 manages nearly as good per-
formance as UDify-FT, especially impressive con-
sidering its three orders of magnitude less energy
consumption. For UDPipe 2 and UDify-FT, we
used the ten models trained to provide the K’iche’
tagging performance and confidence. The original
UDify system is a single model, thus we are unable

3https://github.com/apertium/
apertium-usp

Kaqchikel
Sentences 157
Tokens 1091

UDPipe 2 UDify-FT UDify
UPOS 84.9 ± 0.4 90.0 ± 0.4 34.3
Features 63.4 ± 0.7 63.4 ± 0.7 46.1
Lemmas 72.5 ± 0.5 75.4 ± 0.5 3.2

Uspanteko
Sentences 160
Tokens 1171

UDPipe 2 UDify-FT UDify
UPOS 60.8 ± 0.6 64.7 ± 0.5 40.2
Features 60.3 ± 0.9 59.1 ± 1.0 55.3
Lemmas 71.2 ± 0.5 71.4 ± 0.4 6.3

Table 4: Results for cross-lingual tagging on Kaqchikel
and Uspanteko, using our UDPipe 2, UDify, and UDify-
FT systems for part-of-speech tagging. We evaluated
on our corpora lemmatised and annotated for part-of-
speech, morphological features. Performance for the
K’iche’-trained systems are quoted as the average and
standard deviation over the same 10 trained models used
in cross-validation for K’iche’ (see section 3).

to provide confidence intervals.
We also studied convergence for the cross-

language tagging task using our UDPipe 2 deci-
mated K’iche’ models; see figures 3a and 3b. We
observe that for the given set of labels our mod-
els essentially have converged, with the exception of
part-of-speech tagging for Uspanteko, which might
benefit from additional examples of features already
present in our K’iche’ corpus.
In order to understand whether our K’iche’ corpus

covers a sufficient variety of labels (parts of speech,
features, lemmatisation patterns), we selected two
labels, one of high frequency and one of low fre-
quency (see Table 5a), from our corpus with which
to disable our model. For each label, new conver-
gence runs where made using the 10%, 40%, and
70% subsets, omitting all sentences featuring the
chosen label.
If our cross-language tagging models could not

be improved by a more diverse K’iche’ training
corpus, we would expect these disabled datapoints
to fall within error of the convergence trendlines.
This is the case with the low-frequency label, “first-
person”. On the other hand, we see that the loss
of the high-frequency label, perfective aspect, has
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UPOS: 84.9 ± 0.6
Features: 64.8 ± 0.9
Lemmas: 73.0 ± 0.7

(a) Kaqchikel. Characteristic number of tokens of annotated
K’iche’ for these was 2200 (lemmatisation), 1400 (part-of-
speech), and 3500 (features). At nearly 10000 tokens, all are
essentially converged.
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Model convergence

Remove Aspect=Perf
Remove Person=1

UPOS: 63.8 ± 7.4
Features: 62.1 ± 2.2
Lemmas: 71.2 ± 0.5

(b) Uspanteko. Characteristic number of tokens for these was
1900 (lemmatisation), 7900 (part-of-speech), and 4900 (fea-
tures); part-of-speech tagging might see improvement from in-
creased annotation of K’iche’ data, but with such high uncer-
tainty (over 10% in asymptotic performance) it is difficult to
be sure.

Figure 3: Convergence of our UDPipe 2 on Kaqchikel (3a) and Uspanteko (3b). The legends show projected asymp-
totic performance for each of universal part-of-speech tagging, universal feature assignment, and lemmatisation.

a disproportionate impact on cross-tagging perfor-
mance: removing this training data has caused the
convergence curve to change parameters, lowering
asymptotic performance.
This raises the possibility that we might improve

the asymptotic performance of our cross-tagging
models by locating labels which are high-frequency
in our target language (Kaqchikel or Uspanteko) and
extending our K’iche’ corpus with sentences featur-
ing those labels. See Table 5b for a sample of high-
frequency labels which appear in our K’iche’ corpus
but not our cross-tagging evaluation corpus.
These all indicate that the small test corpora of

Kaqchikel and Uspanteko we annotated are not as
diverse in terms of text type as the K’iche’ corpus.
For example, the test corpora contain no infinitive
forms (for example the morpheme -ik in K’iche’),
although these certainly exist in both Kaqchikel —
see §2.7.2.6 in Garcia Matzar et al. (1999) — and
Uspanteko. Additionally they contain no examples
of the imperative mood, relative clauses introduced
by relative pronouns, the formal second person, or
reflexives. All of these features certainly exist in the
languages, but not in the selection of sentences we
annotated.

7 Concluding remarks

We used an annotated corpus of 1435 part-of-
speech tagged K’iche’ sentences to to survey a num-
ber of neural part-of-speech tagging systems from
that ecosystem. We found the best performance was
generally with UDPipe 2, a deep neural system inte-

grating lemmatisation, part-of-speech and morpho-
logical feature assignment. Our UDPipe 2-trained
system achieved F1 of 93% or better on all tasks,
very encouraging results for a relatively small cor-
pus.

Convergence studies showed that on corpora of
similar morphological composition even better per-
formance is attainable, but to close the gap to
within 1% of projected optimal performance re-
quires roughly half again the amount of training
data.

The high performance on K’iche’ led us to exper-
iment using our model to perform cross-language
tagging on the related languages of Kaqchikel and
Uspanteko. Performance on the more closely-
related language, Kaqchikel, was still respectable,
with F1 ranging from 63 to 85% on the tasks; on
Uspanteko performance we observed more modest
performance 60−71%. The K’iche’ fine-tuned UD-
ify model does show noticably better performance,
but possibly not worth the energy expenditure.

Our results after disabling our cross-language
tagger by withholding some labels during training
imply that cross-language performance could be im-
proved by annotating more data with similar fea-
tures to the Kaqchikel and Uspanteko evaluation
corpora, and suggest that cross-language tagging is
a path forward to greater availability of part-of-
speech annotation for Mayan languages.
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Label Frequency Discrep.
quc evaluation

Person=1 3% 1% 0.12σ
Aspect=Perf 49% 62% −3.5 σ

(a) The two labels chosen for the label diversity study for our
cross-language taggers. We studied convergence of two ad-
ditional models: training data alternately lacked first-person
(Person=1), or perfective aspect (Aspect=Perf). Fre-
quency is percentage of sentences in the corpus with the fea-
ture. We give the median discrepancy, computed as the per-
formance gap between the disabled model and the prediction
for a model trained on the same number of tokens, normalised
by the uncertainty in that prediction σ. For the first-person
label, we see a similar distribution with a very slight bias to-
wards higher performance; perfective aspect seems to have an
outsized effect, increasing the median discrepancy to 3.5σ.

Label Frequency (% sents.)
VerbForm=Inf 6
Mood=Imp 3
Reflex=Yes 2
PronType=Rel 2
Polite=Form 2

(b) The results of our label diversity study. The top 20 la-
bels for our K’iche’ training corpus which do not appear in our
Kaqchikel and Uspanteko evaluation corpora, along with their
frequencies in the K’iche’ corpus. See Table 5a for the impact
missing high-frequency labels can have on cross-tagging per-
formance.
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Abstract

Documentation of endangered languages
(ELs) has become increasingly urgent as
thousands of languages are on the verge of
disappearing by the end of the 21st century.
One challenging aspect of documentation
is to develop machine learning tools to
automate the processing of EL audio via
automatic speech recognition (ASR), machine
translation (MT), or speech translation (ST).
This paper presents an open-access speech
translation corpus of Highland Puebla Nahuatl
(glottocode high1278), an EL spoken in
central Mexico. It then addresses machine
learning contributions to endangered language
documentation and argues for the importance
of speech translation as a key element in the
documentation process. In our experiments,
we observed that state-of-the-art end-to-end
ST models could outperform a cascaded
ST (ASR > MT) pipeline when translat-
ing endangered language documentation
materials.

1 Introduction

Due to the need for global communication, com-
putational technologies such as automatic speech
recognition (ASR), machine translation (MT: text-
to-text), and speech translation (ST: speech-to-text)
have focused their efforts on languages spoken by
major population groups (Henrich et al., 2010).
Many other languages that are spoken today will
probably disappear by the end of the 21st century
(Grenoble et al., 2011). For this reason, until very
recently they have not been targeted for machine
learning technologies. This is changing, however,
as increasing attention has been paid to language
loss and the need for preservation and, in best-case
scenarios, revitalization of these languages.

This paper presents an open-access speech trans-
lation corpus from Highland Puebla Nahuatl to
Spanish and discusses our initial effort on ST over
the corresponding corpus. The following of this

paper is organized as follows: in Section 2, we
discuss the benefits of speech translation for EL
documentation and pioneer-suggest it as the first
step in the documentation process. In Section 3, we
compare the strategies (i.e., cascaded model and
end-to-end models) that can be used to automate
ST for ELs. In Section 4 we introduce the Highland
Puebla Nahuatl-to-Spanish corpus. Initial experi-
mental efforts in building ST models are elaborated
in Section 5. The conclusion is presented in in
Section 6.

2 Benefits of speech-to-text translation as
a first step in language documentation

The present article suggests that speech translation
(ST) could be a viable and valuable tool for EL
documentation efforts for three reasons (Anasta-
sopoulos, 2019). First, the transcription of native
language recordings may become particularly prob-
lematic and time-consuming (the “transcription bot-
tleneck") when the remaining speakers are elderly,
and the younger generation has at best a passive
knowledge of the language, a common situation
of ELs. Second, in many cases ST may be more
accurate than MT for target language translation.
Finally, many EL documentation projects suffer
from a lack of human resources with the skills and
time to transcribe and analyze recordings (for simi-
lar points about a "translation before transcription
workflow", see Bird, 2020, section 2.2.2).

By beginning with ST, semi- and passive speak-
ers can better contribute to EL documentation of
their native languages with a level of effort far
lower than needed for transcription and analysis.
Bilingual native speakers or researchers with in-
complete knowledge of the source language struc-
ture can quickly produce highly informative free
translations even if the original text is never, or only
much later, segmented and glossed. A free trans-
lation in audio and subsequent capture by typing
or using ASR systems for the major target L2 lan-

53



guage (that are more accurate for major as opposed
to minor and endangered languages) may take 4–5
hours of effort per hour of audio, whereas transcrip-
tion (without analysis) may take 30–100 hours for
the same unit. Starting with free translation, then,
increases the pool of potential native speaker par-
ticipants and quickly adds value to an audio corpus
that may languish if the first step is always fixed
as transcription and segmentation (morphological
parsing and glossing).

In general, EL documentation proceeds in a
fairly set sequence: (1) record; (2) transcribe in
time-coded format; (3a) analyze by parsing (mor-
phological segmentation) and glossing; and (3b)
freely translate into a dominant, often colonial, lan-
guage. It may be that some projects prioritize free
translation (3b) over morphological segmentation
and glossing. Given that each procedure adds a
certain, often significant, amount of time to the
processing pipeline, there is an increasing scarcity
of resources as one proceeds from (1) to (3a/b).
If the standard sequence is followed, there are in-
variably more recordings than transcriptions, more
transcriptions than analyses, and (if the sequence
is 3a > 3b) more analyses than free translations or
(if the sequence is 3b > 3a) more free translations
than analyses (see Bird, 2020, Table 3, p. 720).

The argument presented here is that the easiest
data to obtain are the recordings followed by free
translations into a major language. It may be bene-
ficial to reorder the workflow so that an ST corpus,
i.e., free translation of the recording, is prioritized.
Only later would transcription and analysis (mor-
phological segmentation and glossing) be inserted
into the pipeline. To facilitate computational sup-
port for speech-to-text production, we would rec-
ommend a targeted number of recordings (e.g., 50
hours), followed by division into utterances with
time stamps and free translation of the utterances
into a major language. This corpus (or perhaps one
even larger) would be used to train an end-to-end
neural network in speech-to-text production. The
trained ST system would then be used to process
additional recordings, thus generating a very exten-
sive freely translated corpus. Our hope would be
that instead of basing ASR on an acoustic signal
alone, using two coupled inputs—the speech signal
and the free translation—might well lower ASR
error rates from those obtained from the speech
signal alone. The extent of improved accuracy is at
this point simply a hypothesis. It would have to be

empirically researched, something we hope to do
in the near future (see Anastasopoulos, 2019, chap.
4). In this scenario for EL documentation, tran-
scription and analysis proceed forward, but only
after an extensive ST training/validation/test cor-
pus has been developed. The resultant ST system
would then be used to freely translate additional
recordings as they are made.

Speech translation (ST) is very challenging, par-
ticularly for resource-scarce endangered languages.
The degree of challenge might well be reduced
if corpus creation focused from the beginning on
translation without intermediate steps (transcrip-
tion and analysis, which would take documentation
in the direction of MT). Moreover, translation it-
self is a challenging art complicated by the lexical
and morphosyntactic intricacies of languages and,
more often than not, the discrepancies in vision
and structure between source and target language
(cf. Sapir, 1921, chap. 5). Extremely large corpora
might smooth out the edges, but if free translations
are created only after transcription, then the “tran-
scription bottleneck" will also limit the availability
of free translations. Limited EL free translation
resources, in turn, creates the danger that idiosyn-
cratic or literal translations might dominate the
training set. This is another reason to position free
translation directly from a recording before tran-
scription and analysis.

Free translation and textual meaning: Even
when a transcription has been produced and then
morphologically segmented and glossed, free
translations are beneficial, either generated from
the transcription or directly from the speech
signal. For example, although multiple sense
glossing (i.e., choosing from multiple senses
or functions in glossing a morpheme) clarifies
ambiguous meanings, it is time-consuming for a
human and challenging to automate. The semantic
ambiguity of single morphemes will be mitigated
if not resolved, however, if accompanied by free
translations. Note the following interlinearization,
in which, in isolation, the meaning of the gloss
line is confusing. The free translations clarifies the
meaning and offers a secondary sense to the verb
root koto:ni.

Ko:koto:nis a:t komo a:mo kiowis.
0-ko:-koto:ni-s a:-t komo a:mo kiowi-s
3sgS-rdpl-to.snap-irreal.sg water-abs if not rain-

irreal.sg
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The stream will dry up into little ponds if it
doesn’t rain.

Note also that multi-word lemmas and idiomatic
expressions are in many cases opaque in word-by-
word (or, even more challenging, morpheme-by-
morpheme) glossing. Again a gloss and parallel
free translation preserve literal meaning while clar-
ifying the actual meaning to target language speak-
ers.

3 Strategies for automate speech-to-text
translation: Cascaded model vs.
end-to-end model

One intuitive solution to automating free translation
is the cascaded model. But this is difficult to imple-
ment since it relies on a pipeline from automatic
speech recognition (ASR) to machine translation
(MT). Most ELs, however, lack the material and
data necessary to robustly train both ASR and MT
systems (Do et al., 2014; Matsuura et al., 2020; Shi
et al., 2021).

End-to-end ST has received much attention from
the NLP research community because of its sim-
pler implementation and computational efficiency
(Bérard et al., 2016; Weiss et al., 2017; Inaguma
et al., 2019; Wu et al., 2020). In addition, it can also
avoid propagating errors from ASR components by
directly processing the speech signal. However,
as with ASR and MT, ST also often suffers from
limited training data and resultant difficulties in
training a robust system, which makes the task
challenging. There are few available examples of
ST applied to endangered languages.

Indeed, most speech translation efforts are be-
tween major languages (Di Gangi et al., 2019a;
Cattoni et al., 2021; Kocabiyikoglu et al., 2018;
Salesky et al., 2021). In these corpora, both source
and target languages usually have a standardized
writing system and ample training data, a situa-
tion generally absent for ELs. A well-known low-
resource ST corpus is the Mboshi-French corpus
(Godard et al., 2018). However, it is based on the
reading of written texts, which does not present the
difficulties encountered in conversational speech
scenarios. In EL documentation projects, it is these
latter scenarios that are most common.

4 Corpus Description

4.1 Characteristics of Highland Puebla
Nahuatl (glottocode high1278)

In this paper, we release a Highland Puebla Nahu-
atl (HPN; glottocode high1278) speech transla-
tion corpus for EL documentation. The corpus
is governed by a Creative Commons BY-NC-SA
3.0 license and can be downloaded from http:
//www.openslr.org/92. We have analyzed
the corpus and explored different ST models and
corresponding open-source training recipes in ES-
PNet (Watanabe et al., 2018).

Nahuatl languages are polysynthetic, aggluti-
native, head-marking languages with relatively
productive derivational morphology, reduplication,
and noun incorporation. A rich set of affixes
creates the basis for a high number of potential
words from any given lemma. As illustrated in Ta-
ble 1, a transitive verb may contain half a dozen
affixes; up to eight in a single word is not uncom-
mon. Suffixes (not represented in Table 1) include
tense/aspect/mood markings as well as “associated
motion" (ti-cho:ka-ti-nemi-ya-h 1plS-cry-ligature-
walk-imperf-pl ’we used to go around crying’ and
directionals (ti-mits-ih-ita-to-h 1plS-2sgO-rdpl-see-
extraverse.dir-pl ’we went to visit you’).

Noun incorporation is not reflected in Table 1 as
verbs with incorporated nouns may be treated as
lexicalized stems with a compound internal struc-
ture. The function of the nominal stem can be
highly varied (Tuggy, 1986) as it may lower va-
lency (object incorporation) or leave valency un-
affected, as with subject incorporation (not com-
mon), as well as both possessor raising (ni-kone:-
miki-k 1sgS-child-die-perfective.sg ’My child died
on me’) and modification (ni-kone:-tsahtsi-0 1sgS-
child-shout-pres.sg ’I shout like a child’). Though
noun incorporation is not fully productive (Mithun,
1984), it does increase the number of lemmas. It
complicates patterns and meaning of reduplication,
which may be at the left edge of the compound
(transitive ma:teki > ma:ma:teki ’to cut repeatedly
on the arm’) or stem internal (e.g., ma:tehteki ’to
harvest by hand’). It also complicates automatic
translation, particularly in the case of out of vocab-
ulary compounds in which there is no precedent for
any of the possible interpretations of the incorpo-
rated noun stem.

The main challenge to developing machine trans-
lation algorithms for HPN is its morphological
complexity, large numbers of words with a low
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A B C D E F G H

subj. referential
obj.

directional
prefix reflexive

non-referential obj. adverbials redupli-
cation

verb
stem+human -human (na:l-, ye:k-)

Table 1: Transitional verb morphology: General overview of prefixation

Language #Tokens #Types Ratio (Tokens/Type) % Corpus in top 100 types

HPN 476,108 96,890 11.39 58.9
Yoloxóchitl Mixtec 955,602 26,445 36.14 59.0
English 783,555 9,601 81.61 63.0

Table 2: Comparative impact of morphological complexity on type-to-token ratios (the English statistics are from
DARPA Transtac; the Mixtec statistics are from corpus presented in (Amith and García, 2020; Shi et al., 2021))

token-to-type ratio, and significant occurrences of
both noun incorporation and reduplication accom-
panied by considerable variation in the semantic
implications of incorporated noun stems and redu-
plicants. Table 2 lists type/token ratios in sample
texts for three languages, including HPN. While the
most frequent 100-word types cover roughly the
same portion of text in all three languages, the re-
maining word types are represented in much lower
frequency in HPN than in Yoloxóchitl Mixtec (glot-
tologyolo1241, another EL spoken in Mexico) or
English. As a corollary, this means that the remain-
ing 41.1% of tokens (195,680) in the HPN corpus
represents 41,718 types, a type-to-token ratio of
1:4.7. The equivalent ratio for English is 1:30.5.

Finally, HPN word order is relatively flexible,
which may pose an additional challenge to free
translation as neither case marking or word or-
der unambiguously serves to indicate grammatical
function. The degree to which MT or ST can han-
dle this relative variability in word order, even with
relatively abundant resources, It is not clear.

4.2 Corpus Transcription

Recording: The HPN corpus was developed
with speakers from the municipality of Cuetzalan
del Progreso, in the northeastern sierra of the state.
Most speakers were from San Miguel Tzinacapan
and neighboring communities. Recordings use a
48 kHz sampling rate at 16-bits. To facilitate tran-
scription of overlapping speech, each speaker was
miked separately into one of two channels with a
head-worn Shure SM-10a dynamic mic. A total of
954 recordings were made in a variety of genres.
The principal topic, with 591 separate conversa-
tions, was plant nomenclature, classification, and
use.

Transcription: The workflow commenced with
recording sessions in relatively isolated environ-
ments. The original transcription was done in Tran-
scriber (Barras et al., 2001) by one of four native
speaker members of the research team: Amelia
Domínguez Alcántara, Hermelindo Salazar Osollo,
Ceferino Salgado Castañeda, and Eleuterio Goros-
tiza Salazar. Amith then reviewed each transcrip-
tion, checking any doubts with a native speaker,
before importing the finalized Transcriber file into
ELAN (Wittenburg et al., 2006). In import, each
speaker was assigned a separate tier, and then an
additional dependent tier for the free translation
was created for each speaker.

Spanish influence: Endangered languages are
often spoken in a (neo-)colonial context in which
the impact of a dominant language (often but not al-
ways non-Indigenous) is felt in many spheres (Mc-
Convell and Meakins, 2005). HPN, particularly
from the municipality of Cuetzalan, is striking for
manifesting two perhaps contrary tendencies: (1)
a puristic ideology that has motivated the creation
of many neologisms along with (2) morphosyntac-
tic shift under the subtle and covert influence of
Spanish.1 It is probably the case that neither neolo-
gisms nor morphosyntactic change poses much of a
problem for machine translation; Spanish loans and
code-switching into Spanish would undoubtedly be
even less problematic. Indeed, it may well be that
Spanish impact in many domains of HPN poses
minimal problems for machine translation, particu-
larly if the translation is text-to-text. One potential
area of difficulty would be in speech translation,
in which the Spanish translation is produced di-
rectly from a Nahuatl recording. In the conventions

1Details of two patterns are discussed in Appendix A.
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for HPN transcription, a Spanish loan with distinct
meanings in Spanish vs. Nahuatl contexts is dis-
tinguished orthographically. It might be difficult
to disambiguate the two if the translation is direct
from audio. Thus note the following: āmo nikmati
como tikchı̄was (’I don’t know how you will do
it’) vs. āmo nikmati komo tikchı̄was (’I don’t know
if you will do it’). Spanish como (’how’) may re-
tain its Spanish meaning in a Nahuatl narrative (in
which case it is written as if Spanish), or it may
be used as a conditional (’if’), in which case it
is conventionally written in Nahuatl orthography
(komo). Even though the decision to orthographi-
cally distinguish [komo] / <como> meaning ’how’
from [komo] / <komo> meaning ’if’ is a particular
feature of HPN transcription conventions, the am-
biguity in meaning (i.e., translation) would persist
even if the orthographies of the two senses were to
be different.

In sum, then, it may be that the Spanish im-
pact on Nahuatl is less problematic for MT than
for ASR. The most problematic situation for ST is
when a Spanish word is used in a Nahuatl-speaking
community with both its original Spanish meaning
or an innovative Nahuatl meaning. In this case,
working via MT from a written transcription may
have an advantage if the orthography used for each
different meaning (original Spanish vs. innovated)
is represented differently based on orthographic
convention (as with como). But in other cases of
Spanish language impact, it is not clear that the cas-
caded ST (ASR > MT) pipeline enjoys advantages
over the direct end-to-end ST system.

4.3 Standardized Splits

The HPN corpus includes corpora for two tasks:
ASR and ST(MT). The statistics and the partition
information are shown in Table 3. The ASR corpus
contains high-quality speech with phone-level tran-
scription. The ST corpus is a subset of the ASR
corpus in that it comprises the subset of the ASR
corpus that includes time-aligned free translation
of the HPN transcription.

5 Experiments

In this section, we present our initial effort on build-
ing an automatic ST model for EL documentation.
Following the discussion in Section 3, we com-
pare the cascaded model with end-to-end models.
To construct the cascaded model, we first conduct
experiments on ASR and MT, respectively. Next,

Corpus Subset #Utts Dur (h)

ASR
Train 96,890 123.67
Validation 7,742 11.48
Test 16,348 20.97

ST & MT
Train 30,414 36.17
Validation 2,181 3.13
Test 5,386 6.65

Table 3: Corpus partition for HPN-ASR and for HPN-
ST/HPN-MT

we compare different ST models. All the models
are constructed with ESPNet, while all the training
recipes are available at the ESPNet GitHub reposi-
tory.2

5.1 Automatic Speech Recognition (ASR)
In many open-data tasks, end-to-end ASR com-
pares favorably to traditional hidden Markov
model–based ASR systems. The same trend is also
shown in ASR for another endangered language,
Yoloxóchitl Mixtec as presented in Shi et al. (2021),
Table 2. Following a methodology similar to that
used for ASR of Yoloxóchitl Mixtec, we have con-
structed a baseline system based on end-to-end
ASR, specifically the transformer-based encoder-
decoder architecture with hybrid CTC/attention
loss (Watanabe et al., 2017; Karita et al., 2019).
We have employed the exact same network config-
urations as the ESPNet MuST-C recipe.3 The target
of the system is 150 BPE units trained from the un-
igram language model. For decoding, we integrate
the recurrent neural network language model with
the ASR model. Specaugmentation is adopted for
data augmentation (Park et al., 2019).

The results in character error rate (CER) and
word error rate (WER) are shown in Table 4. The
experiments show that ASR improves only slightly
as the result of increasing the data size from 45 to
156 hours.

5.2 Machine Translation (MT)
The MT experiments are conducted over the ST
corpus with ground truth HPN transcription by
native-speaker transcribers. We also adopt ESP-
Net to train the MT model with encoder-decoder
architecture (Inaguma et al., 2020). The settings

2https://github.com/espnet/espnet/
tree/master/egs/puebla_nahuatl

3https://github.com/espnet/espnet/
tree/master/egs/must_c/asr1
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% CER % WER

Corpus dev test dev test

ASR(156h) 8.8 8.5 23.9 22.4
ST (45h) 9.9 11.2 23.7 25.5

Table 4: ASR results for the HPN-ASR(156h) and
HPN-ST(45h) corpora. ASR is directly used for cas-
caded model and applied for pre-training for end-to-
end ST

Model Val. Test

MT 14.81 14.10
Cascaded-ST (ASR > MT) 14.72 13.26
E2E-ST w/ ASR-MTL 9.84 9.38
E2E-ST w/ ASR-SI 15.22 15.41

Table 5: MT and ST BLEU on different models: MTL
is the system with multi-task learning; SI is the system
with searchable intermediates.

exactly follow the settings for the ESPNet Must-C
recipe.4 The MT result on validation and test sets
is shown in Table 5. As discussed in Section 3, the
recordings are all of the conversational speech. For
text-to-text machine translation the Nahuat inputs
are native speaker transcriptions. For the cascading
ST model, the Nahuat inputs are outputs from ASR,
which have in built-in error rate. Due to the factor,
the ASR transcription as a source text may not be
an ideal candidate for cascaded ST translation, as
it introduces additional noise from conversational
transcription.

4https://github.com/espnet/espnet/
tree/master/egs/must_c/asr1

Model Val. Test

E2E-ST w/ ASR-MTL 9.84 9.38
+ ASR encoder init. 14.77 14.05
+ MT decoder init. 11.06 11.03
+ ASR & MT init. 15.08 14.24

Table 6: Mitigating low resource ST by initializing en-
coders and decoders with pre-trained models. The ASR
model is pre-trained using the 123.67 hours of HPN-
ASR corpus, and the MT model is trained on the 30,414
text utterances from the HPN-ST corpus.

5.3 Speech Translation (ST)

While the traditional cascading approach to au-
tomating free translations (using two models, ASR
and MT) shows strong results on many datasets,
recent works have also shown competitive results
using end-to-end systems that directly output trans-
lations from speech using a single model (Jan
et al., 2019; Sperber and Paulik, 2020; Ansari et al.,
2020). For low-resource settings, in particular, the
data efficiencies of different methodologies become
key performance factors (Bansal et al., 2018; Sper-
ber et al., 2019). In this paper, we compare the per-
formance of our dataset of both cascaded and single
ST end-to-end systems. Both our cascaded and end-
to-end systems are based on the encoder-decoder
architecture (Bérard et al., 2016; Weiss et al., 2017)
and the transformer-based model (Di Gangi et al.,
2019b; Inaguma et al., 2019).

(a) Cascaded ST Model (ASR > MT Pipeline):
The cascaded model consists of an ASR module
and an MT module, each optimized separately dur-
ing training. Each module is pre-trained with the
same method as presented in Sections 5.1 and 5.2.
During inference, the 1-best hypothesis from the
ASR module is obtained via beam search with a
beam size of 10, and this decoded transcription is
passed to the subsequent MT module that finally
outputs translated text. Results are shown in Ta-
ble 5.

(b) End-to-end ST Model: In our experiments,
we adopt the transformer-based encoder-decoder
architecture with Specaugmentation. In addition,
we default train the current system with the com-
bination of ASR CTC-based loss from the encoder
and ST translation loss from the decoder; this is
referred to as E2E-ST with ASR-MTL. We also
evaluate the Searchable Intermediates (SI) based
ST model (E2E-ST with ASR-SI) introduced in
Dalmia et al. (2021), where the ASR intermediates
are found using the same decoding parameters as
the ASR models of the cascade model. The de-
tailed hyper-parameters follow the configuration of
the ESPNet Must-C recipes.5

ST results are shown in Table 5. While the per-
formance of the Cascaded-ST system is close to
that of the MT system, the E2E-ST with ASR-MTL
system shows a significantly worse result. Since
E2E-ST with ASR-MTL jointly optimizes a speech

5https://github.com/espnet/espnet/
tree/master/egs/must_c/asr1
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encoder with an ASR decoder that is not included
in the final inference network, this subnet waste is
likely causing data inefficiency that is evident in
our low-resource dataset (Sperber et al., 2019). In
contrast, E2E-ST with SI actually outperforms both
the MT and cascaded-ST systems, suggesting that
it is less degraded by the low-resource constraint
(Anastasopoulos and Chiang, 2018; Wang et al.,
2020; Dalmia et al., 2021). Furthermore, this result
shows that Nahuatl is more easily translated with
a methodology that can consider both speech and
transcript sequences as inputs.

(c) Pre-training for end-to-end ST: To investi-
gate the pre-training effect for HPN, we adopt the
models trained from Sections 5.1 and 5.2. The
ASR model in Section 5.1 was used for initializa-
tion of the ST encoder, while the MT model in
Section 5.2 was used for initialization of the ST
decoder.

As shown in Table 6, the best performance is
reached with initialization from both ASR encoder
and MT decoder. Pre-training encoder and decoder
could help better ST modeling, while using the
pre-trained ASR encoder could contribute to more
performance improvements.

Some examples with the best model in Table 6
are shown in Appendix B. Based on the analysis, it
generally indicates that the current ST system can
translate some essential information into Spanish.
However, it still cannot fully replace the human
effort on the task. And the translation still needs
significant correction from a human annotator.

6 Conclusions

In this paper, we release the Highland Puebla Nahu-
atl corpus for ASR, MT, and ST tasks. The corpus,
related baseline models, and training recipes are
open source under the CC BY-NC-ND 3.0 license.
We expect the corpus to facilitate all three tasks for
EL documentation. We also discuss and present
three specific reasons for prioritizing ST as an ini-
tial step in the endangered language documentation
sequence after the recording has taken place. Fi-
nally, we explore different technologies for ST of
Highland Puebla Nahuatl and compare these to re-
sults obtained by processing through the cascaded
ST pipeline.

As discussed in Section 2, we suggest that pri-
oritizing free translation as a first, not final, step
in documentation should be considered as: (1) it
can rapidly make a corpus valuable to potential

users even if transcription, morphlogical segmen-
tation, and morpheme glossing is incomplete; (2)
it enables semi-, passive and heritage speakers to
participate in documentation of their languages; (3)
it provides an alternative process for ASR in which
the ASR target is not a transcription but a trans-
lation into a Western language; and (4) it creates
a scenario in which the acoustic signal and free
translation may be coupled as inputs into an end-to-
end ASR system. Therefore, our future works will
focus on how the human effort could be reduced
via ST models and on how to incorporate ST to
improve the ASR performances.
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A Spanish language impact on Highland
Puebla Nahuat

HPN, particularly from the municipality of Cuet-
zalan, is striking for manifesting two seemingly
contrary tendencies: neologisms and morphosyn-
tactic. The first is a puristic ideology that values
the native language as an expression of Indigenous
identity. The second is a very strong influence of
Spanish syntax that has led to a significant number
of calques that are not only direct translations of
Spanish, but that yield expressions that violate ba-
sic grammatical constraints of Nahuatl. Puristic ide-
ology motivates many neologisms, many of which
are nouns, that provide an alternative to Spanish
loans. Spanish impact on morphosyntax is also
prevalent. For example, with very few exceptions,
the valency of Nahuatl verbs is fixed as either in-
transitive, transitive, or ditransitive. Thus to accept
an object, an intransitive must undergo valency in-
crease through an overt morphological process. But
Spanish influence has created situations in which
intransitive Nahuat verbs mark two arguments (sub-
ject and object) on the erstwhile intransitive stem.
Under Spanish influence, the intransitive verbs kı̄sa
’to emerge’ (Spanish ’salir’)’ and tikwi ’to light
up’ (Spanish ’prenderse’) manifest otherwise un-
grammatical forms: (a) āmo nēchkı̄sa (Ø-nēch-kı̄sa-
Ø; 3sgS-1sgO-to.emerge-pres.sg) is a calque from
Spanish ’no me sale’ (’it doesn’t turn out right for
me’); (b) motikwi (Ø-mo-tikwi-Ø; ’it lights up’)
uses an unnecessary and ungrammatical reflexive
marker influenced by the reflexive Spanish term ’se
prende’.
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B Speech translation examples

This appendix shows five examples of our ST hypothesis (i.e., HYP) with speech transcription (i.e.,
HPN) and Spanish translation reference (i.e., REF). We indicate the corresponding utterance IDs in the
parenthesis of each example.6

EG1 (AND308_2011-07-13-p-R_000105):
HPN: wa:n se: taman de n’ kwaltia yo:n ista:k xo:no:t yo:n se: kehke:wa wa:n k..., se: kitsa:la:nwia
REF: y el segundo es el ista:k xo:no:t que se se puede usar este se le extrae la corteza se mete en un
tronco partido a la mitad se jala con fuerza para separar la corteza con la fibra que es el jonote
HYP: y el otro tipo de árbol que se le puede extraer la fibra del jonote blanco se desprende la corteza y se
jala con fuerza para separar la fibra
Notes: This is part of a recording about a tree called "jonote", which covers several species of Heliocarpus.
The bark of one of these trees, the white jonote, is particularly good: It is stripped from the tree and then
pulled through a wedge cut into the trunk so that the meaty part of the bark is stripped away and the fiber
is left somewhat clean. The E2E translation captures the better quality of the white jonote and presents the
process of stripping fiber. Note that the gist of the Nahuatl is accurately captured, from the fact that the
narrator is now commenting on a second type of jonote (white) that is the most used, to the mechanism
for cleaning the stripped bark. The word kitsa:la:nwia (’to put in the middle’) is also correctly translated
as the action of pulling the bark through a wedge to clean the fiber.

EG2 (AND308_2011-07-13-p-R_000133):
HPN: pero a:mo nochi kokotoka n’ chi:chi:lxo:no:t
REF: pero no todo se revienta el chi:chi:lxo:no:t
HYP: pero no todos se revientan los frutos de chi:chi:lxo:no:t
Notes: Here the reference is to the red jonote, chi:chi:lxo:no:t, which is less commonly used than the
white jonote. This is because the bark of the red jonote is more brittle and tends to snap into pieces as it is
pulled off the trunk. Here, however, the narrator is commenting that not all red jonote trees have bark that
pulls apart into pieces. The Nahuatl text, however, makes no mention of "fruit" (’fruto’) as the computer
generated translation suggests.

EG3 (AND308_2011-07-13-p-R_000186):
HPN: ke:mah wa:n no: kwali tine:chili:s compadrito de que
REF: sí y también puedes platicarme compadrito de que
HYP: sí y también puedes decirme compadrito que
Notes: The alternation between ’platicarme’ and ’decirme’ is basically a case of synonymy. The computer
translation is accurate.

EG4 (AND308_2011-07-29-i-R_000077):
HPN: nextik ihkó:n pero yo:n a:mo
REF: es de color gris pero ésa planta no
HYP: es gris pero ese no
Notes: Here the computer translation is closer to the Nahuatl and fully understandable. The human
translator inserted "color", which was not necessary to the understanding of ’grey’ as a color.. The term
yo:n is a pronoun, "that". The human translator added the anteceding referent, "flower", to make the text
clearer. In English the difference would be: (1) it is a grey color, but that plant isn’t" (Human) vs. (2) it is
grey but that one isn’t" (Computer). The computer translation is in fact closer to the original.

6The utterance IDs can be obtained from corresponding recipes at ESPNet
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EG5 (RMM302_2011-07-27-l-L_000106):
HPN: oksé: no: n’neki nimitstahtani:s n’ tehwa:tsi:n komo yehwa n’ tein neh niki:mxattok ¿ke:niwki n’
ixo:chiotsi:n
REF: otra coso quiero preguntarte si acaso sea el mismo que yo conozco ¿cómo es la flor
HYP: otra cosa que quiero preguntarte si es que yo conozco como es su flor
Notes: In the Nahuatl text the narrator is basically saying that he has another question to ask (’otra cosa
que quiero preguntarte’) and that this question is whether ’the flower that I know ..., what is its flower
like?’ (¿cómo es su flor?).
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Abstract

This paper describes three open access Yoloxó-
chitl Mixtec corpora and presents the re-
sults and implications of end-to-end automatic
speech recognition for endangered language
documentation. Two issues are addressed.
First, the advantage for ASR accuracy of tar-
geting informational (BPE) units in addition
to, or in substitution of, linguistic units (word,
morpheme, morae) and then using ROVER for
system combination. BPE units consistently
outperform linguistic units although the best
results are obtained by system combination of
different BPE targets. Second, a case is made
that for endangered language documentation,
ASR contributions should be evaluated accord-
ing to extrinsic criteria (e.g., positive impact
on downstream tasks) and not simply intrinsic
metrics (e.g., CER and WER). The extrinsic
metric chosen is the level of reduction in the
human effort needed to produce high-quality
transcriptions for permanent archiving.

1 Introduction: Endangered language
documentation history and context

Endangered language (EL) documentation
emerged as a field of linguistic activity in the
1990s, as reflected in several seminal moments.
In 1991 the Linguistic Society of America held
a symposium entitled “Endangered Languages
and their Preservation"; in 1992 Hale et al.
(1992) published a seminal article on endangered
languages in Language, the LSA’s flagship journal.
In 1998, Himmelmann (1998) argued for the
development of documentary linguistics as an
endeavor separate from and complementary to
descriptive linguistics. By the early years of the
present millennium, infrastructure efforts were
being developed: metadata standards and best
practices for archiving (Bird and Simons, 2003);
tools for lexicography and corpus developments
such as Shoebox, Transcriber (Barras et al.,
1998), and ELAN (Wittenburg et al., 2006),

and financial support for endangered language
documentation (the Volkswagen Foundation,
the NSF Documenting Endangered Language
Program, and the SOAS Endangered Language
Documentation Programme). Recent retrospec-
tives on the impact of Hale et al. (1992) and
Himmelmann (1998) have been published by
Seifart et al. (2018) and McDonnell et al. (2018).
Within the last decade, the National Science
Foundation supported a series of three workshops,
under the acronym AARDVARC (Automatically
Annotated Repository of Digital Audio and Video
Resources Community) to bring together field
linguists working on endangered languages and
computational linguists working on automatic
annotation—particularly automatic speech recog-
nition (ASR)—to address the impact of what has
been called the "transcription bottleneck" (Whalen
and Damir, 2012). Interest in applying machine
learning to endangered language documentation is
also manifested in four biennial workshops on this
topic, the first in 2014 (Good et al., 2021). Finally,
articles directly referencing ASR of endangered
languages have become increasingly common over
the last five years (Adams et al., 2018, 2020; Ćavar
et al., 2016; Foley et al., 2018, 2019; Gupta and
Boulianne, 2020; Jimerson and Prud’hommeaux,
2018; Jimerson et al., 2018; Michaud et al., 2018;
Mitra et al., 2016; Shi et al., 2021).

This article continues work on Yoloxóchitl Mix-
tec ASR (Mitra et al., 2016; Shi et al., 2021). The
most recent efforts (2020 and 2021) have adopted
the ESPNet toolkit for end-to-end automatic speech
recognition (E2E ASR). This approach has proven
to be very efficient in terms of time needed to
develop the ASR recipe (Shi et al., 2021) and in
yielding ASR hypotheses of an accuracy capable
of significantly reducing the extent of human effort
needed to finalize accurate transcribed audio for
permanent archiving as here demonstrated. Sec-
tion 2 discusses the Yoloxóchitl Mixtec corpora,
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and Section 3 explores the general goals of EL doc-
umentation. Section 4 reviews the E2E ASR and
corresponding results using ESPNet. The conclu-
sion is offered in Section 5.

2 Yoloxóchitl Mixtec: Corpus
characteristics and development

2.1 The language

Much work on computer-assisted EL documenta-
tion is closely related to work on low-resource lan-
guages, for the obvious reason that most ELs have
limited resources, be they time-coded transcrip-
tions, interlinearized texts, or corpora in parallel
translation. The resources for Yoloxóchitl Mix-
tec, the language targeted in this present study,
are, however, relatively abundant by EL standards
(119.32 hours over three corpora), the result of over
a decade of linguistic and anthropological research
by Amith and Castillo García (2020).

Yoloxóchitl Mixtec (henceforth YM), an endan-
gered Mixtecan language spoken in the municipal-
ity of San Luis Acatlán, Guerrero, Mexico, is one of
some 50 languages in the Mixtec language family,
which is within a larger unit, Otomanguean, that
Suárez (1983) considers a hyper-family or stock.
Mixtec languages (spoken in Oaxaca, Guerrero,
and Puebla) are highly varied, the result of approxi-
mately 2,000 years of diversification. YM is spoken
in four communities: Yoloxóchitl, Cuanacaxtitlan,
Arroyo Cumiapa, and Buena Vista. Mutual intelli-
gibility among the four communities is high despite
differences in phonology, morphology, and syntax.

All villages have a simple common segmental
inventory but apparently significant though still
undocumented variation in tonal phonology; only
Cuanacaxtitlan manifests tone sandhi. YMC (re-
ferring only to the Mixtec of the community of
Yoloxóchitl [16.81602, -98.68597]) manifests 28
distinct tonal patterns on 1,451 to-date identified
bimoraic lexical stems. The tonal patterns carry
a significant functional load regarding the lexicon
and inflection (Palancar et al., 2016). For example,
24 distinct tonal patterns on the bimoraic segmen-
tal sequence [nama] yield 30 words (including five
homophones). The three principal aspectual forms
(irrealis, incompletive, and completive) are almost
invariably marked by a tonal variation on the first
mora of the verbal stem (1 or 3 for the irrealis, 4 for
the incompletive, and 13 for the completive; in addi-
tion 14 on the initial mora almost always indicates

negation of the irrealis1). In a not-insignificant
number of cases, suppletive stems exist, generally
manifesting variation in a stem-initial consonant
and often the stem-initial vowel.

The ample tonal inventory of YMC presents ob-
stacles to native speaker literacy and an ASR sys-
tem learning to convert an acoustic signal to text.
It also complicates the construction of a language
lexicon for HMM-based systems, a lexicon that is
not required in E2E ASR. The phonological and
morphological differences between YMC and the
Mixtec of the three other YM communities create
challenges for transcription and, by extension, for
applying YMC ASR to speech recordings from
these other villages. To accomplish this, it will
be necessary first to learn the phonology and mor-
phology of these variants and then use this as input
into a transfer learning scenario. Intralanguage
variation among distinct communities (see Hilde-
brandt et al., 2017b and other articles in Hilde-
brandt et al., 2017a) is an additional factor that
can negatively impact computer-assisted EL docu-
mentation efforts in both intra- and intercommunity
contexts.

2.2 The three corpora

YMC-Exp: The corpus originally available to
develop E2E ASR, here titled YMC-Exp (Ex-
pert transcription), comprises 98.99 hours of time-
coded transcription divided as follows for initial
ASR development: Training: 92.46 hours (52,763
utterances); Validation: 4.01 hours (2,470 utter-
ances); and Test: 2.52 hours (1,577 utterances).

The size of this initial YM corpus (505 files, 32
speakers, 98.99 hours) sets it apart from other ASR
initiatives for endangered languages (Adams et al.,
2018; Ćavar et al., 2016; Jimerson et al., 2018;
Jimerson and Prud’hommeaux, 2018). This ample
size has yielded lower character (CER) and word
(WER) error rates than would usually occur with
truly low-resource EL documentation projects.

Amith and Castillo García recorded the corpus
at a 48KHz sampling rate and 16-bits (usually with
a Marantz PMD 671 recorder, Shure SM-10a dy-
namic headset mics, and separate channels for each
speaker). The entire corpus was transcribed by
Castillo, a native speaker linguist (García, 2007).

YMC-FB: A second YMC corpus (YMC-FB;
for ’field botany’) was developed during ethno-

1Tones are V 1 low to V 4 high, with V 13 and V 14 indicat-
ing two of several contour tones; see also fn. 2.
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botanical fieldwork. Kenia Velasco Gutiérrez (a
Spanish-speaking botanist) and Esteban Guadalupe
Sierra (a native speaker from Yoloxóchitl) led 105
days of fieldwork that yielded 888 distinct plant
collections. A total of 584 recordings were made
in all four YM communities; only 452 were in
Yoloxóchitl, and of these, 435, totaling 15.17 hours
with only three speakers, were used as a second test
case for E2E ASR. Recordings were done outdoors
at the plant collection site with a Zoom H4n hand-
held digital recorder. The Zoom H4n internal mic
was used; recordings were 48KHz, 16-bit, a single
channel with one speaker talking after another (no
overlap). Each recording has a short introduction
by Velasco describing, in Spanish, the plant being
collected. This Spanish section has not been fac-
tored into the duration of the YMC-FB corpus, nor
has it been evaluated for character and word error
rates at this time (pending future implementation
of a multilingual model). The processing of the
435 recordings falls into two groups.

• 257 recordings (8.36 hours) were first
transcribed by a novice trainee (Esteban
Guadalupe) as part of transcription training.
They were corrected in a separate ELAN tier
by Castillo García and then the acoustic sig-
nals were processed by E2E ASR trained
on the YMC-Exp corpus. The ASR CER
and WER were obtained by comparing the
ASR hypotheses to Castillo’s transcriptions;
Guadalupe’s skill level (also measured in CER
and WER) was obtained by comparing his
transcription to that of Castillo. The results
are discussed in Table 9 of Shi et al. (2021).

• 178 recordings (6.81 hours) were processed
by E2E ASR, then corrected by Castillo. This
set was not used to teach or evaluate novice
trainee transcription skills but only to deter-
mine CER and WER for E2E ASR with the
YMC-FB corpus.

No training or validation sets were created from
this YMC-FB corpus, which for this present pa-
per was used solely to test E2E ASR efficiency
using the recipe developed from YMC-Exp corpus.
CER and WER scores for YMC-FB were only pro-
duced after Castillo used the ELAN interface to
correct the ASR hypotheses for this corpus (see
Appendix A for an example ASR output).

YMC-VN: The final corpus is a set of 24 nar-
ratives made to provide background information

and off-camera voice for a documentary video.
The recordings involved some speakers not rep-
resented in the YMC-Exp corpus. All recordings
(5.16 hours) were made at 44.1kHz, 16-bit with a
boom-held microphone and a Tascam portable digi-
tal recorder in a hotel room. This environment may
have introduced reverb or other effects that might
have negatively affected ASR CER and WER.

Accessibility: All three corpora (119.32 hours)
are available at the OpenSLR data portal (Amith
and Castillo García, 2020)

3 Goals and challenges of corpora-based
endangered language documentation

3.1 Overview

The oft-cited Boasian trilogy of grammar, dictionar-
ies, and texts is a common foundation for EL docu-
mentation. Good (2018, p. 14) parallels this classic
conception with a “Himmelmannian" trilogy of
recordings, metadata, and annotations (see Him-
melmann 2018). For the purpose of the definition
proposed here, EL documentation is considered to
be based on the Boasian trilogy of (1) corpus, (2)
lexicon (in the sense of dictionary), and (3) gram-
mar. In turn, each element in the trilogy is molded
by a series of expectations and best practices. An
audio corpus, for example, would best be presented
interlinearized with (a) lines corresponding to the
transcription (often in a practical orthography or
IPA transcription), (b) morphological segmentation
(often called a ‘parse’), (c) parallel glossing of each
morpheme, (d) a free translation into a target, often
colonial language, and (e) metadata about record-
ing conditions and participants. This is effectively
the Himmelmannian trilogy referenced by Good. A
dictionary should contain certain minimum fields
(e.g., part of speech, etymology, illustrative sen-
tences). Grammatical descriptions (books and arti-
cles) are more openly defined (e.g., a reference vs.
a pedagogical grammar) and may treat only parts
of the language (e.g., verb morphology).

In a best-case scenario, these three elements of
the Boasian trilogy are interdependent. Corpus-
based lexicography clearly requires ample interlin-
earized transcriptions (IGT) of natural speech that
can be used to (a) develop concordances mapped to
lemmas (not word forms); (b) enrich a dictionary
by finding lemmas in the corpus that are absent
from an extant set of dictionary headwords; and
(c) discover patterns in the corpus suggestive of
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multiword lemmas (e.g., ku3-na3a4 followed by
i3ni2 (lit., ‘darken heart’ but meaning ‘to faint’).
A grammar will inform decisions about morpho-
logical segmentation used in the IGT as well as
part-of-speech tags and other glosses. And a gram-
mar itself would benefit greatly from a large set
of annotated natural speech recordings not simply
to provide examples of particular structures but to
facilitate a statistical analysis of speech patterns
(e.g., for YMC, the relative frequency of comple-
tive verbs marked solely by tone vs. those marked
by the prefix ni1-). This integration of elements
into one “hypertextual" documentation effort is pro-
posed by Musgrave and Thieberger (2021), who
note the importance of spontaneous text (i.e., cor-
pora, which they separate into two elements, media,
and text) and comment that “all examples [in the
dictionary and grammar] should come from the
spontaneous text and should be viewed in context"
(p. 6).

Documentation of YMC has proceeded on the
assumption that the hypertextual integration sug-
gested by Musgrave and Thieberger is central to ef-
fective endangered language documentation based
on natural speech and that textual transcription of
multimedia recordings of natural speech is, there-
fore, the foundation for a dictionary and grammar
based on actual language use. End-to-end ASR is
used to rapidly increase corpus size while offering
the opportunity to target certain genres (such as
expert conversations on the nomenclature, classi-
fication, and use of local flora and fauna; ritual
discourse; material cultural production; techniques
for fishing and hunting) that are of ethnographic
interest but are often insufficiently covered in EL
documentation projects that struggle to produce
large and varied corpora. With the human effort–
reducing advances in ASR for YMC presented in
this paper, such extensive targeted recording of en-
dangered cultural knowledge can now easily be
included in the documentation effort.

The present paper focuses on end-to-end auto-
matic speech recognition using the ESPNet toolkit
(Guo et al., 2020; Shi et al., 2021; Watanabe et al.,
2020, 2017, 2018). The basic goal is simple: To de-
velop computational tools that reduce the amount
of human effort required to produce accurate tran-
scriptions in time-coded interlinearized format that
will serve a wide range of potential stakeholders,
from native and heritage speakers to specialized
academics in institutions of higher learning, in the

present and future generations. The evaluation met-
ric, therefore, is not intrinsic (e.g., reduced CER
and WER) but rather extrinsic: the impact of ASR
on the downstream task of creating a large and
varied corpus of Yoloxóchitl Mixtec.

3.2 Challenges to ASR of endangered
languages

ASR for endangered languages is made difficult
not simply because of limited resources for training
a robust system but by a series of factors briefly
discussed in this section.

Recording conditions: Noisy environments, in-
cluding overlapping speech, reverberation in in-
door recordings, natural sounds in outdoor record-
ings, less than optimal microphone placement (e.g.,
a boom mic in video recordings), and failure to
separately mike speakers for multichannel record-
ings all negatively impact the accuracy of ASR
output. Also to the point, field recordings are sel-
dom made with an eye to seeding a corpus in ways
that would specifically benefit ASR results (e.g.,
recording a large number of speakers for shorter
durations, rather than fewer speakers for longer
times). To date, then, processing a corpus through
ASR techniques of any nature (HMM, end-to-end)
has been more of an afterthought than planned at
project beginning. Development of a corpus from
the beginning with an eye to subsequent ASR po-
tential would be immensely helpful to these com-
putational efforts. It could, perhaps should, be
increasingly considered in the initial project design.
Indeed, just as funding agencies such as NSF re-
quire that projects address data management issues,
it might be worth considering the suggested inclu-
sion of how to make documentation materials more
amenable to ASR and NLP processing as machine
learning technologies are getting more robust.

Colonialization of language: Endangered lan-
guages do not die, to paraphrase Dorian (1978),
with their “boots on." Rather, in the colonialized
situation in which most ELs are immersed, there
are multiple phonological, morphological, and syn-
tactic influences from a dominant language. The
incidence of a colonial language in native language
recordings runs a gamut from multilanguage situa-
tions (e.g., each speaker using a distinct language,
as often occurs in elicitation sessions: ’How would
you translate ___ into Mixtec?’), to code-switching
and borrowing or relexification in the speech of
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single individuals. In some languages (e.g., Nahu-
atl), a single word may easily combine stems from
both native and colonial languages. Preliminary,
though not quantified, CER analysis for YMC ASR
suggests that “Spanish-origin" words provoke a sig-
nificantly higher error rate than the YMC lexicon
uninfluenced by Spanish. It is also not clear that
a multilingual phone recognition system is the so-
lution to character errors (such as ASR hypothesis
‘cereso’ for Spanish ‘cerezo’) that may derive from
an orthographic system, such as that for Spanish,
that is not designed, as many EL orthographies are,
for consistency. Phonological shifts in borrowed
terms also preclude the simple application of lexi-
cal tools to correct misspellings (as ‘agustu’ for the
Spanish month ‘agosto’).

Orthographic conventions: The practical deep
orthography developed by Amith and Castillo
marks off boundaries of affixes (with a hyphen)
and clitics (with an = sign). Tones are indicated by
superscript numbers, from 1 low to 4 high, with five
common rising and falling tones. Stem-final elided
tones are enclosed in parentheses (e.g., underly-
ing form be’3e(3)=2; house=1sgPoss, ’my house’;
surface form be’3e2). Tone-based inflectional mor-
phology is not separated in any YMC transcrip-
tions.2

The transcription strategy for YMC was unusual
in that the practical orthography was a deep, under-
lying system that represented segmental morpheme
boundaries and showed elided tones in parenthe-
ses. The original plans of Amith and Castillo were
to use the transcribed audio as primary data for
a corpus-based dictionary. A deep orthography
facilitates discovery (without recourse to a morpho-
logical analyzer) of lemmas that may be altered
in surface pronunciations by the effect of person-
marking enclitics and certain common verbal pre-
fixes (see Shi et al., 2021, §2.3).

Only after documentation (recording and time-
coded transcriptions) was well advanced did work
begin on a finite state transducer for the YMC cor-
pus. this was made possible by collaboration with
another NSF-DEL sponsored project.3 The code

2For example ka′3an4 ‘to have faith (irrealis)’; ka′14an4

‘to not have faith (neg. irrealis)’, ka′4an4 ‘to have faith (in-
completive)’; ka′13an4 ‘to have faith (completive). For now,
the tonal inflection on the first mora is not parsed out from
stems such as ka′3an4; see also fn. 1

3Award #1360670 (Christian DiCanio, PI; Understanding
Prosody and Tone Interactions through Documentation of Two
Endangered Languages).

was written by Jason Lilley in consultation with
Amith and Castillo. As the FOMA FST was being
built, FST output was repeatedly checked against
expectations based on the morphological grammar
until no discrepancies were noted. The FST, how-
ever, only generates surface forms consistent with
Castillo’s grammar. If speakers varied, for example,
in the extent of vowel harmonization or regressive
nasalization, the FST would yield only one surface
form, that suggested by Castillo to be the most
common. For example, underlying be′3e(3)=an4

(house=3sgFem; ‘her house’) surfaces as be′3ã4

even though for some speakers nasalization spreads
to the stem initial vowel. Note, then, that the sur-
face forms in the YMC-Exp corpus are based on
FST generation from an underlying transcription
as input and not from the direct transcription of
the acoustic signal. It is occasionally the case that
different speakers might extend vowel harmoniza-
tion or nasalization leftward to different degrees.
This could increase the CER and WER for ASR of
surface forms, given that the reference for evalua-
tion is not directly derived from the acoustic signal
while the ASR hypothesis is so derived.

In an evaluation across the YMC-Exp develop-
ment and test sets (total 6.53 hours) of the relative
accuracy of ASR when using underlying versus
surface orthography, it was found that training on
underlying orthography produced slightly greater
accuracy than training on surface forms: Underly-
ing = 7.7/16.0 [CER/WER] compared to Surface =
7.8/16.5 [CER/WER] (Shi et al., 2021, see Table 4).
The decision to use underlying representations in
ASR training has, however, several more important
advantages. First, for native speakers, the process
of learning a deep practical orthography means that
one learns segmental morphology as one learns to
write. For the purposes of YMC language docu-
mentation, the ability of a neural network to di-
rectly learn segmental morphology as part of ASR
training has resulted in a YMC ASR output across
all three corpora with affixes and clitics separated
and stem-final elided tones marked in parentheses.
Semi- or un-supervised morphological learning as
a separate NLP task is unnecessary when ASR
training and testing was successfully carried out on
a corpus with basic morphological segmentation.
As the example in Appendix A demonstrates, ASR
output includes basic segmentation at the morpho-
logical level.
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Corpus Intrinsic Extrinsic
CER WER Correction Time

Reference / / 40 (estimated avg.)
Exp 7.6 14.7 (not measured)
FB 8.9 18.4 8.76
VN 6.1 15.8 10.28

Table 1: Intrinsic metrics vs. extrinsic metrics: Intrin-
sic metrics are based on Row I in Table 2. The extrin-
sic reference is the transcription time of an unaided hu-
man. The correction time for ASR output is measured
in hours.

3.3 Intrinsic metrics: CER, WER, and
consistency in transcriptions used as
reference:

Although both CER and WER reference “error
rate" in regards to character and word, respectively,
the question of the accuracy of the reference itself
is rarely explored (but cf. Saon et al., 2017). For
YMC, only one speaker, Castillo García, is capable
of accurate transcription, which in YMC is the sole
gold standard for ASR training, validation, and test-
ing. Thus there is a consistency to the transcription
used as a reference.

In comparison, for Highland Puebla Nahuat (an-
other language that the present team is exploring),
the situation is distinct. Three native speaker ex-
perts have worked with Amith on transcription for
over six years, but the reference for ASR devel-
opment are native-speaker transcriptions carefully
proofed by Amith, a process that both corrected
simple errors and applied a single standard imple-
mented by one researcher. When all three native
speaker experts were asked to transcribe the same
90 minutes or recordings, and the results were com-
pared, there was not an insignificant level of varia-
tion ( 9%).

The aforementioned scenario suggests the im-
pact on ASR intrinsic metrics of variation in tran-
scriptions across multiple annotators, or even in-
consistencies of one skilled annotator in the context
of incipient writing systems. This affects not only
ASR output but also the evaluation of ASR accu-
racy via character and word error rates. It may be
that rather than character and word error rate, it
would be advisable to consider the character and
word discrepancy rate a change in terminology that
perhaps better communicates the idea that the dif-
ferences between REF and HYP are often as much
a matter of opinion as fact. The nature and value
of utilizing intrinsic metrics (e.g., CER and WER)

for evaluating ASR effectiveness for endangered
language documentation merits rethinking.

An additional factor that has emerged in the
YMC corpora, which contains very rapid speech, is
what may be called “hypercorrection". This is not
uncommon and may occur with lenited forms (e.g.,
writing ndi1ku4chi4 when close examination of
the acoustic signal reveals that the speaker used the
fully acceptable lenited form ndiu14chi4) or when
certain function words are reduced, at times effec-
tively disappearing from the acoustic signal though
not from the mind of a fluent speaker transcriber.
In both cases, ASR "errors" might represent a more
accurate representation of the acoustic signal than
the transcription of even the most highly capable
native speakers.

The above discussion also brings into question
what it means to achieve human parity via an ASR
system. Parity could perhaps best be considered as
not based on CER and WER alone but on whether
ASR output achieves a lower error rate in these two
measurements as compared to what another skilled
human transcriber might achieve.

3.4 Extrinsic metrics: Reduction of human
effort as a goal for automatic speech
recognition

Given the nature of EL documentation, which re-
quires high levels of accuracy if the corpus is to be
easily used for future linguistic research, it is es-
sential that ASR-generated hypotheses be reviewed
by an expert human annotator before permanent
archiving. Certainly, audio can be archived with
metadata alone or with unchecked ASR transcrip-
tions (see Michaud et al., 2018, §4.3 and 4.4), but
the workflow envisioned for YMC is to use ASR
to reduce human effort while the archived corpus
of audio and text maintains results equivalent to
those that would be obtained by careful, and labor-
intensive, expert transcription.

CER and WER were measured for YMC cor-
pora with training sets of 10, 20, 50, and 92 hours.
The CER/WER were as follows: 19.5/39.2 (10
hrs.), 12.7/26.2 (20 hrs.), 10.2/24.9 (50 hrs.), and
7.7/16.1 (92 hrs.); Table 5 in Shi et al. (2021). Mea-
surement of human effort reduction suggests that
with a corpus of 30–50 hours, even for a relatively
challenging language such as YMC, E2E ASR can
achieve the level of accuracy that allows a reduc-
tion of human effort by > 75 percent (e.g., from 40
to 10 hours, approximately).
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Model Unit CER WER
Exp(dev) Exp(test) FB VN Exp(dev) Exp(test) FB VN

A Morae 9.5 9.4 12.8 9.9 19.2 19.2 23.8 21.8
B Morpheme 10.2 10.0 13.9 10.9 20.0 20.0 24.8 23.1
C Word 12.0 11.9 14.0 11.4 19.3 19.3 21.2 20.2
D BPE150 7.7 7.6 9.5 6.8 16.1 16.1 19.6 17.3
E BPE500 7.6 7.7 9.3 6.6 15.8 16.0 19.1 16.7
F BPE1000 7.9 7.7 9.8 6.8 16.1 15.9 19.5 16.9
G BPE1500 7.9 7.8 10.1 6.9 16.3 16.1 19.8 16.9
H ROVER (A-C) 9.2 9.2 12.5 9.4 21.8 22.0 27.0 23.6
I ROVER(D-G) 7.5 7.6 8.9 6.1 14.6 14.7 18.4 15.8
J ROVER(A-G) 7.4 7.4 9.0 6.1 14.4 14.8 18.6 15.9

Table 2: ASR results for different models with different units

Starting from the acoustic signal, Castillo García,
a native speaker linguist, requires approximately
40 hours to transcribe 1 hour of YMC audio. Start-
ing from initial ASR hypotheses incorporated into
ELAN, this is reduced by approximately 75 percent
to about 10 hours of effort to produce one finalized
hour of time-coded transcription with marked seg-
mentation of affixes and enclitics.

These totals are derived from measurements with
the FB and VN corpora, the two corpora for which
ASR provided the initial transcription, and Castillo
subsequently corrected the output, keeping track
of the time he spent. For the first corpus, Castillo
required 58.20 hours to correct 6.65 hours of audio
(from 173 of the 178 files that had not been first
transcribed by a speaker trainee). This yields 8.76
hours of effort per hour of recording. The 5.16
hours (in 24 files) of the VN corpus required 53.07
hours to correct, a ratio of 10.28 hours of effort to
finalize 1 hour of speech. Over the entire set of 197
files (11.81 hours), human effort was 111.27 hours,
or 9.42 hours to correct 1 hour of audio. Given
that the ASR system was trained on an underlying
orthography, the final result of < 10 hours of human
effort per hour of audio is a transcribed and par-
tially parsed corpus. Table 3 presents an analysis
of two lines of a recording that was first processed
by E2E ASR and corrected by Castillo García. A
fuller presentation and analysis are offered in the
Appendix. This focus on extrinsic metrics reflects
the realization that the ultimate goal of computa-
tional systems is not to achieve the lowest CER and
WER but to help documentation initiatives more
efficiently produce results that will benefit future
stakeholders.

4 End-to-end ASR experiments

4.1 Experiment settings

Recently, E2E ASR has reached comparable or
better performances than conventional Hidden-
Markov-Model-based ASR (Graves and Jaitly,
2014; Chiu et al., 2018; Pham et al., 2019; Karita
et al., 2019a; Shi et al., 2021). In practice, E2E
ASR systems are less affected by linguistic con-
straints and are generally easier to train. The bene-
fits of such systems are reflected in the recent trends
of using end-to-end ASR for EL documentation
(Adams et al., 2020; Thai et al., 2020; Matsuura
et al., 2020; Hjortnaes et al., 2020; Shi et al., 2021).

In developing E2E ASR recipes for YMC,
we have adopted transformer and conformer-
based encoder-decoder networks with hybrid
CTC/attention training (Karita et al., 2019b; Watan-
abe et al., 2017). We used the YMC-Exp (train-
split) for training and other YMC corpora for evalu-
ation. The hyper-parameters for the training and de-
coding follow Shi et al. (2021). Seven systems with
different modeling units are examined in the exper-
iments. Four systems employ the byte-pair encod-
ing (BPE) method trained from unigram language
models (Kudo and Richardson, 2018), with tran-
scription alphabets limited to the 150, 500, 1000,
and 1500 most frequent byte-pairs in the training
set. The other three ASR systems adopt linguistic
units, including word, morpheme, and mora. The
YM word is defined as a stem with all prefixes
(such as completetive ni1-, causative sa4-, and iter-
ative nda3-) separated from the stem by a hyphen;
and all enclitics (particularly person markers for
subjects, objects, and possessors, such as =yu3,
1sg; =un4, 2sg; =an4, 3sgFem; =o4, 1plIncl; as
well as = lu3, augmentive). Many vowel-initial
enclitics have alternative vowels, and many encl-
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ASR yo’3o4 xi13i2 ba42 ndi4 ba’1a3=e2 ku3-nu’3ni2 tu3tun4 kwi3so(3)=e4 mi4i4 ti4 ba42 ko14o3

yo’3o4 kwa’1an1 yo4o4 xa14ku’1u1

Exp yo’3o4 xi1i32 ba42 ndi4 ba’1a3=e2 ku3-nu’3ni2 tu3tun4 kwi3so(3)=e4 mi4i4 ti4 ba42 ko14o3

yo’3o4 kwa’1an1 ji’4in(4)=o4 xa14ku’1u1

Note ASR missed the word ji’4in4 (‘with’, comitative) and as a result wrote the 1plInclusive as an
independent pronoun and not an enclitic.

ASR i3ta(2)=e2 ndi4 tan42 i4in4 i3ta2 tio3o2 yu3ku4 ya1 ba4li4 coco nu14u3 ñu’3u4 sa3kan4 i4in4

i3ta(2)=e2

Exp i3ta(2)=e2 ndi4 tan42 i4in4 i3ta2 tio3o2 yu3ku4 ya1 ba4li4 ko4ko13 nu14u3 ñu’3u4 sa3kan4 i4in4

i3ta(2)=e2

Note ASR suggested Spanish ‘coco’ coconut for Mixtec ko4ko13 (‘to be abundant[plants]’)

Table 3: Comparison of ASR and Expert transcription of two lines of recording (See Appendix A for full text).4

itics have alternative tones, depending on stem-
final vowel and tone, respectively. Morphemes
are stems, prefixes, and enclitics. The inflectional
tone is not segmented out. The right boundary of
a mora is a vowel or dipthong (with an optional
<n> to indicate a nasalized vowel) followed by a
tone. The left boundary is a preceding mora or
word boundary. Thus the word ni1-xa′3nda2=e4

(completive-play(guitar)-1plIncl) would be divided
into three morphemes ni1-, xa′3nda2, =e4 and into
four morae given that xa′3nda2 would be seg-
mented as xa′3, nda2.

We adopt recognizer output voting error reduc-
tion (ROVER) for the hypotheses combination (Fis-
cus, 1997). Three combinations have been evalu-
ated: (1) ROVER among only linguistic units (i.e.,
morae, morpheme, and word), (2) ROVER among
only sub-word units (in this case BPE); and (3)
ROVER combination utilizing all seven systems.

4.2 Experimental results

Experimental results are presented in two sub-
sections. The first addresses the performance of
end-to-end ASR across three corpora, each with
slightly different recording systems and content.
As clear from the preceding discussion and illus-
trated in Table 2, in addition to training on the word
unit, the YMC E2E ASR system was trained on six
additional linguistic and informational sub-word
units. ROVER was then used to produce composite
systems in which the outputs of all seven systems
were combined in three distinct manners. In all
cases, ROVER combinations improved the result
of any individual system, including the averages
for either of the two types of units: linguistic and
informational.

4Those interested in the recordings and associated ELAN
files may visit Amith and Castillo García (2020).

ASR and ROVER across three YMC corpora:
As evident in Table 2, across all corpora, infor-
mational units (BPE) are more efficient than lin-
guistic units (word, morpheme, morae) in regards
to ASR accuracy. The average CER/WER for lin-
guistic units (rows A-C) was 10.4/19.5 (Exp[test]),
13.6/23.3 (FB), and 10.7/21.7 (VN). The cor-
responding figures for the BPE units (rows D–
G) were 7.7/16.0 (Exp[test]), 9.7/19.5 (FB), and
6.8/16.8 (VN). In terms of percentage differences
between the two types of units, the numbers are
not insignificant. In regards to CER, performance
improved from linguistic to informational units by
26.0, 28.7, and 36.4 percent across the Exp(Test),
FB, and VN corpora. In regards to WER, perfor-
mance improved by 17.9, 16.3, and 22.6 percent
across the same three corpora.

The experiments also addressed two remaining
questions: (1) does unweighted ROVER combi-
nation improve the accuracy of ASR results; (2)
does adding linguistic unit performance units to the
ROVER "voting pool" improve results over a com-
bination of only BPE units. In regards to the first
question: ROVER always improves results over
any individual system (compare row H to rows
A, B, and C, and row I to rows D, E, F, and G).
The second question is addressed by comparing
rows I (ROVER applied only to the four BPE re-
sults) to J (adding the ASR results for the three
linguistic units into the combination). In only one
of the six cases (CER of Exp[test]) does includ-
ing word, morpheme, and morae lower the error
rate from the results of a simple combination of
the four BPE results (in this case from 7.6 [row
I] to 7.4 [row J]). In one case, there is no change
(CER for the VN corpus) and in four cases, includ-
ing linguistic units slightly worsens the score from
the combination of BPE units alone (row I with
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bold numbers). The implication of the preceding is
that ASR using linguistic units yields significantly
lower accuracy than ASR that uses informational
(BPE) units. Combining the former with the latter
in an unweighted ROVER system in most cases
does not improve results. Whether a weighted com-
binatory system would do better is a question that
will need to be explored.

5 Conclusion

A fundamental element of endangered language
documentation is the creation of an extensive cor-
pus of audio recordings accompanied by time-
coded annotations in interlinear format. In the best
of cases, such annotations include an accurate tran-
scription aligned with morphological segmentation,
glossing, and free translations. The degree to which
such corpus creation is facilitated is the extrinsic
metric by which ASR contributions to EL docu-
mentation should be considered. The project here
discussed suggests a path to creating such corpora
using end-to-end ASR technology to build up the
resources (30–50 hours) necessary to train an ASR
system with perhaps a 6–10 percent CER. Once
this threshold is reached, it is unlikely that further
improvement will significantly reduce the human
effort needed to check the ASR output for accuracy.
Indeed, even if there are no "errors" in the ASR out-
put, confirmation of this through careful revision
of the recording of the transcription would prob-
ably still take 3–4 hours. The effort reduction of
75 percent documented here for YMC is, therefore,
approaching what may be considered the minimum
amount of time to proofread transcription of natural
speech in an endangered language.

This project has also demonstrated the advan-
tage of using a practical orthography that separates
affixes and clitics. In a relatively isolating lan-
guage such as YM, such a system is not difficult
for native speakers to write nor for ASR systems
to learn. It has the advantage of creating a work-
flow in which parsed text is the direct output of
E2E ASR. The error rate evaluations across the
spectrum of corpora and CER/WER also demon-
strate the advantage of using subword units such
as BPE and subsequent processing by ROVER for
system combination (see above and Table 2). The
error rates could perhaps be lowered further as the
corpus increases in size, as more care is placed on
recording environments, and as normalization elim-
inates reported errors for minor discrepancies such

as in transcription of back-channel cues. But such
lower error rates will probably not significantly
reduce the time for final revision.

A final question concerns additional steps once
CER is reduced to 6–8 percent, and additional im-
provements to ASR would not significantly affect
the human effort needed to produce a high-quality
time-coded transcription and segmentation. Four
topics are suggested: (1) address issues of noise,
overlapping speech, and other challenging record-
ing situations; (2) focus on transfer learning to
related languages; (3) explore the impact of "colo-
nialization" by a dominant language; and (4) focus
additional ASR-supported corpus development on
producing material for documentation of endan-
gered cultural knowledge, a facet of documentation
that is often absent from endangered language doc-
umentation projects.
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A Analysis of ASR errors in one recording from the FB corpus

Unique identifier: 2017-12-01-b
Speakers: Constantino Teodoro Bautista and Esteban Guadalupe Sierra
Spanish:The first 13 seconds (3 segments) of the recording were of a Spanish speaker describing

the plant being collected (Passiflora biflora Lam.) and have not been included below.
Note: A total 16 out of 33 segments/utterances are without ASR error. These are marked with an asterisk.
Original recording and ELAN file: Download at http://www.balsas-nahuatl.org/NLP

4*. 00:00:13.442 –> 00:00:17.105
ASR constantino teodoro bautista
Exp Constantino Teodoro Bautista.
Notes: ASR does not output caps or punctuation.

5*. 00:00:17.105 –> 00:00:19.477
ASR ya1 mi4i4 tu1tu’4un4 ku3rra42

Exp Ya1 mi4i4 tu1tu’4un4 ku3rra42

Notes: No errors in the ASR hypothesis.

6. 00:00:19.477 –> 00:00:23.688
ASR ta1 mas4tru2 tela ya1 i3chi4 ya3tin3 ye’14e4 ku3rra42 ndi4 covalentín yo’4o4

Exp ta1 mas4tru2 Tele ya1 i3chi4 ya3tin3 ye’14e4 ku3rra42 Nicu Valentín yo’4o4,
Notes: ASR missed the proper name, Nicu Valentín (short for Nicolás Valentín) but did get the accent on

Valentín, while mistaking the first name Nicu for ndi4 co[valentín]

7*. 00:00:23.688 –> 00:00:31.086
ASR ya1 i3chi4 kwa’1an(1)=e4 tan3 xa1a(1)=e4 ku3rra42 chi4ñu3 ka4chi2=na1 ya1 kwa’1an1 ni1nu3

yo’4o4 ju13ta’3an2=ndu1 ya1 ko4ndo3 kwi1yo’1o4 ndi3ku’3un3

Exp ya1 i3chi4 kwa’1an(1)=e4 tan3 xa1a(1)=e4 ku3rra42 chi4ñu3 ka4chi2=na1 ya1 kwa’1an1 ni1nu3 yo’4o4

ju13ta’3an2=ndu1 ya1 ko4ndo3 kwi1yo’1o4 ndi3ku’3un3

Notes: No errors in the ASR hypothesis.

8*. 00:00:31.086 –> 00:00:37.318
ASR kwi1yo’1o4 ndi3ku’3un3 kwi4i24 ka4chi2=na1 yo’4o4 ndi4 ya1 yo’4o4 ndi4 xa’4nu3 su4kun1 mi4i4

ti4 ba42 i4yo(2)=a2 mi4i4 bi1xin3 tan3

Exp kwi1yo’1o4 ndi3ku’3un3 kwi4i24 ka4chi2=na1 yo’4o4 ndi4 ya1 yo’4o4 ndi4 xa’4nu3 su4kun(1)=a1

mi4i4 ti4 ba42 i4yo(2)=a2 mi4i4 bi1xin3 tan3

Notes: The ASR hypothesis missed the inanimate enclitic after the verb su4kun1 and as a result failed to
mark the elision of the stem-final low tone as would occur before a following low-tone enclitic.

9. 00:00:37.318 –> 00:00:42.959
ASR yo’3o4 xi13i2 ba42 ndi4 ba’1a3=e2 ku3-nu’3ni2 tu3tun4 kwi3so(3)=e4 mi4i4 ti4 ba42 ko14o3 yo’3o4

kwa’1an1 yo4o4 xa14ku’1u1

Exp yo’3o4 xi1i32 ba42 ndi4 ba’1a3=e2 ku3-nu’3ni2 tu3tun4 kwi3so(3)=e4 mi4i4 ti4 ba42 ko14o3 yo’3o4

kwa’1an1 ji’4in(4)=o4 xa14ku’1u1,
Notes: ASR missed the word ji’4in4 (’with’, comitative) and as a result wrote the 1plInclusive as an

independent pronoun and not an enclitic.

10. 00:00:42.959 –> 00:00:49.142
ASR i3ta(2)=e2 ndi4 tan42 i4in4 i3ta2 tio3o2 yu3ku4 ya1 ba4li4 coco nu14u3 ñu’3u4 sa3kan4 i4in4

i3ta(2)=e2
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Exp i3ta(2)=e2 ndi4 tan42 i4in4 i3ta2 tio3o2 yu3ku4 ya1 ba4li4 ko4ko13 nu14u3 ñu’3u4 sa3kan4 i4in4

i3ta(2)=e2,
Notes: ASR suggested Spanish ‘coco’ coconut for Mixtec ko4ko13 (’to be abundant[plants]’). Note that

’coco’ was spelled as it is in Spanish and no tones were included in the ASR output.

11. 00:00:49.142 –> 00:00:53.458
ASR la3tun4=ni42 ya3a(3)=e2 tan3 ti1xin3=a2 ndi4 ya1 nde’3e4 ba42 tan3 o4ra2 xi4yo13 ndu1u4=a2 ndi4

ya1 kwi4i24 ba43

Exp la3tun4=ni42 ya3a(3)=e2 tan3 ti1xin3=a2 ndi4 ya1 nde’3e4 ba42 tan3 o4ra2 xi4yo13 ndu1u4=a2 ndi4

ya1 kwi4i24 ba42,
Notes: ASR missed tone 42, writing 43 instead. Note that the two tone patterns are alternate forms of

the same word, the copula used in regards to objects.

12*. 00:00:53.458 –> 00:00:57.279
ASR tan3 o4ra2 chi4chi13=a2 ndi4 ndu1u4 nde’3e4 ku4u4 ndu1u4=a3

Exp tan3 o4ra2 chi4chi13=a2 ndi4 ndu1u4 nde’3e4 ku4u4 ndu1u4=a3.
Notes: No errors in the ASR hypothesis.

13*. 00:00:57.279 –> 00:01:02.728
ASR yu1ku(1)=a1 ndi4 tan42 i4in(4)=a2 ni1-xa’3nda2=e4 tan42 i4in4 yu1ku1 tun4 si13su2 kan4 sa3kan4

i4in4 yu1ku(1)=a1 tan3 ndi4

Exp Yu1ku(1)=a1 ndi4 tan42 i4in(4)=a2 ni1-xa’3nda2=e4 tan42 i4in4 yu1ku1 tun4 si13su2 kan4 sa3kan4

i4in4 yu1ku(1)=a1 tan3 ndi4

Notes: No errors in the ASR hypothesis.

14. 00:01:02.728 –> 00:01:06.296
ASR su14u3 ya1 xa’4nda2=na1 ba42 ndi4 su14u3 ki3ti4 ja4xi24=ri4 sa3kan4 i4in4 yu1ku1 mi4i4 ba(3)=e3

Exp su14u3 ya1 xa’4nda2=na1 ba42 tan3 ni4 su14u3 ki3ti4 ja4xi24=ri4, sa3kan4 i4in4 yu1ku1 mi4i4

ba(3)=e3,
Notes: ASR mistakenly proposed ndi4 for tan3 ni4.

15*. 00:01:06.296 –> 00:01:10.981
ASR tan3 ya1 xa’4nu3 su4kun(1)=a1 mi4i4 ti4 ba42 sa3ba3 xia4an4 ku3ta’3an2=e4=e2 ndi4 xa’4nu(3)=a2

kwa1nda3a(3)=e2 nda’3a4 i3tun4

Exp tan3 ya1 xa’4nu3 su4kun(1)=a1 mi4i4 ti4 ba42 sa3ba3 xia4an4 ku3ta’3an2=e4=e2 ndi4 xa’4nu(3)=a2

kwa1nda3a(3)=e2 nda’3a4 i3tun4

Notes: No errors in the ASR hypothesis.

16. 00:01:10.981 –> 00:01:14.768
ASR u1xi1 an4 nda1 xa’1un1 metru ka1a3 mi4i4 i4yo2 i3tun4 ndo3o3 tan3 ko4ko13=a2 kwa1nde3e3 ni1nu3

Exp u1xi1 an4 nda1 xa’1un1 metru ka1a3 mi4i4 i4yo2 i3tun4 ndo3o3 tan3 ko4ko13=a2 kwa1nda3a(3)=e2

ni1nu3,
Notes: Not only did ASR recognize the Spanish metru borrowing but wrote it according to our

conventions, without tone. Note that the correct underlying form kwa1nda3a(3)=e2 (progressive of ’to
climb [e.g., a vine]’ with 3sg enclitic for inanimates =e2) surfaces as kwa1nde3e2 quite close to the
ASR hypothesis of kwa1nde3e3, which exists, but as a distinct word (progressive of ’to enter[pl]’).

17*. 00:01:14.768 –> 00:01:18.281
ASR mi4i4 ba143 xa’4nda2=na(1)=e1 ndi4 xa’4nu3 su4kun(1)=a1

Exp mi4i4 ba143 xa’4nda2=na(1)=e1 ndi4 xa’4nu3 su4kun(1)=a1,
Notes: No errors in the ASR hypothesis.

77



18*. 00:01:18.281 –> 00:01:21.487
ASR ya1 kan4 ku4u4 kwi1yo’1o4 ju13ta’3an2=ndu1 i3chi4 kwa’1an1 ku3rra42 chi4ñu3 yo’4o4

Exp ya1 kan4 ku4u4 kwi1yo’1o4 ju13ta’3an2=ndu1 i3chi4 kwa’1an1 ku3rra42 chi4ñu3 yo’4o4.
Notes: No errors in the ASR hypothesis.

19*. 00:01:21.487 –> 00:01:24.658
ASR esteban guadalupe sierra
Exp Esteban Guadalupe Sierra.
Notes: ASR does not output caps or punctuation.

20. 00:01:24.658 –> 00:01:27.614
ASR ya1 ko4ndo3 kwi1yo’1o4 ndi13-kwi3so3=ndu2 ya1

Exp ya1 ko4ndo3 kwi1yo’1o4 ndi13-kwi3so3=ndu2 ya1

Notes: No errors in the ASR hypothesis.

21. 00:01:27.614 –> 00:01:33.096
ASR sa3kan4 tan3 xa1a(1)=e4 ku3rra42 chi4ñu3 ya1 ja1ta4 ku3rra42 ta1 marspele yo’4o4 ndi4

Exp sa3kan4 tan3 xa1a(1)=e4 ku3rra42 chi4ñu3 ya1 ja1ta4 ku3rra42 ta1 mas4tru2 Tele yo’4o4 ndi4

Notes: ASR missed the Spanish mas4tru2 Tele (teacher Tele(sforo)) and hypothesized a nonsense word in
Spanish (note absence of tone as would be the case for Spanish loans).

22. 00:01:33.096 –> 00:01:39.611
ASR kwi1yo’1o4 ndi3ku’3un3 ba3 kwi1yo’1o4 ndi3ku’3un3 ka1a3 ndi4 ko14o3 u1bi1 u1ni1 nu14u(3)=a2

ña1a4 ndi4 i3nda14 nu14u3 sa3kan4 ba3 ba42

Exp kwi1yo’1o4 ndi3ku’3un3 ba43, kwi1yo’1o4 ndi3ku’3un3 ka1a3 ndi4 ko14o3 u1bi1 u1ni1 nu14u(3)=a2

ndi4 i3nda14 nu14u3 sa3kan4 ba3 ba42,
Notes: ASR mistook the copula ba43 and instead hypothesized the modal ba3. ASR also inserted a word

not present in the signal, ña1a4 (‘over there’).

23. 00:01:39.611 –> 00:01:43.781
ASR ya1 ka’4an2=na1 ji’4in4 ku4u4 kwi1yo’1o4 ndi3ku’3un3 kwi4i2(4)=o4 tan3

Exp ya1 ka’4an2=na1 ji’4in4 ku4u4 kwi1yo’1o4 ndi3ku’3un3 kwi4i24 yo’4o4 tan3

Notes: ASR mistook the adverbial yo’4o4 (’here’) as the enclitic =o4 (1plIncl) and as a result also
hypothesized stem final tone elision (4).

24. 00:01:43.781 –> 00:01:49.347
ASR ba143 bi4xi1 i4in(4)=a2 ndi4 kwi1yo’1o4 kwa1nda3a3 nda’3a4 i3tun4 ba3 tan3 kwi1yo’1o4

Exp ba143 bi4xi1 i4in(4)=a2 ndi4 kwi1yo’1o4 kwa1nda3a3 nda’3a4 i3tun4 ba42 tan3 kwi1yo’1o4

Notes: As in segment #22 above, ASR mistook the copula, here ba4, and instead hypothesized the modal
ba3.

25. 00:01:49.347 –> 00:01:55.001
ASR ndi3i4 ba42 ko14o3 tu4mi4 ja1ta4=e2 ya1 kan4 ndi4 i4yo2 i4yo2 xi1ki4=a2 i4in4 tan3

Exp ndi3i4 ba42 ko14o3 tu4mi4 ja1ta4=e2 tan3 ndi4 i4yo2 i4yo2 xi1ki4=a2 i4in4 tan3

Notes: ASR missed the conjunction tan3 (’and’) and instead wrote ya1 kan4 (’that one’).

26*. 00:01:55.001 –> 00:02:00.110
ASR ya1 ba’1a3=e2 ndi4 ba’1a3=e2 ju4-nu’3ni2 tu3tun4 i4xa3=na2

Exp ya1 ba’1a3=e2 ndi4 ba’1a3=e2 ju4-nu’3ni2 tu3tun4 i4xa3=na2,
Notes: No errors in the ASR hypothesis.
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27*. 00:02:00.110 –> 00:02:04.380
ASR na1kwa4chi3 tu3 ndi4 chi3ñu3=ni42=na1 ka3ya2=na(1)=e1 su4-kwe1kun1=na1 i3na2 ju4si4ki24

ba3=na3

Exp na1kwa4chi3 tu3 ndi4 chi3ñu3=ni42=na1 ka3ya2=na(1)=e1 su4-kwe1kun1=na1 i3na2 ju4si4ki24

ba3=na3,
Notes: No errors in the ASR hypothesis.

28*. 00:02:04.380 –> 00:02:06.242
ASR a1chi1 kwi1yo’1o4 nde3e4 ba43

Exp a1chi1 kwi1yo’1o4 nde3e4 ba43,
Notes: No errors in the ASR hypothesis.

29*. 00:02:06.242 –> 00:02:08.865
ASR tan42 ka’4an2 ta1 ta4u3ni2 constantino yo’4o4 ndi4

Exp tan42 ka’4an2 ta1 ta4u3ni2 Constantino yo’4o4 ndi4

Notes: No errors in the ASR hypothesis.

30*. 00:02:08.865 –> 00:02:13.473
ASR i3ta(2)=e2 ndi4 tan42 i4in4 i3ta2 ya1kan3 kwi1yo’1o4 ya1 i3ta2 tio3o2 kan4 sa3kan4 i4in4 i3ta(2)=e2

tan3

Exp i3ta(2)=e2 ndi4 tan42 i4in4 i3ta2, ya1kan3, kwi1yo’1o4 ya1 i3ta2 tio3o2 kan4 sa3kan4 i4in4 i3ta(2)=e2

tan3

Notes: No errors in the ASR hypothesis, the fifth consecutive annotation without an ASR error.

31. 00:02:13.473 –> 00:02:17.927
ASR xi4yo13 a1su3 tan42 i4in4 tio1o32 i4in(4)=a2 ba4li4 ko4ndo3 ndu’1u4=a2 ya1 kwi4i24 ba42 na4

Exp xi4yo13 a1su3 tan42 i4in4 tio3o2 i4in(4)=a2 ba4li4 ko4ndo3 ndu1u4=a2, ya1 kwi4i24 ba42 na4

Notes: ASR missed a word, writing tio1o32 (a word that does not exist) for tio3o2 (the passion fruit,
Passiflora sp.). It also miswrote ndu1u4 (fruit) as ndu’1u4 a verb (’to fall from an upright position’).

32*. 00:02:17.927 –> 00:02:21.014
ASR i’4i(3)=a2 tan3 na4 chi4chi13=a2 ndi4 ya1 nde’3e4 ba42

Exp i’4i(3)=a2 tan3 na4 chi4chi13=a2 ndi4 ya1 nde’3e4 ba42,
Notes: No errors in the ASR hypothesis.

33. 00:02:21.014 –> 00:02:25.181
ASR ya1 mi4i4 bi1xin3 ya3tin3 yu’3u4 yu3bi2 kan4 ba42 xi4yo1(3)=a3

Exp ya1 mi4i4 bi1xin3 ya3tin3 yu’3u4 yu3bi2 i3kan4 ba42 xi4yo1(3)=a3.
Notes: ASR missed the initial i3 in i3kan4 (’there’). It is to be noted that kan4 is an alternate form of i3kan4.

34*. 00:02:25.181 –> 00:02:27.790
ASR ya1 kan4 ba42 ndi13-kwi3so3=ndu2 yo’4o4

Exp Ya1 kan4 ba42 ndi13-kwi3so3=ndu2 yo’4o4,
Notes: No errors in the ASR hypothesis.

35*. 00:02:27.790 –> 00:02:32.887
ASR tan3 ta1 ta4u3ni2 fernando yo’4o4 ndi4 ji4ni2=ra(1)=e1 ndi4 ji4ni2=ra(1)=e1 ya1 sa3kan4 i4yo(2)=a2

tan3

Exp tan3 ta1 ta4u3ni2 Fernando yo’4o4 ndi4 ji4ni2=ra(1)=e1 ndi4 ji4ni2=ra(1)=e1 ya1 sa3kan4 i4yo(2)=a2

tan3
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Notes: No errors in the ASR hypothesis.

36. 00:02:32.887 –> 00:02:41.884
ASR ji14ni2=ra1 sa1a3 na3ni4=a3 tan3 ni14-ndi3-kwi3so3 ndu3-ta1chi4=ra2 ji’4in(4)=a2 a1chi1 ji14ni2=ra1

nda4a(2)=e2 ba’1a(3)=e3

Exp ji14ni2=ra1 sa1a3 na3ni4=a3, tan3 ni14-ndi3-kwi3so3=ndu2 ta1chi4=ra2 ji’4in(4)=a2 a1chi1 ji14ni2=ra1

nda4a(2)=e2 ba’1a(3)=e3.
Notes: ASR hypothesized ndu3 as a verbal prefix instead of the correct interpretation as a person-marking

enclitic (1plExcl) that is attached to the preceding verb.
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Abstract

This article describes the development of mor-
phological analyser for Paraguayan Guaraní,
an agglutinative indigenous language spoken
by nearly 6 million people in South America.
The implementation of our analyser uses HFST
(Helsiki Finite State Technology) to model mor-
photactics and phonological processes occur-
ring in Guaraní. We assess the efficacy of the
approach on publically available corpora and
find that the naïve coverage of analyser is be-
tween 86% and 91%.

1 Introduction

Morphological modelling, under which we subsume
both morphological analysis and morphological gen-
eration is one of the core tasks in the field of natu-
ral language processing. It is used in a wide variety
of areas, including but not limited to: orthographic
correction (Pirinen and Lindén, 2014), electronic
dictionaries (Johnson et al., 2013), morphological
segmentation for machine translation (Tiedemann
et al., 2015; Forcada et al., 2011), as an additional
knowledge source for parsing languages with non-
trivial morphology (Gökırmak and Tyers, 2017;
Tyers and Ravishankar, 2018), and in computer-
assisted language-learning applications (Ledbetter
and Dickinson, 2016).

In this article we describe a morphological anal-
yser for Paraguayan Guaraní (in Guaraní: Avanẽ’e,
ISO-639: gn, grn), one of the official languages of
Paraguay. Although Guaraní is an official language
and spoken by over six million people through-
out the South American continent (Eberhard et al.,
2018), it does not benefit from a wide range of
freely-available data and tools for building natural
language processing systems. If we use Wikipedia
as a proxy for viability of crowdsourcing linguistic
data, as in (Moshagen et al., 2014), we see that al-
though Guaraní has a large speaker population, the
potential for crowdsourcing and big freely-available

data is limited.1
The absence of large amounts of textual data

means that data-driven approaches are hard to ap-
ply. In addition, supervised approaches, including
neural networks which have become increasingly
popular, require large amounts of annotated data
to be trained. This in turn requires large numbers
of trained annotators to annotate it. Given that nei-
ther of these are available, we apply tried-and-tested
technique relying on formal linguistic description
by means of finite-state transducers. Finite-state
techniques have been widely applied to morpholog-
ical modelling of many languages and are state of
the art for many languages, especially those with
non-trivial morphology such as languages described
as agglutinative (Çöltekin, 2010; Pirinen, 2015) or
polysynthetic (Schwartz et al., 2020; Andriyanets
and Tyers, 2018).

The remainder of the article is laid out as follows:
In Section 2 we give an overview of Guaraní, paying
special attention to aspects of morphology and mor-
phosyntax. Section 3 reviews the prior work, Sec-
tion 4 describes the implementation of the analyser,
including information about the linguistic data and
tools used. We evaluate our analyser in Section 5,
giving both a qualitative, quantitative and compar-
ative evaluation. And finally in Section 6 we give
some final remarks and comment on potential future
work for Guaraní.

2 Language
Guaraní (Native name: Avanẽ’e) is one of the
most spoken indigenous languages of South Amer-
ica that belongs to Tupi-Guaraní stock. It is divided
into dialects or even languages such as Paraguayan

1We note that the Guaraní Vikipetã, https://gn.
wikipedia.org/ currently has a total of 3,767 articles (as
of the 15th July 2020), while the English Wikipedia, http:
//en.wikipedia.org/ has 6,122,333 as of the same date. If
we compare with a language with a similar number of speakers
and official status, for example Catalan, we see that the Catalan
Viquipèdia has vastly more articles 652,079.
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Guaraní, Bolivian Guaraní and some other dialects
spoken in Brazil (Ava, Kaiowá, Nhandeva, Mbyá
etc.). According to Ethnologue2 population that
speaks all the varieties of Guaraní is 6.162.840 peo-
ple. The majority of Guaraní speaking population is
located in Paraguay where Guaraní is considered the
official language and consists of 5.850.000 mono-
linguals and bilinguals. See Figure 1 for Guaraní
speaking area.

Guaraní is an agglutinative concatenative lan-
guage. It’s morphology has both derivational and
inflectional traits: it uses suffixes, preffixes and cir-
cumfixes for word production. Roots (or stems) af-
fect the phonology of affixes concatenated to the
stem and vice-versa, mostly in cases of nasal har-
monization or incorporation3. The majority of the
words in Guaraní are oxytone with some exceptions
when accentuation rules apply (Estigarribia, 2017).

Only recently Paraguayan institution Academía
de la Lengua Guaraní approved current ortho-
graphic standard for written Guaraní (Sánchez,
2018). Thus in literature published before 2018
writing standards vary significantly. For example,
postposition ‘hag̃ua’ or ‘haguã’ can be written with
g̃ or ã where nasalization is marked graphically by
tilde. According to phonological rules, nasalization
propagates over the entire syllable if there are any
nasal phonemes in it (Krivoshein de Canese, 1983),
therefore, both spellings are acceptable. In addi-
tion, tilde indicates the stress for nasal vowels and
special nasality marking in haguã may be consid-
ered excessive. In Wikipedia corpus some nasalized
phonemes are also marked with diaeresis ‘¨’ (ï, ÿ, ä,
etc.). Our transducer handles all the spelling vari-
eties and treats them as orthographic errors.

Despite Guaraní being one of the most spoken
low-resource languages of South America gram-
mars thoroughly describing the language are not
abundant. Throughout this paper we mostly con-
sult with (Krivoshein de Canese, 1983), (Estigar-
ribia, 2017) and (Dietrich, 2017), although there are
earlier reliable grammars available (Gregores and
Suarez, 1967).

3 Prior work
Most of the existing computational resources for
Guaraní so far are online dictionaries or trans-
lators supported by the community. They are

2https://www.ethnologue.com/language/grn
3Incorporation is a type of word formation that comprises

a compound from a verb and an object of that verb i.e. object
is incorporated by a verb and becomes a sole lexeme.

based on aligned publicly avaliable corporas such as
Wikipedia or Guaraní–Spanish Bible. For example,
iguarani.com and glosbe.com are mostly supported
by non-professionals i.e. native speakers or other
enthusiasts. Glosbe even has its API (Application
Programming Interface). But as textual sources for
Guaraní are scarce these translators are not always
reliable and lacking words.

At Indiana University Michael Gasser (Gasser,
2018) developed Mainumby translation system cre-
ated mostly for Paraguayan translators with imple-
mentation of finite state morphological analyzer
ParaMorfo embedded into translator. This analyser
is very close to what we have done although is fo-
cused mostly on the form generation rather than
morphological analysis. The analyser discussed in
this paper and ParaMorfo were built independently
and we will evaluate two transducers for compari-
son.

4 Development
Transducer-based morphology modelling is essen-
tially the mapping between elementary morpholog-
ical units (morphemes) to morphological (part of
speech) tags or whole lexemes. This mapping re-
flects the combinatorics and morphological con-
straints of natural language i.e. which morphemes
can combine into a lexeme and which morphemes
are incompatible.

FST-based approaches use continuation lexicons
term to denote the mapping as we will reference
them throughout the paper. The implementation of
continuation lexicons in our analyser is entirely built
on dictionaries publicly available on the web. One
of them is L3 project Guaraní dictionary4 from the
hltdi-l3 GitHub repository.

Our two-level transducer uses two formalisms:
• lexc formalism which models morphotactics

(morpheme combinatorics);
• twol formalism is used for implementing

phonological rules.
Both of the formalism use specific syntax following
HFST platform conventions. Our analyser is a part
of Apertium5 open-source platform and can be used
freely and enhanced by any member of open-source
community. In the paper it is referred as Apertium
analyser.

4https://github.com/LowResourceLanguages/
hltdi-l3/blob/master/dicts/lustig_words_gn_es.
txt

5https://github.com/apertium/apertium-grn
82



Figure 1: Areas where Guaraní is spoken in South America (including language varieties). The very dark green shows
areas where the language has official status, dark green shows areas where there are a considerable number of speakers,
while the light green shows areas where the language is official by virtue of its recognition by the Mercosur trade block.
The box zooms in on Paraguay and shows the percentage of people having Guaraní as a native language by department
according to the 2002 census.

LEXICON Nouns
achegety:achegety N ; ! "abecedario"
aguara:aguara N ; ! "zorro"
aguyjevete:aguyjevete N ; ! "gratitud"
ahoja:ahoja N ; ! "manta"
aho�iha:aho�iha N ; ! "carpa"

Figure 2: Lexicon for noun stems from lexc file. The
first element before colon is an underlying form, the sec-
ond element stands for surface form of the nouns adding
further lexicons to the surface stem (N-lexicon). After
exclamation mark follows the comment with translation
to the word.

4.1 Morphotactics

4.1.1 Ambiguity of classes
The nature of stems in Guaraní is ambiguous. Those
may pertain either to nominal or verbal classes. The
same root may represent either a verb or a noun
and even an adjective depending on the syntactic
role, position in a sentence and morphological units
attached to the root. Both nouns and verbs can
serve as predicates: verbs express an action and
nouns define qualities, states and notions (Dietrich,
2017). As a convention we group nouns, adjectives,
adverbs as into a nominal class and refer to them
as nominals and call verbal stems as verbals. No-
tably ‘adjectives’ and ‘adverbs’ are not always distin-
guished by the researchers in the literature. A lot
of roots in these classes take comparative suffixes
to form degree constructions at the same time verbs
show similar behaviour so we cannot call them ad-
jectives in its’ full sense (Dietrich, 2017).

Because of the ambiguity the same stems appear

in various basic lexicons (nouns, verbs, adjectives).
In Table 1 we illustrate possible analyses for arandu
root. As a noun arandu means ‘intelligence’ and as
an adjective ‘wise, educated’.

Our transducer consists of several lexicons:
NOUNS (4455), VERBS, divided in two groups by
transitivity (2537), ADJECTIVES (1668), ADVERBS
(457) and other morphological categories including
pronouns, determiners, toponyms, anthroponyms,
barbarisms (in their majority Spanish loanwords),
etc. In the following sections we discuss concrete
linguistic phenomena in Guaraní as well as present
our implementation decisions for them.

4.1.2 Nouns
Nouns in Guaraní can attach various suffixes and
prefixes with pronominal, spacial, temporal mean-
ing. They can serve as predicates and incorporate
other nouns. Some nouns are so called multi-roots
as they have several initial forms expressing differ-
ent kinds of relations. Figure 2 shows an exam-
ple of NOUNS lexicon. A simplified version of non-
deterministic FST for noun derivation is shown on
the Figure 3. The figure shows two branches of pre-
fixing possible for nominal stems in Guraraní fol-
lowed by case inflection, diverse types of derivation
(pluralization, degree suffix attachment) and incor-
poration.

Case affixes Nouns in Guaraní can attach case af-
fixes which sometimes behave as postpositions. The
nouns and postpositions often times are written sep-
arately as the analysis of Wiki-corpus shows. Such
behaviour of affixes is also described in grammar
books (Estigarribia and Pinta, 2017). The exam-
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Form Translation
arandu<n> ‘intelligence’
arandu<adj> ‘wise, educated’

Table 1: Possible analyses for ‘arandu’

.
Figure 3: Reduced FST for Guaraní noun deriva-
tion/inflection. Labels used: PersonAgr for personal
agreement prefixes, PosPref for possessive prefixes,
NStem for nominal stems, Verb is used for marking in-
corporation of the noun by verb, Deg for degree, DetPl
for plural determiner.

ples below illustrate the difference between usages
of those segments. In (1), the suffix -pe (nasal vari-
ant of -me) expresses locative and in (2), the post-
position hag̃ua expresses direction.

(1) tetã-me
country-LOC

‘in the country’

(2) Ou
come-SG3

o-mba’apo
POSS.SG3-work

hag̃ua.
to

‘S/he comes to work’

The morphotactic transducer (lexc file) contains
a CASE lexicon with postpositional tag <post> and
inflects nominal lexicons.

Incorporation is a morphological process that
fuses nouns into a verbal form as a direct object.

Normally the object referring to a human being fol-
lows the verb. In case of incorporation the object
is inserted between personal agreement marker and
verbal stem. The verb itself remains intransitive
while incorporating a noun. Compare examples (3)
and (4) from (Dietrich, 2017).

(3) Iñirũ
3SG-friend

katu
but

he’i
answer-3SG

ichupe.
3SG.DAT

‘But his friend answered him.’

(4) a. a-johéi
SG1-wash

‘I wash (it)’
b. a-py-héi

SG1-feet-wash

‘I wash my feet.’

Noun incorporation in Guaraní transducer is
modelled as follows: verbal stems are attached to
stems in NOUNS lexicon.

Multi-form roots A challenging aspect of
Guaraní nominals is that some of them have two
or three initial forms (they are called biforms
and triforms by Krivoshein and multiform roots
by Estigarribia). They alter the first allomorph
consonant of the word depending on the semantics
a speaker wants to express. Most of these forms
begin with /t-/ (biforms predominantly express
the terms of kinship). Representations of biforms
and triforms are distinguished by possessiveness.
Absolute form generally begins with /t-/, the second
form is relational where the possessor is not a 3P 
pronominal and starts with /r-/. The third form
begins with /h-/ where there is a 3P pronominal 
possessor (see Table 2, examples are taken from
(Estigarribia and Pinta, 2017)).

The transducer handles these allomorphs as de-
terminers or possessive pronouns. The initial form
marker /t-/ is eliminated by the rule and then triform
nominal stems are appended to /r-/ and /h-/ initial
segments (see Figure 4).

4.1.3 Verbs
Verbal classification The most complex part of
morphological combinatorics is verbal modelling
that could be completed in multiple ways depend-
ing on classification strategy. Verbal forms can be
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Example Gloss Translation Form
tembiapo tembiapo ‘work’ Absolute
Huã rembiapo Huã r-embiapo ‘Juan’s work’ Relational
hembiapo h-embiapo ‘his/her work’ POSS.3-possessor

Table 2: Representations of tembiapo noun with it’s three forms where the first form is absolute, second is relational
with non-pronominal possessor and the third form with the pronominal possessor.

LEXICON DetTriformes
r%<det%>%+:r%{t%} Triformes ;
h%<prn%>%<pos%>%+:h{t%} Triformes ;

Figure 4: Lexicon defining triforms in lexc file. Special
character %{t%} works here as archiphoneme and is a
part of morphophonological module. It is always implied
in underlying representation of the word and it actualizes
on the surface only when ‘r’ or ‘h’ sounds are not around
in the context i.e. in absolute forms.

divided by transitivity, areales a(i)reales and chen-
dales. We give the definition for all the subclasses
below.

According to (Estigarribia, 2017) aireales are the
verbs that take /-i-/ sound between personal agree-
ment suffixes and the root. /-i-/ vowel is a pho-
netic segment that does not carry any morphologi-
cal load but it can significantly change semantics of
the word. For example, areal verb ke “to enter” ac-
quires a new meaning “to sleep” when /-i-/ is added.
So a-i-ke means “I sleep” instead of a-ke “I enter”.
Chendales is a subclass of verbal stems which at-

tach possessive pronouns as prefixes. Possessive pre-
fixes alter active verbs to states. The example below
borrowed from (Estigarribia, 2017) shows the dif-
ference of active and stative forms:

(5) a-monda
SG1.ACT-steal

‘I steal = I am stealing’

(6) che-monda
SG1.INACT-steal

‘I steal=I am a thief’

Possessive prefixes in chendales behave like a sub-
ject of the predicate whereas can be interpreted as
objects when attached to a(i)real verbs.

(7) Nde che-juhu.
SG2.NOMSG1.ACC-meet

‘You meet me.’

Excessive splitting of verbal stems into sep-
arate verbal classes (transitive/intransitive,
areales/aireales, chendales) can result in over-
generation of non-existing forms. Thus we
segregate verbal stems in two lexicons by transi-
tivity and then implement specific morphological
alterations for each of the subclasses. For example,
aireal verbs acquire /-i-/ phoneme between stem
and prefix by using special character %{i%} called
archiphoneme in HFST terminology. It allows to
specify the context in the rule for a representation
of a phoneme’s underlying form. Archiphome is
mapped to a set of surface representations of the
sound and the context is specified for every surface
form including ‘zero sound’. Thus %{i%} appears
as ‘zero sound’ in areal verbs and /-i-/ in aireales.

Verbal affixes Guaraní verbs undergo personal
agreement (see example for verb ke – ‘to enter’ in
Table 3) as well can attach tense, aspect and mood
markers. A general model of verbal strategy can be
found on Figure 5.

Tense, aspect and mood markers attach to the
predicate but they are not obligatory unless mark
future tense. In case a verb does not take any suf-
fix it may be preceded by an adverbial or postpo-
sitional tense marker. Compare the two examples
where -akue is a past tense marker and va’ekue is an
adverb:

(8) Aha
1SG-go

va’ekue
ADV.PAST

nde
2SG.POS

rógape.
house-LOC

‘I went to your house.’

(9) Ou’akue
Come-PAST

che
1SG.POS

sy
mother

rógape.
house-LOC.

‘Came yesterday to my mother’s house’.
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Figure 5: Reduced FST for Guaraní verb strategy. Labels used: PersAgr for personal agreement prefixes, Che for
chendales, Imp for imperative, Deg for degree, Imperf for imperfect. Most of the finite states can be extended further
by suffix combinations.

Form Gloss Translation
ake a<prn><p1><sg><nom>+ke I enter
reke re<prn><p2><sg><nom>+ke You enter
oke o<prn><p3><sg><nom>+ke S/he enters
jake ja<prn><p1><pl><nom>+ke We enter (inclusive)
roke ro<prn><p1><pl><nom>+ke We enter (exclusive)
peke pe<prn><p2><pl><nom>+ke You enter
oke o<prn><p3><pl><nom>+ke They enter

Table 3: Personal agreement for the verb ke (enter)

Orthographically there is no agreement in using
some of tense markers as affixes or as adverbs. In
literature and corpora we can find both interpreta-
tions so our analyzer handles it in both ways.

4.2 Morphophonology
Phonological aspects of Guaraní in Apertium anal-
yser are modelled by HFST twol formalism and a
set of archiphonemes in lexc file. twol file con-
tains 30 rules that impose constraints on phonologi-
cal alterations.

As we mentioned Guaraní is oxytone language i.e.
the end of the word is always stressed. Accents are
used for marking exceptions from this rule. Suf-
fixes (or postpositions) that can attach to the stem
may be tonal or atonal. As the stress is generally not
marked it causes the shift of the accents in writing.
If the suffix is tonal and it is attached to the root the
stress should be removed from the stem and shifted
to the tonal affix as in plural form of óga (‘house’)
– ogakuéra. The case of tonal suffixes is solved by
a phonological rule specifying contexts where the
corresponding characters must change (Figure 6).

One more specific feature of Guaraní phonology
is nasalization. Both vowels and consonants can be

nasal/nasalized. A special character used for indi-
cating nasalization is tilde. If a syllable contains
nasal phoneme it automatically becomes nasal so
there is no need to mark the rest of the phonemes of
the syllable with the tilde. Although, if the word is a
compound and/or incorporates two (or more) nasal
roots both tildes remain. The same rule applies to
nasal morphemes attached to the root as in examples
below.

(10) akãperõ
akã-perõ

‘bold-headed’

(11) omitãmohavõ
o-mitã-mohavõ
SG3-child-soap

‘She soaps the child’

Nasalization affects suffixes and prefixes with a
consonant adjacent to the root if the root is nasal.
Consonants change to their nasal equivalents with
the same place of articulation i.e. j→ n, k→ ng,
etc. (see Figure 7).
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"Change tonal vowel to atonal if tonal in affix"
Vt:Va <=> •:_ [Cns:|ArchiCns:|Nas:|VowsAton:|%>: ]+ VowsTon: ;

•:_ [Cns:|%>:|ArchiCns:|Nas:|VowsAton:]+ %{E%}: ;
•:_ [Cns:|%>:|ArchiCns:|Nas:|VowsAton:]+ [%{Y%}: g:u:a:] ;

"Delete ending -[i] before comparative -icha"
Vx:0 <=> _ %>: [ i: c: h: a: | %r%:0 i: ] ;

where Vx in ( ĩ i í ) ;

Figure 6: The first twol rule handles alteration of tonal vowel (Vt) after a special character “•” that we added to each
word form in lexc file containing accents to indicate tonal vowel if in the following context there are any tonal vowels
(VowsTon). The second rule executes vowel deletion when preceding icha suffix or zero surface %r% suffix followed
by -i which appears in negative circumfix if the stem ended in vowel.

•:0 ó:o g:g a:a >:0 {N}:0 {K}:k u:u é:é r:r a:a
i:i r:r ũ:ũ >:0 {N}:n {K}:g u:u é:é r:r a:a

Figure 7: Example of transducer’s output for nasaliza-
tion of kuéra plural suffix. Archiphonemes {N} and {K}
actualize in a surface form preceded by nasal vowel ũ (>
is a special symbol used for morpheme boundary).

Except nasalization our analyser handles
phoneme deletion, vowel alteration, phoneme inser-
tion (including glottal stop between two vowels).
Transition of tonal vowel to atonal is showed on
Figure 6. This rule applies to the words having a
tonal vowel in the stem marked with tonal accent as
in Spanish. Vowel ‘é’ in verb ‘wash’ ‘johéi’ changes
to ‘e’ when suffix ‘hína’ indicating imperfect is
added. As a result we receive joheihína. The
other rule handles vowel deletion to avoid duplicate
i sound on the morphemes’ boundary. This can
occur when comparative suffix -icha is added to
a stem ending with -i. As in morotĩ ‘white’
underlying form would result in vowel duplication
morotĩ<adj>+icha<comp> → morotĩicha.
The rule deletes the duplicate i and we receive
moroticha ‘(equally) white’ on the surface.

5 Evaluation
To evaluate the analyser we estimate naive coverage
metric and compare it to ParaMorfo system. Naive
coverage6 is the ratio of tokens that receive at least
one morphological analysis to the total number of
tokens in the corpus.

We estimate performance of our transducer on
two publically available corpora: the Bible and the

6The metric is called naive coverage because even if the
word received an analysis it may not be grammatically correct
e.g. in cases of over-generation or some grammatically correct
analyses may not be delivered by the transducer.

Guaraní Wikipedia. An example of a fully anal-
ysed Guaraní sentence is presented in Table 4. The
asterisk, *, marks the example of erroneous out-
put. Pronouns like che can serve as possessive
and personal pronouns. The morphological anal-
yser did not solve the case correctly, as we ini-
tially presumed that only personal pronouns will be
written separately. Correct analysis of this lexeme
is che<prn><pos><p1><sg>. Cases like this re-
quire enhancement so that any orthographical incon-
sistencies could be parsed. Table 5 shows the re-
sults of naive coverage evaluation as compared to
ParaMorfo.

For fair comparison we ran Wikipedia texts and
the Bible through Apertium analyser and dropped
all the tokens that did not belong to open-class cate-
gory because ParaMorfo does not recognize closed-
class words (adverbs, conjunctions, numbers, etc.)
and punctuation marks. ParaMorfo segments to-
kens differently than our analyser so at the end of
processing we received different quantity of entry
tokens for each analyser.

According to Table 5 the naive coverage of
Apertium analyser is significantly higher than of
ParaMorfo. One reason is that the latter does not
cover Spanish barbarisms present in the corpora in
increased proportion after closed class tokens are
excluded. Moreover, ParaMorfo does not recognize
proper names such as toponyms and anthroponyms.

We also evaluate conventional quality metrics for
the analyser such as precision, recall and F-measure.
To estimate precision, recall and F-measure we have
annotated 8308 tokens from different sources where
each tokens has a corresponding valid analysis in the
context. Note that this estimate is only the approx-
imation of the scores because in order to have true
scores each form should be annotated with all valid
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Surface form Analysis
Ojapo o<prn><p3><pl><nom>+japo<v><tv><pres>
oréve ore<adj>+ve<adj><dist>
guarã guarã<post>
kuehe kuehe<adv>
chipa chipa<n>
che *ché<prn><pers><p1><sg>
sy sy<n>
. .<sent>

Table 4: Example morphological analysis of Guaraní sentence with Apertium tag style. Note that morphological
ambiguity in the example was manually solved for illustration purposes.

Corpus Coverage Tokens
Apertium:

Wikipedia 0.86 375989
Bible 0.91 482941
ParaMorfo

Wikipedia 0.54 379736
Bible 0.64 631724

Table 5: Naive coverage evaluation

analyses of the words instead of a single analysis per
word. This is not an easy task to complete without
a native speaker.

We define true positives as the list of the analy-
ses present both in the gold standard and the trans-
ducer’s output, false positives as those analyses in
the transducer’s output but not in the gold standard.
Finally, false negatives are the analyses found in the
gold standard but not the analyser’s output. This
evaluation method was previously used by Richard-
son and Tyers (2021). Apertium analyser yields the
following scores: precision 0.30, recall 0.86 and F1-
score 0.45.

Precision here reflects the likelihood of the form
produced by the analyser to be in the gold standard,
which is high in our case. Precision shows low score
because the annotated data only contains one valid
morphological analysis per word. Thus, overall we
can conclude that the likelihood of the word being
analysed correctly is fairly high. It does not possi-
ble to compare our results with ParaMorfo in this
case because of the differences in morpheme map-
ping between the analysers, this way to do fair com-
parison additional effort is needed to annotate data
using ParaMorfo’s tag convention.

Another metric we asses is average ambiguity
rate, the average number of morphological analyses

given by the transducer per word. Average ambi-
guity rate for Wikipedia corpus is 3.018 analyses
per token and for Bible – 3.450 analyses. This fact
gives us an interesting observation that Guaraní lan-
guage is moderately polisynthetic as compared to
other languages that according to (Estigarribia and
Pinta, 2017) may have 5-6 analyses per word.

To briefly summarize our contributions in com-
parison with ParaMorfo analyser:

• Apertium analyser recognises closed class
forms (adverbs, conjunctions, numerals) and
punctuation;

• Handles Spanish barbarisms and Proper nouns;

• Flexible with orthographic variation.

6 Conclusions

We presented a finite-state morphological analyser
for one of the indigenous polysynthetic languages
of South America – Paraguayan Guaraní. Further
work implies the expansion of the existing lexicons
to reach most possible coverage mainly by adding
more stems to continuation lexicons (verbs, nouns,
proper names). Currently the analyser provides all
possible analyses for a token and it requires further
work on morphological disambiguation.
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Abstract

This study takes up the task of low-resource
morphological segmentation for Seneca, a crit-
ically endangered and morphologically com-
plex Native American language primarily spo-
ken in what is now New York State and On-
tario. The labeled data in our experiments
comes from two sources: one digitized from
a publicly available grammar book and the
other collected from informal sources. We
treat these two sources as distinct domains
and investigate different evaluation designs for
model selection. The first design abides by
standard practices and evaluates models with
the in-domain development set, while the sec-
ond one carries out evaluation using a devel-
opment domain, or the out-of-domain devel-
opment set. Across a series of monolingual
and cross-linguistic training settings, our re-
sults demonstrate the utility of neural encoder-
decoder architecture when coupled with multi-
task learning.

1 Introduction

A member of the Hodinöhšöni (Iroquoian) lan-
guage family in North America, the Seneca lan-
guage is spoken mainly in three reservations lo-
cated in Western New York: Allegany, Cattaraugus
and Tonawanda. Seneca is considered acutely en-
dangered and is currently estimated to have fewer
than 50 first-language speakers left, most of whom
are elders. Motivated by the Seneca community’s
language reclamation and revitalization program, a
few hundred children and adults are actively learn-
ing and speaking Seneca as a second language.

To further facilitate the documentation process
of Seneca, recent years have witnessed the schol-
arly bridge between the language community and
academic research, taking advantage of rapidly
evolving technologies in natural language process-
ing (NLP) (Neubig et al., 2020; Jimerson and
Prud’hommeaux, 2018). In particular, ongoing

work has mainly been devoted to developing au-
tomatic speech recognition (ASR) systems for
Seneca (Thai et al., 2020, 2019). Their find-
ings demonstrated that when combined with syn-
thetic data augmentation and machine learning
techniques, robust acoustic models could be built
even with a very limited amount of recorded nat-
uralistic speech. More importantly, the research
output was incorporated into the Seneca people’s
documentation endeavors, illustrating the potential
of collaborations between language communities
and academic researchers.

The current study contributes to this line of re-
search with the same ethical considerations (Meek,
2012). Specifically, we focus on morphological seg-
mentation for Seneca, an area that has not yet been
investigated thus far. Given a Seneca word, the task
of morphological segmentation is to decompose it
into individual morphemes (e.g., hasgatgwë’s →
ha + sgatgwë’ + s).

With a series of in-domain, cross-domain and
cross-linguistic experiments, the goal of our work
is to build effective segmentation models that
can support the community’s ongoing language
reclamation and revitalization efforts. Particularly
for morphologically rich languages, it has been
shown that morphological segmentation is a use-
ful component in certain NLP tasks such as ma-
chine translation (Clifton and Sarkar, 2011), de-
pendency parsing (Seeker and Çetinoğlu, 2015),
keyword spotting (Narasimhan et al., 2014), and
automatic speech recognition (ASR) (Afify et al.,
2006). Given that Seneca is a highly polysynthetic
language (see Section 2), good morphological seg-
mentation models show promise for the develop-
ment of other computational systems such as ASR,
which would facilitate the documentation process
of the language itself.

Another motivation for our experiments lies
in the fact that previous research on morpho-
logical segmentation has mostly concentrated on
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Indo-European languages in high-resource set-
tings (Goldsmith, 2001; Goldwater et al., 2009;
Cotterell et al., 2016b), sometimes relying on exter-
nal large-scale corpora in order to derive morpheme
or lexical frequency information (Cotterell et al.,
2015; Ruokolainen et al., 2014; Lindén et al., 2009).
By contrast, work on morphological segmentation
of augmented low-resource settings or truly under-
resourced languages is lacking in general (Kann
et al., 2016). Hence demonstrations of what model
architecture and training settings could be bene-
ficial with data sets of very small size would be
informative to other researchers whose work shares
similar goals and ethical considerations as ours.

2 Data Statements

Following recently advocated scientific prac-
tices (Bender and Friedman, 2018; Gebru et al.,
2018), we would like to first introduce the data of
the indigenous languages to be explored.

The protagonist in our experiments is Seneca,
the data of which came from three sources: the
book The Seneca Verb: Labeling the Ancient Voice
by Bardeau (2007) 1, informal transcriptions pro-
vided by members from the community, and a re-
cently digitized Bible translated into Seneca. The
grammar book provides morphological segmenta-
tion for only verbs and the morpheme boundaries
were based on rules defined by grammarians. By
contrast, the informal sources contain labeled seg-
mentation for a mix of verbs and nouns conducted
by community speakers. The Bible offers only
unlabeled data.

One of the most distinct features of Seneca mor-
phology is that it is highly polysynthetic. This
means that a single word can consist of multi-
ple morphemes and may contain more than one
stem; and this single word is able to express the
meaning of a whole phrase or even sentences at
times (Aikhenvald et al., 2007; Greenberg, 1960).
As a demonstration, consider the following exam-
ple (the indicated morphological characteristics
here abide by the annotation standards of Sylak-
Glassman (2016)). Breaking the Seneca word into
individual morphemes, ye:nö is the stem which has
the verbal meaning of grab in present tense; the
prefix ke denotes that ye:nö is a transitive action,
with I being the subject and her/them being the
object; the single apostrophe ’ at the end marks the

1https://senecalanguage.com/
wp-content/uploads/Verb-Book-Vol.1.pdf

stative state.

(1) keyenö’

ke
I+her/them

yenö
grab

’
STAT

I’ve grabbed her/them.

A large number of words in Seneca have aggluti-
native morphological features, meaning when mul-
tiple morphemes are combined during word forma-
tion, their original forms remain unchanged. Con-
sider the example presented above again. When
the prefix and the stem are combined into the word,
neither of them goes through any phonological and
orthographic changes.

On the other hand, Seneca also has fusional
properties; this means that during the formation
of some words, the combining morphemes can un-
dergo phonological (and orthographical) changes.
As an illustration, consider the following word in
Seneca. When combining the four morphemes to-
gether, the masculine singular subject hra, the verb
stem k and the s that marks habitual state do not un-
dergo any changes; whereas the initial i is replaced
with í to make sure that the verbs or verb phrases
have at least two syllables (Chafe, 2015).

(2) íhrakis

i
it

hra
he

k
eat

s
HAB

He eats it.

In addition to Seneca, we include four Mexican
indigenous languages from the Yuto-Aztecan lan-
guage family (Baker, 1997) for our crosslinguisitic
training experiments: Mexicanero (888 words),
Nahuatl (1,123 words), Wixarika (1,385 words),
and Yorem Nokki (1,063 words). The data for
these languages contains morphological segmen-
tation that was initially digitized from the book
collections of Archive of Indigenous Language
(Mexicanero (Una, 2001), Nahuatl (de Suárez,
1980), Wixarika (Gómez and López, 1999), Yorem
Nokki (Freeze, 1989)). The data collection was car-
ried out by the authors of Kann et al. (2018) based
on the descriptions in their work, and their prepro-
cessed data sets are publicly available. The four
Yuto-Aztecan languages are also polysynthetic.

3 Related Work

The task of morphological segmentation has been
cast in distinct ways in previous work. One line of

91



Language Location N. of speakers Domain Train Dev Test Total
Seneca Western New York 50 Grammar book 2,278 1,139 2,277 5,694

Ontario Informal sources 2,168 1,084 2,167 5,419
Bible - - - 8,588

Table 1: Descriptive information of the Seneca language and data.

research focuses on surface segmentation (Ruoko-
lainen et al., 2016), while the other attends to
canonical segmentation (Cotterell et al., 2016b).
Both involve correctly decomposing a given word
into distinct morphemes, which also typically in-
cludes words that stand alone as free morphemes.

Nevertheless, the two tasks differ in one key as-
pect: whether the combination 2 of the segmented
morpheme sequence stays true to the initial or-
thography of the word. For surface segmentation,
the answer is yes (e.g., Indonnesian dihapus →
di+hapus). On the other hand, canonical segmenta-
tion sometimes involves the addition and/or dele-
tion of characters from the surface form of the
initial word, in order to capture phonological or
orthographic characteristics of the component mor-
phemes when uncombined. For example, the word
measurable in English would be segmented as mea-
sure + able, recovering the orthographic e that was
lost during word formation.

For surface segmentation, both supervised and
unsupervised approaches have gained in popular-
ity over the years. Within the realm of supervised
methods, a large number of experiments have devel-
oped rule-based finite-state transducers (FST) (Ka-
plan and Kay, 1994) with weights usually deter-
mined by rich linguistic feature sets. The high func-
tionality of hand-crafted FST for morphological
analyses has been demonstrated for languages such
as Persian (Amtrup, 2003), Finnish (Lindén et al.,
2009), Semitic languages such as Tigrinya (Gasser,
2009) and Arabic (Beesley, 1996; Shaalan and
Attia, 2012), as well as various African lan-
guages (Gasser, 2011). Other work has shifted
to more data-driven machine learning techniques,
including but not limited to memory-based learn-
ing (van den Bosch and Daelemans, 1999; Marsi
et al., 2005), conditional random field models
(CRF) (Cotterell et al., 2015; Ruokolainen et al.,
2013, 2014), and convolutional networks (Sorokin
and Kravtsova, 2018; Sorokin, 2019).

Unsupervised methods have perhaps enjoyed a
2Here we used the term combination instead of concate-

nation, because surface segmentation is applicable to words
with concatenative morphology as well as those with non-
concatenative morphology.

longer history (Harris, 1955), with earlier stud-
ies relying on information-theoretic measures as
indexes of character-level predictability, which
were then used to determine morpheme bound-
aries (Hafer and Weiss, 1974). Later work such
as Linguistica (Goldsmith, 2001) and Morfes-
sor (Creutz and Lagus, 2002) applied the analyses
of Minimum Description Length for morpheme in-
duction (Rissanen, 1998; Poon et al., 2009). Gold-
water et al. (2009) developed Bayesian generative
models that would also take into account the con-
text of individual words, which were able to simu-
late the process of how children learn to segment
words given child-directed speech.

In contrast to surface segmentation, the prob-
lem of canonical segmentation has mainly been
addressed with supervised methods. Cotterell et al.
(2016b) extended a previous semi-CRF (Cotterell
et al., 2015) for surface segmentation to jointly
predict morpheme boundaries and orthographic
changes, leading to improved results for German
and Indonesian. With the same datasets, Kann et al.
(2016) adopted character-based neural sequence
models coupled with a neural reranker, presenting
further improvement from Cotterell et al. (2016b).
There has, however, been some unsupervised induc-
tion of canonical segmentation (see Hammarström
and Borin (2011) for a thorough review). For in-
stance, Dasgupta and Ng (2007) showed that cer-
tain spelling rules (e.g. insertion, deletion) derived
heuristically from corpus frequency were able to
handle orthographic changes during word forma-
tion. In comparison, Naradowsky and Goldwater
(2009) provided a Bayesian model that formulate
spelling rules probabilistically with character-level
contextual information; the simultaneous learning
process of both the rules and morpheme boundaries
in turn boosted segmentation performance.

Although Seneca has fusional morphological
features, meaning that certain morpheme bound-
aries within words are not necessarily clear-cut, the
Seneca morphological data currently does not pro-
vide labeled canonical segmentation. We therefore
focus on the task of surface segmentation.
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4 Experiments

4.1 Data preprocessing
As mentioned in Section 2, the labeled words for
Seneca came from both the verbal paradigm book
by Bardeau (2007) and informal sources. We
treated the two sources as separate domains and
constructed a dataset for each. The number of mor-
phemes per word on average in the grammar book
is 3.87 (95% confidence intervals: (3.86, 3.88); see
Section 4.4), which is slightly lower than that in
the informal sources (4.12 (4.10, 4.13)). On the
other hand, the number of unique morphemes is
much higher in the data from the informal sources
(N = 1,641) than that in the grammar book (N =
631). This difference in the amount of morpholog-
ical variation between the two domains raises the
expectation that with the same model architecture,
morphological segmentation of the words from the
informal sources is possibly more challenging.

For each data set, to construct the low-resource
settings, we set the train/dev/test ratio to be 2:1:2,
then randomly generated five splits for every
dataset with this ratio (Gorman and Bedrick,
2019). 3 We used the first random split of both
domains for model evaluation as well as selection
of training settings; the setting(s) eventually se-
lected would then be applied to data from each of
the five random splits to test the stability of the
model performance.

4.2 Evaluation design
We took advantage of the fact that the two data
sets for Seneca came from different domains by
investigating two experimental designs: evaluating
with a development set versus evaluating with a
development domain. The former carried out the
standard practices. When building models for mor-
phological segmentation of a particular domain,
only the in-domain training set would be (part of)
the training data for the models, along with possible
addition of training data from the other domain or
indigenous languages. The development set from
the same domain would be used to evaluate models
and the one(s) with the best performance would be
selected (e.g. segmentation for the grammar book
data using the development set of the grammar
book for evaluation).

However, realistically development sets are luxu-
ries to critically endangered languages (Kann et al.,

3Data, code, and models are available at https://
github.com/zoeyliu18/Seneca.

2019). To help with the documentation of these
languages more effectively, one would want to use
as much training data as possible, ideally from the
same domain or language. Yet acquiring more data
for languages like Seneca, whether with or with-
out manual annotations, faces extreme difficulty. It
requires not only extensive time and financial re-
sources, but also expertise from the very few native
speakers left, most of whom are elders.

To increase the utility of the already-limited data
for Seneca, we experimented with a second design
of using a development domain for model evalua-
tion. That is, for morphological segmentation of a
particular domain, the new in-domain training data
would be the concatenation of the initial training
set along with the development set from the same
domain. This new combination would be (part of)
the training data for the models. In this case the
development set of the other domain would then be
applied instead to evaluate model performance (e.g.
segmentation for the grammar book using the devel-
opment set of the informal sources for evaluation).
Again, the model(s) with the best performance on
the development domain would be selected.

Comparing the two designs, taking into account
the different configurations of the training data, it is
possible that evaluation with a development domain
would lead to different model architectures/settings
being selected. On the other hand, it is also pos-
sible that the same model architecture or setting
would be favored regardless of the particular de-
sign. In addition, because using a development
domain essentially means that there is more in-
domain training data, it remains to be seen whether
this evaluation design would achieve better results
when testing the stability of the model setting.

4.3 Model training

We experimented with three general settings: in-
domain training, cross-domain training, and cross-
linguistic training. For all settings, we adopted
character-based sequence-to-sequence (seq2seq)
recurrent neural network (RNN) (Elman, 1990)
trained with OpenNMT (Klein et al., 2017). This
model architecture has been previously demon-
strated to perform well for polysynthetic indige-
nous languages (Kann et al., 2018).

In cases where applicable, we also compared the
performance of the neural seq2seq models to unsu-
pervised Morfessor 4 (Creutz and Lagus, 2002). In

4In preliminary experiments, semi-supervised Morfes-
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what follows, we describe the details of the seq2seq
models in each training setting.

4.3.1 In-domain training
Naive baseline Our first baseline applied
the default parameters in OpenNMT — an
encoder-decoder long-short term memory model
(LSTM) (Hochreiter and Schmidhuber, 1997) with
the attention mechanism from Luong et al. (2015).
All embeddings have 500 dimensions. Both the
encoder and the decoder contain two hidden layers
with 500 hidden units in each layer. Training was
performed with SGD (Robbins and Monro, 1951)
and a batch size of 64.

Abiding by our experimental designs, for all the
baseline models, when evaluating with the devel-
opment set, the in-domain training data came from
just the training set. By contrast, when evaluating
with the development domain, the in-domain train-
ing data was the concatenation of the training and
the development sets.

Less naive baseline Going beyond the default
settings in the first baseline, our second baseline ex-
perimented with different combinations of parame-
ter settings and attention mechanisms (Bahdanau
et al., 2015):

• RNN type: LSTM / GRU

• embedding dimesions: {128, 300, 500}

• hidden layers: {1, 2}

• hidden units: {128, 300, 500}

• batch size: {16, 32, 64}

• optimizer: SGD / ADADELTA (Zeiler, 2012)

These models were trained and evaluated in the
same way as the first baseline. Based on results
from either the development set or the develop-
ment domain (after statistical tests; see Section 4.4),
the model architecture that was selected was an
attention-based encoder-decoder (Bahdanau et al.,
2015), where the encoder is composed of a bidirec-
tional GRU while the decoder consists of a unidi-
rectional GRU. Both the encoder and the decoder
have two hidden layers with 100 hidden states in
each layer. All embeddings have 300 dimensions.
Training was performed with ADADELTA and a
batch size of 16.
sor (Kohonen et al., 2010) was also explored; yet the per-
formance was worse than the unsupervised method. Thus
we eventually chose the unsupervised variant for systematic
comparisons with the seq2seq models.

4.3.2 Cross-domain training
With the model architecture of our less naive base-
line, we turned to our cross-domain training exper-
iments using four different methods.

Self-training The first method utilized self-
training (McClosky et al., 2008) and resorted to the
unlabeled words from the Bible, which were first
automatically segmented with the second baseline
model from in-domain training. These words were
then added to the in-domain training data given
each of the two evaluation designs (Section 4.2).

Multi-task learning The second method ap-
plied multi-task learning (Kann et al., 2018). In this
case, in addition to the task of morphological seg-
mentation, we added a new task where the training
objective is to generate output that is identical to
the input. In the seq2seq model, the decoder does
not always generate every character in the input
sequence, which prevents accurate morphological
segmentation of the full word. Thus the ulterior
goal of this additional task is simple yet important:
helping the model learn to copy.

In particular, words from the in-domain training
data were used for the segmentation task, while
words from the Bible were used for mapping input
to output. Every word in the eventual training data
was appended with a task-specific input symbol.
For instance, let X represent the task of morpho-
logical segmentation, Y the task of mapping input
to output, the goal of the model is to jointly perform
the following :

• ëwënötgëh + X → ë + wën + ötgëh

• oiwa’ + Y → oiwa’

Transfer learning The third method adopts do-
main transfer learning. Consider morphological
segmentation of the grammar book as an exam-
ple. When using a development set, the in-domain
training data, which includes only the training set
of the grammar book, would be combined with
all data from the informal sources. On the other
hand, when using a development domain, the in-
domain training data, which includes the training
and development sets of the grammar book, would
be concatenated with just the training and test sets
from the informal sources.

Fine-tuning With the model trained from trans-
fer learning, we fine-tuned it further with in-domain
training data.

One point to note is when evaluating with a de-
velopment domain, we expected that the model
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trained with domain transfer learning (with fine-
tuning) would yield the best results. However, these
results would not be directly informative about
whether this setting is indeed better than the others,
the latter of which only included in-domain training
data. Hence for this particular evaluation design,
while we still carried out the domain transfer ex-
periments for consistency, we selected models only
based on the other training settings.

4.3.3 Cross-linguistic training
In order to examine whether data from other
polysynthetic languages would improve model per-
formance, we carried out cross-linguistic training
with three different settings: multi-task learning,
transfer learning (Kann et al., 2018), and fine-
tuning. These settings are similar to those in cross-
domain training, except that the data from the four
Mexican languages was used as additional training
data instead of the Bible or out-of-domain data.

4.4 Metrics

Three measures were computed as indexes of
model performance (Cotterell et al., 2016a; van den
Bosch and Daelemans, 1999): full form accu-
racy, morpheme F1, and average Levenshtein dis-
tance (Levenshtein, 1966). Significance testing
of each metric was conducted with bootstrap-
ping (Efron and Tibshirani, 1994). As an illustra-
tion, take full form accuracy as an example. After
applying a model to the development set (or do-
main) with a total of N words, we: (1) randomly
selected N words from the development set with
replacement; (2) calculated the full form accuracy
of the selected sample; (3) repeated step (1) and (2)
for 10,000 iterations, which yielded an empirical
distribution of full form accuracy; (4) measured the
mean and the 95% confidence interval (CI) of the
empirical distribution.

5 Results

5.1 Evaluation with development set

For evaluation, we considered a training setting to
be better than another based on at least one of the
three metrics calculated. As presented in Table 2,
when evaluating with the development set, it ap-
pears that for the grammar book, the simple less
naive baseline with careful parameter tuning is able
to yield excellent performance, while other more
complicated training configurations such as includ-
ing additional out-of-domain data do not lead to

further improvement (no significant differences in
the results). Therefore we chose the less naive base-
line from in-domain training for the final testing
given its simplicity and average score for each of
the three metrics.

By contrast, with the same training settings, the
models show weaker performance for informal
sources. This corresponds to our initial expecta-
tion that due to the higher number of unique mor-
phemes in informal sources, accurately labeling
the boundaries of these morphemes would be com-
paratively more challenging. Similar to results for
the grammar book, none of the other training con-
figurations seems to significantly surpass the two
baselines. With that being said, we selected the
cross-linguistic training with multi-task learning
for the final testing, again because it has the best
average score for each of the three measures.

5.2 Evaluation with development domain

On the other hand, when evaluating with the de-
velopment domain, as shown in Table 3, almost
all other training configurations appear to be bet-
ter than the two baselines, a pattern that holds for
data from the grammar book as well as that from
the informal sources. When compared to the two
baselines, while the other settings do not show sig-
nificant improvement in terms of accuracy or F1
score, the average Levenshtein distance is shorter
when the models are trained with multi-task learn-
ing and/or additional cross-linguistic data. Given
the results, for both the grammar book and the infor-
mal sources, we selected cross-domain multi-task
learning as the setting for final model testing.

Combining the results from Table 2 and Table 3
together, it appears that regardless of the particular
evaluation design, in any of the settings where un-
supervised Morfessor is applicable (Creutz and La-
gus, 2002), the neural encoder-decoder models con-
sistently yielded significantly better performance
in relation to all three measures. This observation
also speaks to previous findings from Kann et al.
(2018), except that they adopted semi-supervised
variants of Morfessor.

Comparing the segmentation results from the
seq2seq models to those from Morfessor, overall
there does not seem to be aspects where the latter
systematically falls short, in the sense that the seg-
mentation patterns by Morfessor are more or less
“all over the place". One potential explanation lies
in the fact that in both our data sets, the majority of
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Grammar book Models Accuracy F1 Avg. Distance better than Morfessor? Selected?
In-domain naive baseline 86.03 93.10 0.39 Yes

less naive baseline 91.92 95.96 0.21 Yes ✓

Cross-domain self-training 89.98 95.04 0.26 Yes

multi-task learning 91.38 95.78 0.21 Yes

transfer learning 86.02 92.54 0.39 Yes

fine-tuning 88.68 94.21 0.29

Cross-linguistic multi-task learning 91.06 95.50 0.22 Yes

transfer learning 90.00 95.15 0.24 Yes

fine-tuning 90.16 95.22 0.24

Informal sources
In-domain naive baseline 69.99 84.47 0.96 Yes

less naive baseline 71.38 85.27 0.86 Yes

Cross-domain self-training 70.05 84.74 0.87 Yes

multi-task learning 72.04 85.38 0.83 Yes

transfer learning 67.42 82.50 0.98 Yes

fine-tuning 69.27 83.79 0.92

Cross-linguistic multi-task learning 73.51 86.04 0.78 Yes ✓

transfer learning 70.95 85.19 0.83 Yes

fine-tuning 71.39 85.35 0.82

Table 2: Model training and evaluation with the development set. The value of each metric for every model was
compared to those of the two baselines; boldface indicates significant differences from both baselines, derived by
comparing their respective 95% CI after bootstrapping. Selected training setting for model testing is checkmarked.

Grammar book Models Accuracy F1 Avg. Distance better than Morfessor? Selected?
In-domain naive baseline 11.43 40.32 5.90 Yes

less naive baseline 12.35 40.77 4.01 Yes

Cross-domain self-training 13.38 42.96 3.77 Yes

multi-task learning 14.66 42.97 3.24 Yes ✓

Cross-linguistic multi-task learning 12.54 41.63 3.28 Yes

transfer learning 15.12 40.89 3.40 Yes

fine-tuning 15.52 41.15 3.40
Informal sources

In-domain naive baseline 10.18 44.16 4.58 Yes

less naive baseline 12.97 45.38 3.66

Cross-domain self-training 12.92 45.08 3.31 Yes

multi-task learning 16.59 47.79 2.97 Yes ✓

Cross-linguistic multi-task learning 14.65 45.91 3.15 Yes

transfer learning 13.61 45.07 3.07 Yes

fine-tuning 13.61 45.24 3.06

Table 3: Model training and evaluation with the development domain. The value of each metric for every model
was compared to those of the two baselines; boldface indicates significant differences from both baselines, de-
rived by comparing their respective 95% CI after bootstrapping. Selected training setting for model testing is
checkmarked.
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Figure 1: Model testing results given different evaluation designs; error bars indicate 95% CI after bootstrapping.

the words have a frequency of one (95.28% for the
grammar book; 95.57% for the informal sources).
On the other hand, successful segmentation by
unsupervised Morfessor relies heavily on the fre-
quency of a given word and accordingly the number
of overlapping or common morphemes shared by
different words, whether the occurrence frequency
information was computed from the training data
or from additional unlabeled data. In addition to
the complex morphological features of Seneca and
the high frequency of unique morphemes in the
two data sets used in our experiments, the Bible
dataset, despite containing more unlabeled words,
is still relatively small (N = 8,588), and thus is not
especially useful for deriving frequency estimates.

5.3 Testing

For both the grammar book and the informal
sources, we tested the stability of the selected

model settings across the five random splits (Sec-
tion 4.1). With each random split, we trained a
model following the selected setting for each of the
evaluation designs; the model was then applied to
the test set of the random split.

Based on Figure 1, within each evaluation de-
sign, the test performance of the model setting is
stable across the random splits. Morphological seg-
mentation of data from the grammar book was able
to achieve consistently better results than that for
the informal sources. Regardless of the data source,
while there does not appear to be significant dif-
ferences in model performance between the two
evaluation designs, comparing to using a develop-
ment set, evaluating with a development domain
led to slight improvement of average scores for
each of the three metrics.
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6 Conclusions and Future Work

We have investigated morphological segmentation
for Seneca, an indigenous Native American lan-
guage with highly complex morphological charac-
teristics. In a series of in-domain, cross-domain,
and cross-linguistic training settings, the results
demonstrate that neural seq2seq models are quite
effective at correctly labeling morpheme bound-
aries, at least at the surface level. With the two
evaluation designs explored here, the model set-
tings were able to achieve above 96% F1 score for
data from the grammar book, and above 85% for
the informal sources.

Many of the languages indigenous to North
America are as endangered as Seneca and have
available resources comparable in both size and
scope to those used in the current work. Our thor-
ough investigation of how to effectively integrate
these limited and varied resources can potentially
serve as a model for other community-driven col-
laborations to document endangered languages for
future generations, and to produce materials suit-
able for language immersion and revitalization. For
our future work, in addition to refining and improv-
ing our models, we also plan to explore the utility
of morphological segmentation for improving lan-
guage modeling in ASR. This would be able to
support transcription of both archival recordings
and new recordings captured by community mem-
bers involved in language revitalization projects.
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Abstract
We represent the complexity of Yine (Arawak)
morphology with a finite state transducer
(FST) based morphological analyzer. Yine is
a low-resource indigenous polysynthetic Peru-
vian language spoken by approximately 3,000
people and is classified as ‘definitely endan-
gered’ by UNESCO. We review Yine mor-
phology focusing on morphophonology, pos-
sessive constructions and verbal predicates.
Then we develop FSTs to model these com-
ponents proposing techniques to solve chal-
lenging problems such as complex patterns of
incorporating open and closed category argu-
ments. This is a work in progress and we still
have more to do in the development and ver-
ification of our analyzer. Our analyzer will
serve both as a tool to better document the
Yine language and as a component of natural
language processing (NLP) applications such
as spell checking and correction.

1 Introduction

Yine is a low resource indigenous polysynthetic
Peruvian language of the Arawak family spoken by
approximately 3,000 people living near the Ucay-
ali and Madre de Dios rivers, tributary rivers of
the Amazon. Yine is considered “definitely en-
dangered” according to the UNESCO Atlas of the
World’s Languages in danger (Moseley, 2010).

As noted by Zariquiey et al. (2019), although
Yine has a typologically oriented descriptive gram-
mar, documentation and further study of several
grammatical aspects are still urgently needed since
the Yine language is at risk of entering into an
obsolescent and consequently disappearing status.
Therefore, such work is vital to not only adequately
document the Yine language, but also to support its
continued vitality through computer assisted tools
such as spell-checkers and machine translators.

Formal and computational representation of mor-
phology is considered a “solved problem” based

∗Authors contributed equally

on Beesley and Karttunen’s work and seminal Fi-
nite State Morphology text (Beesley and Karttunen,
2003; Karttunen and Beesley, 2005). This does not
mean that representing a language is either easy or
fast, especially for the case of polysynthetic lan-
guages such as Yine.

Our goal is to construct a high coverage finite
state transducer (FST) morphological analyzer both
to document and preserve the Yine language, and to
use it in NLP applications, such as spell checking
and correction, that might promote language vital-
ity. Our contributions at this point are: 1. a partial
functioning morphological analyzer for nominal
and verbal constructions including possessive con-
structions and verbal predicates, and 2. various
project decisions and FST patterns employed so
far in construction of the analyzer. Given the in-
complete implementation, it is too early to report
meaningful project results.

Representation of Yine morphology by a FST is
a work in progress. This paper describes relevant
morphological features of Yine, representation of
these features by FST, particularly challenging rep-
resentation problems, a preliminary evaluation, and
our current and planned future states.

2 Related Work

Beesley and Karttunen (2003)’s Finite State Mor-
phology text is a highly valuable resource for rep-
resenting morphology by an FST. There are also
numerous morphological analyses with FST rep-
resentations available. Most relevant to this task
are analyses performed for other indigenous Peru-
vian languages: Shipibo-Konibo (Cardenas and
Zeman, 2018), Quechua (Rios, 2010) and pan-
Ashaninka (Ortega et al., 2020; Castro Mamani,
2020). In particular, the last work includes appli-
cations of the FST to spell-checking and segmenta-
tion.

While we do not apply our work to spell check-
ing in this paper, that is one of our planned goals.

orphology by Finite State Transducer Formalism]
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Previously we had attempted to develop a Hun-
Spell1 based spell corrector, but found it too limit-
ing given the polysynthetic nature of the Yine lan-
guage. This is consistent with Pirinen and Lindén
(2010, 2014), who found that FST correctors were
essential to achieve performance on par with En-
glish for morphologically complex, and typically
low resource, languages.

Software, tutorials, and examples for construct-
ing FST morphology are available from the Finite
State Morphology book website.2 We use the Foma
library3 by Hulden (2009), compatible with FST
Morphology, and available, along with some fine
tutorials. Both applications offer a Python API,
but neither is under active development. There is
limited community support for Foma.

3 Linguistic Profile and Resources

Yine (ISO 639-3: pib) may be considered a
morphosyntactically complex language due to its
highly polysynthetic profile (mainly related to ver-
bal structures). As noted by Aikhenvald (2020),
Arawak languages are synthetic, predominantly
head marking and suffixing, with a complex verbal
morphology. Yine presents three open word classes:
nouns, verbs, and adjectives (mostly by derivation);
and four closed word classes: pronouns, adverbs,
demonstratives and numerals. In this section, we
will only discuss the pronominal system, and some
features associated with the verbal and nominal
morphology, since they are relevant to the current
state of representation of Yine morphology by the
FST formalism.

3.1 Morphological profile

As in almost all polysynthetic languages, Yine may
express in just one word meanings that would re-
quire a whole sentence in other languages. This
is illustrated by a complex predicative construc-
tion in (1), and a full possessive construction, in
(2). Our morphological analysis is based on Han-
son (2010)’s grammatical description; glosses have
been adapted to the UniMorph schema (Kirov et al.,
2018).

(1) niklokgimatanaktatkalu
ø-nikloka-gima-ta
ARGNO3SM-swallow-QUOT-LGSPEC1
-na-kta-tka-lu

1http://hunspell.github.io/
2http://www.fsmbook.com
3https://fomafst.github.io/

-LGSPEC2-INDF-PFV-ARGAC3SM

‘(The huge snake) swallowed him up some-
how, reportedly.’

(2) ragmunateymana
r-gagmuna-te-yma-na
PSS3P-tree-PSSD-COM/INS-PSS3P

‘With their trees’

Note that Yine’s morphological complexity in-
volves vowel deletion as seen in (1) and morphemes
that may be accounted for as circumfixes, as is the
case of possession marking in (2) where possessor
indexation is achieved with two elements: prefix
r- and the suffix -na. Its implications for FST ex-
pression are very interesting and will be discussed
in §4 and §5. In the remaining subsections we
present some of the mentioned features. Specifi-
cally, we present morphophonological rules, pos-
sessive constructions, verbal morphology aspects
and argument indexing systems in relation with
verbal predicates.

3.2 Morphophonological overview
Yine presents a rich set of morphophonological
processes such as vowel deletion and rhotacism of
liquid consonants. These processes are presented
below.

Deletion between stem and suffix occurs when
a specific group of suffixes trigger the deletion of
the final vowel in the attached stem as shown in
(3), where the frequentative suffix -je triggers the
deletion of the stem’s final vowel. However, this
can only occur if vowel deletion does not generate
a cluster of three consonants which is an overall
restriction in the language as can be seen in (4),
where the stem remains complete in its overt real-
ization and avoids the sequence /mkj/.

(3) nnukjetlu
n-nuka-je-ta
ARGNO1S-eat-HAB-LGSPEC1
-lu
-ARGAC3SM

‘I eat it (usually)’

(4) numkajetlu
n-gimka-je-ta
ARGNO1S-sleep-HAB-LGSPEC1
-lu
-ARGAC3SM

‘I make you sleep (usually)’

Prefixing of possessive morphemes triggers
other morphophonological processes that will be
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explained in §3.3. In (5) we see /l/ rhotacism,
which occurs when an /l/ initial suffix mutates /l/
to /r/ when attached to a stem ending in i, e, u or n.
Example (6) shows how the suffix behaves when
attached to a different ending stem. Note that it
also occurs an internal-boundary vowel deletion
process triggered by the third person suffix.

(5) pnikanru
p-nika-ni-lu
ARGNO2S-eat-DED-ARGAC3SM

‘You will eat it (masc)’

(6) pniklu
p-nika-lu
ARGNO2S-eat-ARGAC3SM

‘You eat it (masc)’

It is important to notice that the set of mor-
phophonological rules developed by Hanson (2010)
is neither exhaustive nor conclusive. The author
mentions that a complete description of the morpho-
logical patterns of the language is still needed and
leaves many issues open for further study. Thus,
our application of them is based not only on the
explicit description of Hanson (2010) but also in
the examples presented by the author which entails
some systematizable rules for our work. For exam-
ple, examples (7) and (8) and how how the same
1PL object morpheme wu triggers vowel deletion
in (7) and does not in (8) where it would create
an identical consonant cluster ww. So, although
vowel deletion seems to be lexically specified as
mentioned by the author, phonological constraints
seem to be highly relevant.

(7) yimaka
Ø-yimaka

giyolikletwuna
giyolika-le-ta

ARGNO3P-teach.hunt-COMP-LGSPEC1
-wu-na
-ARGAC1P-ARGNO3P

‘They taught us (how) to hunt’.

(8) kaspukawawuna
Ø-kaspuka-wa-wu
ARGNO3P-let.go-IMPFV-ARGAC1P
-na
-ARGNO3P

‘They are letting us go’.

There are other morphophonological rules ap-
plied in word formation which need to be studied
in depth. Rules applied to prefixation processes,
are presented in the next section.

3.3 Possessive constructions

Possessive constructions in Yine are formed by a
possessor prefix (and if needed a linked possessor
suffix), a possessed nominal root and, when needed,
a ‘possession status’ suffix. Both morphological el-
ements (i.e. the possessor prefix and the possession
status suffixes) are determined by the semantics of
the root they attach in terms of alienability. Ac-
cording to Hanson (2010) and Aikhenvald (2020),
nominals are lexically specified for alienable versus
inalienable possession.

Alienability is a category that makes a mor-
phosyntactic distinction between possession that
can be terminated (alienables) and possession that
cannot (inalienable) (Payne, 2007). Of course, this
is a language specific categorization. For example,
in Yine, concepts such as house or language, are
inalienable but a concept like husband is alienable.
Nevertheless, concepts like mother or hand tend to
be classified as inalienable in those languages that
reflect this distinction in their grammar. Addition-
ally, in Yine inalienable nouns present an internal
sub-classification distinguishing between kinship
terms (like mother or son) and non-kinship terms
(like hand or house).

Depending on the noun root class and its ini-
tial consonant, Yine possessive constructions will
use one of the three pronominal sets for possessor
indexing.

Class 1 prefixes attach indistinctly to alienable
or inalienable roots but only to those beginning
with /g/. This consonant is always replaced by
the pronoun. Additionally, if the first consonant is
followed by a /u/, it mutates to a /i/ (this is always
true with the exception of the 2PL prefix).

Class 2 prefixes attach also to alienable and in-
alienable roots with exception of non-kinship in-
alienable roots. Regarding morphophonology, this
class does not attach to stems beginning with /g/
and does not replace the initial consonant of the
stem. Classes 1 and 2 are almost identical, only
differing in the 3rd person masculine/plural prefix:
class 1 uses /r/ and class 2 uses a ø form.

Class 3 prefixes are attached only with those
inalienable stems that do not begin with /g/. In
the examples below we present the application of
each pronominal class. The class 1 prefix pronoun
for 1st person singular and its morphophonological
effects on an alienable root is shown in (9), Class
2 prefix pronoun for 2nd person singular attached
to an inalienable root is shown in (10), and Class
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3 prefix pronoun for 3rd person plural is shown in
(11). Finally, Class 3 forms for 3rd person plural
are shown in (2) and (12).

(9) nutsrukate
n-gitsruka-te
PSS1S-ancestor-PSSD

‘My ancestor’

(10) gmeknatjirne
g-meknatjir-ne
PSS2S-brother in law-PL

‘Your brothers in law’

(11) gikamrurna
gi-kamruru-na
PSS3P-work-PSS3P

‘Their work’

A last consequence of lexical specification of
nominal stems is the usage of the so called ‘pos-
sessed status suffixes’. These are affixed to alien-
able stems when possessor is expressed, as shown
in (9) with -te, and to inalienable stems when pos-
sessor is not expressed as in (13) where -chi is
used.

3.4 Verbal and verbal predicate morphology

Hanson (2010) treats morphological elements cor-
responding exclusively to the verbal stem sepa-
rately from verbal predicate elements. She makes
this separation to better leverage the commonality
between verbal, nominal and adjectival predicates
also attested to in Yine. Verbal stem morphology
is exclusive to verbal stems, whereas predicative
morphology may be applied to any predicate type.

Verbal stem morphology includes noun incorpo-
rants, oblique markers, evidentials, adverbial in-
corporants, aspect and subordination information,
stem closure morphology, applicative suffixes and
voice and mood morphemes.Verbal stem complex-
ity is shown in (12). Notice that the example is not
a simple stem but a predicate. Bolded morphemes
correspond to what Hanson (2010) considers stem
morphology.

(12) rustakatsyeggimatanrona
r-gistaka-tsa-yegi-gima
ARGNO3P-cut-cord.of-PROX-QUOT
-ta-na-
-LGSPEC1-LGSPEC2
-lo-na
-ARGAC3SF-ARGNO3P

‘They cut the rope near her, reportedly’

Argument indexing and ‘external aspect’ specifi-
cation do not correspond to the verbal stem but to
the predicative morphology. Argument indexing is
achieved by using prefixation for subjects and suf-
fixation for objects. As for possessor indexing, 3PL
forms are indexed by two morphological elements:
prefix r and suffix -na. The pronominal forms are
almost the same as the ones used for possessive
constructions. The main distinction is that only
classes 1 are 2 are used. Pronominal indexes are
also classified in two classes and follow a regular
pattern.

3.5 Available linguistic resources

Linguistic resources used for this paper such as
analysis and corpora, come from three princi-
pal sources: Hanson (2010) which is a compre-
hensive typological oriented grammar, a Yine-
Spanish/Spanish-Yine dictionary by Wise (1986) ,
and a theoretical guide developed by Zapata et al.
(2017). Additionally, we used a Yine corpus by
Bustamante et al. (2020) for evalution purposes
(see §6).

4 Finite State Morphology

In the FST morphology formalism (Figure 1A), par-
allel language representations (tapes) are mapped
one to the other, where by convention the upper
tape corresponds to the morphological analysis and
and lower tape corresponds to the word form. Each
level accepts (generates) valid strings in their re-
spective tape, and either level can be transduced
to corresponding (possibly multiple) strings on the
other level. FSTs can be stacked so that a lower
or upper tape feeds into the corresponding tape of
another FST. In summary: 1. words can be trans-
duced to morphological analyses, 2. morphological
analyses can be transduced to words, 3. only valid
representations are accepted (generated) on either
side, 4. a valid input representation may result in
multiple output representations, and 5. transducers
can be stacked to multiple levels.

Scripting for FST (see Figure 1B) includes an
optional Lexc language for lexicons and an expan-
sive FST language. While Lexc is a good fit for
ordered concatenative morphology and is accessi-
ble for entering inventories of open category roots,
it is not a natural fit for the highly agglutinative
polysynthetic Yine language with its relatively free
order of suffixes. Instead open category root inven-
tories are edited in spreadsheets and exported via
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Figure 1: Language views: A) Upper analysis and lower form, B) By level/domain, C) By function.

Python scripts to FST source files. All morphologi-
cal analysis is coded in FST, consistent with efforts
by (Cardenas and Zeman, 2018; Ortega et al., 2020;
Castro Mamani, 2020) for other Amazonian lan-
guages.

The FST language can be viewed as divided
into regular expressions (defining finite state ma-
chines (FSMs)) typically used for string searching
or pattern matching, advanced operators on FSMs
or FSTs, and a meta-language for interacting with
FSTs. Regular expressions largely suffice for the
analysis tape; cross-product, rewrite rule, compo-
sition, and containment advanced operators are es-
sential for operating on FSMs and FSTs; define,
apply, file related, and virtual stack machine related
meta-commands let us construct and interact with
FSTs and the operating system.

FST components may also be grouped function-
ally as lexical, post-lexical and memory filters; lex-
icon; and alterations (Figure 1C). Filters which
restrict lexical generation precede the lexicon; they
serve to restrict the allowable combinations of con-
stituent morphemes that might be generated by the
lexicon. The lexicon, originates all constituent
morphemes from both open and closed morpheme
classes generating all possible valid (mostly) lexi-
cal sequences.

Sometimes it is difficult to prospectively gener-
ate only valid analyses, and so filters may be used
to prevent over-generation. Similarly, some prob-
lems of over-generation (e.g., duplication) are more
readily solved after generation with post-lexical
filters. Phonological and morphophonological pro-
cessing often imposes constraints on surface form
realization of the morphological analyses, e.g., fi-
nal vowel elision or rhotacism. Such constraints

are implemented as alterations of the lexical anal-
ysis. Long range or discontinuous morphological
relations are not readily handled by FSTs, but with
use of limited memory based filters, with diacritic
flags, even these problems can be resolved.

We chose to divide and conquer the analyzer
project based on (Hanson, 2010)’s Yine Grammar
structure. We define common terms, closed class
morphemes, and open class roots, followed by
higher level constructs expressible as single words:
adjective, noun, noun phrase, verb, nominalization,
predicate, and clause.

In the next section on morphological analysis
we will see cogent examples combining language
analysis from the previous section and finite state
morphology described here.

5 Morphological analysis

We report several morphological analyses and snip-
pets of corresponding FST code. FST is a multi-
use term applying to simple definitions, regular
expressions, filters, alterations, lexicon and the en-
tire analyzer. All the terms beginning with /•/ are
symbolic terms defined in file common-u.foma;
their corresponding implementation specific and
Unimorph terms are substituted on evaluation. List-
ing 1 shows a snippet of label definitions.

define •NRoot ".NROOT";
define •VRoot ".VROOT";
...
define •Quot ".QUOT"; # quote
define •Infer ".INFER"; # inference

Listing 1: Label definitions
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define NRoot [
[ {kamruru} [•NRoot •PossPfx3

•Inalienable]:0 ]
| [ {gagmuna} [•NRoot •PossPfx1

•Alienable •PossSfxte]:0 ]
];

Listing 2: Noun root snippet

5.1 Open word categories
Open word vocabulary is processed using Python
scripts to construct root constituents with coded
lexical information. The snippet in listing 2 de-
fines noun roots, kamruru and gagmuna with form,
alienability, and possessor prefix class. Inalien-
able nouns are further marked with •Kin when
a kinship term. Alienable nouns are marked
for their possessed suffix type. Possessor pre-
fix class is largely determinable from alienabil-
ity, kinship, and whether the initial sound seg-
ment is /g/, but it was more convenient, to index
it directly. Note the use of define to define the
FST of all noun roots and assign it to NRoot. The
form {kamruru} is expanded to a string of char-
acters and available on both the upper and lower
tapes of this transducer. The regular expression
[•NRoot •PossPfx3 •Inalienable]:0 groups to-
gether the sequence of analysis terms on the upper
tape as .NROOT.3.NALN and and maps them to ø on
the lower tape via the : cross-product operation.

5.2 Noun root examples
Yine noun roots from the example just above are
shown in (13) and (14). Inalienable nouns are pref-
erentially possessed and are marked with the suf-
fix -chi when unpossessed. Alienable nouns can
readily occur without a possessor (unmarked) and
are marked with their possessed suffix when pos-
sessed.4

(13) kamrurchi
kamruru-chi
work-UNPSSD

‘(the unpossessed) work’

kamruru.NROOT.3.NALN-chi.UNPSSD

(14) gagmunate
gagmuna-te
tree-PSSD

‘(a possessed) tree’
4The annotations shown in (13, 14) use standard four-

line glossing format customary in contemporary grammatical
description. Output from the FST morphological analyzer is
added as a fifth line of the gloss.

gagmuna.NROOT.1.ALN.te-te.PSSD

Listing 3 shows how noun possession is de-
fined by FST. Inalienable unpossessed state is
marked with -chi by selecting inalienable nouns,
$[•Inalienable], from noun roots, NRoot, writ-
ing the noun root and -chi •Unposs on the upper
tape, and noun root and ^V chi on the lower tape.
$[•Inalienable] is a lexical filter which when
composed, .o., with noun roots from the lexicon
selects only inalienable noun roots. The intermedi-
ate flag ^V subsequently triggers a final vowel eli-
sion, defined by VElision.5 Alienable possessed
state is defined similarly except that for possessed
suffix -te there is no final vowel elision.

define NounInalienUnposs $[•Inalienable]
.o. [NRoot %-:"^V" {chi} •Unposs:0]
.o. VElision;

define NounTe $[•Alienable •PossSfxte]
.o. [NRoot %-:0 {te} •Poss:0];

Listing 3: Noun possession regexes

5.3 Nominal example

The noun shown in (15) is copied from (2) above.
Word construction shows several phenomena taken
into account by the FST: 1. possessor class 1 (stem
with initial /g/), 2. comitative noun case, 3. eli-
sion alteration of initial /g/, 4. discontinuous depen-
dency for possessor 3rd person plural.

(15) ragmunateymana
r-gagmuna-te-yma-na
PSS3P-tree-PSSD-COM/INS-PSS3P

‘With their trees’
r.PSS3P-gagmuna.NROOT.1.ALN.te
-te.PSSD-yma.COM/INS-na.PSS3P

The snippet in listing 4 shows 3rd person singu-
lar and plural prefixes from possessor prefix class
1. For the singular case, t •3SgFPssr - is written
to the upper tape, and t ^g to the lower tape. The
intermediate flag ^g subsequently triggers an alter-
ation due to the initial /g/. The plural case adds
complexity with a diacritic flag being set to pos-
itive by @P.PSSR.3PL@ for both upper and lower
tapes, in addition to writing r •3PlPssr - to the
upper tape and r ^g to the lower tape. The dia-
critic flag with feature PSSR remembers its setting
and permits completion of the word with the PSS3P

5Intermediate flags are an essential technique for triggering
alterations. See alteration rule examples in (Hulden, 2011).
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suffix.6

define PronNPfxSc1 [
...
| {t} [•3SgFPssr %-] : "^g"
| "@P.PSSR.3PL@" {r} [•3PlPssr %-]:"^g"

];

Listing 4: Possessor paradigm 1 (initial ’g’)

The snippet in listing 5 presents three mutually
exclusive noun case alternatives of which comita-
tive is matched in analysis; and so the comitative
-yma •Com is written to the upper tape and yma to
the lower tape. None of the cases trigger vowel
elision.
define NounCase [

%-:0 {yma} •Com:0
| %-:0 {yegi} •Circ:0
| %-:0 {ya} •Loc:0

];

Listing 5: Comitative noun case

The snippet in listing 6 decides whether or not
to show the PSS3P suffix based on the PSSR dia-
critic flag setting. If the flag setting meets the 3PL

requirement, then -na •3PlPssr is written to the
upper tape and ^Vu na is written to the lower (in-
termediate) tape. The intermediate flag ^Vu subse-
quently triggers an alteration of final vowel elision
except for /u/. If the PSSR diacritic flag is not set
then nothing is written to either tape; in this way
the FST can accept the discontinuous 3rd person
plural possessor.
define Pron3PlNSfx [

%-:"^Vu" "@R.PSSR.3PL@" {na} •3PlPssr:0
| "@D.PSSR@"

];

Listing 6: Possessor 3rd person plural suffix

The snippet in listing 7 generates the noun from
optional possessor class 1 prefix, noun root, op-
tional noun plural, optional noun case and diacritic
flag determined 3rd person plural suffix. The alter-
ation FSTs are composed with the lexical output to
handle changes due to initial /g/, final vowel elision,
or final vowel elision for vowels other than /u/.
define Nouns [•Noun:0 [

(PronNPfxSc1) NounPfx1 (NounPlural)
(NounCase) Pron3PlNSfx
...
.o. gAlteration
.o. VElision
.o. VuElision;

Listing 7: Noun generation

6Diacritic flags are a powerful yet difficult to understand
addition to FST. See (Hulden, 2011) for a brief introduction
and (Beesley and Karttunen, 2003, pp 339-373) for an in
depth explanation with examples.

The word ragmunateymana shows application of
both the initial /g/ and final vowel elision except for
/u/ alterations. The snippet in listing 8 shows how
an initial gi is rewritten as /u/ or /g/ is rewritten as
/ø/ after the ^g intermediate flag in the lower tape;
subsequently the flag itself is erased from the lower
tape.

In ragmunateymana the initial /g/ of the noun
root is elided and the /r/ of the pronoun prefix
added. The case for final vowel other than /u/ eli-
sion is more complex, in that the vowel is not elided
if it would result in a three consonant cluster. Such
is the case here and so the final /a/ of -yma need not
elide before -na. Since the three consonant cluster
includes nasal consonants, the final /a/ could be
elided resulting in the alternative valid word form
ragmunateymna (Hanson, 2010).

define gAlteration [[g i -> u || "^g" _]
.o. [g -> 0 || "^g" _ ]
.o. ["^g" -> 0]

];

Listing 8: ‘g’ alteration

5.4 Verb predicate mega example

The verb predicate shown in (16) is not testified to
by the Yine corpus, but rather is a tour de force act
of word creation based on the grammar by Hanson,
comparable to verb predicate phrase creation in
non-polysynthetic languages. The analysis shown
is based on the FST analysis and shows several im-
portant word generation features: 1. subject prefix
class 1 (stem with initial /g/), 2. associate prefix
gim-, 3. alteration due to initial /g/, 4. discontinuous
dependency of form for 3rd person plural, 5. mul-
tiple incorporants for verb stem, 6. open category
noun incorporant, 7. marker for closure of incorpo-
rants, 8. multiple incorporants for verb predicate,
9. vowel elision.

(16) rumustakasijnegimananjetyanupluna
r-gim-gustaka-siji-ne
ARGNO3P-LGSPEC3-cut-corn-PSSD

-gima-nanu-je-ta
-QUOT-EXTNS-HAB-LGSPEC1
-ya-nu-pa-lu-na
-APPL-DED-ALL-ARGAC3SM-ARGNO3P

‘It is said that they, and someone else
(usually) cut their (masc) corn during
a specific time lapse’
r.ARGNO3P-gim.LGSPEC3-gustaka.VROOT.AMBI
-siji.NROOT.2.ALN.ne-ne.PSSD-gima.QUOT
-nanu.EXTNS-je.HAB-ta.LGSPEC1-ya.APPL
-nu.DED-pa.ALL-lu.ARGAC3SM-na.ARGNO3P
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The subject pronoun prefix class 1 (with inital
/g/) is similar to that of possessor prefix class 1
with nouns. Discontinuous behavior for •Subj3Pl

is also similar to that for •3PlPssr, noun possessor
3rd person plural, with the obvious difference that
the 3rd person plural subject suffix marker -na is
now very distant from the prefix!

Adding the associative prefix gim- to the verb
root triggers ‘g’ alteration for roots with initial /g/
similar to subject class 1. The FST, see listing 9,
writes gim •Assoc - to the upper tape and gim ^g

to the lower tape. The intermediate flag ^g subse-
quently triggers ‘g’ alteration if the stem has initial
/g/ as is the case here for the verb gustaka.
define VerbAssoc [{gim} [•Assoc %-]:"^g"];

Listing 9: ’g’ alteration with gim-

A huge difference in relation nouns is that verbs
and verb predicates can have several incorporated
morphemes including open noun class morphemes.
Individual closed form incorporants are similar in
structure to NounCase (listing 5) and VerbAssoc
(listing 9) above. With verb stems, multiple in-
corporants can appear, but each incorporant type
only once, and according to Hanson (2010), the
order of incorporants is flexible. The snippet in
listing 10 shows forming the union of individual in-
corporants, and the snippet in listing 11 shows how
this union is repeated over 1 to 9 iterations. While
not obvious from the union (because everything is
via definitions), the lexical form and analysis for
each incorporant are written to the upper tape and
the lexical form and a unique filter flag are written
to the lower tape. The filter flags will be used to
enforce the no more than one of each incorporant
type rule. 7

define VerbIncorporantsNoCoda [
%-:0 NounAlienPoss 0:"^I.A"
...
| VerbAspect2 0:"^I.H"
| VerbAspect3 0:"^I.I" ];

Listing 10: Verb stem incorporant union

When verb stem incorporants are used, they must
be followed by marking of incorporant list clo-
sure, or by a causative which also effects closure,
[VerbClosure | VerbCausative]. While repeti-
tion for 1 to 9 iterations of the union of incorporants
assures no more than 9 incorporants, it does not pre-
vent repetition of some of the incorporants. This is

7Beesley and Karttunen (2003, pp 299-230) explains a
lexical filter version of this. In our implementation, filter flags
are written to the lower tape and post-lexical filters applied to
eliminate duplicate incorporant types.

where the filter flags, e.g., "^I.H", are used. Com-
posing ~[detectIncorporantDuplicates] with
the lower tape from verb incorporants excludes all
cases where the same filter flag is repeated, thus
eliminating repeated incorporants from the FST.

define VerbIncorporants
[VerbIncorporantsNoCoda^{1,9}
[VerbClosure | VerbCausative]]

.o. ~[detectIncorporantDuplicates]

.o. eraseIncorporantFlags;

Listing 11: Verb stem incorporants

Listing 12 shows a snippet for the FST of
all duplicate filter flags. Each line such as
$["^I.A" ?* "^I.A"] denotes the language con-
taining that filter flag duplicated, and the union
over all such flags denotes the union of languages
with duplicate flags. Taking the complement of this
results in all languages without duplicate flags, and
composing this complement with the actual group
of incorporants, excludes any cases where there are
duplicate flags. This is a powerful operator!

define detectIncorporantDuplicates [
$["^I.A" ?* "^I.A"]
| $["^I.B" ?* "^I.B"]
...
| $["^I.I" ?* "^I.I"]];

Listing 12: Incorporant test for duplicates

Alienable possessed nouns or inalienable nouns
(possessed root form) can serve as incorporants.
This augments the expressiveness of the verb stem
dramatically in that the number of verb stem com-
binations now gets multiplied by the number of
alienable nouns and by the number of inalienable
nouns. Gloss (16) incorporates the possessed alien-
able noun siji-ne, ‘corn’.

Elision processes are the same or similar for
nouns and we don’t repeat the FST code here. Note
that with so many components in the word and
multiple elision processes it is not obvious to the
non-native speaker, how to derive the final word
form with all applied elisions and other alterations.

5.5 Ambiguity

There may be multiple analyses for individual
words of the language and similarly multiple word
representations for the same analysis. This ambigu-
ity can happen because: 1. elision of final vowels
of morphemes so that forms are no longer distinct,
2. elision is optional so that inherently there are
multiple forms, or 3. the same form is used across
multiple morphemes. Language use is a constant
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process of negotiation between ambiguity of ex-
pression and efficiency of communication.

6 Evaluation

For unit testing of noun, verb, and verb predicate
analyses, we constructed forms for several distinct
analyses each of 20 nouns sampled over posses-
sor class and 20 verbs sampled over subject and
object classes. Diverse analyses varied possessor/-
subject/object person, number, and gender as well
as noun or verb incorporants. While resulting de-
rived forms were largely consistent with analyses,
we discovered and corrected several cases of lex-
ically specified vowel elision and rhotacism not
covered in Hanson (2010)’s grammar.

For coverage on test data we sampled words
matching on known root forms with 25 each of
noun roots and verb roots sampled at random from
a Yine corpus by Bustamante et al. (2020). This re-
sulted in many out of vocabulary words from longer
root forms than those used for selection. Yet, there
remained numerous other words unrecognized (not
covered) by the analyzer even though sharing the
expected root. So we performed a detail error anal-
ysis from a sub-sample of 63 unrecognized words
to diagnose errors and make model improvements.

The error analysis is reported in table 1. Some
forms suffered from multiple errors and so er-
ror counts exceed the number of words sampled.
For nouns major reasons for lack of coverage are:
1. morpheme not in FST vocabulary, 2. non-verbal
predicate, 3. verbalizer changed category to verb,
4. noun root entry incorrect. For verbs major rea-
sons for lack of coverage are: 1. morpheme not
in FST vocabulary, 2. elision and rhotacism alter-
ations, 3. nominalizer changed category to noun,
4. morpheme has more flexible order.

Corrections and improvements from easy to hard
are: 1. Correct out of vocabulary, entry, and ortho-
graphic errors of roots on vocabulary spreadsheets.
2. Correct intermediate flags and alterations for eli-
sion and rhotacism. 3. Add missing suffixes and
more flexible order for morpheme out of vocab-
ulary and order errors. 4. Prioritize development
of non-verbal predicate, nominalizer, and verbal-
izer functions to address non-verbal predicate and
change of category errors.

Cardenas and Zeman (2018) obtained 78.9% av-
erage coverage over multiple domains on test data
for a completed FST morphology of an Amazonian
polysynthetic language. Our ≈15% coverage in

Error Nouns Verbs

Root out of vocabulary 9 6
Morpheme out of vocabulary 7 10
Morpheme out of order 1 3
Elision incorrect 0 9
Rhotacism incorrect 0 6
Orthographic mismatch 0 2
Change of category 5 7
Non-verbal predicate 7 0
Root entry incorrect 5 1

Error counts 34 44
Sample size 30 33

Total words sampled 574 1292
Percentage recognized 11.3% 16.1%

Table 1: Lack of Coverage Reasons

a preliminary evaluation on multiple domain test
data should be interpreted as a measure of the effort
still to go on this project. Our goal remains a high
coverage FST morphological analyzer.

7 Conclusion

We have shown our initial steps in developing noun,
verb, verb predicate and pronoun categories for a
morphological model of the Yine language, illus-
trating analyses performed and FST patterns used
to solve challenging problems. Testing for analyzer
coverage with real world data revealed several defi-
ciencies, some expected (nominalizers, verbalizers,
non-verbal predicate) and some surprises (unex-
pected elision, rhotacism, and missing morpheme
errors). We will continue to improve the analyzer
by fixing problems and adding major word cate-
gories and functions, now with added emphasis
on testing with external data. Goals for the an-
alyzer include both language documentation and
use as a component of natural language processing
(NLP) applications such as spell checking and low
resource machine translation.
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Appendix: Unimorph and Hanson Grammar Terms Used in Paper

Unimorph Hanson (2010) Description
ALL ELV Allative / Ellative
APPL APPL Applicative
ARGNO1S 1SG First person singular ’subject’
ARGNO2S 2SG Second person singular ’subject’
ARGNO3P 3PL Third person plural ’subject’
ARGNO3SM 3SGM Third person masculine ’subject’
ARGAC1P 1PL First person plural ’object’
ARGAC3SM 3SgM Third person singular masculine ’object’
ARGAC3SF 3SgF Third person singular feminine ’object’
COMP SUBD Comparative (subordination function)
COM/INS COM Commitative (and instrumental)
DED SUBD Deductive (subordination function)
EXTNS EXTNS Extensive aspect
HAB CONTIN Habitual / Continuative
INDF GENZ Indefinitness in time
IPFV IMPFV Imperfective aspect
LGSPEC1 VCL Verb Stem Closure
LGSPEC2 CMPV Completive aspect
LGSPEC3 ASSOC Associative
PFV PFV Perfective aspect
PL PL Plural
PROX VICIN Proximative
PSSD PSSD Possessed noun
PSS1S 1SGPSSR First person singular possessor
PSS2S 2SGPSSR Second person singular possessor
PSS3P 3PLPSSR Third person plural posessor
QUOT QUOT Quotative (epistemic marker)
UNPSSD UNPSSD Unpossessed noun

Table 2: FST Morphology - UniMorph categories with Hanson (2010)’s glossing equivalents.
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Abstract
This paper details a semi-automatic method of
word clustering for the Algonquian language,
Nêhiyawêwin (Plains Cree). Although this
method worked well, particularly for nouns, it
required some amount of manual postprocess-
ing. The main benefit of this approach over im-
plementing an existing classification ontology
is that this method approaches the language
from an endogenous point of view, while per-
forming classification quicker than in a fully
manual context.

1 Introduction

Grouping words into semantic subclasses within a
part of speech is a technique used widely through-
out quantitative and predictive studies in the field
of linguistics. Bresnan et al. (2007) use high level
verb classes to predict the English dative alterna-
tion, Arppe et al. (2008) uses verb class as one of
the feature sets to help predict the alternation of
Finnish think verbs, and Yu et al. (2017) use polar-
ity classifications (good vs bad) from pre-defined
lexica such as WordNet (Miller, 1998). In many
cases, classifications within word classes allow re-
searchers to group words into smaller cohesive
groups to allow for use as predictors in modelling.
Rather than using thousands individual lexemes as
predictors, one can use a word’s class to generalize
over the semantic features of individual lexemes to
allow for significantly more statistical power.

While extensive ontologies of word classifica-
tions exist for majority languages like English
(Miller, 1998), German (Hamp and Feldweg, 1997),
and Chinese (Wang and Bond, 2013), minority
languages, especially lesser resourced languages
in North America generally do not boast such re-
sources.1 Where such ontologies do exist, for ex-

1There is one attempt at semantically classifying
Nêhiyawêwin through automatic means found in Dacanay
et al. (2021). This work makes use of similar techniques as
desccribed in this paper, differing mainly in its mapping of
Nêhiyawêwin words onto Wordnet classes.

ample in Innu-aimun (Eastern Cree) (Visitor et al.,
2013), they are often manually created, an expen-
sive process in terms of time. Alternatively, they
may be based upon English ontologies such as
WordNet. This opens the window to near-automatic
ontology creation by associating definitions in a tar-
get language and English through a variety of meth-
ods. This is especially important, given the amount
of time and effort that goes into manually classify-
ing a lexicon through either an existing ontology
(be it something like Rapidwords2 or even Levin’s
like classes (Levin, 1993)). Moreover, there is a
motivation based in understanding a language and
its lexicalization process on its own terms, though
how to do this with a lesser resourced language
remains unclear.

2 Background

We begun word classification in preparation
for modelling a morpho-syntactic alternation in
Nêhiyawêwin verbs. One hypothesis we developed
for this alternation, based on Arppe et al. (2008), is
that the semantic classes of the verbs themselves as
well as their nominal arguments would inform the
verbal alternation. Due to constraints of time, we
investigated methods to automatically classify both
verbs and nouns in Nêhiyawêwin. Although statisti-
cal modelling remains the immediate motivator for
the authors, semantic/thematic classifications have
a wide range of benefits for language learners and
revitalization, particularly in online lexicographic
resources, where one may want to view all words
to do with a theme, rather than simply finding trans-
lations of single English words.

In creating a framework for automatic semantic
classification we make use of Word2vec (Mikolov
et al., 2013a) word embeddings. Word embeddings
are words represented by n-dimensional vectors.
These vectors are ultimately derived from a word’s

2See http://rapidwords.net/
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context in some corpus through the Word2vec
algorithm. Unfortunately, the Word2vec method
is sensitive to corpus size. We initially attempted
to create basic word and feature co-occurrence
matrices based on a 140,000 token Nêhiyawêwin
corpus (Arppe et al., 2020) to create word vectors
using Principal Components Analysis, but in
the end found the results to be not practically
useful. Similarly, an attempt at both tf-idf and
Word2Vec using only the Nêhiyawêwin dictionary
produces mostly ill-formed groupings, though
in these cases preprocessing by splitting verbs
and nouns was not performed. Regardless, the
poor performance was most certainly due simply
to the paucity of data. Although the available
corpora are small, Nêhiyawêwin does have several
English-to-Nêhiyawêwin dictionaries, the largest
being Wolvengrey (2001). Although a bilingual
Nêhiyawêwin-English dictionary, it is one formed
from an Indigenous point of view, based on
vocabulary from previous dictionaries, some of
which have been compiled by Nêhiyawêwin com-
munities from their own perspectives, or gleaned
from a number of texts collections rather than
attempting to find Nêhiyawêwin word matches for
a pre-defined set of English words. This results
in dictionary entries such as sakapwêw: it
roasts over a fire (by hanging,
with string on stick). Definitions such
as this take into account the nuanced cultural
understanding reflected in the word’s morphology.

3 Methodology

To address the issue of corpus size, we attempted
to bootstrap our classification scheme with pre-
trained English vectors in the form of the 3 mil-
lion word Google News Corpus, which represents
every word with a 300-dimensional vector.3 We
make use of the English definitions (sometimes
also referred to as glosses) provided in Wolvengrey
(2001) and fit to each word its respective Google
News Corpus vector. This dictionary makes use
of lemmas as headwords, and contains 21,717 en-
tries. The presumption is that the real-world ref-
erents (at least in terms of denotation) of English
and Nêhiyawêwin words are approximately com-
parable, in particular when taking the entire set of
words in an English definition. Stop words were

3This corpus was trained on a large corpus of 100 bil-
lion words. Available at https://code.google.com/
archive/p/word2vec/

removed, and where content words were present
in definitions in Wolvengrey (2001) but not avail-
able in the Google News Corpus, synonyms were
used (one such example might be the word mitêwin,
which is unavailable in the corpus and thus would
replaced with something like medicine lodge or
deleted if a synonym was given in the definition as
well). Because the Google News Corpus is based
in American spelling, while Wolvengrey (2001)
is based in Canadian spelling, American forms
(e.g. color, gray) were converted into Canadian
forms (e.g. colour, grey). If such preprocessing
is not performed, these words are simply unavail-
able for clustering, as they lack a matching vector.4

Where a Nêhiyawêwin word had more than one
word sense, each sense was given a separate entry
and the second entry was marked with a unique
identifier. Finally, where needed, words in the
Nêhiyawêwin definitions were lemmatized.

Once every word in Wolvengrey (2001) defini-
tions matched an entry in the Google News Corpus,
we associated each word in a Nêhiyawêwin defini-
tion with its respective Google News Vector. That
is, given a definition such as awâsisihkânis:
small doll, the resulting structure would be:

awâsisihkânis =




0.159
0.096
−0.125

...







0.108
0.031
−0.034

...




Because all word-vectors in the Google News Cor-
pus are of the same dimensionality, we then took
the resulting definition and averaged, per dimen-
sion, the values of all its constituent word-vectors.
This produced a single 300-dimensional vector that
acts as a sort of naive sentence vector for each of
the English glosses/definitions:

awâsisihkânis =




0.134
0.064
−0.080

...




Mikolov et al. (2013b) mention this sort of naive
representation and suggests the use of phrase vec-
tors instead of word vectors to address the repre-
sentation of non-compositional idioms; however,

4In reality, there were only a handful of cases where words
occurred in the dictionary but not in the Google News Corpus.
Because there are so few examples of this, even simply leaving
these items out would not substantiqally change clustering
results.
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given the way Wolvengrey (2001)’s definitions are
written (e.g. with few idiomatic or metaphorical
constructions), and for reasons of computational
simplicity, we opted to use the above naive imple-
mentation in this paper.

After creating the sentence (or English defini-
tion) vectors, we proceeded to cluster definitions
with similar vectors together. To achieve this, we
created a Euclidean distance matrix from the sen-
tence vectors and made use of the hclust pack-
age in R (R Core Team, 2017) to preform hier-
archical agglomerative clustering using the Ward
method (based on the experience of (Arppe et al.,
2008) in using the method to produce multiple lev-
els of smaller, spherical clusters). This form of clus-
tering is essentially a bottom-up approach where
groupings are made by starting with individual la-
bels with the shortest distance, then iteratively at
a higher level making use of the clusters that re-
sult from the previous step or remaining individual
levels; this second step is repeated until there is a
single cluster containing all labels. This method of
clustering creates a cluster tree that can be cut at
any specified level after the analysis has been com-
pleted to select different numbers of clusters, allow-
ing researchers some degree of flexibility without
needing to rerun the clustering. This method is very
similar to what has been done by both Arppe et al.
(2008), Bresnan et al. (2007), and Divjak and Gries
(2006). The choice of what number of clusters was
made based on an evaluation of the effectiveness of
the clusters, based on an impressionistic overview
by the authors.

For our purposes, we focused on the semantic
classification of Nêhiyawêwin nouns and verbs.
Nêhiyawêwin verbs are naturally morphosemanti-
cally divided into four separate classes: Intransitive
verbs with a single inanimate argument (VII), In-
transitive verbs with a single animate argument
(VAI), transitive verbs with an animate actor5 and
an inanimate goal (VTI), and verbs with animate
actors and goal (VTA). For verbs, clustering took
place within each of these proto-classes. Among
the VIIs, 10 classes proved optimal, VAIs had 25
classes, VTIs with 15 classes, and VTAs with 20
classes. The choice to preprocess verbs into these
four classes was as not doing so resulted in a clus-

5As discussed in Wolvengrey (2005), Nêhiyawêwin sen-
tences are devoid subject and objects in the usual sense. In-
stead, syntactic roles are defined by verbal direction alignment.
For this reason, we use the terms actor and goal instead of
subject and object.

tering pattern that focused mainly on the difference
between transitivity and the animacy of arguments.
Any more or fewer classes and HAC clusters were
far less cohesive with obvious semantic units being
dispersed among many classes or split into multiple
classes with no obvious differentiation. Similarly,
verbs were split from nouns in this process because
definitions in Wolvengrey (2001) vary significantly
between verbs and nouns.

Nouns are naturally divided into two main
classes in Nêhiyawêwin: animate and inanimate.6

For our purposes we divide these further within
each class between independent (i.e. alienable) and
dependent (i.e. inalienable) nouns to create four
main classes: Independent Animate Nouns (NA),
Dependent Animate Nouns (NDA), Independent
inanimate Nouns (NI), and Dependent Inanimate
Nouns (NDI). The reason for this further division
is due to the morphosemantic differences between
independent and dependent nouns in Nêhiyawêwin.
While independent nouns can stand on their own
and represent a variety of entities, they are semanti-
cally and morphologically dependent on some pos-
sessor. We opted to pre-split NDIs and NDAs into
their own classes, so as not to have the clustering
focus on alienablity as the most major difference.7

4 Results

In all cases, clusters produced by this proce-
dure needed some amount of post-processing.
For nouns, this post-processing was minimal and
mostly took the form of adjustments to the pro-
duced clusters: moving some items from one class
to another, splitting a class that had clear semantic
divisions, etc. For the verbs, this processing was of-
ten more complex, especially for the VAI and VTA
classes. Items were determined to not belong in one
class or another based on it’s central meaning of the
action or entity. If the majority of group members
pertained to smoking (a cigarette), a word describ-
ing smokiing meat (as food preparation) would not
be placed in this group, as the essence of the ac-
tion and its intended purpose diverged significantly
from the rest of the group.

6Although this gender dichotomy is mostly semantically
motivated (e.g. nouns that are semantically inanimate are part
of the inanimate gender) this is not always the case as in the
word pahkwêsikan, ‘bread’, a grammatically animate word.

7Preliminary results for words not seperated by their con-
jugation class or declension did, in fact, create clusters based
around these obvious differences. This likely due to the way
definitions were phrased (e.g. dependent nouns would have a
possessive determiner or pronoun).
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Although most clusters produced somewhat co-
hesive semantic units, the largest clusters for the
VAI and VTA classes acted as, essentially, catch-all
clusters. Although computationally they seemed
to have similar vector semantics, the relationship
between items was not obvious to the human eye.
Postprocessing for these clusters took substantial
amounts of time and essentially comprised of using
more cohesive clusters as a scaffold to fit words
from these catch-all clusters into. In most cases,
this resulted in slightly more clusters after post-
processing, though for VAIs this number was sig-
nificantly higher, and for the NDIs it was slightly
lower. Table 1 lists the number of cluster directly
from HAC and from postprocessing.

Postprocessing grouped together words based
on the most core semantic property of the word
class: nouns were generally grouped based on the
entity or state they represented, and verbs were
generally grouped based on the most basic form
action they represented. This is why, for example,
AI-cover includes words for both covering and
uncovering. In some cases a final class may seem
like something that could be subsumed under an-
other (e.g. AI-pray or AI-cooking might be
understood as subsets of AI-action); however,
in these cases, the subsumed class was judged to be
sufficiently separate (e.g. cooking is an action of
transforming resources into food for the purposes
of nourishment, while verbs of AI-action are
more manipulative, direct actions done for their
own sake. Further, the automatic classification al-
ready grouped words in these ways, further justify-
ing their separation. Finally, some grouping seem
more morphosyntactic (e.g. AI-reflexive),
though we argue that reflexivity, performing an
action inwards, is in and of itself a salient semantic
feature, and the inclusion of these terms into Wol-
vengrey (2001) indicates their lexicalization and
distinction from the non-reflexive forms.

The actual quality of clustering varied form class
to class. In general, nouns resulted in much more
cohesive clusters out-of-the-box and required far
less postprocessing. For example, nearly all of
the HAC class NI14 items referred to parts of
human bodies (and those that did not fit this de-
scription were terms clearly related to body parts
like aspatâskwahpisowin, ’back rest’), NI13 was
made up of trapping/hunting words and words for
nests/animals.

The NA classes produced through HAC were

similarly straightforward: NI9 was made up of
words for trees, poles, sticks, and plants; NI8 was
made up entirely of words form beasts of burden,
carts, wheels, etc.; while much of NA3 and NA7,
and nearly all of NA2 referred to other animals.
Once manually postprocessed, the NA lex-
emes settled into 8 classes: NA-persons,
NA-beast-of-burden, NA-food,
NA-celestial, NA-body-part,
NA-religion, NA-money/count, and
NA-shield.

The NDI and NDA classes required almost no
postprocessing: NDA1 and NDA3 were each
made up of various family and non-family based
relationships, while NDA2 was made up of words
for body parts and clothing. The resulting classes
for these were: NDA-Relations, NDA-Body,
and NDA-Clothing.

The NDI lexemes basically took two classes:
the vast majority of NDI forms referred to bodies
and body parts while two lexemes referred to the
concept of a house, resulting in only two classes:
NDI-body, and NDI-house.

Verbs, on the other hand, required quite a deal
more postprocessing. VIIs showed the best cluster-
ing results without postprocessing. For example,
V II6 was entirely made up of taste/smell lexemes,
V II7 was almost entirely weather-related, V II8
contained verbs that only take plural subjects,
V II9 had only lexemes referring to sound and
sight, and V II10 had only nominal-like verbs
(e.g. mîsiyâpiskâw ’(it is) rust(y)’). Despite these
well formed clusters, V II1 through V II5 were
less cohesive and required manual clustering.
In the end, distinct classes were identified:
II-natural-land, II-weather-time,
II-sensory-attitude, II-plural,
II-move, II-time, and II-named.8 Al-
though postprocessing was required, this was not
too substantial in scope or time.

The VAIs required significantly more work.
Some classes were well defined, such as
V AI23 whose members all described some
sort of flight, but V AI12 contains verbs of
expectoration, singing, dancing, and even

8The concepts of weather and time were combined here
as many of the Nêhiyawêwin words for specific times also
contain some concept of weather (e.g. the term for ‘day’ is
kîsikâw, clearly related to the word for ‘sky/heavens’, kîsik;
similarly, the word for ‘night’ is tipiskâw, which is the same
word used for the night sky. Additionally, words like pipon,
‘winter’ and sîkwan ‘spring’ are obviously related to both time
and weather.
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HAC classes Manually Adjusted Classes Lexemes

VII 10 6 581
VAI 25 13 5254
VTI 15 6 1825
VTA 20 7 1781

NI 15 13 3650
NDI 3 2 245
NA 10 8 1676

NDA 3 3 191

Table 1: HAC built cluster counts vs. counts after postprocessing

painting. The HAC classes were consolidated
into 13 classes: AI-state, AI-action,
AI-reflexive, AI-cooking,
AI-speech, AI-collective,
AI-care, AI-heat/fire,
AI-money/count, AI-pray,
AI-childcare, AI-canine, and
AI-cover.

The VTIs similarly required manual postpro-
cessing after HAC clustering. Although some
classes such as V TI11 (entirely to do with cutting
or breaking) or V TI14 (entirely to do with pulling)
were very well formed, the majority of the classes
needed further subdivision (though significantly
less so than with the VAIs, resulting in the follow-
ing 6 classes: TI-action, TI-nonaction,
TI-speech, TI-money/counter,
TI-fit, and TI-food.

Finally, the VTAs required a similar amount
of postpreocessing as the VAIs. Although a
few classes were well formed (such as V TA4

which was entirely made up of verbs for ‘causing’
something), the vast majority of HAC classes
contained two or more clear semantic groupings.
Through manual postprocessing, the following
set of classes were defined: VTA_allow,
VTA_alter, VTA_body-position,
VTA_care-for, VTA_cause,
VTA_clothes, VTA_cognition,
VTA_create, VTA_deceive,
VTA_do, VTA_existential,
VTA_food, VTA_hunt, VTA_miss/err,
VTA_money, VTA_move, VTA_play,
VTA_restrain, VTA_religious,
VTA_seek, VTA_sense,
VTA_speech, VTA_teach, VTA_tire,
VTA_treat-a-way, VTA_(un)cover

4.1 Evaluation

In addition the above evaluation in the description
of the manual scrutiny and adjustment of HAC
results, which is in and of itself an evaluation of
the technique presented in this paper (with single-
subject experimentation proposed as a rapid path
to data for less-resourced languages such as Viet-
namese (Pham and Baayen, 2015)), we present
a preliminary quantitative evaluation of this tech-
nique. This evaluation allows us to judge how use-
ful these classes are in practical terms, providing an
indirect measure of the informational value of the
clusters. We make use of the mixed effects mod-
elling that initially motivated automatic semantic
clustering, focusing on a morphological alterna-
tion called Nêhiyawêwin Order, wherein a verb
may take the form ninipân (the Independent) or
ê-nipâyân (the ê-Conjunct), both of which may be
translated as ‘I sleep.’ The exact details of this al-
ternation remain unclear, though there appears to
be some syntactic and pragmatic motivation (Cook,
2014). Using R (R Core Team, 2017) and the lme4
package (Bates et al., 2015), we ran a logistic re-
gression to predict alternation using verbal seman-
tic classes as categorical variables. In order to
isolate the effect of semantic class, no other effects
were used. The semantic classes were included
as random effects. To assess the effectiveness of
semantic class in this context, we assess the pseudo-
R2 value, a measure of Goodness-of-Fit. Unlike a
regular R2 measure, the pseudo-R2 can not be in-
terpreted as a direct measure of how much a model
explains variance, and generally "good" pseudo-R2

value are comparatively smaller (McFadden et al.,
1973), though a higher value still represents a bet-
ter fit. As a general rule, a pseudo-R2 of 0.20
to 0.40 represents a well fit model. (McFadden,
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Manual HAC-Only

VII 0.18 0.19
VAI 0.13 0.09
VTI 0.04 0.01
VTA 0.06 0.06

Table 2: pseudo-R2 Values for Modelling Independent
vs. ê-Conjunct Order Choice Based on Manual and Au-
tomatic Clustering Evaluation

1977)9 Models were fit for each of the four conju-
gation classes for both classes produced directly
from the Hierarchical Agglomerative Clustering as
well those manually adjusted. We used a subset of
the Ahenakew-Wolfart Corpus (Arppe et al., 2020),
containing 10,764 verb tokens observed in either
the Independent or ê-Conjunct forms. The result-
ing pseudo-R2 scores represent the way in which
automatic and semi-manual clusters can explain
the Nêhiyawêwin Order alternation.

Table 2 presents the result of these analyses. the
Manual column represents clusters that were man-
ually adjusted, while the HAC-Only column rep-
resents the result of the logistic model that used
only the fully automatic HAC-produced clusters.
The manually adjusted and HAC-only classes per-
formed similarly, especially for VTAs, though man-
ual adjustment had a slightly worse fit for the VIIs,
and conversely the VAI and VTI has somewhat sig-
nificantly better fits using the manually adjusted
classes. Although it appears that manual adjust-
ment produced classes that were somewhat better
able to explain this alternation, both manually ad-
justed and HAC-only clusters appear to explain
a non-negligible degree of this alternation phe-
nomenon in the above models. This is significant,
because it shows that the result of the clustering
techniques presented in this paper produce a tangi-
ble and useful product for linguistic analysis. Fur-
ther, it suggests that, although manual classifica-
tion was sometimes more useful, automatic classes
more or less performed as well, allowing for re-
searchers to determine if the added effort is worth
the small increase in informational value. Never-
theless, alternative methods of evaluation, such as
evaluating clusters based on speaker input, particu-
larly through visual meas as described in Majewska
et al. (2020) should be considered.10

9One can also compare the results in this paper with results
from a similar alternation study in Arppe et al. (2008).

10It is worth noting that previous attempts at such experi-

5 Discussion

In general, the best clustering was seen in classes
with fewer items. The VAI and NI lexemes
required the most postprocessing, with each having
roughly double the number of items as the next
most numerous verb/noun class. Verb classes in
general seemed to produce less cohesive classes
through HAC. Although the exact cause of this
discrepancy in unknown, it could perhaps be due to
the way words are defined in Wolvengrey (2001).
In this dictionary, verb definitions almost always
contain more words than noun definitions. Almost
every single verb definition will have at least two
words, owing to the fact that Nêhiyawêwin verbs
are defined by an inflected lexeme. This means that
if one looks up a word like walk, it would appear as:
pimohtêw: s/he walks, s/he walks
along; s/he goes along. Meanwhile,
nouns tend to have shorter definitions. The defi-
nition for the act of walking, a nominalized form
of the verb for walk, is written as: pimohtêwin:
walk, stroll; sidewalk. This difference
is exacerbated by the fact that definitions are
often translated fairly literally. Something like
pêyakwêyimisow might be translated simply as
‘s/he is selfish,’ but contains morphemes meaning
one, think, reflexive, and s/he. A gloss of this
word is seen in (1). Rather than simply defining
the word as ‘s/he is selfish,’ (Wolvengrey, 2001)
has opted to provide a more nuanced definition:
pêyakwêyimisow: s/he thinks only
of him/herself, s/he is selfish,
s/he is self-centered.

(1) pêyakwêyimisow
pêyakw-êyi-m-iso-w
one-think-VTA-RFLX-3SG

‘s/he thinks only of him/herself’

The result of this complex form of defining is
that words are defined more in line with how they
are understood within the Nêhiyawêwin culture,
which is indeed often manifested in the derivational
morphological composition of these words. This is
central to the motivation for this method of semi-
automatic clustering, but produces verbs with rela-
tively long definitions. An alternative explanation
for why Nêhiyawêwin lexemes with English defini-
tions consisting of more numerous parts of speech
were more difficult to classify is that these divi-
sions simply have significantly more variation in
mentation via Nêhiyawêwin communities with which we have
good relationships have been poorly received by speakers.
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meaning for whatever reason. Further investigation
into this is needed.

Also worth noting is the relative distributions
of each of the postprocessed classes mentioned
above. Table 3 details each of the postprocessed
noun classes sorted by their size.

Perhaps unsurprisingly, the distribution of lex-
emes into different classes followed a sort of
Zipfian distribution. The NA-person and
NA-other-animals accounted for the vast ma-
jority of noun lexemes for animate nouns. Just
under half of all NI lexemes were nominalized
verbs, and roughly a quarter were smaller object-
like items (e.g. tools, dishes, etc.). The NDAs were
almost entirely dominated by words for family,
while all but three NDIs were body part lexemes.
Some categories such as NI-scent, NI-days,
and NA-shield have extremely low membership
counts, but were substantially different from other
categories that they were not grouped into another
class. Most interestingly, there appeared to be three
NI lexemes that referred to persons, something usu-
ally reserved for NAs only. These lexemes were ok-
itahamâkêw ‘one who forbids,’ owiyasiwêwikimâw
‘magistrate,’ and mihkokwayawêw ‘red neck.’ In all
three cases, the lexemes seem to be deverbal nouns
(from kitahamâkêw ‘s/he forbids,’ wiyasiwêw ‘s/he
makes laws,’ and mihkokwayawêw ‘s/he has a red
neck.’

Verbs showed a similar distribution. Table 4
details the distribution of words within each of se-
mantic classes for verbs. With the exception of VII
and VAIs, verbs were dominated by classes for ac-
tion, which subsumes most volitional actions (e.g.
kîskihkwêpisiwêw ‘s/he rips the face off of people,’
kâsîpayiw ‘s/he deletes’), and nonaction which in-
cludes most verbs of thought, emotion, judgment,
or sensory action (e.g koskowihêw, ‘s/he startles
someone,’ nôcîhkawêw ‘s/he seduces someone’).
Other classes may include action verbs, such as
AI-cooking and TI-speech. Although these
verbs could be classified in one of the two previ-
ously mentioned systems, their automatic classifi-
cation and semantics unify them in a way that is
unique to other items in these larger classes.

Overall, verb forms, especially the most numer-
ous classes of VAI and VTA, required a large de-
gree of manual postprocessing. Because this ap-
proach assumes no underlying ontology, but rather
attempts to work bottom-up (cf. Hanks (1996)),
the time taken to postprocess VAI and VTA classes

is likely not too far from what it would take to
manually classify these words based off a prebuilt
ontology; however, the appeal of a bottom-up clas-
sification should not be overlooked, however. As
an example, many ontologies place concepts like
thinking, and being happy into separate classes;
however, in our classification these words were
combined into a single class of cognition. This is
done because emotion words like môcikêyihtam,
‘s/he is happy (because of something)’ (in addi-
tion to being verbs and not adjectives) contain a
morpheme, {-êyi-}, meaning ‘thought.’ For these
reasons, such emotion words are often translated
as having to do specifically with thought and cogni-
tion: môcikêyihtam, ‘s/he thinks happily (because
of something).’ (Wolvengrey, 2001) uses these
sorts of definitions, and so unsurprisingly the ma-
jority of such emotion words were classified in the
proposed scheme together with words of thought.
Where this was not the case, manual postprocessing
from a bottom-up approach allows us to maintain
the cultural understanding of emotions as directly
related to cognition. Furthermore, from the expe-
riential standpoint of one of the authors, the use
of semi-automatic clustering produces a kick-start
that greatly aids to the starting of a semantic classi-
fication task, especially for non-native speakers.

6 Conclusion

This paper describes an attempt at, for the first
time, semi-automatically classifying Nêhiyawêwin
verbs and nouns. The process used in this paper
is easily applied to any language that makes use
of a bilingual dictionary with definitions written
in a more resourced language. Resulting clusters
of Nêhiyawêwin words are freely available on the
online. Although the technique worked quite well
with nouns, which required very little manual ad-
justment, verbs required more directed attention.
Despite this, the technique presented in this paper
offers a bottom-up, data-driven approach that takes
the language on its own terms, without resorting to
ontologies created primarily for other languages. If,
however, one wishes to use a pre-defined ontology,
the basis for this work (representing word defini-
tions using pre-trained English word vectors) could
be used in conjunction with existing ontologies to
expedite the classification process. For example,
Dacanay et al. (2021) compare the naive definition
vectors for Wolvengrey (2001) with the same for
the English WordNet word senses; word senses
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NI (N) NDI (N) NA (N) NDA (N)

NI-nominal (1783) NDI-body (243) NA-persons (720) NDA-relations (143)
NI-object (902) NDI-house (2) NA-beast-of-burden (512) NDA-body (45)
NI-natural-Force (283) NA-food (325) NDA-clothing (4)
NI-place (228) NA-celestial (45)
NI-nature-plants (198) NA-body-part (37)
NI-body-part (78) NA-religion (23)
NI-hunt-trap (60) NA-money/count (12)
NI-animal-product (48) NA-shield (2)
NI-religion (36)
NI-alteration (23)
NI-scent (4)
NI-days (4)
NI-persons (3)

Table 3: Manually Adjusted Noun Classes

VII (N) VAI (N) VTI (N) VTA (N)

II-natural-land (256) AI-state (2083) TI-action (1409) TA-action (1013)
II-weather-time (103) AI-action (1982) TI-nonaction (293) TA-nonaction (574)
II-sensory/attitude (92) AI-reflexive (542) TI-speech (80) TA-speech (103)
II-plural (73) AI-cooking (172) TI-money/count TA-food (54)
II-move (35) AI-speech (131) TI-fit (10) TA-money/count (23)
II-named (3) AI-collective (97) TI-food (8) TA-religion (9)

AI-care (81) TA-allow (5)
AI-heat/fire (55)
AI-money/count (34)
AI-pray (29)
AI-childcare (17)
AI-canine (16)
AI-cover (15)

Table 4: Manually Adjusted Verb Classes

whose vectors bear a strong correlation with the
Nêhiyawêwin definitions can then be assumed to
be semantically similar with a Nêhiyawêwin word,
and the latter can take the WordNet classification
of the former. Further research should investigate
more sophisticated methods of creating embed-
dings, especially the use of true sentence vectors.
Additionally, one could consider using weights for
English words in the definitions of Nêhiyawêwin
words based on measures like tf-idf. Over all, this
technique provided promising results. Regardless
of the language or particular implementation, this
technique of bootstrapping under-resourced lan-
guage data with pre-trained majority language vec-
tors (for which very large corpora exist), should
not be restricted by the sizes of dictionaries in

the under-resourced language, as the underlying
vectors are trained on a 100 million word English
corpus.
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Abstract

The historical comparative method has a long
history in historical linguists. It describes a
process by which historical linguists aim to
reverse-engineer the historical developments
of language families in order to reconstruct
proto-forms and familial relations between lan-
guages. In recent years, there have been multi-
ple attempts to replicate this process through
machine learning, especially in the realm of
cognate detection (List et al., 2016; Ciobanu
and Dinu, 2014; Rama et al., 2018). So far,
most of these experiments aimed at actual re-
construction have attempted the prediction of
a proto-form from the forms of the daughter
languages (Ciobanu and Dinu, 2018; Meloni
et al., 2019). Here, we propose a reimple-
mentation that uses modern related languages,
or sisters, instead, to reconstruct the vocabu-
lary of a target language. In particular, we
show that we can reconstruct vocabulary of a
target language by using a fairly small data
set of parallel cognates from different sister
languages, using a neural machine translation
(NMT) architecture with a standard encoder-
decoder setup. This effort is directly in fur-
therance of the goal to use machine learning
tools to help under-served language communi-
ties in their efforts at reclaiming, preserving,
or reconstructing their own languages.

1 Introduction

Historical linguistics has long employed the his-
torical comparative method to establish familial
connections between languages and to reconstruct
proto-forms (cf. Klein et al., 2017b; Meillet, 1967).
More recently, the comparative method has been
employed by revitalization projects for lexical re-
construction of lost lexical items (cf. Delgado et al.,
2019). In the particular case of Delgado et al.
(2019), lost lexical items of the target language are
reconstructed by using equivalent cognates of still-
spoken modern sister languages, i.e., languages in

the same language family that share some estab-
lished common ancestor language and a significant
amount of cognates with the target language. By
reverse-engineering the historical phonological pro-
cesses that happened between the target language
and the sister-languages, one can predict what the
lexical item in the target language should be. This
is essentially a twist on the comparative method, us-
ing the same principles, but to reconstruct a modern
sister, as opposed to a proto-antecedent.

While neural net systems have been used to em-
ulate the historical comparative method1 to recon-
struct proto-forms (Meloni et al., 2019; Ciobanu
and Dinu, 2018) and for cognate detection (List
et al., 2016; Ciobanu and Dinu, 2014; Rama et al.,
2018), there have not, to the best of our knowl-
edge, been any attempts to use neural nets to pre-
dict/reconstruct lexical items of a sister language
for revitalization/reconstruction purposes.

Meloni et al. (2019) report success for a similar
task (reconstructing Latin proto-forms) by using
cognate pattern lists as a training input. Instead of
reconstructing Latin proto-forms from only Italian
roots, they use Italian, Spanish, Portuguese, Roma-
nian and French cognates of Latin, i.e., mapping
from many languages to one. As our intended use-
case (see section 1.1) is one that suffers from data
sparsity, we explicitly explore the degree to which
expanding the list of sister-languages in the many-
to-one mapping can compensate for fewer available
data-points. Since the long-term goal of this project
is to aid language revitalization efforts, the question
of available data is of utmost importance. Machine
learning often requires vast amounts of data, and
languages which are undergoing revitalization usu-
ally have very sparse amounts of data available.
Hence, the goal for a machine learning approach

1Due to the nature of neural nets we do not know whether
these systems actually emulate the historical comparative
method or not. What is meant here is that they were used
for the same tasks.
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here is not necessarily the highest possible accu-
racy, but rather the ability to operate with as little
data as possible, while still retaining a reasonable
amount of accuracy.

Our particular contributions are:

1. We demonstrate an approach for reframing the
historical comparative method to reconstruct a
target language from its sisters using a neural
machine translation framework. We show that
this can be done with easily accessible open
source frameworks such as OpenNMT (Klein
et al., 2017a).

2. We provide a detailed analysis of the degree to
which inputs from additional sister languages
can overcome issues of data sparsity. We find
that adding more related languages allows
for higher accuracy with fewer data points.
However, we also find that blindly adding lan-
guages to the input stream does not always
yield said higher accuracy. The results sug-
gest that there needs to be a significant amount
of cognates with the added input language and
the target language.

1.1 Intended Use-Case and Considerations
This experiment was designed with a specific use-
case in mind: Lexical reconstruction for language
revitalization projects. Specifically, the situation
where this type of model may be most appli-
cable would be a language reclamation project
in the definition of Leonhard (2007) or a lan-
guage revival process in the definition of Mc-
Carty and Nicholas (2014). In essence, a lan-
guage where there is some need to recover or re-
construct a lexicon. An example of such a case
might be the Wampanoag language reclamation
project (https://www.wlrp.org/), or com-
parable projects using the methods outlined in Del-
gado et al. (2019).

As this is a proof-of-concept, we use the
Romance language family, specifically the non-
endangered languages of French, Spanish, Italian,
Portuguese and Romanian, and operate under as-
sumption that these results can inform how one can
use this approach with other languages of interest.
However, we are aware that the Romance language
morphology may be radically different from some
of the languages that may be in the scope of this
use case, such as agglutinative and polysynthetic
languages, and that we cannot fully predict the per-
formance of this type of system for such languages

from the Romance example. Regardless of this,
some insights gained here will still be applicable in
those cases, such as the question of compensating
lack of data by using multiple languages.

Languages that are the focus of language revital-
ization projects are typically not targets for deep
learning projects. One of the reasons for this is the
fact that these languages usually do not have large
amounts of data available for training state of the
art neural approaches. These systems need large
amounts of data, and Neural Machine Translation
systems, as the one used in this project, are no ex-
ception. For example, Cho et al. (2014) use data
sets varying between 5.5million and 348million
words. However, the task of proto-form reconstruc-
tion, which is really a task of cognate prediction,
can be achieved with fairly small datasets, if par-
allel language input is used. This was shown by
Meloni et al. (2019), whose system predicted 84%
within an edit distance of 1, meaning that 84%
of the predictions were so accurate that only one
or 0 edits were necessary to achieve the true tar-
get. For example, if the target output is “grazie",
the machine might predict “grazia" (one edit) or
"grazie" (0 edits). Within a language revitalization
context, this level of accuracy would actually be a
very good outcome. In this scenario, a linguist or
speaker familiar with the language would vet the
output regardless, so small edit distances should
not pose a big problem. Further, all members of a
language revitalization project or language commu-
nity would ultimately vet the output, as they would
make a decision on whether to accept or reject the
output as a lexical item of the language.

This begs the question of why a language revital-
ization project would want to go through the trou-
ble of using such an algorithm in the first place, if
they have someone available to vet the output, then
that person may as well do the reconstructive work
themselves, as proposed in Delgado et al. (2019).
This all depends on two factors: First, how high is
the volume of lexical items that need to be recon-
structed or predicted? The effort may not be worth
it for 10 or even a 100 lexical items, but beyond
this an neural machine translation model can poten-
tially outperform the manual labor. Once trained,
the model can make thousands of predictions in
minutes, as long as input data is available.

Second, and potentially more important, it will
depend on how well the historical phonological re-
lationships between the languages are understood.
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Spanish French Portuguese Romanian Italian (target) status
1 - -esque -e:scere - - removed, no target
2 mosto moût mosto must mosto
3 - - - - lugano removed, no input
4 párrafo - - - paragrafo
5 -edad - -idade -itate -ità

Table 1: Examples of data patterns, including types of data removed during cleanup (e.g., rows 1 and 3).

For a family like Romance, we have a very good
understanding of the historical genesis of the lan-
guages and the different phonological processes
they underwent, see for example Maiden et al.
(2013). However, there are many language fam-
ilies in the world where these relationships and
histories are less than clear. In such situations, a
machine learning approach would be beneficial, be-
cause the algorithm learns2 the relationships for us
and gives predictions that just need to be vetted.

Under this perspective, the best model might not
necessarily be the one that produces the most ac-
curate output, but perhaps the one that produces
the fewest incorrigible mistakes. An incorrigible
mistake here would be the algorithm predicting an
item that is completely unrelated to the target root
e.g., predicting “cinque” for a target of “grazie”).
Further, ease of usability and accessibility will be
another factor for this kind of use-case, as not ev-
ery project of this type will have a computational
linguist to call on. Hence, another aim should be
a low-threshold for reproducability and the utiliza-
tion of easy to use open-source frameworks. In the
spirit of the latter, all data and code necessary to
reproduce the results are open-source and freely
available. This paper is intended for computational
linguists and linguists and/or community members
who are involved with projects surrounding lan-
guages which might benefit from this approach.
As such, it is written with both audiences in mind,
with Section 6 (“Warning Labels for Interested Lin-
guists") specifically aimed at linguists and commu-
nity members interested in a potential application
of this method.

2 The Dataset

The data set used for this experiment was provided
by Shauli Rafvogel of Meloni et al. (2019). The ini-
tial set consisted of 5420 lines of cognate sextuples
of the Romance language family, specifically: Ro-

2Or, rather, it interprets.

Continental Romance

Italo Western Romance

Italian Western Romance

West-Ibero Romance

Spanish Portuguese

Gallo-Rhaetian

French

Eastern Romance

Balkan Romance

Romanian

Figure 1: An abridged family tree of the relevant
Romance languages. Adapted from glottolog (Ham-
marström et al., 2020).

manian, French, Spanish, Portuguese, Italian and
Latin. As the aim for this experiment was to recon-
struct from sister languages to a sister language, the
Latin items were removed from the set and instead
Italian was chosen to be the target language for the
experiment, since it had the most complete pattern
with respect to the other languages in the set. Table
1 illustrates the types of lines present in the initial
dataset.

Lines with no target and lines with no input were
removed. Lines where there was a target but no
input (row 3) were also removed, as well as lines
where there was input but no target (line 1). After
the removal of all lines which lead to empty pat-
terns in the Italian set, and all lines which were
empty patterns in the input, 3527 remained. From
these, 2466 lines were taken as training data, 345
were taken for validation, and 717 were set aside
for testing.

Meloni et al. (2019) use both an orthographic
and an IPA data set, and show that the orthographic
set yielded more accurate results. Here, we use
only orthographic representations, which we prefer
not for accuracy, but because orthographic datasets
are more easily acquired for most languages, par-
ticularly those of interest in language reclamation
projects. If both an IPA set and an orthographic set
are available, one may attempt using both to boost
the accuracy of the results. Chen (2018) showed
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that this is possible with glossing data in the case
of sentence level neural machine translation. We
will discuss this implementation in Section 5.2.

See Figure 1 for a very simplified phylogenetic
tree representation of the familial relations of the
Romance languages used in this dataset. This tree
was constructed using data from glottolog (Ham-
marström et al., 2020), and is included just for
illustrative purposes and not as a statement about
the phylogeny of Romance languages.3

3 Experimental Setup

This experiment was run using the OpenNMT-
pytorch neural machine translation (Klein et al.,
2017a) framework, using the default settings (a 2-
layer LSTM with 500 hidden units on both the en-
coder and decoder). The opennmt-py default setup
was chosen intentionally; the envisioned use-case
requires an easily reproducable approach for inter-
ested users or communities who might profit from
using this method for their own purposes, but who
don’t necessarily have deep expertise in machine
learning or tuning neural models. A publicly avail-
able toolkit, like opennmt, and a no-configuration
setup helps lower the bar to entry for these parties.

Neural machine translation (NMT) frameworks
are designed to translate sentences from one lan-
guage to another, but they can be used for a number
of sequential data tasks (Neubig, 2017). One such
task is the prediction of a cognate from a set of in-
put words, as used here. These frameworks are typ-
ically an encoder-decoder setup, where both the en-
coder and decoder are often implemented as LSTM
(Long Short-Term Memory) networks (Hochreiter
and Schmidhuber, 1997), which have the advantage
of effectively capturing long-distance dependencies
(Neubig, 2017). In an encoder-decoder setup, the
encoder reads in the character based input represen-
tation and transforms it into a vector representation.
The decoder takes this vector representation and
transforms it into a character based output repre-
sentation (Cho et al., 2014).

NMT frameworks also employ a “vocabulary"
set, which contains vocabulary of the language that
is being translated from and vocabulary of the lan-
guage that is being translated to. The size of this
vocabulary is often an issue for the effectiveness
of NMT models (Hirschmann et al., 2016). In our

3We also acknowledge that tree representations are not nec-
essarily the most accurate way to represent these relationships
(Kaylan and François, 2019).

case, the source vocabulary simply contains all of
the characters that occur in all the input language
examples and the target vocabulary contains the
characters that occur in the target language exam-
ple. To illustrate: if this task was about predicting
English words, then the target vocabulary would
contain all the letters of the English alphabet.

3.1 Input Concatenation
Since the input in our case is a list of cognates
from different languages, we need to consider how
we feed this input to the machine. There are two
obvious options for this task. We can either feed
the cognates one by one, or we can merge the cog-
nates first, before feeding them to the machine. In
this experiment, we merge the words character by
character to construct the input lines. This means
that for every line in the input, the first character
of each word was concatenated, then the second
character of each word was concatenated, and so
on. For an illustration:

(1) patterns in the input: aille, alha, al, aie

(2) target patterns: aglia

(3) input: aaaaillilhelae

(4) target: aglia

This merging delivered marginally better results
than simple concatenation in early testing, which is
why it was selected. It is unclear as to why this is
the case. We suspect that the merged input makes it
easier for the model to recognize if the same char-
acters appear in the same position of the input, as is
the case with "a" in the initial position in the above
example. However, we are cautious to recommend
this input representation in general, because differ-
ent morphologies may be better represented in a
concatenation.

3.2 Different Training Setups
To determine the performance gains from simply
having more data versus having data from more
languages, we create several training scenarios.
In each, we use the same aforementioned 2-layer
LSTM. To understand the benefit of additional lan-
guage, we first train with the entire training set with
all four languages, then successively remove lan-
guages from the input set until only one remains.
Next, to compare this to the impact of simply hav-
ing fewer data points, but from all languages, we
generate several impoverished versions of the data
set. For these impoverished versions, lines were
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removed randomly4 from the set reducing the data
by 70%, 50%, 30% and 10% respectively.

4 Evaluation Measures

Machine translation is usually evaluated using the
BLEU (Papineni et al., 2002) score, but BLEU is
designed with sentence level translations in mind.
We instead evaluate the output according to edit
distance in the style of Meloni et al. (2019) by
calculating the percentage of the output which is
within a given edit distance. In addition to this
metric, we also use a custom evaluation metric
designed to emphasize the usability of the output
for the intended use-case, i.e., as predictions to be
vetted by an expert to save time over doing the
entire analysis manually. In order to calculate this
score, we calculate the Damerau-Levenshtein edit
distance to the target for each word and assign
weights to them by their edit distance. That is:

score = (a+ b ∗ .9 + c ∗ .8 + d ∗ .7 + e ∗ .6)/t

where a is number of predictions with distance 0, b
is the number with distance 1, c is the number with
distance 2, d is the number with distance 3, e the
number with distance 4, and t is the total number
of predictions. As an example, consider a scenario
where there are three predicted cognates. If system
1 produces 3 output patterns within an edit distance
of 2, it would receive a score of 0.8. If system 2
produces two output patterns with edit distance 0
and one within a distance of 5, this would result in
a score of 0.67.

The logic behind this metric is that any predic-
tion with an edit distance larger than 4 edits is
essentially useless for the proposed task. Since
such a large edit distance essentially constitutes
an incorrigible mistake as mentioned in (Section
1.1). The edit distance of 4 constitutes an arbitrary
cut-off to a degree, but it allows us a simple and in-
formative evaluation metric for our use case. This
metric will rank a model that has a large number
of items in a and a large number of items beyond 4
edits lower than a model with items mostly in the
b-d range. Presumably, the latter is more useful to
the task, as small errors can be adjusted by linguists
or language users.

Using this metric, we can rank different input
combinations according to their assumed useful-

4This was done by simply removing every nth line depend-
ing on how much reduction was needed.

ness to the task of lexical reconstruction for revital-
ization purposes.

5 Results

Table 2 shows the edit distance percentages and
scores of different runs at 10,000 steps of train-
ing.5 We can compare the difference in outcome
between using fewer languages in the input versus
using less input lines overall. This addresses the
question of whether adding multiple languages to
the input helps compensate for fewer data points
(cognate pairs). The runs with successively reduced
numbers of languages (top half of the table), are all
trained with all available input lines (2466) but ex-
cluding specific columns/languages. The “reduced
input" runs (bottom half of the table), on the other
hand, are done with all four languages but with
fewer cognates, by excluding rows. These runs had
the following amount of training input lines: 10%:
2220 lines of input, 30%: 1793 lines of input, 50%:
1345 lines of input, 70%: 896 lines of input (recall
that the total number of input lines available for
training was 2466). All runs were tested on the
same testing data target.

In Table 2 (see following page), we can observe
that, unsurprisingly, the training sample with the
most languages and data (Span-Fre-Port-Ro) per-
forms best. 44.6% within edit distance 0 means
that almost half the predictions the machine makes
are correct. In terms of accuracy, this is not in-
credible, Meloni et al. (2019) report 64.1% within
edit distance 0. However, considering that we are
using a data set approximately a third the size of
theirs for training (2466 cognates compared with
7038), the performance is surprisingly good. The
more important measure for the intended use-case
is the fact that over 80% of items are within an edit
distance of 3, meaning that of the output produced,
80% need only three edits or fewer to meet the
target.

We can also observe that the performance suc-
cessively drops as we remove languages, with the
Spanish only6 performing worst. However, the
way in which this performance drops is not en-
tirely transparent. It appears that in terms of scor-
ing, the Spanish-French (Spa-Fre) sample actu-

5One step of training means that the algorithm has gone
through one batch of input lines. The default batch-size for
opennmt is 64.

6Spanish only was only trained for 5000 steps, as the model
plateaus around 1000 steps. The performance of the Spanish
only model was measured every 500 steps for Figure 2.
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Edit Distance 0 ≤1 ≤ 2 ≤3 ≤4 score

Span-Fre-Port-Ro 44.63% 57.74% 69.6% 80.33% 88.42% 0.82
Span-Fre-Port 42.68% 53.27% 68.34% 77.68% 84.94% 0.78
Span-Port-Ro 42.54% 53.28% 66.39% 74.76% 81.59% 0.75
Span-Fre 39.9% 50.9% 63.88% 74.62% 83.4% 0.76
Spanish only 35.6% 47.98% 60.25% 69.03% 74.76% 0.68

10% Reduced Input 40.17% 54.25% 69.6% 81.31% 87.59% 0.8
30% Reduced Input 39.75% 50.91% 66.11% 73.36% 83.12% 0.77
50% Reduced Input 33.19% 45.61% 60.95% 71.27% 82.4% 0.75
70% Reduced Input 17.02% 26.08% 41% 50.77% 65.97% 0.59

Table 2: Edit distance percentiles at 10,000 training steps. Shown are the results from using all data points with
different combinations of languages (top), as well as using all languages but with random downsampling of the
data from each (bottom). All scores are calculated from the testing data.

ally performs better than the Spanish-Portuguese-
Romanian sample. Further, while Span-Port-Ro
has significantly better values in the 0-2 edit range,
it is outperformed by Span-Fre in terms of score
because Span-Fre has more items in the ≤ 4 edit
range.

The noticeable difference between Span-Fre-
Port and Span-Port-Ro is surprising and warrants
some examination. The likely explanation is
twofold. First, The Romanian set is the one with
the most empty patterns. The Romanian training
data only includes 930 filled patterns, in compar-
ison, Portuguese includes 1905 patterns, French
includes 1790, and Spanish has 2125. It may be
the case that the Romanian data is too small in
comparison with the others to have a significant
impact on the outcome. The other factor may be
that Romanian is phylogenetically the most distant
from the target language (Italian) (Figure 1).

This becomes even more apparent in Figure 2,
which. shows the performance of different models
over time.7 Here we can observe that there is hardly
any difference between the performance of Span-
Fre-Port-Ro and Span-Fre-Port over time, and it
is only at 10,000 steps that they start to diverge.
This divergence at the 10,000 step mark is likely
random, the graph suggest that their overall per-
formance is almost identical in regards to scoring.
Another point in this direction are the seemingly
convergent graphs of Span-Fre and Span-Port-Ro,
suggesting that there is no difference between us-
ing 2 or 3 languages as input if the third language

7This can give a better representation of the performance,
because a neural net constantly adjusts its weights, so looking
at just one point in time can be deceiving.

Figure 2: Performance at different training steps for
models with different combinations of input languages,
plotted by custom score. All scores are calculated from
the testing data.

is Romanian.
Discounting the performance of the exclu-

sion/inclusion of Romanian, we can observe that
performance overall tends to increase with each
parallel language added. This is especially evident
with the obvious drop-off in performance of the
Spanish only input. If we assume that Romanian
has no impact, then we can see that 3 languages
(blue and orange) perform similarly and two lan-
guages (red and green) perform similarly, and there
is an obvious drop-off between those two patterns.
This suggests that using parallel language input can
compensate smaller datasets.

Due to the small dataset, the scores plateau fairly
early, around the 3000 epoch mark for most. This
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Figure 3: Performance of models trained on all four lan-
guages, but with varying levels of downsampled data.
Included for comparison are models trained with all
data on different language combinations. Plotted is the
custom score over steps. Scores are calculated every
1000 training steps. All models were run on OpenNMT-
py default parameters.

suggests that it would be sufficient to run these
models at 3000 epochs, which would save some
time on low-end hardware. However, with these
small datasets, training time should rarely exceed
5 hours on consumer grade PCs.8

5.1 Parallel Languages vs Input Reduction
Let us now consider the second question of this
paper: Can parallel language input compensate for
small dataset size? We know that performance re-
duces if we reduce the number of languages in the
input mix. Now we compare this drop-off to the
reduction in performance caused by reducing the
overall amount of input data. This can be seen in
Figure 3, which shows the performance at differ-
ent training steps for models trained on decreasing
amounts of data. Included for comparison are mod-
els trained on all data using all four (Span-Fra-Port-
Ro), three (Span-Port-Ro), and one (Span) input
language.9

First, we observe that a 10% reduction in training
data (grey) does not seem to have a strong impact,
as this performs mostly equal to Span-Fre-Port-

8These were trained on an i5-5200 CPU with 2.2GHz, and
training took anywhere between 4-7 hours for 10,000 steps.

9Since in Figure 2 we observe that Span-Port-Ro and Span-
Fre perform quite similarly, and Span-Fre-Port performs simi-
larly to Span-Fre-Port-Fro, to make the graph easier to read,
we remove Span-Fre and Span-Fre-Port from this graph.

Ro. Further, we can see is that the 30% reduced
case performs marginally better than Span-Port-
Ro. This is a good result, as it suggests that we
can compensate for a fair amount of data by using
additional languages. Essentially, in this case we
can observe that removing a language from the
input can be equivalent to removing 30% of the
input or more. Even the 50% reduced case (brown)
still performs better than using just one language
(Spanish only).

The extreme fall-off between the 50% reduction
and the 70% reduction suggests that there is some
point beyond which even multiple languages can-
not compensate for lack of data points. Where
this fall-off point is exactly, will likely fluctuate
depending on the data set.

5.2 Potential Improvements

Chen (2018) shows that neural machine translation
tasks can be greatly improved by adding glossing
data to the input mix (We will gloss over the techni-
cal details of the implementation here). While there
is no direct equivalent to the gloss-sentence rela-
tionship, there might be a close analog for words:
phonetic transcriptions. Orthography may be con-
servative and often misleading, but phonetic repre-
sentations are not.

Meloni et al. (2019) use a phonetic dataset in
their experiment, but they map from phonetic rep-
resentations to phonetic representations, so their
input and their target items are represented in IPA.
This performs worse than the orthographic task. An
interesting further experiment would be to blend
orthographic representations and phonetic repre-
sentations in the input, in the style of Chen (2018),
mapping that to an orthographic output. This would
be a close analog to the sentence-gloss to sentence
mapping that Chen (2018) reports success with.

One thing to consider, is that this may be not
ideal for the use-case. Phonetic datasets are not
easy to produce and the orthography is often more
readily available. While this might improve per-
formance, needing a phonetic as well as an ortho-
graphic dataset would likely increase the threshold
of reproducability for interested parties.

6 Warning Labels for Interested
Linguists

There are some important aspects of this kind of
approach that linguists, or community members
who are interested in utilizing it for their purposes,
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should be aware of.
There are certain things that this type of ap-

proach can and cannot do for a community or
project. The model does not so much reconstruct a
word for the community, but rather proposes what
the word could be, according to the data it has been
fed. The model will propose these recommenda-
tions on the basis of an abstract notion of what
the historic phonological and morphological differ-
ences are between languages ABC and language
D. This does not necessarily mean that the model
learns or understands the historical phonological
and morphological processes that separate the input
sister languages from the target languages. It has
simply learned a way to generalize from the input
to the output with some degree of accuracy. What
is learned need not necessarily overlap with what
linguists believe to have happened.

Therefore, this type of model will only ever gen-
erate cognates of the input. It cannot generate novel
items. This is an important factor to consider for
any community or linguist planning on using this
approach.

Consider the following case: Imagine we are
trying to use this approach to reconstruct English
from other Germanic languages. A large part of
the English lexicon is not of Germanic ancestry.
However, any lexicon we would try to reconstruct
using this trained algorithm would give us approxi-
mations of a Germanic derived lexeme for the word
we are trying to reconstruct. This is a potentially
undesirable effect of the way the model was trained.
Linguists and interested community members need
to be aware of this and implement their own quality
control.

However, this approach can potentially be useful
for any language project where a community and
or linguists are working with an incomplete lexicon
for a language. The prerequisite for this being a
useful tool in such a scenario is the assumption
that the sister languages to the target language are
somewhat well documented and have at least dictio-
naries available from which data can be extracted.
A final prerequisite is the presence of minimally a
small dictionary of the target language.

The model would then be trained using the sis-
ter languages as input, and the target language list
as a target output. After training confirms a rea-
sonable accuracy, the model can then be fed with
other known words in the sister language to get a
prediction of those words in the target language.

After producing said output, the linguist, or lan-
guage community, needs to subject the output to a
quality control and decide on a series of questions:
Do the output patterns match what we know of the
target language? Can we assume that these words
are cognates in the target language, or is there some
evidence that other forms were present? Finally,
if this is used by a community to fill in empty pat-
terns in their language, the community needs to
decide whether the output is something that the
community wants in their language. The algorithm
is not infallible, and only proposes. Ultimately, a
language community using this tool must make a
decision whether to accept or reject the algorithm’s
recommendations.

7 Conclusions

In this paper, we have shown that NMT frame-
works can be used to predict cognates of a target
language from cognates of its sister languages. We
have further shown that adding or removing input
languages has interesting effects on the accuracy of
the model. This indicates that we can use additional
sister languages to compensate the lack of data in
a given situation, though, as demonstrated in the
case of Romanian, we cannot blindly add sister
languages, nor assume that all additions are equally
useful. This might be a promising method for situ-
ations where not a lot of data is present, but there
are multiple well-documented related languages of
the target language.

The next step for this line of research is to move
from a proof of concept to an implementation in
an actual language revitalization scenario. This is
something we are currently working on. A further
question that need to be addressed as well, is how
well this approach performs with languages that
exhibit a different morphology from the Romance
languages, such as agglutinative and polysynthetic
languages.

All code and data used for this project are open-
source and can be found here, in order to reproduce
these results.

Something we would like to address in this final
paragraphs is that machine learning is a potential
tool. Like every tool, it has its uses and cases where
it is not useful. The decision of using such a tool
to expand the lexicon of a language is a decision of
that language community, and not of a linguist.
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Abstract
This paper describes the development of the
first Universal Dependencies (UD, Nivre et al.,
2016, 2020) treebank for St. Lawrence Island
Yupik, an endangered language spoken in the
Bering Strait region. While the UD guide-
lines provided a general framework for our
annotations, language-specific decisions were
made necessary by the rich morphology of the
polysynthetic language. Most notably, we an-
notated a corpus at the morpheme level as well
as the word level. The morpheme level anno-
tation was conducted using an existing mor-
phological analyzer (Chen et al., 2020) and
manual disambiguation. By comparing the
two resulting annotation schemes, we argue
that morpheme-level annotation is essential for
polysynthetic languages like St. Lawrence Is-
land Yupik. Word-level annotation results in
degenerate trees for some Yupik sentences and
often fails to capture syntactic relations that
can be manifested at the morpheme level. De-
pendency parsing experiments provide further
support for morpheme-level annotation. Im-
plications for UD annotation of other polysyn-
thetic languages are discussed.

1 Introduction

The Universal Dependencies (UD) project (Nivre
et al., 2016, 2020) provides a cross-lingual syn-
tactic dependency annotation scheme for many
languages. The most recent release of the UD
treebanks (version 2.7) contains 183 treebanks in
104 languages. However, polysynthetic languages,
known for words synthesizing multiple morphemes,
are still much under-represented in the UD tree-
banks. To our knowledge, Abaza1 and Chukchi (Ty-
ers and Mishchenkova, 2020), are the only polysyn-
thetic languages included in UD version 2.7.

In this paper, we describe how we annotated a
corpus of St. Lawrence Island Yupik (also known

1The Abaza treebank, as released in UD v2.7, contains 33
sentences and does not provide any language-specific docu-
mentation.

as Central Siberian Yupik), a polysynthetic lan-
guage spoken in parts of Alaska and Chukotka,
Russia, within the framework of the UD guidelines.
While UD is a framework for word-level annota-
tions, we argue that morpheme-level annotations
are more meaningful for polysynthetic languages.
We provide morpheme-level annotations for Yupik
in addition to word-level annotations.2 We believe
that subword-level annotations can help better cap-
ture morphosyntactic relations for polysynthetic
languages and assist further dependency annota-
tions and morphosyntactic research for polysyn-
thetic languages.

Previously Tyers and Mishchenkova (2020)
called for the need to annotate parts of words in
regard to noun incorporation in Chukchi. They
proposed annotating a noun incorporated into a
verb via morphology as a separate token available
in the enhanced dependency structure. While our
approach is motivated by a similar need to anno-
tate subword units for another polysynthetic lan-
guage, our paper focuses on morpheme-level an-
notations, which may be applied to other types of
multi-morphemic words than just noun incorpora-
tion.

In what follows, we describe the characteristics
of the Yupik language (§2) and show how we an-
notated a corpus at the morpheme level as well
as the word level (§3 and §4). Then we present
some language-specific decisions we made for
morpheme-level annotations and illustrate Yupik
constructs captured by the new annotation scheme
(§5 and §6). We also compare the performance of
the two annotation schemes in automatic parsing
experiments (§7). Based on our findings, we con-
clude that the morpheme-level annotation is essen-
tial and effective for polysynthetic languages and
discuss implications of the study for other polysyn-

2The UD_Yupik-SLI treebank is scheduled to be re-
leased in UD v2.8 on May 15, 2021. See https://
universaldependencies.org for details.
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thetic languages and the UD framework (§8 and
§9).

2 St. Lawrence Island Yupik

St. Lawrence Island Yupik (ISO 639-3 ess; Yupik
hereafter) is a polysynthetic language in the Inuit-
Yupik language family, spoken in parts of Alaska
and Chukotka, Russia. Like other polysynthetic
languages, Yupik is characterized by its rich mor-
phology. Jacobson (2001) provides the most thor-
ough descriptions of the Yupik grammar with an
emphasis on the morphology. Yupik is strictly
suffixing with the exception of one prefix. Yupik
words typically have the following form:

root (+ derivational morphemes)∗

+ inflectional morpheme (+ enclitic)

That is, a typical Yupik word has a root, fol-
lowed by zero or more derivational morphemes
(thus forming a stem), followed by obligatory in-
flectional morpheme(s), finally followed by an op-
tional enclitic. Most roots are nominal or verbal,
such as mangteghagh- ‘house’ and negh- ‘to eat’
respectively. The language also includes a set of
non-inflecting particles, such as quunpeng ‘always’
or unaami ‘tomorrow’.

Yupik derivational morphology is highly pro-
ductive; words with up to seven derivational mor-
phemes have been attested (de Reuse, 1994, p.53),
and words with 1-3 derivational morphemes are
very common. The Badten et al. (2008) Yupik-
English dictionary and the Chen et al. (2020) Yupik
finite-state morphological analyzer document about
400 derivational suffixes:

• 81 noun-elaborating suffixes (N→N) that at-
tach to nominal roots and yield nominal bases

• 61 verbalizing suffixes (N→V) that attach to
nominal roots and yield verbal bases

• 218 verb-elaborating suffixes (V→V) that at-
tach to verbal roots and yield verbal bases

• 36 nominalizing suffixes (V→N) that attach
to verbal roots and yield nominal bases

We now provide two example Yupik sentences
involving the Yupik nominal base mangteghagh-
‘house’.

(1)

Taghnughhaat aanut
Taghnughha-at aan-u-t
child-ABS.PL to.go.out-IND.INTR-3PL

mangteghameng
mangtegha-meng
house-ABL_MOD.SG

‘The children went out of the house.’
(Jacobson, 2001, p.22)

In (1), the Yupik nominal base mangteghagh-
‘house’ forms the word mangteghameng ‘from the
house’ by taking the inflectional suffix -meng to
mark ablative-modalis case.

(2)

Mangteghaghllangllaghyugtukut.
Mangtegha-ghlla-ngllagh-yug-tu-kut
house-big-to.make-to.want.to-IND.INTR-1PL

‘We want to make a big house.’
(Jacobson, 2001, p.47)

In (2), the same nominal base takes multiple
derivational morphemes, forming the sentence-
length word Mangteghaghllangllaghyugtukut. To
form this multi-morphemic word, the nom-
inal base mangteghagh- first combines with
the noun-elaborating derivational suffix -ghlla-
(N→N), yielding an extended nominal base
mangteghaghlla- ‘big house’. This extended nomi-
nal base then combines with the verbalizing deriva-
tional suffix -ngllagh- (N→V) to create an ex-
tended verbal base mangteghaghllangllagh- ‘to
make a big house’. Next, this extended verbal
base combines with the verb-elaborating suffix -
yug- (V→V) to yield the extended verbal stem
mangteghaghllangllaghyug- ‘to want to build a big
house’. Finally, the inflectional suffix -tu- attaches
to the extended verbal stem to mark the verb’s va-
lency as intransitive and its mood as indicative,
while the inflectional suffix -kut marks the person
and number of the verb’s subject as first person
plural; the final result is the fully inflected word
mangteghaghllangllaghyugtukut ‘we want to make
a big house’.

(3) Taghnughhaat aanut mangteghameng .

nsubj obl

root
punct

(4)
Mangteghaghllangllaghyugtukut .

We want to make a big house. PUNCT

punct

root
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(5)
Mangtegha- -ghlla- -ngllagh- -yug- -tu- -kut .

house big to.make to.want.to IND.INTR 1PL PUNCT

obj
nmod xcomp dep:infl

root
dep:infl

punct

(6)
Taaghta-m aghna-mun qayu-nghite-sq-a-a kufi-∅
doctor-REL.SG woman-ALL.SG to.drink-not.to-to.tell.one.to-IND.TRNS-3SG.3SG coffee-ABS.SG

‘The doctor prevented the woman from drinking the coffee.’ (Jacobson, 2001, p.67)

(7)
Taaghtam aghnamun qayunghitesqaa kufi .

doctor woman he.told.one.not.to.drink.it coffee PUNCT

nsubj
nsubj obj

root
punct

(8) Taaghta- m aghna- mun qayu- -nghite- -sq- -a- -a . . .
doctor REL.SG woman ALL.SG to.drink not.to to.tell.one.to IND.TRNS 3SG.3SG

nsubj

dep:infl
nsubj

dep:infl dep:aux
xcomp

root

dep:infl
dep:infl

3 Morpheme-level dependency relations

The UD annotation guidelines are lexicalist (Chom-
sky, 1970; Bresnan and Mchombo, 1995) in nature,
specifying that syntax dependencies should be an-
notated at the word level, such that both the head
and the child of each dependency relation are words
(Nivre et al., 2016).

In (3), we see the Yupik sentence from (1) with
dependency relations annotated at the word level,
following the UD guidelines. The resulting depen-
dency tree successfully depicts the core syntactic
information in the Yupik sentence, with the intran-
sitive verb aanut at the root of the dependency tree,
with a nominal subject and an oblique argument as
children. However, when we annotate the single-
word Yupik sentence from (2) according to the UD
annotation guidelines, the result is a degenerate
tree that completely fails to capture any syntactic
information about the Yupik sentence.

In order to adequately represent the syntactic
relations in (2), it is necessary to discard the lex-
icalist hypothesis and annotate relations between
morphemes rather than between words. When we
contrast (4) with (5), we observe that annotating
relations at the morpheme level results in a mean-
ingful linguistic analysis for this Yupik sentence.
It is clear from these two dependency trees that
treating morphemes as the basic unit of syntactic

dependency relations is necessary in order to ade-
quately encode the syntax of the Yupik sentence in
(2). By doing so, we move from a degenerate tree
devoid of syntactic information to a tree that suc-
cessfully encodes a main verb -yug- (‘to want to’)
with a complement -ngllagh- (‘to make’), and an
object mangtegha- (‘house’) with a nominal modi-
fier -ghlla- (‘big’); the inflectional suffixes encode
the number and person of the subject (1PL, ‘we’)
and the main verb’s mood and valency (IND.INTR).

In (6) we observe a more complex Yupik sen-
tence; we see the sentence Taaghtam aghnamun
qayunghitesqaa kufi (‘The doctor prevented the
woman from drinking the coffee’) annotated in (7)
with dependency relations between words. The re-
sulting dependency tree fails to illustrate the com-
plex verbal structure of the multi-morphemic third
word qayunghitesqaa (‘he told one not to drink it’);
it is only in (8) when we annotate (6) with syntactic
relations between morphemes that we are able to
observe that aghnamun (‘the woman‘) is the sub-
ject of the embedded verb qayu- (‘to drink’) while
Taaghtam (‘the doctor‘) is the subject of the main
verb -sq- (‘to tell’). That is, parts of the Yupik word,
the main verb -sq- (‘to tell’) and the embedded verb
qayu- (‘to drink’), participate in different syntactic
relations, which cannot be annotated at the word
level. The necessity for this type of sub-word anno-
tation is not unique to Yupik; see Çöltekin (2016)
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for a discussion of subword syntactic units in Turk-
ish.

If sentences that required morpheme-level de-
pendency relations were rare, it might be reason-
able to accept the inclusion of a few degenerate
and under-annotated trees such as (4) and (7) in
a Yupik dependency treebank. However, Yupik
is polysynthetic, and multi-morphemic words in-
volving complex derivation are very common; the
same is true of all of the languages in the Inuit-
Yupik language family. For the polysynthetic lan-
guages in this language family, there are simply too
many sentences that require morpheme-level de-
pendency annotations to annotate only dependency
relations between words. In particular, essentially
all words formed with derivational suffixes require
morpheme-level dependency relations in order to
satisfactorily encode the syntax of the sentence.

In annotating Yupik sentences with dependency
relations, we therefore treat each Yupik morpheme
as a token rather than treating each Yupik word as
a token. This necessarily requires that Yupik words
be analyzed and segmented into morphemes prior
to dependency annotation; this task was performed
using the existing Yupik finite-state morphological
analyzer (Chen et al., 2020). In cases of ambiguity
when the analyzer provided multiple possible anal-
yses for a given word, we selected the gold analysis
via manual disambiguation.

We chose to represent all Yupik morphemes as
independent syntactic tokens, including inflectional
morphemes. An alternative approach would be to
instead not tokenize inflectional morphemes, but
rather annotate inflectional information using fea-
ture values. A major benefit of our choice is greater
compatibility with the existing Yupik morpholog-
ical analyzer (Chen et al., 2020), which treats in-
flectional morphemes as independent tokens in the
underlying lexical form.

Because the UD annotation guidelines were not
designed for morpheme-level annotation, some mi-
nor adaptations were required; we discuss these
adaptations in §5 and §6 as we discuss the POS
tags and dependency relations used in our corpus
along with sample sentences. In order to enable
the use of morphemes as tokens, we adapted the
existing “multiword expressions” annotation mech-
anism. The UD annotation guidelines recognize
that syntactic words do not always align perfectly
with orthographic word boundaries; this can occur
even in analytic languages such as English, for ex-

Unit Word-level Morph-level
Sentences 309 309
Words 1,221 1,221
Segments 1,221 2,568
Fused – 773

Table 1: Number of annotations per annotation level for
the Jacobson corpus. Words mean the number of word
tokens while Segments count any sub-word tokens in-
stead of word tokens if applicable. Fused counts the
number of word tokens that are split into subword units.

ample, in words involving a clitic or a contraction.
For example, in Spanish, the word dámelo (‘give it
to me’) may be broken down into dá me lo (‘give
me it’) for the purpose of UD annotations; the anno-
tation scheme records that the single orthographic
token (dámelo) is annotated as multiple syntactic
words, and that information can be used to col-
lapse the annotations to the single orthographic
token when needed. In our case, we treat each
multi-morphemic Yupik word as a UD “multiword
expression,” with Yupik morphemes serving as the
tokens within the “multiword expression.”

Recognizing the UD project’s lexicalist view
of syntax, we provide a script to convert our
morpheme-level annotations into word-level anno-
tations. This script deterministically merges each
multi-morphemic word into a single word token
using Udapi (Popel et al., 2017). Because our
morpheme-level annotation does not strictly follow
the entirety of the UD guidelines, a small number
of sentences had to be manually corrected after the
conversion. We plan to release our morpheme-level
annotation in UD version 2.8 along with descrip-
tions of the conversion process from the morpheme-
level annotations to the word-level annotations.

4 Corpus

The annotated corpus is comprised of exercise sen-
tences from the Yupik reference grammar (Jacob-
son, 2001, as released in Schwartz et al., 2021).
The grammar book, designed to teach Yupik at
the college level, provides end-of-chapter exercises
with sample Yupik sentences. Morphological seg-
mentation and analyses were performed using the
Chen et al. (2020) Yupik morphological analyzer
and manually verified when needed.

The number of annotations for the final version
of the Yupik treebank is summarized in Table 1.
A total of 309 sentences with 1,221 word tokens
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UPOS Word-level Morph-level
ADV 62 65
CCONJ - 4
DET 5 5
NOUN 426 486
NUM 1 1
PART 16 16
PRON 19 23
PUNCT 310 310
VERB 382 556
X - 1,102

Table 2: Frequencies of Part of Speech (POS) tags in
the word-level and morpheme-level annotations for the
Jacobson corpus.

were annotated. For the morpheme-level annota-
tion, about 63% of the words (773 words) were
further analyzed into the subword units, with a to-
tal of 2,568 segments (i.e. morphemes, particles
and punctuation marks) annotated.

5 POS Tags

We annotated our Yupik corpus using the tags
shown in Table 2.3 Our morpheme-level annota-
tions make use of ten POS tags; when these anno-
tations are converted into word-level annotations,
only eight POS tags are utilized.

(9)
Qikmi- -lgu- -yug- -tu- -nga
NOUN VERB VERB X X
dog to.have to.want.to IND.INTR 1SG

object xcomp

root

dep:infl
dep:infl

We tagged nominals and nominal bases as NOUN
and verbals and verbal bases as VERB. We tagged
derivational suffixes that yield nominal stems
(N→N, V→N) as NOUN and those that yield ver-
bal stems (N→V, V→V) as VERB. For example,
(9) shows the morpheme-level annotation for the
word Qikmilguyugtunga ‘I want to have a dog’. In
the annotation, the nominal root Qikmi- ‘dog’ com-
bines with a verbalizing derivational suffix (-lgu-
‘to have’, N→V) to yield a verbal base (Qikmilgu-
‘to have a dog’). Then this extended base com-
bines with the verb-elaborating suffix (-yug- ‘to
want to’, V→V) to yield a complex verbal stem

3The primary descriptions of Yupik are de Reuse (1994),
which provides a description of Yupik syntax within the frame-
work of autolexical syntax, and Jacobson (2001), which pro-
vides a description of Yupik grammar focusing on morphology
and phonology in the context of a college-level Yupik class.

(Qikmilguyug- ‘to want to have a dog’), which
is followed by inflection. The two verb-yielding
derivational suffixes are tagged as VERB.

Uninflected words or particles were given the
particle tag (PART). Many Yupik particles are bor-
rowed from Chukchi, a geographically neighboring
language, and are mostly adverbial or connective in
meaning (de Reuse, 1994, p.14). Examples include
ighivgaq ‘yesterday’ and qayughllak ‘because’.

The two additional POS tags available only at the
morpheme level were X and CCONJ . The POS tag
X is reserved for words that are outside of POS tags
defined within the UD framework. We used the X
tag for inflectional suffixes such as -tu- and -nga as
in (9). Coordinating conjunctions (CCONJ) were
only found at the morpheme level because they are
only expressed as an enclitic in the language: =llu
‘and’ as in (10).

(10)
naa- -ka =llu
NOUN X CCONJ . . .

mother ABS.1SGPOSS.SG and

dep:infl
cc

6 Dependency relations

Our morpheme annotation scheme makes use of
25 types of dependency relations while our word
annotation scheme makes use of 14 dependency re-
lations. In general, we followed the UD annotation
guidelines, except in cases where polysynthetic na-
ture of Yupik made divergence from the guidelines
necessary. The full documentation on POS tags,
morphological features, and dependency relations
used in the treebank is available at the language’s
UD documentation page.4

The most notable difference between the two
annotation schemes is the dep relation. Within
the UD framework, the dep relation is reserved
for unspecified relations. Because morpheme-level
annotations require multiple dependency relations
specified for subword units, we created a few de-
pendency relations under the dep relation for the
morpheme-level annotation only. Note that some
relations that are commonly annotated at the word
level for other languages (e.g. auxiliary, copula)
are only available at the morpheme level in Yupik.
When we can, we expanded existing relations, de-
fined at the word level, to morphemes (e.g. nmod

4More details are provided in Appendix A. See
https://universaldependencies.org/ess/
index.html for the full documentation.
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for nominal modifier). Whenever that was not pos-
sible, we created a version of the corresponding
dependency relation in our morpheme annotation
scheme.

For example, we used dep:aux for verb-
elaborating (V→V) derivational morphemes that
modify the base verb’s tense and aspect informa-
tion. For example, the V→V derivational mor-
pheme (as manifested as -aq- in the context) adds
the present tense and progressive aspect to the base
gaagh- ‘to cook’ in (11).

(11)

gaagh- -aq- -u- -q
to.cook to.be.currently.V IND.INTR 3SG

Aspect=Prog
Tense=Pres

dep:aux dep:infl
dep:infl

This relation would fit the descriptions of the auxil-
iary (aux) relation if it were annotated at the word
level. We created a new relation as dep:aux to
describe the dependency relation at the morpheme
level because there were UD limitations to applying
the existing aux relation to morphemes. First, the
aux relation requires a short list of possible word
forms while morphemes with the dep:aux rela-
tion may take many different forms depending on
the context as they undergo morphophonological
processes. Second, the word with the aux rela-
tion cannot have any children while corresponding
morphemes often have inflections as their children.

Similarly, we included the dep:mark relation
to represent the marker (mark) relation at the mor-
pheme level. In (12) we observe a word that acts as
a subordinate clause in a sentence and is roughly
translated as ‘in order to see them’. The second
morpheme of the word -na- marks the word as a
subordinate clause to the main verb, a mark re-
lation in the word level UD annotation.5 Again,
because of some limitations of using this relation
at the morpheme level, we created the dep:mark
relation for morpheme-level anntoations.

(12) . . . esghagh- -na- -lu- -ki
. . . to.see in.order.to SBRD.INTR _.3PL

advcl dep:mark dep:infl
dep:infl

On a similar note, the dep:cop relation was
added to represent the copula (cop) relation at the
morpheme level. In (13), the verbalizing (N→V)

5The inflection also shows that the word is in subordinative
mood, where the subject of the verb is the same as the subject
of the main verb.

derivational suffix -ngu- acts as a copula, turning
the nominal base as a verbal stem, which combines
with the inflection to form a verbal word meaning
‘it is a land’ in the sentence meaning ‘Chaplino is a
land’.

(13)
Ungaziq nuna- -ngu- -u- -q . . .
Chaplino land to.be IND.INTR 3SG

nsubj

root

dep:cop dep:infl
dep:infl

The dep:infl was used for the relation be-
tween the stem and its inflectional suffix as shown
in (13). Because all Yupik words other than parti-
cles require one or more inflectional morphemes,
the dep:infl relation was the most frequently
used in the morpheme-level annotation.

In general, morpheme-level annotation was
needed to capture some of important morphosyntac-
tic relations present in Yupik words. The aux and
cop relations are only available at the morpheme
level in Yupik. While a small number of particles
act as marker, the mark relation was also primarily
attributed to derivational suffixes. When annotating
Yupik sentences at the word level, such dependency
relations are lost. Only when we annotate at the
morpheme level can we find such constructions,
which may be invaluable in subsequent linguistic
inquiries or computational applications alike.

7 Parsing experiments

In order to investigate the practical usage of the
annotations, we conducted automatic parsing ex-
periments using UDPipe 1.2 (Straka and Straková,
2017) and UDPipe 2.0 (Straka, 2018). The UDPipe
project6 provides a trainable pipeline for any UD
treebanks in the CoNLL-U format.

7.1 Data
We made use of two sets of data: the Jacobson cor-
pus and a separate test corpus annotated using the
same word-level and morpheme-level annotation
schemes. A text extracted from Nagai (2001) was
annotated to provide an out-of-domain test set. The
Nagai corpus was smaller than the entire Jacobson
corpus with 360 word tokens or 834 tokens when
including morphemes. The Nagai corpus is quite
distinct from the Jacobson corpus. The former is a
collection of an elder Yupik speaker’s speech while
the latter is a college-level grammar book. There-
fore, the former has more disfluencies, repetitions,

6https://ufal.mff.cuni.cz/udpipe
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Word-level Morph-level Morph-level
(Automatic segmentation) (Automatic segmentation) (Gold segmentation)

Corpus Jacobson (2001) Nagai (2001) Jacobson (2001) Nagai (2001) Jacobson (2001) Nagai (2001)

Words 100 100 100 100 100 100
Segments 100 100 71.56 ± 3.68 42.39 100 100
UPOS 93.01 ± 2.08 71.59 69.82 ± 3.69 34.16 97.22 ± 1.40 80.79
Lemmas 71.47 ± 3.14 40.39 71.05 ± 3.67 39.51 99.19 ± 0.79 92.32
Features 78.17 ± 3.32 46.24 67.14 ± 2.65 34.02 94.17 ± 2.29 78.03
UAS 88.86 ± 1.64 60.72 45.82 ± 7.77 9.33 91.82 ± 2.98 67.95
LAS 81.52 ± 2.91 43.45 45.13 ± 7.69 9.33 89.30 ± 3.06 61.46

Table 3: Automatic parsing results using UDPipe 2.0 (Straka, 2018) for the word-level and morpheme-level anno-
tation schemes. A test set was either 1) automatically segmented or 2) manually verified to have gold segmentation.
The annotations on Jacobson (2001) was trained and tested using ten-fold cross validation. A sample text from
Nagai (2001) was annotated to provide an out-of-domain test set. The columns show F1 score: Words word tok-
enization; Segments splitting words into morphemes when applicable; Lemmas lemmatization; UPOS universal
part-of-speech tags; Feats morphological features; UAS unlabelled attachment score (dependency heads); LAS
labelled attachment score (dependency heads and relations).

and some code-switching with English words while
the latter contains sample sentences in the literary
language without any foreign words.7

7.2 Tokenization

At annotation time, the process of tokenizing sen-
tences into syntactic tokens is performed manually
as part of the annotation process. When annotat-
ing relations between morphemes, each morpheme
serves as a token. When annotating relations be-
tween words, each word (delimited by whitespace
or punctuation) serves as a token.

At test time, it is also necessary to tokenize each
sentence. In our experiments, we consider three
mechanisms for doing so.

In the first experimental condition, we follow
standard dependency parsing practice and rely on
the dependency parser to tokenize each sentence
into word tokens. To do so, we used a UDPipe 1.2
(Straka and Straková, 2017) model to automatically
tokenize each test sentence into word tokens. In
Table 3, we refer to this tokenization method as
Word-level (Automatic segmentation).

In the second experimental condition, we used
a UDPipe 1.2 (Straka and Straková, 2017) model
to automatically tokenize each test sentence into
morpheme tokens. In Table 3, we refer to this to-
kenization method as Morpheme-level (Automatic
segmentation).

In the third experimental condition, we assume
that tokenization of words into morphemes is han-

7More details about the Nagai corpus are available in Ap-
pendix B.

dled as a separate pre-process (for example, by a
finite-state morphological analyzer). In this con-
dition, we provide a test file in which words have
already been correctly segmented into morpheme
tokens. In Table 3, we refer to this tokenization
method as Morpheme-level (Gold segmentation).

We observe the results of tokenization in the
first two rows of Table 3. The first row shows that
all methods were able to identify word boundaries
without error. In the second row of Table 3, we
observe that using a dependency parser to segment
Yupik words into morphemes is only 72% effective.
This is problematic, as this places an upper bound
on the potential dependency parsing performance
of this condition. By definition, the third condition
results in perfect morpheme tokenization.

7.3 Methods

We trained separate UDPipe 2.0 (Straka, 2018)
parsers for the word-level annotations and the
morpheme-level annotations, using the default UD-
Pipe settings. UDPipe 1.2 (Straka and Straková,
2017) models were trained for tokenizing the test
sets only, also using the default settings. To test in-
domain performance, we trained and tested a parser
on the original Jacobson corpus using ten-fold cross
validation for each annotation scheme. For out-of-
domain performance, we trained a parser on the
entire Jacobson corpus and tested it on the Nagai
corpus for each annotation scheme. The evalua-
tion was conducted based on the official evaluation
script from the CoNLL 2018 UD Shared Task (Ze-
man et al., 2018).
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7.4 Results

Parsing results (unlabelled and labelled attachment
scores) are shown in the final two rows of Table 3.
In all cases, we observe that parsing accuracy for
the in-domain data from Jacobson is substantially
higher than in the out-of-domain data from Nagai.

When we compare the word-level and
morpheme-level parsing given automatically
segmented test sets (left and middle columns), the
word-level parsing outperforms the morpheme-
level parsing due to many segmentation errors
present in the latter. Segmentation errors create an
effective upper limit for any subsequent parsing
efforts at the morpheme level, and all results in the
second column are substantially worse than those
in the first column.

In contrast, morpheme-level parsing outperforms
word-level parsing across the board when correct
morpheme tokenization is provided (right-most col-
umn). This shows that morpheme-level parsing
(the second column) performed poorly on the auto-
matically segmented test set mostly because of the
poor quality morpheme segmentation. We observe
that the morpheme-level dependency parser (the
third column) outperforms the word-level parser
(the first column) across the board, and even with
the more challenging out-of-domain test set.

The task of analyzing and segmenting a word
into its underlying component morphemes is a well-
studied task for which robust finite-state solutions
are well known. For polysynthetic languages espe-
cially, the development of such a finite-state mor-
phological analyzer is nearly always the very first
element of language technology developed. It is
therefore realistic to assume that tokenization of
words into morphemes can be effectively handled
by in a pre-processing step prior to dependency
parsing.

8 Discussion

The Universal Dependencies project is intended as
a de-facto standard for consistent dependency syn-
tax annotations across all of the world’s languages
(Nivre et al., 2016, 2020). Our attempt to construct
a UD corpus of Yupik can be viewed as a kind of
stress test for the UD annotation project. If the
UD guidelines truly are universal in nature, then it
should be possible to construct dependency trees
for Yupik while fully following the UD guidelines;
to the extent that this is not possible, any such dis-
connect may serve to illuminate ways in which the

UD guidelines might be improved upon in order to
be more language universal.

One of the core assumptions of the UD guide-
lines is lexicalism, the assumption that the funda-
mental token of syntax should be the word. This
assumption has been widely adopted in many syn-
tactic formalisms, including the Lexical-Functional
Grammar theory of syntax that UD in part draws
upon. It has, however, been widely debated (for a
thorough recent critique of lexicalism, see Bruen-
ing, 2018), and other theories such as Distributed
Morphology (Halle and Marantz, 1993) explicitly
reject the lexicalist hypothesis, asserting that large
parts of morphology and syntax operate using a
common hierarchical mechanism.

The UD guidelines already explicitly recognize
that phonological and orthographic boundaries do
not always coincide with syntactic words. Nivre
et al. (2016) recognize that clitics act as words from
the viewpoint of syntax, even though phonologi-
cally (and orthographically) they must attach to a
host word; as such in UD annotations clitics are
treated as independent syntactic tokens. Similarly,
the UD annotation guidelines recognize that con-
tractions should be treated as the combination of
two independent syntactic tokens. Finally, the UD
guidelines recognize that some larger units such
the English expression in spite of act syntactically
as a single token.

However, the existing UD guidelines indicate
that derivational morphemes should not be treated
as syntactic words for the purposes of dependency
annotation. For example, in an English dependency
tree, the word dancer would be treated as a sin-
gle syntactic token, rather than as two (verbal root
dance- + nominalizing suffix -er). In this paper,
we have observed that this approach to derivational
morphology fails when applied to Yupik.

The languages in the Inuit-Yupik language fam-
ily are polysynthetic and rely heavily on produc-
tive derivational morphology. St. Lawrence Island
Yupik has around 400 derivational suffixes, around
half of which are verb-elaborating (V→ V) deriva-
tional suffixes. It is essentially impossible to ad-
equately annotate the syntax of Yupik sentences
without recognizing that significant parts of Yupik
grammar are handled by Yupik derivational mor-
phology.

In this paper, we have chosen to treat every Yupik
morpheme (both derivational and inflectional) as a
syntactic token. In future work, it may be beneficial
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to build upon work by Çöltekin (2016) and treat
only some derivational morphemes as syntactic to-
kens, while not tokenizing other derivational mor-
phemes and perhaps all inflectional morphemes.
At a minimum, this work shows that in order to be
universal, the UD project must acknowledge that at
least some derivational morphemes must be treated
as syntactic tokens.

9 Conclusion

This paper presents the first UD treebank for
St. Lawrence Island Yupik, the first UD treebank
to be annotated at the morpheme level as well as
the word level to our knowledge. The polysyn-
thetic language has rich morphology, characterized
by a theoretically unlimited number of possible
derivations and multimorphemic words. In order
to capture the morphosyntactic relations among
morphemes, we annotated a corpus (Jacobson,
2001) at the morpheme level and converted the
morpheme-level annotations into word-level anno-
tations. While the morpheme-level annotation may
require more linguistic resources (e.g. morphologi-
cal analyzer, morphological segmentation), it pro-
vides a deeper insight into the language and better
automatic parsing performance. Morpheme-level
syntactic dependency annotation may be a better
way to represent polysynthetic languages within
the framework of UD.

References
Linda Womkon Badten, Vera Oovi Kaneshiro,

Marie Oovi, and Christopher Koonooka. 2008.
St. Lawrence Island / Siberian Yupik Eskimo Dictio-
nary. Alaska Native Language Center, University
of Alaska Fairbanks.

Joan Bresnan and Sam A. Mchombo. 1995. The lexical
integrity principle: Evidence from Bantu. Natural
Language and Linguistic Theory, 13(2):181–254.

Benjamin Bruening. 2018. The lexicalist hypothesis:
Both wrong and superfluous. Language, 94(1):1–
42.

Emily Chen, Hyunji Hayley Park, and Lane Schwartz.
2020. Improved finite-state morphological analysis
for St. Lawrence Island Yupik using paradigm func-
tion morphology. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
2676–2684, Marseille, France. European Language
Resources Association.

Noam Chomsky. 1970. Remarks on nominalization. In
Roderick A. Jacobs and Peter S. Rosenbaum, edi-

tors, Readings in English Transformational Gram-
mar, pages 184–221. Ginn, Waltham, MA.
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A Overview of dependency relations
used in the Jacobson treebank

Table 4 summarizes dependency relations used in
the word-level and morpheme-level annotations for
the Jacobson corpus. In this section, we provide
additional descriptions of the dependency relations
that we added for Yupik but were not introduced in
the main text due to limited space.

We added a sub-relation (obl:mod) to the ex-
isting obl relation to specify a special usage of a
noun in ablative-modalis case. The existing obl
relation is used for an oblique nominal or as a
non-core argument of the corresponding verb. For
example, a noun in ablative-modalis case is an-
notated as an oblique nominal (obl) when used
to express motion away from somewhere as in
mangteghameng (house-ABL_MOD.SG, ‘from the
house’) in (14).

(14) Taghnughhaat aanut mangteghameng
children they.went.out from.house

nsubj obl

root

In contrast, a noun in ablative-modalis case can
also be used as “indefinite object” of an intran-
sitive verb (Jacobson, 2001, p.20). For example,
pagunghaghmeng (crowberry-ABL_MOD.SG) in (15)
is understood as the object of an intransitive verb as
an indefinite form of the noun (e.g. “crowberries”
instead of “the crowberries”). Because an indefi-
nite object in ablative-modalis case is not encoded
in the verb, we annotated such nouns as an oblique
noun, but distinguished it with the rest of oblique

Dependency Word-level Morph-level
acl - 17
advcl 73 73
advmod 73 76
appos 21 21
cc – 4
conj 2 2
dep:ana – 7
dep:aux – 120
dep:cop – 12
dep:emo – 1
dep:infl – 1,087
dep:mark – 5
dep:pos – 3
det 5 5
mark 3 3
nmod 46 68
nmod:arg - 3
nsubj 173 173
nummod 1 1
obj 94 121
obl 67 69
obl:mod 44 44
punct 310 310
root 309 309
xcomp - 34

Table 4: Frequencies of dependency relations in the
word-level and morpheme-level annotations for the Ja-
cobson corpus.

nouns by specifying the sub-relation, obl:mod,
dedicated to those indefinite objects.

(15) Afsengaq neghtuq pagunghaghmeng
mouse it.ate crowberries

nsubj

root

obl:mod

This is different from the obj relation for a noun
in absolutive case used as the object of a transitive
verb. The nominal base (pagungha- ‘crowberry’)
takes the absolutive case inflection in (16) when
used as the object of a transitive verb.

(16) Pagunghaat aavgii
crowberries she.divided.them

obj

root

We also added the nmod:arg sub-relation to
the existing nmod (nominal modifier) relation to
specify when a nominal base is used as the argu-
ment of a noun-elaborating (N→N) derivational
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suffix. In (17), the nominal base (aqavzi- ‘cloud-
berry’) modifies the derivational suffix as the argu-
ment (aqavzileg- ‘the one with cloudberry’). The
extended base then combines with the inflection to
yield the noun in ablative-modalis case (aqavzileg-
meng ‘from the one with cloudberry’).

(17) aqavzi- -leg- -meng
cloudberry one.with.N ABL_MOD.SG

nmod:arg dep:infl

The dep:pos relation was used for the relation
between a postural root and its postbase. A postural
root takes a postbase to yield a verbal stem as in
(18). The postural root (ingagh- ‘lying down’) com-
bines with the postbase (-nga-) to yield a stative
form of the root (ingaghnga ‘to be lying down’),
which combines with the inflection to form the
word (ingaghngaghpek, ‘you are lying down’). A
postural root is different from nominal or verbal
bases as it can only take one of two postbases that
turn the root into a stative or active form to be
followed by inflection.

(18) ingagh- -nga- -gpek
lying.down to.be.in.R.posture 2SG

dep:pos dep:infl

Similarly, the dep:emo relation was used for
emotional roots. Emotional roots can take one of
a select number of postbases to yield nominal or
verbal stems. In (19), the emotional root (qugina-
‘spooked’) takes the postbase (-k-) to yield a verbal
stem (quginak ‘to be spooked’), which combines
with the inflection to form a verbal (quginakanka
‘I am spooked by them’).

(19) qugina- -k- -a- -nka
spooked to.feel.R.toward IND.TRNS 1SG.3PL

dep:emo dep:infl
dep:infl

The dep:ana relation is used for the only pre-
fix in Yupik, the anaphoric prefix. In general, the
prefix is used for anaphora, emphasis or specificity.
The prefix is also used in demonstratives to provide
reference to person spoken to or situation spoken
about (Jacobson, 2001, p.109).

(20) taaku- -m
ANAPHOR DEM.PRO.REL.SG

dep:ana

In (20), the anophoric prefix (taaku-) combines
with the inflection to result in the demonstrative
pronoun (taakum ‘this one’).

Unit Word-level Morph-level
Sentences 66 66
Words 360 360
Segments 360 834
Fused – 225

Table 5: Number of annotations in a sample of Nagai
(2001). Words mean the number of word tokens while
Segments count any sub-word tokens instead of word
tokens if applicable. Fused counts the number of word
tokens that are split into subword units.

UPOS Word-level Morph-level
ADJ 1 1
ADP 1 1
ADV 11 16
NOUN 78 105
NUM 2 2
PART 43 43
PRON 9 9
PUNCT 81 81
VERB 134 214
X - 362

Table 6: Frequencies of Part of Speech (POS) tags in
the word-level and morpheme-level annotations for the
Nagai corpus.

B Overview of the Nagai treebank

This section provides additional information about
the Nagai annotations, used for the parsing exper-
iments in §7. Table 5 summarizes the number of
annotations for the new corpus. As introduced in
the main text, this corpus was smaller than the Ja-
cobson corpus, but was bigger than a test set in the
ten-fold cross-validation setting.

In general, the new corpus provides a more re-
alistic and challenging test set for an automatic
parser. The Nagai corpus records a Yupik elder’s
speech and presents some code-switching with En-
glish words. For example, the Nagai corpus in-
cluded an English word ‘electric beater’ inflected
in Yupik electric beater-meng. For this, we used
an additional feature ‘Foreign=Yes’ in annotating
the corpus.

Because of such foreign words, the distribution
of the POS tags were slightly different from the Ja-
cobson treebank. Table 6 summarizes the POS tags
used to annotate the Nagai corpus, and shows the
presence of some tags used only for English words:
For example, the Nagai annotations included an ad-
position (ADP), which was an English word, ‘on’.
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Because the new corpus was smaller than the orig-
inal treebank, there were some POS tags in the
original Jacobson corpus that were missing in the
new corpus. No DET or CCONJ tags were used
in the new corpus. Similarly, some dependency
relations that were present in the Jacobson corpus
were not present in the new corpus: cc, dep:emo,
and det.
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Abstract

One problem in the task of automatic
semantic classification is the problem of
determining the level on which to group
lexical items. This is often accomplished
using already existing, hierarchical
semantic ontologies. The following
investigation explores the computational
assignment of semantic classifications on
the contents of a dictionary of
nêhiyawêwin / Plains Cree (ISO: crk,
Algonquian, Western Canada and United
States), using a semantic vector space
model, and following two semantic
ontologies, WordNet and SIL’s Rapid
Words, and compares how these
computational results compare to manual
classifications with the same two
ontologies.

1 Introduction

Despite the benefits and usages of semantically
organised lexical resources such as dictionaries,
ranging from uses as pedagogical tools
(Lemnitzer and Kunze 2003) to aids for machine
translation (Klyueva 2007), fully elaborated
semantic dictionaries remain less common than
those assembled with more routine alphabetical
ordering systems. Aside from the reason of
convention, one prominent dissuasive factor
towards creating semantic dictionaries is the
sheer amount of effort necessary to create them
if their lexical content is not already organised
along some ontologically principled semantic
lines; the manual semantic classification of even
relatively small dictionaries of this nature
frequently takes months. This may be a
prohibitively costly procedure in situations

where resources for linguistic analysis, be they
temporal or economic, are limited. Thus, a
dilemma faced by the prospective compiler of a
semantic dictionary is that of selecting an
ontology, that is, a principled system of semantic
categories, typically (but not universally)
arranged hierarchically, into which lexical items
may be grouped. The following investigation
aims to address potential remedies to both of
these limitations, with vector semantics as a
first-pass alternative to manual semantic
classification, and with Princeton WordNet and
SIL’s Rapid Words as two practical contenders
for pre-existing semantic ontologies. In practice,
these methods are to be demonstrated on an
existing bilingual dictionary of Plains Cree
(nêhiyawêwin), with results compared against
human-made semantic classifications in both
ontologies.

2 Vector Semantics

The first, and perhaps most daunting, obstacle in
the process of creating a semantic dictionary (or
indeed any semantically organised lexical
resource) is the issue of time; even with a well-
defined ontology and ample resources, manual
semantic classification is a lengthy and
expensive process, with teams of linguists and
native speakers often requiring years to produce
fully annotated semantic dictionaries (Bosch and
Griesl 2017). Even with a more reduced
ontology, semantically classifying an already
existing full dictionary by hand takes months,
and requires a thorough understanding of the
chosen ontology (Dacanay et al. 2021).
Although the process of manually assigning
semantic categories or correspondences to
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dictionary entries is generally not an
exceptionally difficult task for a human
annotator (Basile et al. 2012), the length of
dictionaries, and the existence of highly
polysemous lexical items, both complicate and
lengthen the process of manual classification. As
such, the mechanisation of the process of
semantic classification assignment (or semantic
annotation) appears to be one of the most direct
routes to increasing overall efficiency with
respect to time and resources, and to that end,
the method of vector semantic classification is
an alluring and well-attested alternative (Turney
and Pantel 2010).

In short, vector semantic classification is a
method of computationally determining the
semantic similarity between any two given
lexical units based on commonalities in the
usage contexts of those units in large corpora.
This is accomplished by representing the
meaning of a lexical unit (primarily a word) as a
vector in multidimensional space, which is based
on the co-occurrences of this lexical unit with
other lexical units in its context, followed by a
reduction of dimensionality using some heuristic
to result in a compact, dense vector space
(typically with several hundred dimensions).
Since this vector space is based on common
contextual features, one may compare the
multidimensional vector of one word with that
of another, calculating their cosine distance to
determine similarity; the closer this value is to 1,
the more similar the average contexts of those
two words are, and thus the more similar those
words are semantically. In this way, the model
functions largely on the assumptions of the
Distributional Hypothesis as put forth by Firth
and Harris in the 1950s (Jurafsky and Martin
2019; Firth 1957; Harris 1954), that semantic
similarity begets distributional similarity, and
vice versa. Vector generation is not monolithic,
and various tools using various methods exist in
common use, including frequency-weighted
techniques such as tf-idf and Latent Semantic
Analysis. In the context of this investigation,
word2vec, a tool which makes use of prediction-
based models rather than concurrence matrices
to generate clusterable vector sets, has been used

to generate all vectors; this decision was
motivated chiefly by word2vec being readily
available, easily applicable without lengthy
training, and being able to leverage extensive,
pre-existing pretraining on large English corpora,
all advantages which largely offset the primary
disadvantage of word2vec, being that it is a
purely word-level vector generation tool, lacking
the ability to model polysemy and contextual
variances, a shortcoming which may possibly be
addressed by using a sentence-level model such
as BERT (see Section 5 and 7).

The vector method is not a novelty, and its utility
as a practical method of semantic classification
assignment has been demonstrated on numerous
occasions (Brixey et al. 2020; Vecchi et al. 2017).
However, useful as the method may be, in order
to use vector semantics to classify entries in a
dictionary, one requires a principled structure of
semantic relationships into which to classify them.
To this end, pre-existing semantic ontologies are a
widespread and convenient solution.

3 Semantic Ontologies

Although it is possible to computationally
generate sets of semantic hierarchies, the results
of such attempts generally indicate that human-
made, preset ontologies are preferable (Koper et.
al 2015). Many such premade ontologies exist,
serving a wide variety of different
classificational purposes; however, we will
compare here only two, being a slightly
modified version of the Princeton WordNet and
SIL’s Rapid Word Collection Method, both
popular, general-purpose ontologies intended to
cover the breadth of most semantic reference in
a largely language-neutral fashion. A visual
representation of the structures of both is
detailed in Figure 1 (see next page).

3.1 Princeton WordNet

The Princeton WordNet is one of the oldest and
most widely-used semantic classification
systems, originating in the 1990s at Princeton
University as a hierarchically organised structure
wherein contextually synonymous word-senses
(or individual word-senses) are grouped into
‘synsets’, each of which has a hypernymic
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Figure 1, a visual demonstration of the differences in structure and specificity between WordNet (left) and Rapid
Words (right).

synset above it in the hierarchy and possibly one
or several hyponymic synsets below it (for
example, the words (n) cod#2 and (n) codfish#1
form a synset with the definition “lean white
flesh of important North Atlantic food fish;
usually baked or poached”; this synset is a
hyponym of the synset (n) saltwater fish#1, and
is hypernymic to the synset (n) salt cod#1.). In
this way, WordNet is essentially a hierarchy of
hypernyms and hyponyms, with each level of
hypernym and hyponym being populated by
various contextually synonymous words.
Although other semantic relations such as
antonymy are also modelled in a ‘full’ WordNet,
the three relations of hypernymy, hyponymy,
and synonymy form the “central organizing
principle” of WordNet as a whole (Miller 1993),
and a structurally complete, albeit semantically
basic, WordNet can be constructed using only
these three relationships; in Dacanay et al. (2021)
we referred to this core-level WordNet as a
‘skeletal WordNet’.

3.2 Rapid Words

An alternative semantic classification scheme is
the Rapid Word Collection Method of SIL,
created as a framework for collecting native
speaker vocabulary elicitations for dictionary
creation, rather than the organisation of finished
dictionaries (Moe 2003). Despite this, the
structure of Rapid Words is broadly similar to
that of WordNet, consisting of various numbered,
hierarchically organised, roughly
hyper/hyponymic semantic domains, each of
which is populated by highly semantically
related (although in Rapid Words, not
necessarily contextually synonymous) sets of

words, which may be spread across various parts
of speech. Broadly speaking, these domains are
less specific than WordNet synsets. There are
five ‘tiers’ of domains in RW, with the highest
being the most general (e.g. 5 Daily Life, 7
Physical Actions, etc) and the lowest being the
most specific (e.g. 5.2.3.3.3 Spice, 7.2.1.1.1
Run); for our purposes, only domains on the
fourth tier (or level) were used for the vector
classifications (see Section 5). These semantic
domains are sub-organised into specific
elicitation questions, each of which has a set of
potential vocabulary items in English; for
example, the domain 2.1.1.5 Tooth contains the
elicitation question ‘What are the parts of a
tooth?’, which would have with it the list of
potential English answers as prompts ‘enamel,
root, crown, ivory’. Although not explicitly
designed for it, Rapid Words has been used
successfully for after-the-fact dictionary
classification in the past (Reule 2018).

4 Plains Cree / nêhiyawêwin
Plains Cree (nêhiyawêwin) is an Indigenous
language of the Algonquian family, spoken by
~30 000 throughout Saskatchewan, Alberta, and
Northern Montana. Although slightly less
critically endangered in comparison with other
Canadian Indigenous languages, the majority of
speakers are elderly, and intergenerational
transmission remains low. Various revitalisation
efforts have been undertaken in Cree
communities, including bilingual education and
the creation of online lexical resources (Arppe et
al. 2018); however, digital resources for Cree
remain limited overall. Like most Algonquian
languages, Plains Cree is highly polysynthetic,
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with extensive morphology, particularly on
verbs, which make up the bulk of the lexicon
(e.g., Wolfart 1973).

The lexical resource used for this investigation
was a fully digitised copy of the database
underlying nêhiyawêwin: itwêwina/Cree: Words
(CW), a continually-updated bilingual Cree-
English dictionary compiled by Arok
Wolvengrey across the late 20th and early 21st
centuries (Wolvengrey 2001). Consisting
currently of 21,347 words with morphological
notes and PoS-tagging, CW is the most
extensive modern dictionary of Plains Cree, and
its contents may be accessed through the
University of Alberta’s online Cree dictionary,
itwêwina.

5 Method
Word vectors were obtained for every Cree entry
in CW using word2vec, a popular off-the-shelf
vector generation tool (Mikolov et al. 2013). We
used the pretrained Google News Corpus, which
contains 3 million word embeddings trained on 3
billion tokens. Cree word (or rather, dictionary
entry) vectors were obtained as a simple,
dimension-wise average of the individual
English word vectors as extracted from the
English definition phrases/sentences (glosses) of
their respective entries, rather than the Cree
words themselves, as existing Cree corpora
(Arppe 2020) are too small for meaningful
dimensional vectors to be obtained (Harrigan
and Arppe 2019). For example, the vector for
the Cree noun mahkahk (glossed in CW as ‘tub,
barrel; box’) would be generated by averaging
the vectors for the English words ‘tub’, ‘barrel’,
and ‘box’, treated as a bag of words. Similarly,
for the Cree verb nâtwânam (glossed as ‘s/he
breaks s.t. apart; s/he breaks s.t. off by hand’),
the vector would be derived from the average of
the vectors for ‘s/he’, ‘breaks’, ‘s.t.’, ‘apart’,
‘off’, and ‘hand’. CW noun glosses tend to be
either single words or extremely curt noun
phrases, and verb glosses are usually brief,
utilitarian verb phrases, with no grammatical or
derivational information included in the gloss
itself; this fact is a further justification for using
a word-level vector generation tool such as
word2vec rather than a sentence-level tool like
BERT, as the pieces of linguistic information on

which the CW vectors are based are typically
either non-sentential or highly simplistic and
formulaic, seemingly making the context-
sensitivity of tools such as BERT much less
useful.

The Google News Corpus and word2vec were
similarly used to generate the vectors for the
WordNet synsets, using the head words and
synset description (definitions and example
sentences) as context to create the vectors, and
the head word(s) of the synset as labels
(Dacanay et al. 2021). For example, the vector
for the synset (n) barrel#2 (glossed as “barrel,
cask (a cylindrical container that holds liquids)”)
would be the average of the vectors for the
words ‘barrel’, ‘cask’, ‘cylindrical’, ‘container’,
‘holds’, and ‘liquids’. The vectors for Rapid
Words were created using the semantic domain
levels as labels, with all example words and
elicitation questions contained therein as context.
For example, for the word ‘barrel’ in Rapid
Words, which is contained in the semantic
domain 6.7.7 Container, the vector would be the
average of the vectors for all of the English
words in each elicitation question (i.e. “What
words refer to a container”, “What words refer
to what is in a container”, etc.), as well as all of
the words listed as possible examples (such as
‘container’, ‘vessel’, ‘bowl’, ‘pot’, ‘contents’
etc.).

These sets of vectors were then compared
against the CW vectors using cosine distance,
and for every CW entry, two lists were created.
For each entry on the first list (the WordNet list),
all WordNet synsets were listed, ordered by
cosine similarity to that entry. On the second list
(the four-level Rapid Words list), for each CW
entry, all Rapid Words semantic domains at the
fourth tier of the hierarchy were ordered by
similarity. To provide an example for the second
list, even if the manually-selected RW domain
for the Cree word acihkos (‘caribou calf, fawn’)
was 1.6.1.1.3 Hoofed Animal, because, on this
list, the vector method would only have access
to the fourth hierarchy level, the ideal, most
‘human-like’ vector classification would instead
be 1.6.1.1 Mammal, as this domain is at the
fourth level of the hierarchy and is identical to
the manual classification up to the fourth level
(1.6.1.1). The reasoning behind limiting the RW
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domains to the fourth level of the hierarchy in
the vector method was threefold; firstly, tests in
which the vector method was allowed to select
domain classifications from any of the five
levels returned notably poorer results than those
which limited the choice to only one tier. (see
Table 1 Any-Level (AL) columns), secondly, the
fourth level of the hierarchy had the largest
number of domains (at 983 compared to the fifth
level with 311 and the second level with 68),
and thirdly, RW did not always provide fifth
level domains throughout the hierarchy.
Additionally, the fourth level of the hierarchy
provided a useful middleground in terms of
specificity compared with the other RW levels;
fourth level domains are moderately, rather than
highly, specific, and thus allow for a more
informative comparison with WordNet’s highly
specific and complex synset structure. Still,
investigating whether using the most specific
Rapid Words domains as labels would provide
more or less accurate results than the moderately
specific four-level domains would be a
worthwhile avenue of future study, as would be
using the individual elicitation questions as
labels instead of domains.

In total, applying the vector semantic method to
this end requires access to a fully digitised copy
of the target dictionary (with entries and their
glosses clearly delineated), access to WordNet,
Rapid Words, and word2vec (all of which are
freely available online), and a computer capable
of both generating vectors for the dictionary
entries and comparing those vectors with the
pre-existing ontology vectors. To this end, a 2-
core laptop with 8gb RAM is able to complete
the cosine comparisons for the ~16k CW entries

with the ~117k WordNet synsets in 4-5 days,
and the same entries with the Rapid Words
domains in no more than one and half days. On a
highly parallelised computing cluster, such as
ComputeCanada’s Cedar (using 64 cores, each
having 4-8gb RAM), performing all of the
cosine comparisons takes less than 90 minutes.
The computational cost of the actual vector
cosine comparisons is fairly negligible, and the
lengthy runtime of this operation on more basic
machines is likely due to the inefficiency of
retrieving each vector from large matrices.

To assess their quality, these vector
classifications were compared against a gold
standard of manual classifications for each entry
in CW. These manual classifications were done
following both WordNet and Rapid Words, with
one or several synsets or RW elicitation
questions assigned to each CW entry based on
the meaning of the Cree word. For the WordNet
classifications, the part of speech of the English
WN synset was ignored; for example, the
manual classification of the Cree verb mihkwâw
(“it is red”) was given in WordNet as the
adjectival synset (adj) red#1. For Rapid Words
classifications, given that RW elicitation
questions do not have hard-coded parts of
speech, whichever domain-internal elicitation
question(s) were most semantically related to the
target Cree word were used, regardless of their
domain level in the hierarchy. For example, for
mihkwâw, the question 8.3.3.3.4.3 What are the
shades of red? in the domain 8.3.3.3.4 Colors of
the Spectrum was used. More information on the
manual classification method used is detailed in
Dacanay et al. (2021).

Verbs,
4L-RW
top

Verbs,
4L-RW
median

Nouns
4L-RW
top

Nouns
4L-RW
median

Verbs,
AL-
RW, top

Nouns,
AL-RW,
top

Verbs,
WN,
top

Verbs,
WN,
median

Nouns,
WN,
top

Nouns,
WN,
median

0% 1 1 1 1 1 1 1 1 1 1

10% 1 1 1 1 6 3 5 11 1 2

20% 1 2 1 1 19 7 18 51.7 2 4
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30% 3 5 1 1 59 14 51.6 166.3 4 8

40% 6 15 1 2 118 23 136.8 448.8 7 16.1

50% 15 36 2 3 222 36.5 333 1045 15 30.5

60% 38 73 4 6.5 354 66 762.2 2057.3 28 60

70% 80 130.5 10 14 519 126 1633.9 4096.4 59 139

80% 161 225 24 33 717 256 3553.8 8036.9 164 375.4

90% 327 369 69 102.1 993 501 9553.8 17488.6 864.2 1670.4

100% 983 983 976 976 1739 1760 137352 137352 121883 121883

Table 1, the vector assigned ranks of manual WN and RW classifications in percentiles, for both the top-ranked
manual classification and the median if there were several. ‘4L’ indicates four-level domains, and ‘AL’ indicates
any level of domain. Medians are written in bold.

6 Comparison of WordNet and Rapid
Words Results
Statistics: Overall, although the results of both
ontologies are comparable, semantic
classifications using Rapid Words appear
noticeably more human-like than those with
WordNet, with ‘human-like’ here referring to
how high the rank of the manual classification(s)
is among the total vector classifications for each
entry on average. For the vector classifications of
Cree nouns, the median position of the top
manual classification was 2 for four-level RW
domains (with 983 possible classes) and 36.5
when the vector method was allowed to choose
from any level of domain (with 1789 possible
classes). For Cree verbs, the median position of
the top manual classification was 15 for the four-
level domains and 222 for any-level domains. In
cases where there was more than one manual
RW classification, the median position of the
median of the multiple classes for CW nouns was
3 for four-levels, and for CW verbs, the median
of the medians of multiple classes was 36 for
four-levels. For the WordNet vector
classifications, the median computationally
selected position for the top manual classification
was 15th for Cree nouns and 333rd for verbs, and
the median position of the manual classifications

when there were several was 30.5 for the nouns
and 1045 for the verbs.

From this, it is clear that vector classifications
with Rapid Words domains are, on average,
much more human-like than their WordNet
counterparts, being up to 22 times more accurate
in the case of Cree verbs, and that limiting the
vector methods’ potential selections to a single,
moderately specific RW hierarchy level provides
much more human-like results than allowing it to
select from all domains at all levels. However, it
is prudent to keep in mind that even with all of
its domains, Rapid Words still has far fewer
potential correspondences than WordNet (1789
total RW domains (with 983 four-levels)
compared to 117,659 WN synsets), and in
relative terms, relevant manual classifications
occur on average in a higher position
proportionate to the total number of possible
choices in WN vector classifications than in
those with RW; with four-level RW vector
classifications, the median position of the top
manual classification is in the top 0.203% for the
nouns (2nd out of 983) and in the top 1.53% for
the verbs (15th out of 983), compared with the
top 0.0127% (15th out of 117659) and 0.283%
(333rd out of 117659) respectively for WN.
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In general, the reduced specificity of Rapid
Words, by virtue of both its inherently less
detailed structure and its restriction here to a
single hierarchical level of specificity, seemed to
lend itself well to resolving a particular ill in the
vector method, being its propensity to
preferentially assign overly specific
classifications to the high ranks of ‘umbrella-
terms’, rather than the more appropriate general
vocabulary. In this sense, Rapid Words semantic
domains often represent concepts several steps
higher in the hypernymic hierarchy than their
WordNet equivalents. For example, with the
WordNet classifications, the top classification for
môhkomân (glossed as ‘knife’) was (n) knife
blade#1, and the top 15 classifications consisted
almost entirely of either specific types of knives
or parts of knives, with the more appropriate
generic term (n) knife#1 not appearing until 18th
place. By contrast, in Rapid Words, in which
such specific classifications are by nature
impossible at the domain-level, the top ranking
classifications are more appropriately general,
with the any-level list, for example, having the
appropriate 6.7.1 Cutting Tool as the top
classification, and the similarly relevant 4.8.3.7
Weapon, Shoot in second place.

The ‘regift’ problem: The in-built simplicity of
Rapid Words also seems to have partially
remedied, if not entirely solved, the so-called
‘regift problem’ which was prevalent in
WordNet classifications; we discuss this problem
in more detail in Dacanay et al. (2021), but
simply put, a small number of extremely low
frequency WordNet synsets occurred
disproportionately frequently in the high-ranking
classifications of target Cree words. The problem
was so named due to such one low-frequency
synset, (v) regift#1, being present in the top 1000
computational classifications of 65% of all Cree
verbs, despite almost always being entirely
unrelated semantically to the target Cree word. (v)
regift#1 is not the only WordNet entry to exhibit
this behaviour, and other words, such as (n)
Rumpelstiltskin#1 occurred in as many as 72% of
the top 1000 vector classifications of Cree verbs;
other common regift words include (n) Dido#1,
(n) gumption#1, and (n) dingbat#1. As a rule,
these ‘regift’ words were both low frequency in
corpora and highly specific, often being proper

nouns, however, there did not appear to be any
pattern in the formatting or content of these
entries’ glosses. The Rapid Words vector
classifications also exhibited this problem to an
extent; for example, subdomains of the domain
4.1.9 Kinship occurred in the top 1000 vector
classifications of CW nouns and verbs an
average of ~12 times, and appeared in the top 10
classifications 33.9% and 35.7% of the time for
CW nouns and verbs respectively. However, as a
whole, the regift problem was markedly less
notable with RW classifications of both types
than with WN classifications, with both fewer
different regift words (or domains) and fewer
occurrences of these words/domains overall. This
broadly supported our initial theory that the
‘regift’ problem was at least partially caused by
the excessive degree of specificity in WordNet
synsets overwhelming the vector method and
providing it with a large number of potential
classification choices with poorly defined vectors
(due the low frequency of ‘regift’ words in the
Google News Corpus) which muddy the optimal,
human-like choices.

By contrast, since Rapid Words generally lacks
highly specific vocabulary and is instead
structured by more generic categories or
‘domains’, fewer of these low-frequency words
are factored into the Rapid Words vectors, and
these vectors are thus, in general, based on
higher frequency, more contextually attested
vocabulary, and are therefore (in theory) more
accurate. In general, the lack of highly specific
vocabulary in Rapid Words seems to contribute
both to diminishing the number of semantically-
related, but overly specific correspondences in
the computational classifications, as well as to
reducing the prominence of semantically-
unrelated, overly specific ‘regift’ words (or in the
case of Rapid Words, domains). One potential
method to imitate this degree of simplicity in
WordNet could involve using the hypernymic
synsets of the current WordNet correspondences
as labels, in essence, shifting all classifications
one or more levels up in the WordNet hierarchy.
This would appear to at least partially resolve the
over-specificity issue (although it would do
nothing to reduce the number of outright
irrelevant classifications), despite incurring an
obvious cost in terms of semantic richness.
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Vector Content: Broadly speaking, the
improved results with Rapid Words seem to be
due not only to its simpler hierarchical structure
and reduced level of specificity, but also due to
its domain internal structure, in which domains
generally include fewer irrelevant content words
than WordNet synsets do. WordNet synsets
frequently include example sentences in their
glosses; although useful for human clarification,
these inclusions inevitably lead to large amounts
of semantically unrelated vocabulary influencing
the respective synset vectors. As an example, the
gloss for the synset (v) drive#2 (defined as
“travel or be transported in a vehicle”) includes
the example sentences “We drove to the
university every morning” and “They motored to
London for the theater”. As such, the
semantically irrelevant words “university”,
“morning”, “London”, and “theater” are all
factored equally into the vector for (v) drive#2 as
the semantically relevant terms “drive”, “motor”,
“vehicle”. While the inclusion of these less
relevant words may more accurately simulate
natural linguistic contexts, the otherwise terse
nature of WordNet synset glosses means that
they introduce a potentially significant amount of
distracting information, possibly skewing synset
vectors towards the contexts of their irrelevant
example sentence vocabulary rather than their
relevant gloss vocabulary. By contrast, with the
exception of infrequent descriptions of
lexicalisation patterns, Rapid Words domains
and questions contain only semantically related
vocabulary, lessening potential ‘distractions’ for
their vectors.

6.1 Utility of Results

Given the state of current results, it remains
unfeasible to fully replace manual semantic
annotators using the vector method; even with
the best possible RW results, the vector method
still only selects the most human-like
classification as the top classification less than
50% of the time for Cree nouns, and less than
30% of the time for Cree verbs. Rather, the
vector method in its present state seems most
immediately usable as an accessory to manual
classification, with the method being applied on
dictionary resources as a preparatory step for
manual annotators, who would then select the
best classification for each entry based on the

pre-generated vector classification lists. Using
only the top 15 vector selected four-level RW
classifications, the most human-like
classification would be present on this list 50%
of the time for Cree verbs, and over 70% of the
time for nouns, preventing the annotator from
needing to search through the entire ontology
every time they wished to classify a word. In this
way, present vector results are best suited as a
time-saving addition to manual semantic
annotation, rather than as a replacement for it.

7 Conclusion

The vector semantic method is a significantly
faster and cheaper alternative to manual semantic
annotation for tasks of semantic classification.
However, the method is not yet capable of
producing reliably human-like results across
target-language parts of speech, and struggles to
match natural levels of semantic specificity. To
this end, using a consistent hierarchical level of a
simpler, more generalistic semantic ontology,
such as Rapid Words, seems to make vector
semantic classifications appear more human-like,
as restricting the breadth of choices available to
the method as labels for correspondences seems
to both reduce the number of potentially
unrelated classifications and make the remaining
classifications general enough that a less precise
vector is necessary to generate a human-like
correspondence.

Future avenues of research into dictionary vector
semantics include the use of sentence-based
vector generation tools such as BERT which can
more accurately model polysemy, although it
should be kept in mind that even a model like
BERT cannot be expected to generate human-
like results for dictionary glosses if those glosses
are non-sentential or otherwise overly brief. It
may also prove productive to experiment with
the further modification of existing semantic
ontologies such as WordNet and Rapid Words
(such as reducing the specificity of WN by using
only synsets one or several levels higher in the
hypernym hierarchy as correspondences), with
one of the ultimate goals of this being the
integration of the results of automatic vector
classifications into online dictionaries in a form
which is easily navigable and understandable to
an untrained user.
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Abstract

While Guarani is widely spoken in South
America, obtaining a large amount of Guarani
text from the web is hard. We present the build-
ing process of a Guarani corpus composed of
a parallel Guarani-Spanish set of news articles,
and a monolingual set of tweets. We perform
some word embeddings experiments aiming
at evaluating the quality of the Guarani split
of the corpus, finding encouraging results but
noticing that more diversity in text domains
might be needed for further improvements.

1 Introduction

Guarani is a South American language spoken
mainly in Paraguay, but also in some regions of
Argentina, Bolivia and Brazil. Despite being an
official language of Mercosur and Paraguay, re-
search and resources for Guarani are limited. Our
work focuses on the current dialect of Guarani
spoken in Paraguay, called Jopara. The Jopara
Guarani dialect presents different levels of mixture
between Guarani and Spanish, using mainly the
Guarani grammar but incorporating many Spanish
loanwords (Lustig, 2010).

In this work, we present a Guarani corpus that
tries to reflect the nature of this mixed dialect. On
the one hand the corpus contains a set of sentences
written in a more formal style, composed of news
articles, where each sentence also has a Spanish
counterpart. On the other hand the corpus has a
more informal set of texts extracted from social
media; we analyzed them and noticed the differ-
ent levels of mixture between Guarani and other
languages.

This is a work in progress with the aim of cre-
ating resources for Guarani that could aid in NLP
tasks such as machine translation, so our objective
is to make this resource as large as possible but at
the same time trying to keep the content quality
high. We also show an initial analysis of the cor-

pus based on word embeddings analogies tests and
visualization.

2 Related work

Although Guarani remains a little explored lan-
guage within the NLP community, throughout
the years there have been some attempts at cre-
ating resources or corpora for this language.
COREGUAPA (Secretaría de Políticas Lingüísticas
del Paraguay, 2019) is the reference corpus of cur-
rent Paraguayan Guarani, it can be queried online
but it cannot be downloaded in its entirety. Other
works have focused on trying to develop machine
translation systems or computer aided translation
systems for the Guarani-Spanish pair considering
the scarcity of NLP resources for the language (Al-
caraz and Alcaraz, 2020; Gasser, 2018; Rudnick
et al., 2014; Abdelali et al., 2006). Besides the
resources focused on the Jopara Guarani dialect,
there is a small Universal Dependencies corpus
(around a thousand sentences) of the Guarani di-
alect spoken by the Mbya Guarani people (Thomas,
2019; Dooley, 2006). The work of Chiruzzo et al.
(2020) describes the construction of a parallel cor-
pus of Guarani and Spanish sentences built by
downloading pages in both languages from web
sources and using an automatic process (with man-
ual correction) to align the sentence pairs. We
follow a similar approach in the parallel set of our
corpus, although we also add a second set of mono-
lingual text extracted from social media. Currently,
Guarani is included as one of the target languages
in the machine translation Shared Task of the Amer-
icasNLP workshop, which indicates interest in de-
veloping resources for this language is on the rise.

3 Construction of the corpus

This section presents the construction of the paral-
lel and the monolingual sets of the corpus.
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3.1 Parallel news set

The parallel corpus was built by crawling a set of
pages restricted to the Paraguayan top level do-
main (.py). As a starting point, we took a set of
frequent Guarani words from the Chiruzzo et al.
(2020) corpus and queried different permutations
of this set into a search engine, creating a set of
URL seeds. Our crawler started with these seeds
and downloaded, processed and cleaned each text,
then used the internal links to collect more content.
Although Guarani is widely spoken in Paraguay, it
is a minority language with respect to the amount
of text one can find in the web, where most of the
Paraguayan pages are written mainly in Spanish.
As noticed in Jauhiainen et al. (2020), it is very
difficult to build resources for languages that are
under-represented on the web, even if there is a top
level domain where it is more likely to find con-
tent in that language, as the pages generally point
back to content in the majority language rather than
the language we are looking for. We manually in-
spected the early results of this experiment and
found that most of the downloaded content was in
Spanish. However, we also noticed that there were
some Paraguayan websites which regularly publish
content in both Guarani and Spanish.

We noticed two main strategies that were used
by the websites to present versions of their content
both in Guarani and Spanish: links within the pages
to the Spanish version, and publishing the page in
both languages in a short time frame. The first
strategy is easy to deal with: the scraper collects
the Guarani versions of the files and extracts the
corresponding Spanish version following the link.
This link is present in most articles, but not in all of
them. If it is not found, the scraper still downloads
the Guarani version1.

For the second strategy, we designed a heuristic
process for matching Guarani and Spanish files
based on their timestamps. The heuristic clusters
the articles by its creation date, pairing up each
Guarani article to the Spanish one with the closest
creation time in the group. This simple heuristic
solved most of the cases, although we found two
types of problematic situations:

• On occasions, the number of Guarani articles
published on a given date did not match the
number of Spanish ones on the same date.

1However, since they only represented 2% of the total,
these articles were not included in the corpus.

• Some Guarani articles were paired with the
same Spanish article due to sharing the same
closest article in time in the group.

Since the number of articles affected by these is-
sues were only a small percentage of the total, we
used the heuristic for the general case and manually
solved these outliers. We evaluated the heuristic
results by sampling 100 random pairs and manually
inspecting them, resulting in 100% correct pairs.

The parallel set is composed of 2580 news ar-
ticles published in Paraguayan websites. These
articles are aligned at sentence level, following
the n-gram overlap heuristic described in Chiruzzo
et al. (2020).

It contains a total of 14,792 Guarani-Spanish
sentence pairs; including 334,501 Guarani word
tokens and 635,226 Spanish word tokens. Table 1
shows a comparison between our parallel set and
the one presented in Chiruzzo et al. (2020)

Chiruzzo et al. (2020) Parallel set
Documents 1,858 2,580
Sentences 14,531 14,792
Guarani tokens 268,684 334,501
Spanish tokens 380,275 635,226

Table 1: Size comparison between Chiruzzo et al.
(2020) and our parallel set.

3.2 Tweets set

We first tried to extract tweets in Guarani using the
Twitter API. The first issue was finding which of
the texts contained at least some content in Guarani.
The API has a language detection option that in-
cludes the Guarani language. However, this lan-
guage detector API is not perfect, as we empirically
found that none of the tweets was ever getting the
Guarani label, even it they were written entirely in
Guarani. We then trained our own language detec-
tor with the aim of telling apart between Spanish
and Guarani texts, using a Naïve Bayes classifier
with 5-gram character features, trained over the
Chiruzzo et al. (2020) corpus. The language de-
tector was very good for detecting Guarani in this
corpus (99.6% in our test partition), but it proved
to be not good enough for the noisy texts found in
tweets.

Finally, we decided to use a frequent words
based approach. We created two lists of frequent
words: a long list (314 words) composed of words
that appear in the corpus, filtering out dates, num-
bers, punctuation symbols, words with less than 3
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Chiruzzo et al. (2020) Reliable text
Total Tokens 268,684 391,102
Unique tokens 31,456 41,813
Exclusive count 18,056 28,413
Overlap 13,400

Table 2: Size comparison of the monolingual split. Ex-
clusive count shows the number of tokens that are not
on the other set. Overlap is the number of tokens that
are on both sets.

characters and words that could be mistaken with
other languages in the region such as Spanish and
Portuguese; and a more restrictive short list (48
words) containing words that appear over 10 times
in the corpus. We periodically collected tweets that
contained at least some of the words from the short
list, which includes the stop-words and many other
very frequent Guarani words, both from Paraguay
(local) and from anywhere in the world (global).
Then we counted the number of Guarani tokens
present in each tweet using the long list, and manu-
ally analyzed the extracted sets of tweets based on
location and Guarani tokens. During the manual in-
spection we marked a tweet as a hit if it had at least
some Guarani content, and a miss if all the text
was in another language and was a false positive.
Paraguayan (local) tweets with at least two of the
frequent words seem to all have reliable Guarani
content. However, for the global tweets this thresh-
old seems to be at four words, and precision drops
to around 85% with fewer words. We defined three
categories:

• A (very reliable): local tweets with three or
more frequent words and global tweets with
four or more frequent words. (532 tweets;
7,706 tokens)

• B (reliable): local tweets with two frequent
words. In this case, although usually contain-
ing Guarani content, there are also cases of
tweets mainly in Spanish with some Guarani
expression. (4,199 tweets; 48,895 tokens)

• C (unreliable): local tweets with just one fre-
quent word and global tweets with three fre-
quent words. This category contains many
tweets in Guarani, but other languages may be
present as well, such as Portuguese or Filipino.
(46,197 tweets; 453,996 tokens)

We define the monolingual split of the corpus as
the reliable tweets (categories A and B) plus the
Guarani sentences from the parallel set. Table 2

compares the size of our monolingual split with the
Guarani data from Chiruzzo et al. (2020).

4 Experiments

We carried on some experiments to try to analyze
the quality of the monolingual split of the corpus
built so far. We followed the approach described
in Etcheverry and Wonsever (2016), where they
trained a word embeddings collection for Spanish
from Wikipedia text and analyzed its quality based
on intrinsic tests and visualization. We trained
several variants of 150-dimensional word2vec em-
beddings collections using the Gensim library (Ře-
hůřek and Sojka, 2010). The different variants we
trained correspond to using different sets of data.
Besides the text collected in this work, in our exper-
iments we also used the Guarani Wikipedia text2,
and the Guarani data from Chiruzzo et al. (2020).
All models reported here were trained on some
combination of those sets, a summary of the sizes
of the sets is shown in table 3.

Corpus Token count
Wikipedia 582,122

Chiruzzo et al. (2020) 268,684
Parallel news set 334,501

Reliable tweets set 56,601
Unreliable tweets set 453,996
Total (reliable tokens) 1,241,908

Total (all tokens) 1,695,904

Table 3: Guarani tokens on each set used in the experi-
ments, tokenized using NLTK (Bird et al., 2009).

4.1 Word clustering visualization

Category Example Color (legend)
Years 1975 Black (k)

Months jasyteı̃ (january) Black (k)
Days arakõi (monday) Black (k)

Countries hyãsia (France) Magenta (m)
Attributes vai (bad) Red (r)

Colors hovy (blue) Cyan (c)
Animals mbarakaja (cat) Green (g)
People Romina Yellow (y)

Table 4: Categories for the visualization experiment.

Following Etcheverry and Wonsever (2016), we
selected a subset of words and created a visualiza-
tion by reducing the dimensionality of the vectors.
The aim of this visualization is to show that related
words tend to cluster together and form regions
in the vector space. The set of words contains

2Wikipedia dump from February 20, 2021: https://
dumps.wikimedia.org/gnwiki/20210220/.
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Wiki Chiruzzo Parallel Reliable Unreliable familiy ccc
et al. 2020 News Set Tweets Tweets Exact Top 5 Exact Top 5

X 29.97% 38.89% 4.41% 10.01%
X X 41.27% 48.41% 5.27% 11.53%
X X X 32.54% 34.92% 5.53% 13.37%
X X X X 28.57% 36.51% 5.27% 13.04%
X X X X X 26.98% 35.71% 4.55% 12.25%

Table 5: Results for the analogies tests for the different experiments. For those words that are not in the corpus
(and therefore were not trained for the word embeddings) the analogy answer is counted as wrong.

Figure 1: Embeddings visualized over a 2-dimensional
space using PCA.

examples from different semantic categories (coun-
tries, colors, animals, people names, attributes and
dates)3, and are mostly Guarani translations4 of
the words used in Etcheverry and Wonsever (2016)
(see table 4 for details). The embeddings used in
this experiment are trained using all the available
reliable text (detailed in Table 3). As can be seen in
figure 1, words that represent countries (magenta),
animals (green) and colors (cyan) form different
clusters. Something similar happens with other cat-
egories, but notice for example that some proper
names show other correlations, such as the name
“Francisco” is shown close to “Argentina”, proba-
bly because it is the name of the Argentinian Pope
Francis, a name that appears frequently in the cor-
pus.

4.2 Word analogies task
We did some analogies tests (Mikolov et al., 2013a)
based on the vector offset method (Mikolov et al.,
2013b). We had to make several simplifications

3This categories were determined by us based on Etchev-
erry and Wonsever (2016) before performing the experiment.

4The only difference is changing the Spanish word violeta
(purple) to the Guarani pytãngy (pink).

in the analogies test collections due to differences
in the language5, and also because the size of the
linguistic resources we use is not enough to cover a
great number of the original words used in the tests.
However, we were able to translate to Guarani the
whole common capital city (ccc) analogies set
from Mikolov et al. (2013a)6, and we also designed
a new family set inspired in the original one, but
considering the most common family relations in
Guarani dictionaries. These two analogies test col-
lections will be made available for future reference
and comparison.

Table 5 shows the results of the analogies tests
for the five configurations used, corresponding to
different combinations of the sets described in ta-
ble 3. In order to ensure the reliability of the ex-
periments, we ran each configuration three times
and averaged the evaluation results. We show exact
match and top 5 match for each experiment. First of
all notice that including the Guarani part of the par-
allel corpus described in Chiruzzo et al. (2020) is
enough to improve on the results of the Wikipedia
embeddings on both categories. Using the parallel
set created in this work, we can obtain better results
for the ccc analogies test, but not for the family test
(although they are still better for exact match than
the vectors using only Wikipedia). One possible
reason why the ccc tests improve is that this cor-
pus includes more news articles, which frequently
speak about political regions and geography, so the
semantic generalization in these categories could
be improved. However, our new corpus does not
include a particular type of text found in Chiruzzo
et al. (2020) that is text from blog posts, which in-
cludes folktales and biographies that could help the
vectors improve their generalization capabilities
about family members. On the other hand, includ-

5For example, some English pairs do not make sense in
Guarani, such as words for some family members, or the ones
that change the grammatical number, which is used differently
in Guarani.

6https://aclweb.org/aclwiki/Google_
analogy_test_set_(State_of_the_art)

156



ing text from the tweets collections (both reliable
and unreliable) seems to hinder the performance
for the tests (although they still behave better than
plain Wikipedia for ccc tests). We consider this is
because text from social media tends to be much
more noisy than news articles. However, it is pos-
sible that extracting a larger collection of this type
of text could still help the generalization, so more
experiments are needed in this regard.

5 Conclusions

We described the construction of a Guarani corpus
that contains a parallel news set and a monolingual
set of social media texts. We performed word em-
beddings experiments over different combinations
of the data. The visualization experiment showed
that the available text is enough to form clusters
of words of the same semantic category. The
analogies experiments showed that, in some cases,
adding our corpus improved the performance,
although results for the family test might indicate
that more diversity of texts is needed, and text
from tweets seems to be too noisy for enhancing
the embeddings.

As future work, we plan to perform machine
translation experiments (in line with the experi-
ments described in Borges et al. (2021)), which
might be a better way of validating the dataset. We
think it is important to widen the variety of texts
in the corpus: currently the crawling process keeps
running daily to collect more text, and it could also
be used to collect more data from different sources.
Now that we have more text available and partially
annotated, we can try some statistical approaches
such as training a language detector for tweets in-
stead of our keyword list strategy. We think this
type of text is relevant, providing a broader and
modern usage of Jopara Guarani, which might aid
in other NLP tasks such as sentiment analysis.
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Abstract

Low-resource polysynthetic languages pose
many challenges in NLP tasks, such as mor-
phological analysis and Machine Translation,
due to available resources and tools, and the
morphologically complex languages. This re-
search focuses on the morphological segmenta-
tion while adapting an unsupervised approach
based on Adaptor Grammars in low-resource
setting. Experiments and evaluations on Inuin-
naqtun, one of Inuit language family in North-
ern Canada, considered a language that will
be extinct in less than two generations, have
shown promising results.

1 Introduction

NLP has significant achievements when dealing
with different types of languages, such as isolat-
ing, inflectional or agglutinative language families.
However, Indigenous polysynthetic languages still
pose several challenges within NLP tasks and ap-
plications, such as morphological analysis or ma-
chine translation, due to their complex linguistic
particularities and due to the scarcity of linguistic
resources and reliable tools (Littell et al., 2018;
Mager et al., 2018; Micher, 2019; Le Ngoc and
Sadat, 2020).

Herein, we propose an unsupervised morpho-
logical segmentation approach, which is primar-
ily based on the grammar containing production
rules, non-terminal and terminal symbols, and a
lexicon using Adaptor Grammars (Johnson, 2008).
Our current research investigates Inuinnaqtun - a
polysynthetic language spoken in Northern Canada,
in the Inuit language family. Inuinnaqtun is consid-
ered as a language that will be extinct in less than
two generations1.

Regarding the Eskimo-Aleut language family
including the Inuit, unlike words in English, the
word structure of Eskimo are very variable in their

1https://www.kitikmeotheritage.ca/
language

form (Lowe, 1985; Kudlak and Compton, 2018).
Words may be very short, built up of three forma-
tive elements such as word base, lexical suffixes,
and grammatical ending suffixes, or very long, with
up to ten or even fifteen formative morphemes de-
pending on the dialect.

• Eskimo word structure = Word base + Lexi-
cal suffixes + Grammatical ending suffixes

A single word can be used to express a whole sen-
tence in English. The following example, extracted
from (Lowe, 1985), illustrates the polysynthesis ef-
fect of umingmakhiuriaqtuqatigitqilimaiqtara, an
Inuinnaqtun sentence-word, split up into several
morphemes:

umingmak-hiu-riaqtu-qati-gi-tqi-limaiq-ta-ra
muskox - hunt - go in order to - partner - have

as - again - will no more - I-him
(Meaning: I will no more again have him as a

partner to go hunting muskox.)
We observe there is a general tendency to in-

crease the lexical constituents with a word-base
by adding more formative elements. A single
word can express the meaning of a whole sentence.
Moreover, morphology is highly developed and
has extensive use of lexical and grammatical end-
ing suffixes. All these linguistic aspects make the
morphological segmentation task for polysynthetic
languages more challenging. On the other hand,
the benefit of this work helps to identify more un-
known word bases by deducting from the known
affixes, which in turn helps to enrich the Inuin-
naqtun lexicon. The global contribution consists
of helping to revitalize and preserve low-resource
Indigenous languages and the transmission of the
related ancestral knowledge and culture.

The structure of this paper is described as fol-
lows: Section 2 presents relevant works. Section
3 describes our proposed approach. Then, Section
4 presents experiments and evaluations. Finally,
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Section 5 gives some conclusions and perspectives
for future research.

2 Related work

Creutz and Lagus (2007) proposed the Morfessor,
for the unsupervised discovery of morphemes. This
work was based on Hidden Markov Model for learn-
ing the unsupervised morphological segmentation,
and by using the hierarchical structure of the mor-
phemes. This framework became a benchmark in
unsupervised morphological analysis, such as Mor-
fessor 2.0 (Virpioja et al., 2013).

Johnson (2008) proposed Adaptor Grammars ap-
proach that was successful for the unsupervised
morphological segmentation. This approach used
non-parametric Bayesian models generalizing prob-
abilistic context-free grammar (PCFG). In this ap-
proach, a PCFG is considered as a morphological
grammar of word structures. Then the AG mod-
els can be able to induce the segmentation at the
morpheme level.

This approach has been extended in several stud-
ies (Botha and Blunsom, 2013; Sirts and Gold-
water, 2013; Eskander et al., 2018) for learning
non-concatenative morphology, or for unsuper-
vised morphological segmentation of unseen lan-
guages. Recently, Godard et al. (2018) applied
AG approach for the linguists with word segmen-
tation experiments for very low-resource African
languages. Eskander et al. (2019) has applied the
AG approach in an unsupervised morphological
segmentation of the low-resource polysynthetic lan-
guages such as Mexicanero, Nahuatl, Yorem Nokki
and Wixarika. Their evaluations have shown a sig-
nificant improvement up to 87.90% in terms of
F1-score, compared to the supervised approaches
(Kann et al., 2018). Our work examines the effi-
ciency of the AG-based approach on Inuinnaqtun,
a polysynthetic low-resource Inuit language.

3 Our approach

Inspired by the work of Eskander et al. (2019), we
adapt an unsupervised morphological segmentation
with the Adaptor Grammars (AG) approach for the
Inuit language family, by completing an empirical
study on Inuinnaqtun.

The main process consists of defining (1) the
grammar including non-terminal, terminal sym-
bols, a set of production rules, and (2) collecting
a large amount of unsegmented word list in order
to discover and to learn all possible morphological

patterns.
In our work, we consider that word structures are

specified in the grammar patterns where a word is
constituted as one word base, a sequence of possi-
ble lexical suffixes and grammatical ending suffixes
(see Table 1). In contrast, as explained in (Eskan-
der et al., 2019), the word structure is composed of
a sequence of prefixes, a stem and a sequence of
suffixes. Then, in each production rule, a and b are
two parameters of Pitman-Yor process (Pitman and
Yor, 1997). Setting a = 1 and b = 1 indicate, to
the running learner, the current non-terminals are
not adapted and sampled by the general Pitman-Yor
process. Otherwise, the current non-terminals are
adapted and expanded as in a regular probabilistic
context-free grammar.

In order to adapt the AG scholar-seeded setting
with linguistic knowledge, we have collected a list
of affixes from dictionaries and Websites in the
appropriate language.

4 Experiments

4.1 Data Preparation

In order to train the Adaptor Grammars-based un-
supervised morphological segmentation model, the
two principal inputs consists of the grammar and
the lexicon of the language. The lexicon consists
of a unique list of unsegmented words, more than
50K words, with the sequence length between
three letters and 30 letters.

We collected manually a small corpus from sev-
eral resources such as the Website of Nunavut2

government for Inuinnaqtun, open source dictio-
naries and grammar books (Lowe, 1985; Kudlak
and Compton, 2018). The experimental corpus
contains 190 word bases and 571 affixes. A small
golden testing set is manually crafted containing
1,055 unique segmented words.

4.2 Training Settings

We used the MorphAGram toolkit (Eskander et al.,
2020) to train our unsupervised morphological
segmentation model. Following (Eskander et al.,
2019), we set up the same configuration with
adaptation of the best learning settings: the best
standard PrefixStemSuffix+SuffixMorph grammar
and the best scholar-seeded grammar, that become
here an adaptation of the standard grammar Word-
Base+LexicalSuffix+GrammaticalSuffix pattern for

2https://www.gov.nu.ca/in/cgs-in
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1 1 Word –>WordBase LexicalSuffix GrammaticalSuffix

WordBase –> ^^^
WordBase –> ^^^ WordBaseMorphs
1 1 WordBaseMorphs –> WordBaseMorph
WordBaseMorph –> SubMorphs

LexicalSuffix –> SubMorphs
LexicalSuffix –> SuffixMorphs $$$
LexicalSuffix –> $$$

GrammaticalSuffix –> SuffixMorphs $$$
1 1 SuffixMorphs –> SuffixMorph SuffixMorphs
1 1 SuffixMorphs –> SuffixMorph
1 1 SubMorphs –> SubMorph SubMorphs
1 1 SubMorphs –> SubMorph
SubMorph –> Chars
1 1 Chars –> Char
1 1 Chars –> Char Chars

Table 1: Adaptation of the standard grammar WordBase+LexicalSuffix+GrammaticalSuffix pattern for Inuinnaq-
tun. The symbols ^^^ and $$$ mean the beginning and the end of the word sequence, respectively. Source: see the
standard PrefixStemSuffix+SuffixMorph grammar pattern (Eskander et al., 2019).

Word Ground Truth Morfessor AG-Standard AG-Scholar
aullarnatin

havangnatik
iaqluktinnagu
nirihuiqtunga
niritinnagit

umiarmi
umiaq

tikinnanuk

aullar na tin
havang na tik

iqaluk tinna gu
niri huiq tunga
niri tinna git

umiar mi
umiaq

tikin na nuk

aulla rn at in
hav ang na tik

iqalu k ti nna gu
niri huiq tu ng a
niri ti nna gi t

umi a rmi
umi aq

tikinnanuk

a ulla rna tin
hav a ngna tik

iqa luk tinna gu
niri huiq tu ng a

niri tinna git
umi armi
u mi aq

t iki nna nuk

aullar nati n
havang na tik

iaqluk tinna gu
niri huiq tunga
niri tinna git

umia r mi
umiaq

tikin na nuk

Table 2: Illustrations of morpheme segmentation predictions on the test set using the different settings such as
Standard (AG-Standard), Scholar seeded (AG-Scholar) and Morfessor.

Inuinnaqtun (see Table 1). We evaluate our differ-
ent models against the baseline, based on Morfes-
sor (Virpioja et al., 2013).

4.3 Evaluations
All the model performances are calculated using
common evaluation metrics, such as Precision (P),
Recall (R) and F1 score.

P =
|{relevant tokens} ∩ {found tokens}|

{found tokens} (1)

R =
|{relevant tokens} ∩ {found tokens}|

{relevant tokens} (2)

F1 =
2× P× R

P + R
(3)

where {found tokens} means the amount of pre-
dicted tokens; and {relevant tokens} indicates the
amount of tokens which are correctly segmented.

Tables 2 and 3 show some illustrations of predic-
tion by all the models and the performance of our
models versus Morfessor as baseline on the test set.
The AG-standard model is better than the baseline,
with a gain of +2.47%, +4.9% in terms of precision
and recall, on the test set, respectively. Both base-
line and AG-Standard models obtained low preci-
sion between 48.29% and 50.76%. We observed

an over-segmentation in both models.Furthermore,
we noticed that the scholar-seeded learning outper-
formed all the baseline and the standard setting,
with performances of 71.06%, 82.83%, 76.49% in
terms of Precision, Recall and F1 score, respec-
tively. Our models tend to over-segment more com-
plex morphemes due to the linguistic irregularities
and the morphophonological phenomena, to detect
common lexical suffixes such as at, aq, iq, na, ng
or grammatical ending suffixes such as a, k, q, t, n,
it, mi or uk.

Precision Recall F1
Morfessor 48.29 75.40 58.87
AG-Standard 50.76 80.30 62.20
AG-Scholar 71.06 82.83 76.49

Table 3: The results on the test set using the differ-
ent settings such as Standard (AG-Standard), Scholar
seeded (AG-Scholar) and Morfessor.

5 Conclusion

In this research paper, we presented how to build
the unsupervised morphological segmentation with
Adaptor Grammars approach for Inuinnaqtun, an
Inuit language, considered as an extremely low-
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resource polysynthetic language, that will be ex-
tinct in less than two generations, as described and
referenced above. This Adaptor Grammars-based
approach showed promising results, when using a
set of grammar rules, that can be collected from
grammar books; and a lexicon extracted from very
little data. As a perspective, we intend to develop
more efficient unsupervised morphological segmen-
tation methods and to extend our research to other
Indigenous languages and dialects, especially the
very endangered ones; with applications on Ma-
chine Translation and Information Retrieval.

Acknowledgments

The authors wish to express their thanks for pro-
fessor Richard Compton, Canada Research Chair
in Knowledge and Transmission of the Inuit Lan-
guage, and the reviewers, for their constructive
feedbacks.

References
Jan A Botha and Phil Blunsom. 2013. Adaptor gram-

mars for learning non- concatenative morphology.
Association for Computational Linguistics.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Transactions on Speech and Lan-
guage Processing (TSLP), 4(1):1–34.

Ramy Eskander, Francesca Callejas, Elizabeth Nichols,
Judith L Klavans, and Smaranda Muresan. 2020.
Morphagram, evaluation and framework for unsu-
pervised morphological segmentation. In Proceed-
ings of The 12th Language Resources and Evalua-
tion Conference, pages 7112–7122.

Ramy Eskander, Judith L Klavans, and Smaranda
Muresan. 2019. Unsupervised morphological seg-
mentation for low-resource polysynthetic languages.
In Proceedings of the 16th Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 189–195.

Ramy Eskander, Owen Rambow, and Smaranda Mure-
san. 2018. Automatically tailoring unsupervised
morphological segmentation to the language. In
Proceedings of the Fifteenth Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 78–83.

Pierre Godard, Laurent Besacier, François Yvon, Mar-
tine Adda-Decker, Gilles Adda, Hélène Maynard,
and Annie Rialland. 2018. Adaptor grammars for
the linguist: Word segmentation experiments for
very low-resource languages. In Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology, pages 32–42.

Mark Johnson. 2008. Unsupervised word segmenta-
tion for sesotho using adaptor grammars. In Pro-
ceedings of the Tenth Meeting of ACL Special In-
terest Group on Computational Morphology and
Phonology, pages 20–27.

Katharina Kann, Manuel Mager, Ivan Meza-Ruiz, and
Hinrich Schütze. 2018. Fortification of neural
morphological segmentation models for polysyn-
thetic minimal-resource languages. arXiv preprint
arXiv:1804.06024.

Emily Kudlak and Richard Compton. 2018. Kan-
giryuarmiut Inuinnaqtun Uqauhiitaa Numiktitiru-
tait — Kangiryuarmiut Inuinnaqtun Dictionary, vol-
ume 1. Nunavut Arctic College: Iqaluit, Nunavut.

Tan Le Ngoc and Fatiha Sadat. 2020. Revitalization
of indigenous languages through pre-processing and
neural machine translation: The case of Inuktitut. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 4661–4666.

Patrick Littell, Anna Kazantseva, Roland Kuhn, Aidan
Pine, Antti Arppe, Christopher Cox, and Marie-
Odile Junker. 2018. Indigenous language technolo-
gies in canada: Assessment, challenges, and suc-
cesses. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
2620–2632.

Ronald Lowe. 1985. Basic Siglit Inuvialuit Eskimo
Grammar, volume 6. Inuvik, NWT: Committee for
Original Peoples Entitlement.

Manuel Mager, Ximena Gutierrez-Vasques, Gerardo
Sierra, and Ivan Meza-Ruiz. 2018. Challenges of
language technologies for the indigenous languages
of the Americas. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 55–69, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Jeffrey Micher. 2019. Bootstrapping a neural morpho-
logical generator from morphological analyzer out-
put for inuktitut. In Proceedings of the Workshop on
Computational Methods for Endangered Languages,
volume 2, page 7.

Jim Pitman and Marc Yor. 1997. The two-parameter
poisson-dirichlet distribution derived from a stable
subordinator. The Annals of Probability, pages 855–
900.

Kairit Sirts and Sharon Goldwater. 2013. Minimally-
supervised morphological segmentation using adap-
tor grammars. Transactions of the Association for
Computational Linguistics, 1:255–266.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, Mikko
Kurimo, et al. 2013. Morfessor 2.0: Python imple-
mentation and extensions for morfessor baseline.

162



Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, pages 163–167
June 11, 2021. ©2021 Association for Computational Linguistics

Toward Creation of Ancash Quechua Lexical Resources from OCR

Anonymous NAACL-HLT 2021 submission

Abstract

The Quechua linguistic family has a limited001
number of NLP resources, most of them being002
dedicated to Southern Quechua, whereas the003
varieties of Central Quechua have, to the best004
of our knowledge, no specific resources (soft-005
ware, lexicon or corpus). Our work addresses006
this issue by producing two resources for the007
Ancash Quechua: a full digital version of a008
dictionary, and an OCR model adapted to the009
considered variety. In this paper, we describe010
the steps towards this goal: we first measure011
performances of existing models for the task012
of digitising a Quechua dictionary, then adapt013
a model for the Ancash variety, and finally014
create a reliable resource for NLP in XML-015
TEI format. We hope that this work will be016
a basis for initiating NLP projects for Central017
Quechua, and that it will encourage digitisa-018
tion initiatives for under-resourced languages.019

1 Introduction020

In recent years, Quechua has become more visi-021

ble in the countries where it is spoken, partly as a022

result of measures to strengthen its use in institu-023

tions, but also of a growing interest in these lan-024

guages as a cultural element among citizens. At025

the same time, Quechua languages are gradually026

handled by NLP software. For Southern Quechua027

(variety of Quechua II, the most widespread lin-028

guistic family), resources already exist and many029

projects are experimenting large corpus digitisa-030

tion to create Deep Learning models1. However,031

Quechua varieties are heterogeneous and avail-032

able resources for the aforementioned variety are033

hardly usable for others, because of important dif-034

ferences in both morphology and lexicon. The035

present work aims at laying foundations for the036

development of NLP tools for another variety, the037

Ancash Quechua (variety of Quechua I).038

1As the OSCAR corpus https://oscar-corpus.
com

The main steps describes in this paper are as fol- 039

lows: 040

• We compare 3 OCR software on the task of 041

digitising a Quechua dictionary : ABBYY 042

Finereader, a commercial proprietary OCR; 043

Tesseract Open Source OCR (Smith, 2007), 044

(Smith, 2013); and GoogleDocs OCR. 045

• On the basis of this comparison, we use 046

Tesseract to retrain a Quechua model to adapt 047

it to the Ancash variety and to the specific ty- 048

pography of the book. 049

• The dictionary is fully digitised using this 050

new model; lexical information is then gath- 051

ered in a XML-TEI format. 052

2 State Of The Art 053

2.1 Ancash language and resources 054

Ancash is a Peruvian department located in the 055

Central Andes, with over 30% native speakers of 056

Quechua2. In this area, the Quechua varieties are 057

relatively homogeneous and mutually intelligible, 058

which justifies grouping them under the name An- 059

cash Quechua. This variety is the most widely spo- 060

ken of the Central Quechua linguistic branch (Q.I). 061

However, very little data is available in digital for- 062

mat, and to the best our knowledge, there are none 063

specifically prepared for NLP development. 064

2.1.1 Lexical resources 065

Since Quechua is an agglutinative language, hav- 066

ing a lexicon would greatly facilitate the devel- 067

opment of morphological analysis systems, which 068

would in turn make it possible to develop useful 069

tools for Quechuan users and the NLP community: 070

spell checker, POS-tagger, automatic alignment of 071

parallel corpora, etc. 072

Some resources are freely available in elec- 073

tronic format. The most widely used is probably 074

2According to the 2017 census.
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the Quechua-Spanish dictionary (Menacho López,075

2005), published by the Ministry of Education,076

which contains 971 entries and can be queried077

through the online platform Qichwa 2.03.078

An online cross-dialectal lexicon (Jacobs,079

2006), featuring about 1,800 entries for Ancash, is080

downloadable in spreadsheet format. This format081

can be easily used for NLP, but the lexicon con-082

tains some redundancies, discrepancies and for-083

matting irregularities.084

The largest Ancash Quechua-Spanish dictionar-085

ies are either not officially digitised or have been086

published under restrictive copyright that prevent087

their use for NLP purposes. The main dictionaries088

for our variety are: Swisshelm, 1972, 399 pages,089

Parker et al., 1976, 311 pages; Carranza Romero,090

2013, about 8,000 entries, also available as an091

ebook.092

2.1.2 Corpora093

The main corpus is in paper format only. It con-094

sists of two volumes of narratives in both Quechua095

and Spanish (Cuentos y relatos en el Quechua de096

Huaraz, Ramos and Ripkens, 1974), with a total of097

698 pages. A digitised dictionary would be useful098

to automatically post-edit the OCR of this corpus099

(Poncelas et al., 2020).100

2.2 OCR of dictionaries101

The importance of digitising lexical resources for102

under-resourced languages has been repeatedly ex-103

pressed. For the languages of the Americas, two104

projects are particularly similar to ours.105

A off-the-shelf use of Tesseract is reported106

(Maxwell and Bills, 2017) to digitise 3 bilingual107

dictionaries (Tzeltal-English, Muinane-Spanish,108

Cubeo-Spanish). More specifically, authors used109

Tesseract’s hOCR function to preserve entry’s110

structure and infer lexical entries with associated111

linguistic information. A finite state transducer112

was used to create the lexicon from this hOCR file.113

Tesseract can also be (re)trained to create ded-114

icated models. This has been experimented for115

an almost extinct Canadian language (Northern116

Haida) (Hubert et al., 2016) for a large written cor-117

pus (100,000 words). Optimal settings discovery118

was conducted by training 12 models with distinct119

parameters. This work also experimented training120

the model with images generated from text using a121

font similar to the targeted documents, which did122

3https://dic.qichwa.net/#/

not prove to be efficient. The best model, trained 123

on the original source, obtained 96.47% character 124

rate accuracy (CRA) and a 89.03% word rate accu- 125

racy (WRA). 126

2.3 Quechua in OCR tools 127

Both Tesseract4 and ABBYY include a pretrained 128

Quechua model for OCR. ABBYY’s model is 129

trained on Bolivian Quechua (Q.II). The training 130

corpus for Tesseract’s model is not documented. 131

3 OCR of the Ancash Quechua 132

Dictionary 133

3.1 Source Document 134

The document we digitised is a working document 135

by the linguist Gary J. Parker, resulting from his 136

fieldwork (Parker, 1975). It is an unpublished draft 137

of the Ancash Quechua to Spanish dictionary men- 138

tioned above (Parker et al., 1976) This book is a 139

list of Ancash lexemes along with their area of 140

use (division by province), their POS, translation 141

or gloss in Spanish, and a set of internal cross- 142

references indicating synonyms, related terms or 143

lectal variants. The overall structure is relatively 144

homogeneous. The elements mentioned above are 145

separated by blanks, but are not vertically aligned. 146

The typography is that of the old typewriters; some 147

typing errors remain in the document. 148

3.2 Typography 149

Ancash Quechua is written using Latin script. In 150

the particular case of our document, the author 151

used a phonemic spelling to represent charac- 152

ters whose official modern spelling is a digraph. 153

The Table 1 shows the special characters used 154

by Parker (in first column), their corresponding 155

phonemes, and the graphemes commonly used to- 156

day. 157

3.3 Methodology 158

3.4 Source preprocessing 159

After scanning the entire document in PDF format, 160

we applied a series of pre-processing operations in 161

order to facilitate the OCR task: 162

1. Cropping: cutting the file to eliminate every- 163

thing that comes out of the pages. We used 164

Gimp tool and checked for each page that the 165

cropping did not affect the text; 166

4https://github.com/tesseract-ocr/
tesseract
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Ancash Quechua phonemes
Character Phoneme Grapheme

/a:/ aa
/i:/ ii
/u:/ uu
/ń/ ll
/
>
tS/ ch

/
>
tù/ tr

/S/ sh
Spanish loans

,
/e/, /o/
(stressed)

e, o

/ü/ rr

Table 1: Special characters in the dictionary

2. Conversion to greyscale and increasing con-167

trast;168

3. Conversion to high definition PNG (between169

350 and 390 dpi).170

The last two steps are automatically applied to171

the whole document thanks to a bash script, using172

gegl5 and convert6 commands.173

3.5 OCR selection174

In order to determine which OCR is best suited175

to process our document, we conducted a series176

of preliminary tests. We selected three of the best177

performing OCR software (Tafti et al., 2016), and178

compared their output on a set of 5 pages of the179

document, randomly extracted. For Tesseract’s180

OCR, we used both Quechua and Spanish pre-181

trained models. For ABBYY’s OCR, we used the182

Bolivian Quechua model. GoogleDocs OCR does183

not allow to control any parameter. Table 2 shows184

the error rates for each of them.185

Tesseract ABBYY GoogleDocs
CER 6.64 6.43 5.26
WER 25.5 27.5 20.7

Table 2: OCR comparison on our dictionary

This evaluation shows that GoogleDocs OCR is186

the best performing. Many of the diacritics de-187

scribed in Section 3.2 are recognised, but the struc-188

5https://gegl.org/
6https://imagemagick.org/script/

convert.php

ture of the document is not preserved. The oppo- 189

site situation occurs in the case of ABBYY. It is 190

worth noting that the output of the latter could be 191

greatly improved by using the numerous settings 192

the software offers. 193

In addition to performances, we also took 194

in consideration the possibility to distribute the 195

trained model with an open licence. According 196

to these considerations, we chose Tesseract, which 197

gives satisfying results and allows the model to be 198

shared. 199

3.5.1 Preliminary tests with Tesseract OCR 200

In order to have a better view of Tesseract’s per- 201

formance, we applied OCR on 10 PNG files, 202

randomly extracted from the pre-processed (Sec- 203

tion 3.4) document, using: Spanish model alone 204

(spa FAST); Quechua model alone (que FAST); 205

Spanish and Quechua models together (que+spa) 206

in their compressed (FAST) and uncompressed 207

(BEST) versions. 208

OCR outputs per page are concatenated into 209

a single file, as well as corresponding gold stan- 210

dards. Resulting files are compared to measure 211

Character Error Rate (CER) and Word Error Rate 212

(WER) with the ocrevalUAtion tool7. Table 3 re- 213

ports those evaluations. 214

The results show that OCR performance is rel- 215

atively poor, with a word recognition accuracy 216

(WRA) of less than 80%. The characters with di- 217

acritics presented in Section 3.2, which are absent 218

from the character set of Quechua and Spanish 219

models, are not recognised, making manual cor- 220

rection tedious. However, Tesseract offers the pos- 221

sibility to adapt a pre-trained model to additional 222

fonts and characters. In the next section, we de- 223

scribe the training of a model specific to our book, 224

based on Tesseract’s Quechua model. 225

CER WER
spa FAST 6.23 23.20
que FAST 7.40 27.55
que+spa FAST 5.89 21.82
que+spa BEST 6.05 21.29

Table 3: Tesseract performance with pretrained models

3.6 Model training 226

A training corpus was built from 30 pages of 227

the document (5,676 words, 33,687 characters). 228

7https://github.com/impactcentre/
ocrevalUAtion
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These pages are segmented by lines with the229

Tesseract hOCR tool, producing a total of 1,544230

segments; each segment is then OCRised and the231

output is manually corrected to constitute the gold232

standard. The training process is done from the233

Quechua model. A threshold is reached at 4.379%234

error rate, after 4200 epochs.235

3.7 Evaluation236

Previous work showed that the evaluation of an237

OCR output depends both on the quality of the238

segmentation of the document and on the quality239

of text recognition (Karpinski et al., 2018). For240

this evaluation, we discarded OCR outputs whose241

segmentation problems affect the global structure242

of the page; only character recognition is thus eval-243

uated.244

Our model is evaluated on 50 randomly selected245

pages of the dictionary, pre-processed as described246

in Section 3.4. Table 4 shows CER and WER247

(Raw). The second score (Corr.) is computed af-248

ter correction of one-off segmentation problems.249

The scores show an improvement of more than250

3% over the Quechua+Spanish model (see Table 2251

of Tesseract for the character recognition accuracy,252

and of 13% for the word recognition accuracy.253

Raw Corr.
CER 2.57 2.42
WER 8.19 7.51
WER (order indep.) 6.69 5.96

Table 4: CER and WER of the Ancash Quechua model

To get a better idea of the impact of the training,254

we also evaluated the error rate on the characters255

with diacritics. Table 5 shows their volume in the256

training corpus (ū, ř and ĉ having only one or two257

occurrences, they are considered negligible) and258

corresponding error rates.259

Nbtrain Voltrain (%) CER (%)
š 167 0.50 4.04
ë 157 0.47 7.83
č 148 0.44 5.11
ā 130 0.39 63.7
ī, ē, ō <0,1 100

Table 5: Training volume and CER for special charac-
ters

Empirically, manual correction of OCR output260

is easier with the new model: the most frequent261

characters with diacritic are well recognised, and 262

the errors are more regular, allowing in some case 263

their automatic detection and correction. For 10 264

pages, we estimated an average correction time per 265

page of 3’40. 266

4 Lexical Resource 267

During the manual correction of the OCRed text, 268

each entry was copied into an ODS file in order to 269

preserve the structure. The resulting file is com- 270

posed of 5 columns containing the elements de- 271

scribed in Section 3.1. Having been reviewed sev- 272

eral times, this resource is already available on- 273

line8. 274

In order to distribute this resource in a for- 275

mat suitable for a large variety of tools, the ODS 276

file (previously converted to CSV) is automati- 277

cally converted to an XML-TEI9 format, follow- 278

ing the guidelines for XML encoding of dictionar- 279

ies (Budin et al., 2012). The markup structure is 280

built with the following rules : 281

• Spanish loans, marked in the dictionary by an 282

asterisk before the word, are indicated by in- 283

sertion of the tag <etym>; 284

• Homographs are grouped in a 285

<superEntry>; 286

• Cross-references are marked with <xr>; 287

• Easily retrievable examples within the col- 288

umn corresponding to the translation or gloss 289

are tagged with <cit>. 290

Our XML-TEI lexicon contains 3626 entries, 291

and is to date the largest digital resource for An- 292

cash Quechua available for NLP and lexicometry. 293

5 Conclusion 294

The present work shows that it is relatively easy to 295

train a new Tesseract model from an existing one, 296

with very little data. The tests carried out on sev- 297

eral OCRs show many that alternatives are avail- 298

able for this task depending on the desired output. 299

Based on this work, we started the digitisation of 300

a second dictionary and a corpus with the same 301

characteristics. 302

8https://github.com/rumiwarmi/qishwar/
blob/main/Diccionario%20polilectal%20-%
20PARKER.ods

9https://tei-c.org/
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Abstract
This paper presents the first neural machine
translator system for the Ayuuk language. In
our experiments we translate from Ayuuk to
Spanish, and from Spanish to Ayuuk. Ayuuk
is a language spoken in the Oaxaca state of
Mexico by the Ayuukjä’äy people (in Span-
ish commonly known as Mixes). We use dif-
ferent sources to create a low-resource par-
allel corpus, more than 6, 000 phrases. For
some of these resources we rely on automatic
alignment. The proposed system is based on
the Transformer neural architecture and it uses
sub-word level tokenization as the input. We
show the current performance given the re-
sources we have collected for the San Juan
Güichicovi variant, they are promising, up to
5 BLEU. We based our development on the
Masakhane project for African languages.

1 Introduction

In recent years the efforts to preserve and pro-
mote the creation of NLP tools for the native lan-
guages of the Americas have increased, particularly
addressing the challenges that this endeavour re-
quires (Mager et al., 2018). Machine Translation
(MT) has become one of the main goals to pursue
since in the long term it might offer benefits to
the communities that speak such languages. For
instance, it might provide access to knowledge in
their native language and facilitate access to ser-
vices such legal, medical and finance assistance. In
this work, we explore this avenue for the San Juan
Güichicovi variant of the Ayuuk language, mainly
because one of the authors is a native speaker of
this variant. To our knowledge there has not been
a construction of such a system for the Ayuuk al-
though other variants1 are available in the JW300
Corpus (Agić and Vulić, 2019).

In this work we rely in multiple previous work.
At the core of our proposal we follow the steps from

1Coatlán Mixe (ISO 639-3 mco), Ayuuk of the Coatlán
region.

the Masakhane project2 which focuses on African
Languages (Nekoto et al., 2020). We also rely on
the following libraries:

• For the automatic alignment of our resources
we use the YASA alignment (Lamraoui and
Langlais)3

• For the tokenization we use subword-nmt li-
brary4 (Sennrich et al., 2016)

• For the training of our models we use
JoeyNMT5 (Kreutzer et al., 2019).

With these tools we developed our code base that
can be consulted online together with the part of
the corpus which is freely available 6.

2 Ayuuk from San Juan Güichicovi

Ayuukjä’äy can be translated as people of the moun-
tains, most them can be located in 24 municipalities
of the Oaxaca state. They are the native speakers of
the Ayuuk language with approximately 139, 760
speakers in Mexico. The Ayuuk language, which
has an ISO 639-3 code mir, belongs to the mixe-
zoqueana linguistic family. This linguistic family is
composed by the Mixe and Zoque subfamilies 7. In
particular, the Mixe subfamily also includes Mixe
of Oaxaca, Sayula Popoluca and Oluta Popoluca
languages. For Ayuuk there are six main variants of
the language, among these the Mixe bajo to which
the San Juan Güichicovi variant belongs to. At

2https://www.masakhane.io/ (last visited march
2021)

3https://github.com/anoidgit/yasa (last
visited march 2021)

4https://github.com/rsennrich/
subword-nmt (last visited march 2021).

5https://github.com/joeynmt/joeynmt (last
visited march 2021)

6https://github.com/DelfinoAyuuk/
corpora_ayuuk-spanish_nmt

7For further information visit about the mixe-zoqueana
family https://glottolog.org/resource/
languoid/id/mixe1284
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this municipality it can be estimated there is ap-
proximately 18, 298 speakers of the variant. It is
important to notice that it is estimated that only
3, 205 are monolinguist.

The San Juan Güichicovi’s Ayuuk variant does
not has a normalized orthography, there are ef-
forts to agree on orthographic conventions how-
ever there are strong positions related to num-
ber of consonants. One of these positions, it is
known as the “bodegeros” position which pro-
poses 20 consonants (see 1b.a) (Willett et al., 2018)
vs “petakeros” which proposes a reduction to 13
(see 1b.b) (Reyes Gómez, 2005). In terms of vow-
els, this variant has six (see 2) which contrast with
the other variants of Ayuuk which can have up to
nine vowels.

(1) a. b ch d ds g j k l m n ñ p r s t ts w x y ’
b. p t k x ts m n wy j l r s ’

(2) a e ë i o u

The following are examples of San Juan
Güichicovi’sAyuuk these were taken from short sto-
ries recollected and written by Albino Pedro Juan
a native speaker and preserver of the language.

(3) Jantim xyondaak ja koy jadu’un.
The bunny become happy.
El conejo se puso feliz.

(4) Kabëk je’e ti y’ok ëjy y’ok nójnë.
When everything become silence.

Cuando todo se silencia.

2.1 Spanish
In the case of Spanish, our system produces trans-
lations in Mexican Spanish which belongs to the
American Spanish variant 8, we identify the lan-
guage by the es ISO-639-1 code.

3 The parallel corpus

For the creation of the parallel corpus we collected
samples from different sources for which there was
a available translation between Ayuuk and Spanish,
see Table 1.

Since we have a diverse source of linguistic
sources it was necessary to normalize the orthog-
raphy. For this we follow the proposal from Sagi-
Vela González (2019) who has followed the unifi-
cation of the Ayuuk language avoiding taking sides
on the controversy about the number of consonants.

8https://glottolog.org/resource/
languoid/id/amer1254 (visited, last visited march
2021)

Resource es mir
The bible Open No open
Songs and poems No open No open
The Mexican constitution Open No open
Personal colection of
Albino Pedro Juan

No open No open

Esopo Fables Open No open
National archive of
indigenous languagesa No open Open

Social networka Open Open
The dragon and the rabbita Open Openb

Phrases translated by authora Openc Open
a https://github.com/DelfinoAyuuk/corpora_ayuuk-spanish_nmt (vis-

ited March 18th)
b https://mexico.sil.org/es/resources/archives/55868 (visited March

18th)
c https://www.manythings.org/anki/ (visited March 18th)

Table 1: Source of data collected

Mainly we made two replacements: ñ/ny and ch/tsy
Some of the works were already aligned, others
not. For those not aligned we created automatic
alignments using the YASA tool (Lamraoui and
Langlais). We discarded all empty and double
alignments. Normalization and automatic align-
ments were manually verified by one of the authors.
The corpus keep differences among both normal-
ization variants: petakeros and bodegeros.

Finally, we randomly split the sentences into
training, development and testing sets. For our ex-
perimentation we created two split versions, one
strict and one random. In the strict version we
use all the phrases from the National archive of
indigenous languages (Lyon, 1980) as a test. Since
these sentences are linguistically motivated and
aim to show linguistic aspects of the language
they tend to be harder to translate; This split re-
sulted in 5, 847/700/912 (train/dev/test). In the ran-
dom split we randomly sample sentences from our
sources, the final split resulted in 5, 941/700/912
(train/dev/test). Notice that amount of phrases
among splits changes, this is because after separat-
ing the test phrases, we remove repeated or similar
phrases for the train/dev sets. Our intuition was
to have a more uniform training/validation for the
random split while the test follows the distribution
of the original sources. We mimic this procedure
for the strict sample.

4 Neural Architecture

Our translation model is based on the Transformer
architecture (Vaswani et al., 2017). We use an en-
coder-decoder setting. For our experiments we
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Figure 1: Perplexity and BLEU of es-mir in develop-
ment set.

have two configurations for both encoder and de-
coder:

A Number of layers: 3, number of heads: 4,
Input embedding dimensionality: 64, embed-
ding dimensionality: 64, batch size: 128.

B Number of layers: 6, number of heads: 4,
input embedding dimensionality: 256, embed-
ding dimensionality: 256, batch size: 128.

These models were trained in a server with two
Tesla V100 GPUs. To obtain a model it usually take
us around 2h for a 100 epochs. We also were able
to reproduce the experiments in the Colaboratory
platform.

5 Experiments and results

As described in the previous section we have two
different versions of our splits, strict and random.
Per split we performed five experiments, two for
configuration with fewer layers (A), and three for
the configuration with more layers (B). We also
modified: a) the maximum length of the phrase (50
or 70) b) the vocabulary of the BPE sub-word algo-
rithm (we tested 2000 or 4000). Figure 1 shows the
perplexity and the BLEU score in the development
set during training for the direction Spanish (es) to
Ayuuk (mir). The first part of the Table 2, columns
two to five, presents the results on the development
and test sets.

Figure 2 shows the lerning curve on the direction
of translation Ayuuk (mir) to Spanish (es). The
second part of the table 2, columns six to nine,
presents the results on the development and test for
this translation direction.

Figure 2: Perplexity and BLEU of mir-es in develop-
ment set.

Figure 3: Perplexity and BLEU of es-mir and mir-es
training with 250 epochs.

As we can appreciate these sets of experiments
show that the translation is possible. We have some
gains on the model with more layers (B), this is
not trivial since we have a small amount of training
data. On the other hand, the strict split as expected
shows to be very difficult to translate, the BLEU
scores are minimal. However with the random
splits the BLEU scores are more promising. We
also observe there that in the current setting it is
more “easy” to translate from Spanish to Ayuuk
than the other direction. Finally, we perform a
larger experimentation with 250 epochs using the
B configuration, following the intuition we haven
reach the right performance with 100. Figure 3
shows the learning curve on the development set,
the bottom part of Table 2 shows our final results
using the random split.

6 Conclusions and Further work

Previous experiences on MT based on deep learn-
ing architecture, particularly on seq2seq settings,
for native languages of the Americas have not been
promising (Mager and Meza, 2018). In particu-
lar, because there is little to none training data.
However, our work shows that a standard model
based on the Transformer architecture and under
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Configuration A 100 epochs Strict es-mir Random es-mir Strict mir-es Random mir-es
BLEU dev test dev test dev test dev test
Max lenght 50
BPE 2000

1.72 0.05 1.66 1.71 0.64 0.10 0.91 0.66

Max lenght 50
BPE 4000

2.03 0.10 1.21 1.24 1.02 0.16 0.93 0.83

Configuration B 100 epochs Strict es-mir Random es-mir Strict mir-es Random mir-es
BLEU dev test dev test dev test dev test
Max lenght 50
BPE 2000

3.91 0.10 3.59 3.70 2.21 0.41 2.49 2.72

Max lenght 50
BPE 4000

5.02 0.13 4.17 4.20 2.33 0.28 2.13 2.23

Max lenght 70
BPE 4000

7.58 0.10 5.83 5.56 4.03 0.27 3.64 3.52

Configuration B 250 epochs Random es-mir Random mir-es
BLEU dev test dev test
Max lenght 70
BPE 4000

5.83 5.56 3.64 3.52

Table 2: BLEU scores of es-mir and mir-es.

extremely low resource setting can produce some
results. They are still low for normal standards of
the MT field however they are promising for the
future.

In order to improve the performance of the sys-
tem future work will focus on:

1. Collecting more data, paying attention to other
variants of the Ayuuk language.

2. Although the strict setting strongly penalizes
the evaluation, we will continue using linguis-
tic motivated phrases as a good bar to evaluate
our progress.

3. At this moment we rely on sub-word of the
phrases, however our approach could bene-
fit from a deeper morphology analysis (Kann
et al., 2018).

4. Our normalization will continue respecting
the petakeros and bodegeros positions, and for
other variants we also incorporate positions
regarding the number of vowels.
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Abstract

Linguistic tone is transcribed for input into
ASR systems in numerous ways. This paper
shows a systematic test of several transcription
styles, using as an example the Chibchan lan-
guage Bribri, an extremely low-resource lan-
guage from Costa Rica. The most successful
models separate the tone from the vowel, so
that the ASR algorithms learn tone patterns in-
dependently. These models showed improve-
ments ranging from 4% to 25% in character
error rate (CER), and between 3% and 23% in
word error rate (WER). This is true for both
traditional GMM/HMM and end-to-end CTC
algorithms. This paper also presents the first
attempt to train ASR models for Bribri. The
best performing models had a CER of 33% and
a WER of 50%. Despite the disadvantage of
using hand-engineered representations, these
models were trained on only 68 minutes of
data, and therefore show the potential of ASR
to generate further training materials and aid
in the documentation and revitalization of the
language.

Resumen

Transcribir el tono de forma explícita mejora
el rendimiento del reconocimiento de voz en id-
iomas extremadamente bajos en recursos: Un
estudio de caso en bribri. Hay numerosas man-
eras de transcribir el tono lingüístico a la hora
de proveer los datos de entrenamiento a los sis-
temas de reconocimiento de voz. Este artículo
presenta un experimento sistemático de varias
formas de transcripción usando como ejemplo
la lengua chibcha bribri, una lengua de Costa
Rica extremadamente baja en recursos. Los
modelos más exitosos fueron aquellos en que
el tono aparece separado de la vocal de tal
forma que los algoritmos pudieran aprender
los patrones tonales por separado. Estos mod-
elos mostraron mejoras de entre 4% y 26% en
el error de caracteres (CER), y de entre 3% y
25% en el error de palabras (WER). Esto se
observó tanto en los algoritmos GMM/HMM

como en los algoritmos CTC de secuencia-
a-secuencia. Este artículo también presenta
el primer intento de entrenar modelos de re-
conocimiento de voz en bribri. Los mejores
modelos tuvieron un CER de 33% y un WER
de 50%. A pesar de la desventaja de usar repre-
sentaciones diseñadas a mano, estos modelos
se entrenaron con solo 68 minutos de datos y
muestran el potencial para generar más materi-
ales de entrenamiento, así como de ayudar con
la documentación y revitalización de la lengua.

1 Introduction

The documentation and revitalization of Indige-
nous languages relies on the transcription of speech
recordings, which contain vital information about
a community and its culture. However, the tran-
scription of these recordings constitutes a major
bottleneck in the process of making this informa-
tion usable for researchers and practitioners. It
typically takes up to 50 hours of an expert’s time
to transcribe each hour of audio in an Indigenous
language (Shi et al., 2021). Moreover, there are
usually few community members who have the
expertise to transcribe this data and who have the
time to do so. Because of this, extending automated
speech recognition (ASR) to these languages and
incorporating it into their documentation and revi-
talization workflows would alleviate the workload
of linguists and community members and help ac-
celerate their efforts.

Indigenous and other minority languages usu-
ally have few transcribed audio recordings, and
so adapting data-hungry ASR algorithms to as-
sist in their documentation is an active area of
research (Besacier et al., 2014; Jimerson and
Prud’hommeaux, 2018; Michaud et al., 2019;
Adams et al., 2019; Foley et al., 2018; Gupta and
Boulianne, 2020b,a; Zahrer et al., 2020; Thai et al.,
2019; Li et al., 2020; Partanen et al., 2020; Zevallos
et al., 2019; Matsuura et al., 2020; Levow et al.,
2021). This paper will examine an element that
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might appear obvious at first, but one where the lit-
erature is “inconclusive" (Adams, 2018), and which
can have major consequences in performance: How
should tones be transcribed when dealing with ex-
tremely low-resource languages? This will be ex-
amined by building ASR models for the language
Bribri from Costa Rica. The results show that sim-
ple changes in the orthographic transcription, in
the form of explicit tonal markings that are sepa-
rate from the vowel information, can dramatically
improve accuracy.

1.1 Tonal languages and ASR

A tonal language is a language where differences
in pitch can change the meaning of a word, even
if the consonants and vowels are the same (Yip,
2002). The best-known example of a tonal lan-
guage is Mandarin Chinese. In Mandarin, the syl-
lable [ma] means “mother" if it is produced with a
high pitch. The same syllable means “horse" when
pronounced with a dipping-rising pitch, but if it
is pronounced with a falling pitch, it means “to
scold”. Between 40% and 70% of the languages of
the world are tonal (Yip, 2002; Maddieson, 2013),
including numerous Indigenous languages of the
Americas. Because tone is expressed as pitch vari-
ations, and those variations can only occur during
the pronunciation of consonants and vowels, tonal
cues overlap with those of the consonants and vow-
els in the word. Therefore, it is useful to distinguish
between segments - consonants and vowels - and
the information that is suprasegmental, such as
tone, which occurs co-temporally with segments
(Lehiste and Lass, 1976).

Precisely because of large tonal languages like
Mandarin, there has been research into how tone
can play a role in ASR. Many systems treat pitch
(the main phonetic cue of tone) as a completely
separate feature. In such systems, the traditional
ASR algorithm learns the segments, and a sepa-
rate machine learning module learns the pitch pat-
terns and offers its inference of the tone (Kaur
et al., 2020). This has been used for languages
like Mandarin (Niu et al., 2013; Shan et al., 2010),
Thai (Kertkeidkachorn et al., 2014) and Yoruba
(O. délo.bí, 2008; Yusof et al., 2013). On the other
hand, there is research that suggests that, given that
the tone and vowel information are co-temporal,
these are best learned together. For example, an
ASR system would be asked to learn a vowel and
its tone as a single unit (e.g. a+highTone). Fus-

ing the representation for vowel and tone, or em-
bedded tone modeling (Lee et al., 2002), has been
shown to be effective for larger languages like Man-
darin (Chang et al., 2000), Vietnamese and Can-
tonese (Metze et al., 2013; Nguyen et al., 2018), as
well as smaller languages like Yoloxóchitl Mixtec
from Mexico (Shi et al., 2021) and Anyi from Côte
d’Ivoire (Koffi, 2020). Finally, in some tonal lan-
guages like Hausa, in which the orthography does
not mark any tone, the tone is not included at all in
ASR models (Gauthier et al., 2016).

Representations where the tone is marked ex-
plicitly but is kept separate from the vowel (i.e.
explicit tone recognition (Lee et al., 2002)) are not
often used for larger languages, but they are very
common in low-resource ASR. This is often done
using phonetic representations, where the output
of the algorithm is in the form of the International
Phonetic Alphabet (IPA), which is then converted
to the language’s orthographic convention. For
languages like Na from China and Chatino from
Mexico (Ćavar et al., 2016; Adams et al., 2018),
the characters representing the tone are separated
from the vowel. Wisniewski et al. (2020) argue that
it is the transparency of the representation (either
orthographic or phonetic) that helps ASR to learn
these tonal representations, and this transparency
includes having characters that the algorithm can
use to generalize the phonetic cues of the tones
separate from those of the vowels.

Given the review above, there appears to be more
than one way to represent tone effectively as input
for ASR. In this paper several different methods
will be tested using a language (and indeed, a lan-
guage family) in which no ASR models have been
trained before.

1.2 Chibchan Languages and Bribri

The Bribri language (Glottocode brib1243) is
spoken by about 7000 people in Southern Costa
Rica (INEC, 2011). It belongs to the Chibchan
language family, which includes languages such
as Cabécar and Malecu from Costa Rica, Kuna
and Naso from Panama, and Kogi from Colombia.
Bribri is a vulnerable language (Moseley, 2010;
Sánchez Avendaño, 2013). This means that there
are still children who speak it with their families
but there are few circumstances when it is written,
and indeed there are very few books published in
the language. Bribri has four tones: high, falling,
rising, and low tone. The first three are marked
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in the orthography using diacritics (respectively:
à, á, â), while the low tone is left unmarked: a.
Bribri tone can create differences in meaning: the
word alà means ‘child’; its first syllable is low and
the second syllable is high. Contrast this with alá
‘thunder’, where the second syllable has a falling
tone.

Bribri has an additional suprasegmental feature:
Nasality. Like in French, vowels in Bribri can
be oral or nasal. Therefore, ù with an oral vowel
means ‘house’, but ù with a nasal vowel, marked
with a line underneath the vowel,1 means ‘pot’.

Bribri orthographies are relatively transparent
due to their recent invention, the oldest of which is
from the 1970s (Constenla et al., 2004; Jara Murillo
and García Segura, 2013; Margery, 2005). This
works to our advantage, in that there is almost no
difference between an orthographic and a phonetic
representation for the input of Bribri ASR.

There has been some work on Bribri NLP, in-
cluding the creation of digital dictionaries (Krohn,
2020) and morphological analyzers used for
documentation (Flores Solórzano, 2019, 2017b).
There have also been some experiments with un-
trained forced alignment (Coto-Solano and Flo-
res Solórzano, 2016, 2017), and with neural ma-
chine translation (Feldman and Coto-Solano, 2020).
However, there is a need to accelerate the documen-
tation of Bribri and produce more written materials
out of existing recordings, and here we face the
bottleneck problem mentioned above. One of the
main goals of this paper is to build a first ASR sys-

1There are two main orthographic systems for Bribri. In
the Constenla et al. (2004) system, the nasal is marked with a
line under the vowel. In the Jara Murillo and García Segura
(2013) system, the nasal is marked with a tilde over the vowel:
`̃u ‘house’.

tem for Bribri in order to alleviate the problems of
transcription.

2 Transcription Methodology

The first step towards training an ASR model in
Bribri was the selection of the training materials.
The spontaneous speech corpus of Flores Solórzano
(2017a) was used because of its public availability
(it is available under a Creative Commons license)
and because of its consistent transcription. This
corpus contains 1571 utterances from 28 speakers
(14 male and 14 female), for a total of 68 minutes
of transcribed speech. These utterances contain a
total of 13586 words, with 2221 unique words.

The main question in this paper is: How can we
easily reformat Bribri text into the best possible
input for ASR? Let’s take the word dikì /diĂ£"ki

Ă
£/

‘underneath’ as an example. This word has two syl-
lables, the first one with a low tone and the second
one with a high tone, indicated by a grave accent.
In addition to the tone, the second syllable is also
nasal, and this is marked with a line underneath the
vowel. One possible representation of this word
would be to interpret it as four different characters,
as is shown in condition 1 of table 1. Here, the
character for the last vowel would carry in it the
information that it is the vowel /i/, that the vowel is
nasal, and that the vowel is produced with a high
tone. This condition will be called AllFeats, or
“all features together”, because each character in
the ASR alphabet carries with it all the supraseg-
mental features of the vowel. In this transcription,
the Bribri ASR alphabet would have 48 separate
vowel symbols: A-HIGH, A-HIGH-NAS, A-LOW,
A-LOW-NAS, etc.

There are many other ways in which the word

Condition Example transcription Length
Symbols for
vowels + feats

1. AllFeats: All features together D I-LOW K I-NAS-HIGH 4 48
2. NasSep: Nasal as separate character D I-LOW K I-HIGH NAS 5 28 + 1 = 29
3. ToneNasSepWL: Both tone and nasal
separate; explicit indication of low tone

D I LOW K I HIGH NAS 7 7 + 5 = 12

4. ToneNasSep: Both tone and nasal
separate; low tone as implicit default

D I K I HIGH NAS 6 7 + 4 = 11

5. ToneSepWL: Tone is separate;
explicit indication of low tone

D I LOW K I-NAS HIGH 6 12 + 4 = 16

6. ToneSep: Tone is separate; low tone
as implicit default

D I K I-NAS HIGH 5 12 + 3 = 15

Table 1: Different ways to transcribe the Bribri word dikì /diĂ£"ki
Ă
£/ ‘underneath’
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could be transcribed. For example, as shown in
the second condition, NasSep, the nasality could
be written as a separate character and the tone and
vowel could be represented together. In this tran-
scription, the final vowel would be made up of two
separate alphabetic symbols: I-HIGH and NAS.
This idea of separating features could be taken fur-
ther, and both the tone and the nasality could be
represented as separate characters. This is rep-
resented in the third condition, TonesNasSepWL.
Here, both the tones and the nasal feature follow the
vowel as separate characters, and the final vowel of
dikì ‘underneath’ would be expressed using three
alphabetic symbols: I HIGH NAS. Notice that,
in this condition, the low tone of the first sylla-
ble would be represented explicitly after the first
vowel, I LOW, hence the condition includes the
‘WL’, "with low [tone]". However, this low tone
is the most frequent tone in Bribri, and as a mat-
ter of fact it has no explicit diacritic in the Bribri
writing system. Because of this, another option
for the transcription could be to keep marking the
tones and nasals separately from the vowels, but to
only represent the three salient tones (high, falling,
rising) and leave the low tone as a default, unwrit-
ten option in the transcription. This is shown in
condition 4, ToneNasSep.

There are some combinations where the nasal
marking stays with the vowel, but the tone is sepa-
rate. In condition 5, ToneSepWL, the tones are in-
dicated separately but the nasality is written jointly
with the vowel. The final vowel of dikì ‘under-
neath’ would then be represented using two sym-
bols: I-NAS HIGH. This means that there would
be twelve vowel symbols2 in the Bribri ASR alpha-
bet (e.g. A, A-NAS, E, E-NAS, etc.), and separate
indicators for the four tones: HIGH, FALL, RISE,
LOW. But, given that the low tone is again the most
frequent, we could assume it as a default tone and
leave the LOW marking out. This is done in condi-
tion 6, ToneSep. In ToneSep, the second vowel has
a high tone, and so it gets a separate HIGH tone
marker. The first vowel, on the other hand, has a
low tone, and therefore gets no marking.

In order to test the different performance of these
conditions, two different ASR systems were used.
First, the Bribri data was trained using a traditional
Gaussian Mixture Models based Hidden Markov
Model algorithm (GMM/HMM), implemented in

2There are five vowels that can be both oral and nasal: /a,
e, i, o, u/. There are two vowels, /I, U/, written ‘ë’ and ‘ö’,
which can never be nasal.

the Kaldi ASR program (Povey et al., 2011). Given
the paucity of data, this is likely the best option
for training. However, end-to-end systems are also
available, and while they are known not to perform
well with small datasets (Goodfellow et al., 2016;
Glasmachers, 2017), they were still tested to see
if the differences in transcription caused any vari-
ation in performance. A Connectionist Temporal
Classification (CTC) loss algorithm (Graves et al.,
2006) with bidirectional recursive neural networks
(RNNs) was used, implemented in the DeepSpeech
program (Hannun et al., 2014).

3 Traditional ASR Results

Kaldi was used to train models for each of the tran-
scription conditions described above. Two param-
eters were varied in the experiment: The number
of phones in the acoustic model (monophone or
triphone), and the number of words in a KenLM
based language model (unigrams, bigrams and tri-
grams) (Heafield, 2011). All other hyperparameters
were identical to those in the default Kaldi instal-
lation. Thirty models were trained for each of the
six transcription conditions, using the six param-
eter combinations (phones x ngrams), for a total
of 1080 models.3 To train these models utterances
were randomly shuffled for every model and then
split so that 90% of the utterances were used for
training (1571 utterances) and 10% were used for
validation (174 utterances). Each of the models had
two measures of error: the median character error
rate (CER) and the median word error rate (WER),
calculated over the input transcription for each con-
dition. The results reported below correspond to
the median of the 30 medians in each condition.

Figure 1 shows the summary of the training re-
sults. The condition with the best performance is
ToneSep, where the tone symbol is kept separate
(HIGH, FALL, RISE), the low tone is left out as a
default, and the nasal feature remains connected to
the vowel symbol (i.e.: A versus A-NAS).

Table 2 shows the summary of results for three
conditions: ToneSep and AllFeats, which had the
best performance, and ToneNasSepWL, which had
the worst performance. The best performing of
all conditions is ToneSep trained with triphones
and with a trigram language model. This combina-
tion of factors produces models with a median of

3The models were trained using an Intel i7-10750H CPU,
and each took approximately 5 minutes to train, for a total of
90 hours of processing. The electricity came from the ICE
electric grid in Costa Rica, which uses 98% renewable energy.
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Figure 1: Medians for character error rate (CER) and word error rate (WER) for Kaldi training, using different
phone (monophone, triphone) and language models (unigrams, bigrams, trigrams).

ToneSep AllFeats ToneNasSepWL Max∆
CER Mono 60 - 45 - 42 60 - 44 - 42 69 - 62 - 61 9 - 18 - 19
CER Tri 50 - 34 - 33 52 - 37 - 35 54 - 43 - 42 4 - 9 - 9
WER Mono 87 - 67 - 60 86 - 67 - 62 95 - 84 - 83 9 - 17 - 23
WER Tri 77 - 50 - 50 78 - 55 - 51 80 - 65 - 62 3 - 15 - 12

Table 2: Median character error rate (CER) and word error rate (WER) for the best conditions (ToneSep and
AllFeats) and the worst condition (ToneNasSepWL). The three numbers indicate the error for unigram, bigram and
trigram language models. Max∆ indicates the difference between the worst and the best models.

33% CER and 50% WER. Very close is AllFeats
with triphones and trigrams, with 35% CER and
51% WER. These two perform substantially better
than ToneNasSepWL, with CER 42% and WER
62% using the same parameters. This means that
the ToneSep transcription is associated with an im-
provement of 9% in CER and 12% in WER. The
biggest improvements between conditions are seen
with the monophone+trigram models, where Tone-
Sep has a 19% lower CER and a 23% lower WER
than ToneNasSepWL.

ToneSep is not the condition with the least vowel
symbols, but it is the one with the best performance.
This could be due to two reasons. First, what Tone-

Sep appears to be doing is changing the behavior
of the triphone window. Kaldi’s acoustic model
has states with three symbols in them. In a writ-
ing system that only has graphemes for segments,
the triphone window would, indeed, look at the
consonant or vowel in question and to its preced-
ing and following segments. With ToneSep, the
tone symbols are surrounded by the vowel the tone
belongs to and the following consonant or vowel
(or at the nasal symbol). This means that, in prac-
tice, when the triphone window looks at the tone,
it is looking at two actual phones (the vowel, its
tonal cues, and the following consonant/vowel), or
even one actual phone (the vowel with its tonal
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and nasal cues). There are well known effects of
tones in their preceding and following segments
(Tang, 2008; DiCanio, 2012; Hanson, 2009), so
this reduced window might be helping the com-
puter generalize the relatively stable tone patterns
of Bribri and their effect on the surrounding seg-
ments. The training chops the duration of the vowel
into two segments; the first chunk is used to iden-
tify the vowel itself, and the second chunk is used
to identify the tonal trajectory.4

A second reason for the advantage of ToneSep
might be the phonetics of the low tone itself. It
is not only the most frequent tone in Bribri, but
it also the least stable phonetically. The low tone
can actually appear as low or mid, depending on
its surrounding tones (Coto-Solano, 2015). What
Kaldi might be doing is simply learn the more sta-
ble patterns of the other tones and label all other
pitch patterns as “low".

The reason why ToneNasSepWL is the worst
performing transcription is unclear. It might be
the case that the addition of the low tone creates
an explosion in the number of HMM states, given
that the low tone is the most frequent one. Another
reason might be the separation of the nasal feature.
It is possible that the nasal vowels of Bribri are
different enough from their oral equivalents that
trying to decouple the vowels from their nasality
makes generalization more difficult. As can be seen
in figure 1, the NasSep condition also performs
poorly. This pattern matches results in languages
like Portuguese (Meinedo et al., 2003) and Hindi
(Jyothi and Hasegawa-Johnson, 2015), where the
best results are obtained by keeping the nasal fea-

4No experiment was conducted to test the effect of placing
the tone indicator before the vowel (e.g. d LOW i k HIGH
i NAS for dikì ‘underneath’). In theory, the performance
would be worse given that, in the early milliseconds of a vowel,
tones can be phonetically co-articulated with their preceding
tone and these two cues would blend together (Xu, 1997;
Nguy˜̂en and Tr`̂an, 2012; DiCanio, 2014). This effect, called
carryover, causes greater deformations in pitch than the effect
of anticipating the following tone, or anticipatory assimilation
(Gandour et al., 1993; Coto-Solano, 2017, 93-99). Therefore,
the second part of the vowel would provide a clearer tonal cue.

ture bound to the vowel representations.
Table 3 below shows examples of the transcrip-

tions generated by Kaldi for the validation utter-
ances. In this particular example, the transcription
from ToneSep is only off by one space (it doesn’t
separate the words e’ ta ‘so’). The transcription
from AllFeats is also fairly good in terms of CER,
but it is missing the pronoun be’ ‘you’. Finally, the
ToneNasSepWL transcription misses several words.
For example, it transcribed the word tsítsir ‘young,
small’ as the phonetically similar chìchi ‘dog’, and
the adverb wake’ ‘right, anyways’ as wa ‘with’.

4 End-to-End Results

End-to-end algorithms need massive amounts of
data to train properly (Goodfellow et al., 2016;
Glasmachers, 2017), so they are not the most appro-
priate way to train the small datasets characteristic
of extremely low-resource languages. However,
it would be useful to test whether the differences
detected in the traditional ASR training are also vis-
ible in end-to-end training. A CTC loss algorithm
with bidirectional RNNs was used, specifically that
implemented in DeepSpeech. Two types of end-
to-end learning were studied: First, models were
trained using only the available Bribri data. This
style of training will be called Just Bribri. Second,
the Bribri data was incorporated into transfer learn-
ing models (Wang and Zheng, 2015; Kunze et al.,
2017; Wang et al., 2020). DeepSpeech has exist-
ing English language models,5 trained with 6-layer
RNNs. The final two layers were removed and
two new layers were grafted onto the RNN. The
first four layers would, in theory, use their English
model to encode the phonetic information, and the
final two layers would receive that information and
produce Bribri text as output. Removing two layers
was found to be the optimal point of transfer learn-
ing, which matches previous results in literature

5A short experiment was run with the Mandarin Deep-
Speech models as the base for transfer training, given that
both languages are tonal. However, these models had worse
performance than with transfer from the English model.

Utterance meaning: ‘So you were young then, right?’
Target utterance: e’ ta be’ bák ia tsítsir wake’
ToneSep e’ta be’ bák ia tsítsir wake’ CER: 3%
AllFeats e’ta bák ia tsítsir wake’ CER: 16%
ToneNasSepWL e’ ta wake’ chìchi wa CER: 61%

Table 3: Example of Kaldi transcriptions for three of the experimental conditions, trained with triphone-trigram
models. More examples are shown in Appendix A.
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Figure 2: Medians for character error rate (CER) for DeepSpeech models.

(Meyer, 2019; Hjortnaes et al., 2020). This training
style will be called Transfer. Both the Just Bribri
and Transfer models were trained for 20 epochs,
and all other hyperparameters were the same as in
the default installation of DeepSpeech.

Just Bribri Transfer
AllFeats 95 93
NasSep 91 92
ToneNasSepWL 70 86
ToneNasSep 78 89
ToneSepWL 73 88
ToneSep 92 91
Max∆ 25 7

Table 4: Median character error rate (CER) for models
trained with CTC (DeepSpeech). Max∆ indicates the
difference between the worst and the best models.

The six transcription conditions were used to
train models in both training styles. Same as before,
thirty models were trained for each condition. The
utterances were randomly shuffled before preparing
each model, and then 80% of the utterances were
used in the training set (1397 utterances), 10% of
the utterances were used for validation (174 utter-
ances), and the final 10% were used for testing.
After the training was complete, the median CER
and WER were extracted for each model. The me-
dian CER for the thirty models in each condition
are shown in figure 2.6

In the CTC training, the tables have completely
turned: ToneSep and AllFeats are the worst per-
forming conditions, and ToneNasSepWL has the

6The models were trained using the HPC infrastructure
at Dartmouth College in New Hampshire. Each model used
16 CPUs and took approximately 65 minutes to train, for an
approximate total of 78 hours of processing.

best performance. Table 4 shows the median of the
30 medians for each transcription condition. The
ToneNasSepWL models trained with Just Bribri
have a median of 70% CER, whereas the AllFeats
models have a median of 95%, a full 25% worse.
As a matter of fact, both WL conditions now have
the best performance. This pattern is also visible
in the Transfer models: The ToneNasSepWL tran-
scription has a CER of 86%, 7% better than the
AllFeats transcription. The median WER is not
shown because, for all conditions, the median of
the thirty medians was WER=1.

There might be several reasons why the situa-
tion has reversed in the CTC models. First, pro-
viding an explicit symbol for the low tone might
force DeepSpeech to look for more words in the
transcription. As can be seen in table 5, the Tone-
NasSepWL transcription uses the character 4 for
the explicit indication of the low tone, which is then
eliminated in post-processing to produce a human
readable form. The explicit symbol for the low
tone appears to force the CTC algorithm to keep
looking for tones, and therefore words, whereas, in
the other conditions, the CTC algorithm gives up
on the search sooner. A second reason why WL
performs better is that it provides a clear indication
of where a syllable ends, and therefore makes the
traverse through the CTC trellis simpler to navigate.
Without an explicit low tone, any vowel could be
followed by tones, vowels or consonants. On the
other hand, when all tones have explicit marking,
vowels can only be followed by a tone, which po-
tentially simplifies the path to finding the word.

A third reason for this improvement might have
to do with the size of the alphabet: The WL con-
ditions have relatively few symbols for the vow-
els (12 symbols for ToneNasSepWL versus 48 for
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Utterance meaning: ‘So you were young then, right?’
Target utterance: e’ ta be’ bák ia tsítsir wake’
Condition DeepSpeech output Human-readable output CER
ToneNasSepWL e4’ tax4 i4e4’ i4 e’ ta ie’ i 65%
ToneSep e’ e’ 91%
AllFeats i i 93%

Table 5: Example of DeepSpeech transcriptions for three of the experimental conditions

AllFeats), which would result in a smaller output
layer for the RNNs. Notice that, as with the tri-
phones in Kaldi, the RNNs might be splitting the
vowel into separate chunks. It would then proceed
to identify the type of vowel from the first chunk,
the tone in the second and the nasality in the final
part. It would also benefit from the bidirectionality
of the neural networks, finding tonal cues in the
surrounding segments without the disadvantages of
GMM/HMM systems.

Finally, it should be noted that the Transfer
models did not provide an improvement in per-
formance. This is somewhat surprising; this might
indicate that the Bribri dataset is too small to ben-
efit from the transfer, or that the knowledge of
English phones does not overlap sufficiently with
the Bribri sound system to produce a boost. Even
then, the Transfer models also show effects due
to the different transcription conditions, and they
also benefited from separating the tone and nasal
features from the vowel. This effects will have to
be confirmed in the future with other end-to-end
techniques, such as Listen, Attend and Spell algo-
rithms (Chan et al., 2016) and wav2vec pretraining
(Baevski et al., 2020).

5 Conclusions

While hand-engineered representations are subopti-
mal for high-resource languages, these can still be
helpful in low-resource environments, where they
can help set up a virtuous cycle of creating imper-
fect but rapid transcriptions, which can then be im-
proved to create more training materials, improve
ASR algorithms, and start helping documentation
and revitalization projects right away.

The results above show that performing rela-
tively easy transformations in the input (e.g. not
marking the most common tone, separating the
tonal markings from the vowel) can lead to major
improvements in performance. It also shows that
NLP practitioners and linguists can fruitfully com-
bine their knowledge to understand the different

features involved in the writing system of a lan-
guage. Additionally, it provides evidence that the
benefits of phonetic transcription can also be gained
using semi-orthographic representations. The fol-
lowing recommendations provide a short summary
of the results: (i) Separate the tones from the vow-
els. This will help ASR systems learn their regular-
ities. (ii) Experiment with other features, such as
nasality; if they modify the formants of the vowel,
they should probably be grouped with the vowel.

Finally, this work is the first attempt at training
speech recognition for a Chibchan language. As
shown in table 3 and Appendix A, it is feasible to
transcribe these languages automatically, and these
methods will be refined in the future to incorpo-
rate ASR into the documentation pipelines for this
language family.
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Appendix A: Additional Transcription Examples

Target ToneSep AllFeats ToneNasSepWL Meaning
dawáska e’ ta
be’ mi’ke
sul`̈e wa
i wéblök

dawáska e’ ta
wa e’ mi’ke

sul`̈e wa
wéblö

dawáska e’ ta
ma mi’ke

sul`̈e wa
wéblö

dawáska ta
mi’ke

sul`̈e wa
wérö

‘during the
summer then, you
go with your arrow
to see them’

14% 14% 28%
dùala tso’ia
kàl a

dùla tso’ia
kàl a

dùala tso’ia
kàl ta

dúla tso’
akàla

‘There are birds
on the trees.’

5% 5% 42%
ikuáki
ikuáki
sa’ én a
iàne bua’ë

ikuáki
ikuáki
sa’
iàne bua’ë

ikuáki
ikuáki
se’ mía
irir bua’ë

wèk
ikuáki
sa’
iàne bua’ë

‘the others,
the others,
we understand
them well’

14% 26% 30%

sìkua i
kiè setenta
años

sìkua i
kiè setenta
años

sìkua i
kiè setenta
añì

síkwa k`̈e
se’ k`̈e ta’

‘[in the] Spanish
[language] they
say seventy years
[old]’

0% 13% 63%

Table 6: Additional examples of Kaldi transcriptions for three of the experimental conditions, trained with triphone-
trigram models. The numbers represent the character error rate (CER) between the transcription and the target
sentence. The fourth example includes code-switching into Spanish.

184



Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, pages 185–193
June 11, 2021. ©2021 Association for Computational Linguistics

Towards a morphological transducer and orthography converter for
Western Tlacolula Valley Zapotec

Jonathan N. Washington
Swarthmore College
500 College Ave.

Swarthmore, PA 19081 USA
jonathan.washington@swarthmore.edu

Felipe H. Lopez
Pueblo of San Lucas Quiaviní &
Haverford College Libraries

370 Lancaster Ave.
Haverford, PA 19072

lieb@ucla.edu

Brook Danielle Lillehaugen
Haverford College
370 Lancaster Ave.
Haverford, PA 19072

blilleha@haverford.edu

Abstract
This paper presents work towards a morpholog-
ical transducer and orthography converter for
Dizhsa, or San Lucas Quiaviní Zapotec, an en-
dangeredWestern Tlacolula Valley Zapotec lan-
guage. The implementation of various aspects
of the language’s morphology is presented, as
well as the transducer’s ability to perform anal-
ysis in two orthographies and convert between
them. Potential uses of the transducer for lan-
guage maintenance and issues of licensing are
also discussed. Evaluation of the transducer
shows that it is fairly robust although incom-
plete, and evaluation of orthographic conversion
shows that this method is strongly affected by
the coverage of the transducer.

1 Introduction
In this paper, we present work towards a morpho-
logical transducer and orthography converter for
Dizhsa, also known in the academic literature as San
Lucas Quiaviní Zapotec (SLQZ), an endangered
language variety of Western Tlacolula Valley Za-
potec [zab].1 To our knowledge, this is the first
computational implementation of the morphology
of a Zapotec language. (Throughout the paper we
use the term “language variety” in place of “dialect”
because of the pejorative force of the word dialecto
in Spanish.)

A morphological transducer, implemented as a
finite-state transducer (FST), is a tool that performs
morphological analysis (converts between a word
form and a morphological analysis) and morpholog-
ical generation (the reverse). For example, a form
like gunydirëng ‘they won’t do’ can be quickly con-
verted to an analysis like uny<v><tv><irre><neg>

1The tools presented in this paper are available pub-
licly under a free/open-source license https://github.com/
apertium/apertium-zab, and can be used online at https:
//beta.apertium.org.

The three authors recognise that we live and work on the
homeland of the Lenape, and pay respect and honor to the care-
takers of this land, from time immemorial until now, and into
the future.

+ëng<prn><pers><p3><prox><pl> (read as the neg-
ative irrealis form of the transitive verb whose stem
is “uny”, followed by a 3rd person proximal plural
personal pronominal enclitic); similarly, the analy-
sis can be quickly converted to the form.

Not all speakers of SLQZ write their language,
though more and more are doing so (Lillehaugen,
2016). There are published proposals for two or-
thographies, which we refer to as the phonemic or-
thography (Munro & Lopez et al., 1999) and the
simple orthography (Munro et al., 2021). An or-
thography converter between these two orthogra-
phies based on the morphological transducer has
been developed as part of this work.

Both tools have the potential to support language
maintenance efforts. A morphological transducer
can be used in various types of computer-assisted
language learning software, such as for learning vo-
cabulary (Katinskaia et al., 2018) and complex in-
flectional systems (Antonsen et al., 2013). FSTs are
also used in electronic corpora (Saykhunov et al.,
2019), paradigm generators,2 text-reading tools,3
and form-lookup dictionaries (Johnson et al., 2013).
FSTs may be trivially converted to spell checkers
(Washington et al., 2021) and can also be used in
other types of text-proofing and language-learning
tools (e.g., Antonsen, 2012); they can further serve
as core elements of machine translation systems
(Khanna et al., 2021).

Morphological transducers are being developed
for languages globally (Khanna et al., 2021), in-
cluding for entire language families, such as Turkic
(Washington et al., 2021). Some of these FSTs are
developed for languages with large corpora, such as
the national languages of Western Europe (Khanna
et al., 2021). One advantage of FSTs is that they can
be created for a language without a large quantity of
existing text. For example, a morphological trans-

2Such as the prototype at https://apertium.github.io/
apertium-paradigmatrix

3Such as https://sanit.oahpa.no/read/.
185



ducer has been developed for Zacatlán-Ahuacatlán-
Tepetzintla Nahuatl (Pugh et al., 2021), a threatened
language of Central Mexico with a relatively small
corpus of texts. The fact that a morphological trans-
ducer can be developed with small corpora creates
an entry point especially for threatened languages
into the potential benefits of the types of language
technology described above.

This paper is structured as follows. Section 2 sit-
uates SLQZ and overviews its socio-political con-
text and basic morphological properties. Section 3
describes the morphological transducer and demon-
strates several of the challenges which were over-
come in its implementation. Section 4 presents
a basic evaluation, including naïve coverage and
accuracy of orthographic conversion. Section 5
overviews some issues related to licensing of the
tools and section 6 concludes.

2 San Lucas Quiaviní Zapotec

San Lucas Quiaviní Zapotec is spoken by 98% of
the population in San Lucas Quiaviní, Oaxaca, Mex-
ico (DIEGPO, 2015) and by diaspora communi-
ties elsewhere in Mexico and the United States, es-
pecially the greater Los Angeles area (Lopez and
Munro, 1999), with approximately 3500 total speak-
ers. While children are still acquiring the variety
as their first language, it should be considered en-
dangered as the community is shifting to Spanish in
more and more contexts (Munro, 2003; Pérez Báez,
2009).

Western Tlacolula Valley Zapotec encompasses a
number of related varieties, with varying degrees of
mutual intelligibility. In the present work we focus
on the variety of San Lucas Quiaviní (SLQZ), but
we also evaluate the transducer on the variety of San
Juan Guelavía (SJGZ), also classified as Western
Tlacolula Valley Zapotec. The two pueblos are sep-
arated by no more than 10km, but the two varieties
of Zapotec differ in many relevant aspects of their
grammar, including tone and phonation contrasts,
verbal morphophonology, and pronominal systems.

Understanding the morphotactics of SLQZ is es-
sential to developing a morphological transducer. A
verb form in SLQZ includes at minimum an aspect
marker followed by a verb stem, with very few ex-
ceptions. Additionally, a negative-marking enclitic,
various other adverbial enclitics (Lee, 2006, 26–27),
and pronominal enclitcs may follow. Nouns gener-
ally may be marked as possessed using a prefix—
with some suppletive forms and a class of “essen-

tially possessed” nouns which are always interpreted
as possessed. Possessors follow possessed nouns,
either as independent noun phrases or as pronomi-
nal enclitics. Pronominal enclitics also appear after
predicate adjectives.

The morphophonology of verb forms in SLQZ is
complex. Aspectual prefixes often have multiple re-
alisations. Additionally, there is a large number of
verbs whose stems alternate irregularly or are syn-
chronically suppletive depending on aspect, subject,
and any following enclitics. Some aspect markers
have irregular realisations in these forms. There
may also be changes in phonation type before cer-
tain enclitics.

San Lucas Quiaviní Zapotec has a very compli-
cated system of tone and phonation with over 23
potential contrasts in a stressed syllable (although
see Chávez Peón, 2010 for a different count). Rep-
resenting all of these contrasts results in an orthog-
raphy that is complicated. Members of the speech
community have directly and indirectly expressed
preference for a practical orthography that under-
represents these contrasts. Hence a phonemic or-
thography (described first in Munro & Lopez et al.,
1999) is used in dictionaries and linguistic work,
and a simplified orthography (described in Munro
et al., 2021) which collapses many phonemic dis-
tinctions, is preferred by speakers of the language.
Being able to convert the simplified practical orthog-
raphy to the phonemic orthography would allow lin-
guists and speech scientists to recover the phonemic
contrasts from text written in the practical orthogra-
phy.

3 Implementation

The transducer was implemented manually using
the two-level approach (Koskenniemi, 1983) and is
designed for use with HFST (Lindén et al., 2011),
an open-source toolkit for finite-state morphology.
In the two-level approach to morphology, the lex-
icon and morphotactics of a language are imple-
mented in one finite-state transducer (FST), the
morphophonology is implemented in another, and
they two are intersected into a single FST with an
analysis side and a form side. For the Dizsha trans-
ducer described here, both the morphotactics and
morphophonology compile from hand-written pat-
terns, lexicons, and rules. The lexd compiler (Swan-
son and Howell, 2021) was used to implement the
morphotactics, and twol (part of HFST) was used
to implement the morphophonology.
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The grammatical patterns of SLQZ were imple-
mented in these formalisms by the first author in
part while receiving classroom instruction in the lan-
guage from the second author and based largely on
patterns observed in the first volume of a Dizhsa
textbook (Munro et al., 2021). Later the transducer
was expanded and revised in consultation with ad-
ditional volumes of the textbook and other sources
cited here, and under the guidance of the second
and third authors, the former of whom is a native
speaker and teacher of Dizhsa, and the latter of
whom is a linguist with expertise in the language.

In section 3.1, the size and shape of the trans-
ducer’s lexicon is presented. Section 3.2 discusses
some design decisions and how some spelling vari-
ants were handled. We explain how some aspects
of the language’s morphotactics (section 3.3) and
morphophonology (section 3.4) were implemented.
Section 3.5 presents how orthography conversion
was implemented.

3.1 Lexicon
The lexical entries of the transducer are divided by
stem type based on morphological patterning. Ta-
ble 1 shows the number of stems of various types in
the transducer, and the overall number of stems.

Category № stems
Proper nouns 289
Nouns 133
Verbs 92
Pronouns 46
Complex verb elements 28
Adverbs 26
Punctuation 22
Numbers 31
Prepositions 17
Adjectives & determiners 10
Interjections & modal particles 10
Conjunctions 7
total 711

Table 1: The size of the transducer’s entire lexicon, bro-
ken down by individual lexicons, corresponding to lexi-
cal category.

Several of these categories span multiple lexi-
cons. For example, under “verbs” are counted regu-
lar verb stems, irregular verb stems (currently span-
ning two lexd lexicons), and the copula. Addition-
ally, verbs are subcategorised as intransitive (<iv>),

transitive (<tv>), and ditransitive (<dtv>). “Pro-
nouns” include both bound and free forms, which
must be in separate lexicons due to their different
morphological distribution.

3.2 Design decisions
Despite being the best studied variety of Western
Tlacolula Valley Zapotec, many aspects of the gram-
mar of SLQZ are not fully documented or described.
Even when the patterns are understood, it is not
clear whether particular phenomena are best ac-
counted for through morphology or syntax.

For this reason, in many cases during the
construction of the transducer, more than one
implementation option seemed reasonable. For ex-
ample, we chose to analyse verb stems followed by
the negative marker 〈di〉~〈dy〉 as an inflected form
of the verb stem, as in uny<v><tv><irre><neg>

+ëng<prn><pers><p3><prox><pl> for guny-
dirëng. We could also have chosen to anal-
yse it as a verb stem followed by an adver-
bial enclitic, e.g. uny<v><tv><irre>+di<adv>

+ëng<prn><pers><p3><prox><pl>.
Another such decision is the choice to use verb

stems as the lemma for all forms of a verb, and in
the case of suppletive stems, the stem that patterns
with the habitual aspect. Dictionaries for speakers
and learners, such as the glossary in Munro et al.
(2021), use the habitual form (prefix+stem) as the
headword for entries. The transducer could just as
easily use the habitual form as the lemma.

We made similar decisions regarding the lexicon.
Some words in SLQZ have common variant pronun-
ciations and corresponding spellings. For example,
the word for ‘fish’ may be spelled bel or beld. In
this case the lemma was chosen to be beld, but the
generated form was chosen to be bel. The form
beld is still analysed to the same lemma. This was
implemented by adding the entry to the transducer
with both spellings, and including a comment on the
analyse-only variant that triggers the compiler to re-
move that line while creating the generator, but not
the analyser. The lines corresponding to these en-
tries are shown in Code Block 1.
beld:bel behlld:behll # "fish"

beld:beld behlld:behlld # "fish" ! Dir/LR

Code Block 1: The entries in the lexd file for the word
for ‘fish’. All material after the # symbol is ignored by the
compiler, but a preprocessing command strips all lines
containing Dir/LR before compiling the generator trans-
ducer (but not the analyser transducer).
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These analyses reflect our best current under-
standing of the grammar, but it would be trivial to
change the implementation in the future.

3.3 Verbal morphotactics
A verb in SLQZ includes an obligatory prefix that
signals aspect, optional endings that include a ver-
bal extender (adding politeness) and a negative mor-
pheme, and optional pronominal clitics. This was
implemented fairly straightforwardly by defining a
general pattern in lexd, shown in Code Block 2.

( :Aspect ( V-Stems(1) [<v>:] V-Stems(3):

) V-Extender(1)? Aspect: ) V-Neg(1)?

Prn-Bound(1)

Code Block 2: The pattern used for regular verbs in
the SLQZ transducer. The numbers in parentheses after
each element reference “components”, described in sec-
tion 3.5. The : character indicates separation of analysis
and form. The ? character represents optionality. The
parentheses after lexicon names indicate column num-
bers within lexicons. The parentheses grouping parts of
the pattern are not strictly necessary, but speed up com-
pilation due to how matching works (described below).

The reason lexd was used instead of HFST’s
lexc or Lttoolbox’s dix formats—the most com-
mon choices for implementing a transducer of this
type—is because dix is not ideal for agglutinative
patterns and lexc requires complicated tricks (flag
diacritics or filter transducers) to implement prefix-
ational morphology. The conventional structure of
tag-based morphological analyses is a lemma fol-
lowed by a part of speech tag, followed by any sub-
category tags, followed by any grammatical tags.
In an example like runy (form) uny<v><tv><hab>
(analysis), the analysis presents that uny is the
lemma (in this case a verb stem), <v> (verb) is
the category of the word, <tv> (transitive) is the
subcategory of the word, and <hab> (habitual) is
a grammatical property of the form. Thus in a
transducer we can define the form-analysis pairs
<hab>:r and uny<v><tv>:uny, but if combined
in that order, the result would be unconventional
<hab>uny<v><tv>:runy.

The solution to this is lexicon matching, a feature
unique to lexd. For SLQZ, we can create an Aspect
lexicon (containing prefixes paired to their analyses,
e.g. <hab>:r) and a V-Stems lexicon (which lists
regular verbs). In the pattern that combines these
lexicons shown in Code Block 2, the lexd compiler
keeps track of multiple mentions of a lexicon and
matches them. That is, instead of producing forms

with all combinations of aspectual prefixes and tags,
only the elements of pairs on the same line are used,
despite the fact that the elements are referenced at
different places in the pattern.

Another lexd-specific feature employed is
columns within lexicons. In the pattern, columns 1
and 3 of the V-Stems lexicon are referenced. These
contain the simple-orthography form of verbs and
the subcategory (transitivity) tag, respectively.

Some SLQZ verbs have irregular alternations in
their stems when combined with perfective aspect
prefixes or a first person plural (1PL) subject. This
was implemented using filters in lexd, which allows
for entries in a given lexicon which are tagged a cer-
tain way to be referenced from patterns, to the ex-
clusion of other entries in that lexicon. In this way,
separate patterns can be constructed that pull, e.g.,
(1) only the 1PL stems and pronoun forms, and (2)
only the non-1PL stems and pronoun forms.

3.4 Verbal morphophonology
Many of the phonological alternations in SLQZ
verb forms are regular. For example, the nega-
tive marker is written before a vowel as 〈dy〉, as in
queity runydyai / queʼity ruhnydyaʼih ‘I don’t do it’
and elsewhere as 〈di〉 (simplified orthography) 〈diʼ〉
(phonemic orthography), as in queity runydi Jwanyi
/ queʼity ruhnydiʼ Jwaanyih ‘Juan doesn’t do it’.

This alternation is implemented by specifying
the morpheme with a special character in the mor-
photactic transducer (lexd), as <neg>:d{I} and
<neg>:d{I}’ (depending on orthography), and then
controlling the alternation of the {I} character
using a morphophonology transducer (written in
twol).

The twol formalism allows for symbol map-
pings to be restricted based on context. The map-
pings needed to condition the correct forms of
the 〈di(ʼ)〉/〈dy〉 alternation are presented in Code
Block 3. The compiled FST is intersected with the
morphotactic transducer to produce correct forms.

"diʼ → dy before vowels: {I}"

%{I%}:y <=> _ (ʼ:) %>:* :0* :Vow ;

"diʼ → dy before vowels: ʼ"
ʼ:0 <=> %{I%}:y _ ;

Code Block 3: Morphophonological mapping restric-
tions specified in the twol formalism to condition the
alternation of d{I}(ʼ) as 〈dy〉 before vowels. In other con-
texts, {I} is realised as 〈i〉.4
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In the transducer’s twol file, there are currently
10 characters like {I} defined, and 20 mapping re-
strictions specified.

3.5 Orthography
This section outlines both the orthographic support
of the transducer and how it is able to be used to
convert between orthographies.

The morphological transducer is compiled into
two generators: one for each of the simple and
phonemic orthographies. A single analyser is com-
piled that supports both. This is made possible
through a combination of the lexd features of lex-
icon matching and columns in lexicons, both dis-
cussed in section 3.3. For example the phonemic-
orthography pattern for regular verbs is shown
in Code Block 4, and can be compared to the
pattern used for simple-orthography regular verbs
shown in Code Block 2. The difference between
these patterns lies in which column of the lexi-
cons are referenced on the form side. For ex-
ample, the verb stem lexicon is referenced using
V-Stems(1):V-Stems(2) instead of V-Stems(1)

(equivalent to V-Stems(1):V-Stems(1)). The sec-
ond column of the V-Stem lexicon (and most lex-
icons in the transducer, cf. Code Block 1) is the
phonemic-orthography form of each stem. The two
sides of the lexicon are matched, as opposed to all
elements of the first column being paired with all
elements of the second column.
( :Aspect ( V-Stems(1):V-Stems(2) [<v>:]

V-Stems(3): ) V-Extender(2)? Aspect: )

V-Neg(2)? Prn-Bound(1):Prn-Bound(2)

Code Block 4: The pattern used for phonemic-
orthography regular verbs used in the SLQZ transducer.

The other crucial part of this approach is control
symbols in comments at the end of patterns for each
orthography. Specifically, Orth/Simp is added to
the end of lines containing simple-orthography pat-
terns and Orth/Dict is added to the end of lines con-
taining phonemic-orthography patterns. Then, as
part of the compilation process for the transducer in
each orthography, lines containing the control sym-
bols for the other orthography are removed. This
ensures that each transducer contains only forms
in a single orthography. The respective analysers
and generators are compiled from these pared-down

4For more on the twol formalism and its application, see
https://github.com/hfst/hfst/wiki/HfstTwolc.

lexd files, and the two analysers are unioned, result-
ing in an analyser that supports both orthographies.

The simple orthography, as discussed in section 2,
collapses many of the distinctions made by the
phonemic orthography. Because of this, it is mostly
trivial to convert from the phonemic orthography to
the simple orthography, but not vice versa.

For example, a word like xyecwa (simple) /
x꞉yèeʼcwaʼ (phonemic) ‘my dog’ can be converted
from phonemic to simple orthography by simply re-
moving the diacritics 〈꞉〉, 〈 ̀〉, and 〈ʼ〉, and simplify-
ing sequences of repeated vowels. The only other
changes needed for most words is the simplification
of doubled consonant letters 〈ll〉, 〈mm〉, and 〈nn〉,
and the removal of 〈h〉 after vowels, e.g. behlld →
beld ‘fish’; rilleʼeh → rile ‘knows how to’. However,
as these examples show, conversion in the other di-
rection is non-deterministic.

To convert between the orthographies, then, two
transducers which share an interface are intersected
along that interface. Specifically, the analyser in one
orthography is intersected with the generator in the
other orthography along the analysis side of each.
This is possible because the analysis side is the same
regardless of the orthography. An example of this
method applied to one word is shown in Figure 1.

(simplified orthography analyser)
xyecwa

↕
becw<n><px>+a<prn><pers><p1><sg>

∩
becw<n><px>+a<prn><pers><p1><sg>

↕
x꞉yèeʼcwaʼ

(phonemic orthography generator)

Figure 1: Demonstration of the intersection of two trans-
ducers to create an orthographic converter. In this exam-
ple, an analysis in the simplified orthography analyser is
matched to an analysis in the phonemic orthography gen-
erator, so that when a simplified orthography form is in-
put to the resulting transducer, the corresponding phone-
mic orthography form is generated.

This approach provides fairly deterministic out-
put, although as discussed in section 4.3, it does not
solve the issue of simple-orthography homography.

One additional approach was used to handle or-
thographic variants, such as any of the apostrophe
characters which might be used and the orthogra-
phy of the Universal Declaration of Human Rights
(UDHR) translation, which is like the phonemic or-
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thography but uses a colon after a vowel to indicate
creaky voice, represent by a grave accent over the
vowel in the modern version of the phonemic or-
thography and in the lexd file. A “spellrelax” file,
containing a series of regular expressions like those
shown in Code Block 5, is compiled to an FST and
intersected with an analyser. This allows it to accept
forms with any of the specified variants used.

[ ?* [ ʼ (->) [ %' | %’ | %` | %´ | %‘ | %ʻ
] ] ?* ] .o.

[ ?* ( à (->) [ a [ %: | ꞉ ] ] ) ?* ]

Code Block 5: Two of the regular expressions contained
in the spellrelax file. The first one allows any number of
apostrophe characters to be used in place of 〈ʼ〉, and the
second one allows for 〈a〉 followed by one of two colon
characters to be used in place of 〈à〉. The .o. symbol
conjoins the patterns.

4 Evaluation
The transducer was evaluated over available texts
(4.1) for naïve coverage (4.2) and accuracy of or-
thographic conversion (4.3).

4.1 Texts used for evaluation
The transducer was evaluated against a number of
available texts, including a number of genres in both
the simple and phonemic orthographies.

The first two parts of the story Blal xte Tiu Pamyël
(BxTP) are part of Munro et al. (2021), which is
also the source for nearly all of the material in the
transducer. A preliminary version of the transducer
was evaluated using BxTP parts 1–2, whereafter the
transducer was expanded to include unrecognised
forms. Hence, BxTP parts 1–2 are treated as devel-
opment data, and the remaining texts are treated as
previously unseen data. Evaluating the transducer
over BxTP parts 1–2 also allowed us to observe and
correct mismatches between the phonemic and sim-
plified orthographic versions.

A number of poems and stories were also used
for evaluation. Those from Tlalocan are in individ-
ualised orthographies inspired by the phonemic or-
thography (Munro, 2014). There is also a blog post
from the Ticha blog entirely in Dizhsa. The Univer-
sal Declaration of Human Rights (UDHR) is in an
older version of the phonemic orthography, which is
easily handled by the transducer due to the addition
of some spellrelax mappings.

We also evaluated a translation of the New Testa-
ment in SJGZ, a language variety closely related to

SLQZ which uses a distinct orthography.
The complete list of texts is presented in Table 2,

along with naïve coverage results (see section 4.2).
The sources for each set of texts are described in
footnotes to the table.5

4.2 Naïve coverage
Naïve coverage was calculated as the percentage of
tokens in a given corpus that received an analysis
from the transducer, whether correct or not. Results
are shown in Table 2.

The results show that the development text has
good coverage, at over 90%—higher, not unexpect-
edly, than coverage over the remaining sources. Un-
seen texts vary, but average around two thirds cov-
erage, as does the coverage over all available mate-
rial. This indicates that the transducer has a solid
base, but has many opportunities for expansion. It
should also be noted that the development text, be-
sides functioning as a graded reader in an introduc-
tory textbook for the language, is relatively short,
and so lacks a wide range of vocabulary and mor-
phological patterns.

The lower overall coverage on texts in the phone-
mic orthography is due primarily to the lack of
phonological mappings accounting for all diacritic
changes in verb forms, and the homography of
the simple orthography. In the simple orthography
manywords are written the same that are written dis-
tinctly in the phonemic orthography. Words that are
not in the transducer may receive an incorrect anal-
ysis, thus inflating the apparent coverage of texts in
the simple orthography.

The individualised orthographies found in the
Tlalocan texts are inspired by, but not the same
as, the phonemic orthography, yielding much lower
coverage results.

The translation of the New Testament in the re-
lated language variety of SJGZ, totalling 217K to-
kens, was also evaluated to test whether the SLQZ
transducer could be applied to Western Tlacolula

5The entire set of texts is currently available at https://
github.com/jonorthwash/apertium-zab-corpus. All test-
ing was done on the contents of the transducer repository at re-
vision 0866ec3 and the corpus repository at revision 85fda5c.

6Munro et al. (2021)
7Drawn from Lopez and Lillehaugen (2018), Lopez

and Lillehaugen (2017), and https://felipehlopez.weebly.
com/.

8Chávez Peón and López Reyes (2009)
9Lopez (2018)

10https://ticha.haverford.edu/updates/
11https://www.ohchr.org/EN/UDHR/Pages/Language.

aspx?LangID=ztu1
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Use Text Orthography Tokens Coverage (%)
development Blal xte Tiu Pamyël 1–26 Simple 625 93.92

Phonemic 628 91.40
testing Blal xte Tiu Pamyël 3–7 Simple 1532 73.56

Blal xte Tiu Pamyël 3–4 Phonemic 601 66.89
Felipe H. Lopez poetry7 Simple 514 57.39
Tlalocan poems & story8 Simple 635 57.95

Individualised 788 47.72
Niny Bac6 Simple 366 73.77
Liaza Chaa9 Simple 963 58.67
Ticha post 2020-07-1710 Simple 1026 60.04
UDHR (9 articles)6 Simple 433 69.98
UDHR (complete)11 Phonemic 1641 65.63

total all mixed 9934 67.47

Table 2: Naïve coverage results. BxTP 1–2 was used for development, and the remaining texts were used for testing.
Tokens is the number of lexical units according to the transducer, and coverage is the percentage of tokens that received
at least one analysis from the transducer.

Valley Zapotec more broadly. Even with a dedi-
cated spellrelax transducer to account for a number
of orthographic differences, the coverage was only
a little over 34%. This suggests that perhaps a sin-
gle transducer forWestern Tlacolula Valley Zapotec
may not be able to be applied to all varieties.

4.3 Orthographic conversion
The first four sections of Blal xte Tiu Pamyël are
available in both the simple and phonemic orthog-
raphy. To test orthographic conversion, we created
two groups of texts, the first group consisting of sec-
tions 1 and 2 of BxTP and the second group consist-
ing of sections 3 and 4.

The conversion of phonemic to simple orthogra-
phy is almost entirely deterministic. We set up a
simple regular expression (regex) replacement con-
version system, which removed diacritics and 〈h〉
after vowels and also merged adjacent characters
which were identical. The performance of this
method provides a baseline measure of similarity
between the two texts.

Performance was measured using Word Error
Rate (WER), or the percentage of words that are
different between the converted text and the “gold
standard” of the text in the destination orthography.
The results of both the regex-based method and the
transducer-based method described in section 3.5
are presented in table 3.

The performance of the transducer-based ap-
proach has a ceiling defined by the level of cover-

age and the similarity of the two texts. For example,
for phonemic→simple conversion of the first text, it
would be impossible to get better (lower) than 8.6%
WER, since the text has naïve coverage of 91.4%.
None of the words which do not have an analysis in
the transducer are able to be converted—although
there is a possibility that some of those words would
be “free rides”, or words that are the same in both
orthographies. The result of 11.78% WER should
be taken in the context of this ceiling.

In the first group (BxTP 1–2), the simple-
to-phonemic conversion performed worse than
phonemic-to-simple, despite higher coverage of the
source version. This is largely due to homogra-
phy. While performing disambiguation between
available analyses before orthography conversion
might improve this result, there are some simple-
orthography homographs that may never be possible
to accurately decide between (without wider con-
text), such as re, corresponding to both phonemic-
orthography rèe ‘that’ and rèeʼ ‘this’.

The second group of texts (BxTP 3–4) has much
lower correspondence between the two orthogra-
phies than the first group due to slight differences
between the texts, such as words or sentences that
seem to be present in one version but absent in the
other. That together with the lower coverage over
the second group to start with compound for much
worse performance.

While phonemic→simple orthography conver-
sion is deterministic (and hence possible to perform
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Text Direction Method Tokens Coverage (%) WER (%)
Blal xte Tiu Pamyël 1–2 Simple→Phonemic transducer 625 93.92 20.10

Phonemic→Simple transducer 628 91.40 11.78
Phonemic→Simple regex ” ” 1.63

Blal xte Tiu Pamyël 3–4 Simple→Phonemic transducer 574 77.53 46.75
Phonemic→Simple transducer 601 66.89 46.79
Phonemic→Simple regex ” ” 10.35

Table 3: Orthographic conversion accuracy. Tokens is the number of lexical units according to the transducer, cov-
erage is the percentage of tokens that received at least one analysis from the transducer, and WER is word error rate,
or the percentage of tokens after orthography conversion that do not correspond to the text in the other orthography.

accurately with a series of regular expressions), sim-
ple→phonemic conversion is not, and hencemust be
done in some other way. These initial experiments
in using a lexical approach show that it is a viable
method, although it currently suffers from the low
overall coverage of the transducer.

5 Licensing
We have chosen to license this work under the GNU
Affero General Public License (AGPL) because we
want it to be available for others to use and build on.
This work is also part of a long-term commitment to
collaboration with Zapotec communities and com-
munity members. The AGPL license allows for
uses of our work that would be inconsistent with our
commitment to the community.

Reciprocity is a defining Zapotec cultural value
and practice. Zapotec speakers have shared their
knowledge and language in the creation of these re-
sources. Others are allowed to use the tools and in
doing so enter into a reciprocal commitment with
the Zapotec community that we define in what we
call the Guelaguetza clause, shown below:

While licensed under a free/open-source
license that permits commercial uses, it is
expected that anything created using this
resource bemade available to the commu-
nity of San Lucas Quiaviní free of charge.
This is consistent with the community’s
practice of guelaguetza, a complex sys-
tem of reciprocity and exchange of goods
and labor.

This context reminds us that the more broadly
available licenses could use refinements in particular
cultural contexts, particularly Indigenous contexts,
and that the field should be open to discussions of
how culturally specific practices may interact with
open source licensing.

6 Conclusion

This paper has overviewed the development of
a morphological transducer and orthography con-
verter for San Lucas Quiaviní Zapotec.

An evaluation of the analyser over available texts
demonstrates that despite being incomplete, it is
fairly robust. Future work to improve the transducer
will focus on expanding the lexicon, adding missing
morphological patterns, refining the morphophono-
logical patterns, and finding better ways to deal with
the nuances of SLQZ verb morphology.

Text in another variety of Western Tlacolula Val-
ley Zapotec was evaluated using the morphological
transducer, and the results suggest that a separate
transducer might be needed.

An evaluation of the orthography converter
shows that this method of orthography conversion
has potential, but is affected heavily by the cover-
age of the transducer.

It is our hope that this resource will be useful to
the SLQZ community. In particular, we are excited
about the many roles it could play in language main-
tenance efforts. This work also impacts conversa-
tions on language technology for under-resourced
languages and open licensing in Indigenous con-
texts.
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Abstract

Peru is a multilingual country with a long his-
tory of contact between the indigenous lan-
guages and Spanish. Taking advantage of
this context for machine translation is possi-
ble with multilingual approaches for learning
both unsupervised subword segmentation and
neural machine translation models. The study
proposes the first multilingual translation mod-
els for four languages spoken in Peru: Aymara,
Ashaninka, Quechua and Shipibo-Konibo, pro-
viding both many-to-Spanish and Spanish-
to-many models and outperforming pairwise
baselines in most of them. The task ex-
ploited a large English-Spanish dataset for pre-
training, monolingual texts with tagged back-
translation, and parallel corpora aligned with
English. Finally, by fine-tuning the best mod-
els, we also assessed the out-of-domain capa-
bilities in two evaluation datasets for Quechua
and a new one for Shipibo-Konibo1.

1 Introduction

Neural Machine Translation (NMT) has opened
several research directions to exploit as many and
diverse data as possible. Massive multilingual
NMT models, for instance, take advantage of sev-
eral language-pair datasets in a single system (John-
son et al., 2017). This offers several advantages,
such as a simple training process and enhanced per-
formance of the language-pairs with little data (al-
though sometimes detrimental to the high-resource
language-pairs). However, massive models of
dozens of languages are not necessarily the best
outcome, as it is demonstrated that smaller clus-
ters still offer the same benefits (Tan et al., 2019;
Oncevay et al., 2020).

Peru offers a rich diversity context for machine
translation research with 47 native languages (Si-
mons and Fenning, 2019). All of them are highly
distinguishing from Castilian Spanish, the primary

1Available in: https://github.com/aoncevay/mt-peru

official language in the country and the one spo-
ken by the majority of the population. However,
from the computational perspective, all of these
languages do not have enough resources, such as
monolingual or parallel texts, and most of them are
considered endangered (Zariquiey et al., 2019).

In this context, the main question then arises:
shouldn’t machine translation be multilingual for
languages spoken in a multilingual country like
Peru? By taking advantage of few resources, and
other strategies such as multilingual unsupervised
subword segmentation models (Kudo, 2018), pre-
training with high resource language-pairs (Kocmi
and Bojar, 2018), back-translation (Sennrich et al.,
2016a), and fine-tuning (Neubig and Hu, 2018), we
deployed the first many-to-one and one-to-many
multilingual NMT models (paired with Spanish)
for four indigenous languages: Aymara, Ashaninka,
Quechua and Shipibo-Konibo.

2 Related work

In Peru, before NMT, there were studies in rule-
based MT, based on the Apertium platform (For-
cada et al., 2011), for Quechua Eastern Apuri-
mac (qve) and Quechua Cuzco (quz) (Cavero and
Madariaga, 2007). Furthermore, Ortega and Pil-
laipakkamnatt (2018) improved alignments for quz
by using an agglutinative language as Finnish as
a pivot. Apart from the Quechua variants, only
Aymara (Coler and Homola, 2014) and Shipibo-
Konibo (Galarreta et al., 2017) have been addressed
with rule-based and statistical MT, respectively.

Ortega et al. (2020b) for Southern Quechua, and
Gómez Montoya et al. (2019) for Shipibo-Konibo,
are the only studies that employed sequence-to-
sequence NMT models. They also performed trans-
fer learning experiments with potentially related
language pairs (e.g. Finnish or Turkish, which are
agglutinative languages). However, as far as we
know, this is the first study that trains a multilin-
gual model for some language spoken in Peru. For
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related work on multilingual NMT, we refer the
readers to the survey of Dabre et al. (2020).

3 Languages and datasets

To enhance replicability, we only used the datasets
provided in the AmericasNLP Shared Task2.

• Southern Quechua: with 6+ millions of
speakers and several variants, it is the most
widespread indigenous language in Peru.
AmericasNLP provides evaluation sets in the
standard Southern Quechua, which is based
mostly on the Quechua Ayacucho (quy) vari-
ant. There is parallel data from dictionar-
ies and Jehovah Witnesses (Agić and Vulić,
2019). There is parallel corpus aligned with
English too. We also include the close vari-
ant of Quechua Cusco (quz) to support the
multilingual learning.

• Aymara (aym): with 1.7 million of speakers
(mostly in Bolivia). The parallel and mono-
lingual data is extracted from a news web-
site (Global Voices) and distributed by OPUS
(Tiedemann, 2012). There are aligned data
with English too.

• Shipibo-Konibo (shp): a Panoan language
with almost 30,000 speakers in the Amazo-
nian region. There are parallel data from
dictionaries, educational material (Galarreta
et al., 2017), language learning flashcards
(Gómez Montoya et al., 2019), plus monolin-
gual data from educational books (Bustamante
et al., 2020).

• Ashaninka (cni): an Arawakan language with
45,000 speakers in the Amazon. There is par-
allel data from dictionaries, laws and books
(Ortega et al., 2020a), plus monolingual cor-
pus (Bustamante et al., 2020).

The four languages are highly agglutinative or
polysynthetic, meaning that they usually express a
large amount of information in just one word with
several joint morphemes. This is a real challenge
for MT and subword segmentation methods, given
the high probability of addressing a “rare word”
for the system. We also note that each language
belongs to a different language family, but that is
not a problem for multilingual models, as usually
the family-based clusters are not the most effective
ones (Oncevay et al., 2020).

2https://github.com/AmericasNLP/americasnlp2021

Language Mono. es en
aym - Aymara 8,680 5,475 5,045
cni - Ashaninka 13,193 3,753
quy - Quechua 104,101 14,465
shp - Shipibo-Konibo 23,593 14,437
quz - Quechua Cusco 97,836 21,760

Table 1: Number of sentences in monolingual and par-
allel corpora aligned with Spanish (es) or English (en).
The latter are used for en→es translation and we only
noted non-duplicated sentences w.r.t. the *–es corpora.

Pre-processing The datasets were noisy and not
cleaned. Lines are reduced according to several
heuristics: Arabic numbers or punctuation do not
match in the parallel sentences, there are more sym-
bols or numbers than words in a sentence, the ra-
tio of words from one side is five times larger or
shorter than the other, among others. Table 5 in the
Appendix includes the original and cleaned data
size per language-pair, whereas Table 1 presents
the final sizes.

English-Spanish datasets We consider the Eu-
roParl (1.7M sentences) (Koehn, 2005) and the
NewsCommentary-v8 (174k sentences) corpora for
pre-training.

4 Methodology

4.1 Evaluation

The train data have been extracted from different
domains and sources, which are not necessarily the
same as the evaluation sets provided for the Shared
Task. Therefore, the official development set (995
sentences per language) is split into three parts:
25%-25%-50%. The first two parts are our custom
dev and devtest sets3. We add the 50% section to
the training set with a sampling distribution of 20%,
to reduce the domain gap in the training data. Like-
wise, we extract a sample of the training and double
the size of the development set. The mixed data in
the validation set is relevant, as it allows to evaluate
how the model fits with all the domains. We used
the same multi-text sentences for evaluation, and
avoid any overlapping of the Spanish side with the
training set, this is also important as we are going
to evaluate multilingual models. Evaluation for all
the models used BLEU (Papineni et al., 2002) and
chrF (Popović, 2015) metrics.

3We are also reporting the results on the official test sets
after the finalisation of the Shared Task.
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BLEU Aymara Ashaninka Quechua Shipibo-Konibo
→Spanish dev devtest test dev devtest test dev devtest test dev devtest test
(a) Multilingual 11.11 9.95 3.70 8.40 9.37 5.21 12.46 11.03 8.04 10.34 12.72 10.07
(b) Multi+BT 10.76 8.39 2.87 7.30 5.34 3.44 11.48 8.85 7.51 9.13 10.77 7.58
(c) Multi+BT[t] 10.72 8.42 2.86 7.45 5.69 3.15 11.37 10.02 7.12 8.81 10.73 7.18
(d) Pairwise 9.46 7.66 2.04 4.23 3.96 2.38 15.21 14.00 8.20 7.72 9.48 4.44
Spanish→ dev devtest test dev devtest test dev devtest test dev devtest test
(e) Multilingual 8.67 6.28 2.19 6.74 11.72 5.54 10.04 5.37 4.51 10.82 10.44 6.69
(f) Multi+BT 3.31 2.59 0.79 1.29 3.38 2.82 1.36 2.02 1.73 1.63 3.76 2.98
(g) Multi+BT[t] 10.55 6.54 2.31 7.36 13.17 5.40 10.77 5.29 4.23 11.98 11.12 7.45
(h) Pairwise 7.08 4.96 1.65 4.12 8.40 3.82 10.67 6.11 3.96 8.76 7.89 6.15

Table 2: BLEU scores for the dev and devtest custom partitions and the official test set, including all the multilin-
gual and pairwise MT systems into and from Spanish. BT = Back-translation. BT[t] = Tagged back-translation.

chrF Aymara Ashaninka Quechua Shipibo-Konibo
→Spanish dev devtest test dev devtest test dev devtest test dev devtest test
(a) Multilingual 31.73 28.82 22.01 26.78 26.82 22.27 32.92 32.99 29.45 31.41 33.49 31.26
(d) Pairwise 28.77 25.03 19.79 20.43 20.40 18.83 36.01 36.06 30.90 27.25 29.91 25.31
Spanish→ dev devtest test dev devtest test dev devtest test dev devtest test
(g) Multi+BT[t] 37.32 35.17 26.70 38.94 38.44 30.81 44.60 38.94 37.80 40.67 39.47 33.43
(h) Pairwise 28.89 28.23 21.13 32.55 32.29 27.10 45.77 39.68 36.86 34.97 34.96 27.09

Table 3: chrF scores for the dev and devtest custom partitions and the official test sets for the best multilingual
setting and the pairwise baseline in each direction.

4.2 Multilingual subword segmentation

Ortega et al. (2020b) used morphological infor-
mation, such as affixes, to guide the Byte-Pair-
Encoding (BPE) segmentation algorithm (Sennrich
et al., 2016b) for Quechua. However, their improve-
ment is not significant, and according to Bostrom
and Durrett (2020), BPE tends to oversplit roots
of infrequent words. They showed that a unigram
language model (Kudo, 2018) seems like a better
alternative to split affixes and preserve roots (in
English and Japanese).

To take advantage of the potential lexical sharing
of the languages (e.g. loanwords) and address the
polysynthetic nature of the indigenous languages,
we trained a unique multilingual segmentation
model by sampling all languages with a uniform
distribution. We used the unigram model imple-
mentation in SentencePiece (Kudo and Richardson,
2018) with a vocabulary size of 32,000.

4.3 Procedure

For the experiments, we used a Transformer-base
model (Vaswani et al., 2017) with the default
configuration in Marian NMT (Junczys-Dowmunt
et al., 2018). The steps are as follows:

Pre-training We pre-trained two MT models
with the Spanish–English language-pair in both
directions. We did not include an agglutinative

language like Finnish (Ortega et al., 2020b) for
two reasons: it is not a must to consider highly re-
lated languages for effective transfer learning (e.g.
English–German to English–Tamil (Bawden et al.,
2020)), and we wanted to translate the English side
of en–aym, en–quy and en–quz to augment their
correspondent Spanish-paired datasets. The en→es
and es→en models achieved 34.4 and 32.3 BLEU
points, respectively, in the newsdev2013 set.

Multilingual fine-tuning Using the pre-trained
en→es model, we fine-tuned the first multilingual
model many-to-Spanish. Following established
practices, we used a uniform sampling for all the
datasets (quz–es included) to avoid under-fitting
the low-resource language-pairs4. Results are in
Table 2, row (a). We replicated this to the es→many
direction (row (e)), using the es→en model.

Back-translation With model (a), we back-
translated (BT) the monolingual data of the in-
digenous languages and train models (b) and (f):
original plus BT data. However, the results with
BT data underperformed or did not converge. Po-
tential reasons are the noisy translation outputs of
model (a) and the larger amount of BT than human-
translated sentences for all languages, even though

4Temperature-based sampling or automatically learned
data scorers are more advanced strategies (Wang et al., 2020).
However, we left that analysis for further work.
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we sampled BT and human translations uniformly.

Tagged back-translation (BT[t]) To alleviate
the issue, we add a special tag for the BT data
(Caswell et al., 2019). With BT[t], we send a sig-
nal to the model that it is processing synthetic data,
and thus, it may not hurt the learning over the real
data. Table 2 (rows (c,g)) shows the results.

Pairwise baselines We obtained pairwise sys-
tems by fine-tuning the same pre-trained models
(without any back-translated data). For a straight-
forward comparison, they used the same multilin-
gual SentencePiece model.

5 Analysis and discussion

One of the most exciting outcomes is the deterio-
rated performance of the multilingual models using
BT data, as we usually expect that added back-
translated texts would benefit performance. Using
tags (BT[t]) to differentiate which data is synthetic
or not is only a simple step to address this issue;
however, there could be evaluated more informed
strategies for denoising or performing online data
selection (Wang et al., 2018).

Besides, in the translation into Spanish, the mul-
tilingual model without BT data outperforms the
rest models in all languages but Quechua, where the
pairwise system achieved the best translation accu-
racy. Quechua is the “highest”-resource language-
pair in the experiment, and its performance is de-
teriorated in the multilingual setting5. A similar
scenario is shown in the other translation direction
from Spanish, where the best multilingual setting
(+BT[t]) cannot overcome the es→quy model in
the devtest set.

Nevertheless, the gains for Aymara, Ashaninka
and Shipibo-Konibo are outstanding. Moreover,
we note that the models are not totally overfit-
ted to any of the evaluation sets. Exceptions are
es→aym and es→quy, with a significant perfor-
mance dropping from dev to devtest, meaning that
it started to overfit to the training data. How-
ever, for Spanish→Ashaninka, we observe that
the model achieved a better performance in the
devtest set. This is due to oversampling of the
same-domain dev partition for training (§4.1) and
the small original training set.

5In multilingual training, this behaviour is usually ob-
served, and other approaches, such as injecting adapter layers
(Bapna and Firat, 2019), might help to mitigate the issue. We
left the analysis for further work.

Stories (shp)
shp→es es→shp

full half ∆t full half ∆t
BestMulti 1.90 1.43 0 0.56 0.68 0
BestMulti+FT - 5.73 -1.66 - 5.82 -1.93

Magazine (quy)
quy→es es→quy

full half ∆t full half ∆t
Pairwise 2.96 2.32 0 2.17 1.59 0
Pairwise+FT - 9.14 -0.83 - 2.92 +0.78
Apertium 5.82 - -
Ortega et al. 0.70 - -

Table 4: Out-of-domain BLEU scores. Best model is
fine-tuned (+FT) with half of the dataset and evaluated
in the other half. ∆t = original test score variation.

Concerning the results on the official test set,
the performance is lower than the results with the
custom evaluation sets. The main potential reason
is that the official test is four times bigger than the
custom devtest, and therefore, offers more diversity
and challenge for the evaluation. Another point
to highlight is that the best result in the Spanish–
Quechua language-pair is obtained by a multilin-
gual model (the scores between the model (e) and
(g) are not significantly different) instead of the
pairwise baseline.

Decoding an indigenous language is still a chal-
lenging task, and the relatively low BLEU scores
cannot suggest a translation with proper adequacy
or fluency. However, BLEU works at the word-
level, and other character-level metrics should be
considered to better assess the highly agglutinative
nature of the languages. For reference, we also
report the chrF scores in Table 3 for the best mul-
tilingual setting and the pairwise baseline. As for
the Spanish decoding, fluency is preserved from
the English→Spanish pre-trained model6, but more
adequacy is needed.

6 Out-of-domain evaluation

It is relevant to assess out-of-domain capabilities,
but more important to evaluate whether the mod-
els are still capable to fine-tune without overfit-
ting. We use a small evaluation set for Quechua
(Kallpa, with 100 sentences), which contains sen-
tences extracted from a magazine (Ortega et al.,
2020b). Likewise, we introduce a new evaluation
set for Shipibo-Konibo (Kirika, 200 sentences),
which contains short traditional stories.

We tested our best model for each language-pair,
fine-tune it (+FT) with half of the out-of-domain

6This might be confirmed by a proper human evaluation
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dataset, and evaluate it in the other half. To avoid
overfitting, we controlled cross-entropy loss and
considered very few updates for validation steps.
Results are shown in Table 3, where we observe
that it is possible to fine-tune the multilingual or
pairwise models to the new domains without loos-
ing too much performance in the original test.

The Quechua translations rapidly improved with
the fine-tuning step, and there is a small gain in the
original test for es→quy, although the scores are
relatively low in general. Nevertheless, our model
could outperform others (by extrapolation, we can
assume that the scores for the rule-based Apertium
system (Cavero and Madariaga, 2007) and Ortega
et al. (2020b)’s NMT system are similar in half of
the dataset).

For Shipibo-Konibo, we also observe some small
gains in both directions without hurting the previ-
ous performance, but the scores are far from being
robust. Kirika is challenging given its old style: the
translations are extracted from an old book written
by missionaries, and even when the spelling has
been modernised, there are differences in the use
of some auxiliary verbs for instance (extra words
that affect the evaluation metric)7.

7 Conclusion and future work

Peru is multilingual, ergo, its machine translation
should be too! We conclude that multilingual ma-
chine translation models can enhance the perfor-
mance in truly low-resource languages like Aymara,
Ashaninka and Shipibo-Konibo, in translation from
and into Spanish. For Quechua, even when the pair-
wise system performed better in this study, there is
a simple step to give a multilingual setting another
opportunity: to include a higher-resource language-
pair that may support the multilingual learning pro-
cess. This could be related in some aspect like mor-
phology (another agglutinative language) or the
discourse (domain). Other approaches focused on
more advanced sampling or adding specific layers
to restore the performance of the higher-resource
languages might be considered as well. Besides,
tagged back-translation allowed to take some ad-
vantage of the monolingual data; however, one of
the most critical following steps is to obtain a more
robust many-to-Spanish model to generate back-
translated data with more quality. Furthermore, to
address the multi-domain nature of these datasets,

7The dataset, with further analysis, is available at: https:
//github.com/aoncevay/mt-peru

we could use domain tags to send more signals to
the model and support further fine-tuning steps. Fi-
nally, after addressing the presented issues in this
study, and to enable zero-shot translation, we plan
to train the first many-to-many multilingual model
for indigenous languages spoken in Peru.
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Appendix

S (orig.) S (clean) % clean T /S (src) T /S (tgt) ratio T src/tgt
es-aym 6,453 5,475 -15.16% 19.27 13.37 1.44
es-cni 3,860 3,753 -2.77% 12.29 6.52 1.89
es-quy 128,583 104,101 -19.04% 14.2 8.17 1.74
es-shp 14,511 14,437 -0.51% 6.05 4.31 1.4
es-quz 130,757 97,836 -25.18% 15.23 8.62 1.77
en-quy 128,330 91,151 -28.97% 15.03 8.68 1.73
en-quz 144,867 100,126 -30.88% 14.84 8.42 1.76
en-aym 8,886 7,689 -13.47% 19.36 13.32 1.45

Table 5: Statistics and cleaning for all parallel corpora. We observe that the Shipibo-Konibo and Ashaninka corpora
are the least noisy ones. S = number of sentences, T = number of tokens. There are sentence alignment issues in
the Quechua datasets, which require a more specialised tool to address.
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Abstract
This paper presents the results of the 2021
Shared Task on Open Machine Translation for
Indigenous Languages of the Americas. The
shared task featured two independent tracks,
and participants submitted machine transla-
tion systems for up to 10 indigenous lan-
guages. Overall, 8 teams participated with a
total of 214 submissions. We provided train-
ing sets consisting of data collected from vari-
ous sources, as well as manually translated sen-
tences for the development and test sets. An
official baseline trained on this data was also
provided. Team submissions featured a vari-
ety of architectures, including both statistical
and neural models, and for the majority of lan-
guages, many teams were able to considerably
improve over the baseline. The best perform-
ing systems achieved 12.97 ChrF higher than
baseline, when averaged across languages.

1 Introduction

Many of the world’s languages, including lan-
guages native to the Americas, receive worryingly
little attention from NLP researchers. According
to Glottolog (Nordhoff and Hammarström, 2012),
86 language families and 95 language isolates can
be found in the Americas, and many of them are
labeled as endangered. From an NLP perspective,
the development of language technologies has the
potential to help language communities and ac-
tivists in the documentation, promotion and revi-
talization of their languages (Mager et al., 2018b;
Galla, 2016). There have been recent initiatives
to promote research on languages of the Americas
(Fernández et al., 2013; Coler and Homola, 2014;
Gutierrez-Vasques, 2015; Mager and Meza, 2018;
Ortega et al., 2020; Zhang et al., 2020; Schwartz
et al., 2020; Barrault et al., 2020).

∗*The first three authors contributed equally.

The AmericasNLP 2021 Shared Task on Open
Machine Translation (OMT) aimed at moving
research on indigenous and endangered languages
more into the focus of the NLP community. As
the official shared task training sets, we provided
a collection of publicly available parallel corpora
(§3). Additionally, all participants were allowed
to use other existing datasets or create their own
resources for training in order to improve their
systems. Each language pair used in the shared
task consisted of an indigenous language and a
high-resource language (Spanish). The languages
belong to a diverse set of language families:
Aymaran, Arawak, Chibchan, Tupi-Guarani, Uto-
Aztecan, Oto-Manguean, Quechuan, and Panoan.
The ten language pairs included in the shared
task are: Quechua–Spanish, Wixarika–Spanish,
Shipibo-Konibo–Spanish, Asháninka–Spanish,
Raramuri–Spanish, Nahuatl–Spanish, Otomí–
Spanish, Aymara–Spanish, Guarani–Spanish, and
Bribri–Spanish. For development and testing, we
used parallel sentences belonging to a new natural
language inference dataset for the 10 indigenous
languages featured in our shared task, which is a
manual translation of the Spanish version of the
multilingual XNLI dataset (Conneau et al., 2018).
For a complete description of this dataset we refer
the reader to Ebrahimi et al. (2021).

Together with the data, we also provided: a sim-
ple baseline based on the small transformer archi-
tecture (Vaswani et al., 2017) proposed together
with the FLORES dataset (Guzmán et al., 2019);
and a description of challenges and particular char-
acteristics for all provided resources1. We estab-
lished two tracks: one where training models on
the development set after hyperparameter tuning is

1https://github.com/AmericasNLP/americasnlp2021/
blob/main/data/information_datasets.pdf
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allowed (Track 1), and one where models cannot
be trained directly on the development set (Track
2).

Machine translation for indigenous languages
often presents unique challenges. As many indige-
nous languages do not have a strong written tra-
dition, orthographic rules are not well defined or
standardized, and even if they are regulated, often
times native speakers do not follow them or create
their own adapted versions. Simply normalizing
the data is generally not a viable option, as even
the definition of what constitutes a morpheme or a
orthographic word is frequently ill defined. Further-
more, the huge dialectal variability among those
languages, even from one village to the other, adds
additional complexity to the task. We describe the
particular challenges for each language in Section
§3.

Eight teams participated in the AmericasNLP
2021 Shared Task on OMT. Most teams submitted
systems in both tracks and for all 10 language pairs,
yielding a total of 214 submissions.

2 Task and Evaluation

2.1 Open Machine Translation

Given the limited availability of resources and the
important dialectal, orthographic and domain chal-
lenges, we designed our task as an unrestrained
machine translation shared task: we called it open
machine translation to emphasize that participants
were free to use any resources they could find. Pos-
sible resources could, for instance, include existing
or newly created parallel data, dictionaries, tools,
or pretrained models.

We invited submissions to two different tracks:
Systems in Track 1 were allowed to use the devel-
opment set as part of the training data, since this is
a common practice in the machine translation com-
munity. Systems in Track 2 were not allowed to be
trained directly on the development set, mimicking
a more realistic low-resource setting.

2.2 Primary Evaluation

In order to be able to evaluate a large number of sys-
tems on all 10 languages, we used automatic met-
rics for our primary evaluation. Our main metric,
which determined the official ranking of systems,
was ChrF (Popović, 2015). We made this choice
due to certain properties of our languages, such as
word boundaries not being standardized for all lan-
guages and many languages being polysynthetic,

resulting in a small number of words per sentence.
We further reported BLEU scores (Papineni et al.,
2002) for all systems and languages.

2.3 Supplementary Evaluation

To gain additional insight into the strengths and
weaknesses of the top-performing submissions, we
further performed a supplementary manual evalua-
tion for two language pairs and a limited number
of systems, using a subset of the test set.

We asked our annotators to provide ratings of
system outputs using separate 5-point scales for ad-
equacy and fluency. The annotation was performed
by the translator who created the test datasets. The
expert received the source sentence in Spanish,
the reference in the indigenous language, and an
anonymized system output. In addition to the base-
line, we considered the 3 highest ranked systems ac-
cording to our main metric, and randomly selected
100 sentences for each language. The following
were the descriptions of the ratings as provided
to the expert annotator in Spanish (translated into
English here for convenience):

Adequacy The output sentence expresses the
meaning of the reference.

1. Extremely bad: The original meaning is not
contained at all.

2. Bad: Some words or phrases allow to guess
the content.

3. Neutral.
4. Sufficiently good: The original meaning is

understandable, but some parts are unclear or
incorrect.

5. Excellent: The meaning of the output is the
same as that of the reference.

Fluency The output sentence is easily readable
and looks like a human-produced text.

1. Extremely bad: The output text does not be-
long to the target language.

2. Bad: The output sentence is hardly readable.
3. Neutral.
4. Sufficiently good: The output seems like a

human-produced text in the target language,
but contains weird mistakes.

5. Excellent: The output seems like a human-
produced text in the target language, and is
readable without issues.
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Language ISO Family Train Dev Test

Asháninka cni Arawak 3883 883 1002
Aymara aym Aymaran 6531 996 1003
Bribri bzd Chibchan 7508 996 1003
Guarani gn Tupi-Guarani 26032 995 1003
Nahuatl nah Uto-Aztecan 16145 672 996
Otomí oto Oto-Manguean 4889 599 1001
Quechua quy Quechuan 125008 996 1003
Rarámuri tar Uto-Aztecan 14721 995 1002
Shipibo-Konibo shp Panoan 14592 996 1002
Wixarika hch Uto-Aztecan 8966 994 1003

Table 1: The languages featured in the AmericasNLP
2021 Shared Task on OMT, their ISO codes, language
families and dataset statistics. For the origins of the
datasets, please refer to the text.

3 Languages and Datasets

In this section, we will present the languages and
datasets featured in our shared task. Figure 1 ad-
ditionally provides an overview of the languages,
their linguistic families, and the number of parallel
sentences with Spanish.

3.1 Development and Test Sets
For system development and testing, we leveraged
individual pairs of parallel sentences from Amer-
icasNLI (Ebrahimi et al., 2021). This dataset is a
translation of the Spanish version of XNLI (Con-
neau et al., 2018) into our 10 indigenous languages.
It was not publicly available until after the con-
clusion of the competition, avoiding an accidental
inclusion of the test set into the training data by
the participants. For more information regarding
the creation of the dataset, we refer the reader to
(Ebrahimi et al., 2021).

3.2 Training Data
We collected publicly available datasets in all 10
languages and provided them to the shared task par-
ticipants as a starting point. We will now introduce
the languages and the training datasets, explaining
similarities and differences between training sets
on the one hand and development and test sets on
the other.

Spanish–Wixarika Wixarika (also known as
Huichol) with ISO code hch is spoken in Mexico
and belongs to the Yuto-Aztecan linguistic family.
The training, development and test sets all belong
to the same dialectal variation, Wixarika of Zo-
quipan, and use the same orthography. However,
word boundaries are not always marked according
to the same criteria in development/test and train.

The training data (Mager et al., 2018a) is a transla-
tion of the fairy tales of Hans Christian Andersen
and contains word acquisitions and code-switching.

Spanish–Nahuatl Nahuatl is a Yuto-Aztecan
language spoken in Mexico and El Salvador, with
a wide dialectal variation (around 30 variants). For
each main dialect a specific ISO 639-3 code is avail-
able.2 There is a lack of consensus regarding the or-
thographic standard. This is very noticeable in the
training data: the train corpus (Gutierrez-Vasques
et al., 2016) has dialectal, domain, orthographic
and diachronic variation (Nahuatl side). However,
the majority of entries are closer to a Classical
Nahuatl orthographic “standard”.

The development and test datasets were trans-
lated to modern Nahuatl. In particular, the trans-
lations belong to Nahuatl Central/Nahuatl de la
Huasteca (Hidalgo y San Luis Potosí) dialects. In
order to be closer to the training corpus, an or-
thographic normalization was applied. A simple
rule based approach was used, which was based on
the most predictable orthographic changes between
modern varieties and Classical Nahuatl.

Spanish—Guarani Guarani is mostly spoken in
Paraguay, Bolivia, Argentina and Brazil. It belongs
to the Tupian language family (ISO gnw, gun,
gug, gui, grn, nhd). The training corpus
for Guarani (Chiruzzo et al., 2020) was collected
from web sources (blogs and news articles) that
contained a mix of dialects, from pure Guarani
to more mixed Jopara which combines Guarani
with Spanish neologisms. The development and
test corpora, on the other hand, are in standard
Paraguayan Guarani.

Spanish—Bribri Bribri is a Chibchan language
spoken in southern Costa Rica (ISO code bzd).
The training set for Bribri was extracted from six
sources (Feldman and Coto-Solano, 2020; Margery,
2005; Jara Murillo, 2018a; Constenla et al., 2004;
Jara Murillo and García Segura, 2013; Jara Murillo,
2018b; Flores Solórzano, 2017), including a dictio-
nary, a grammar, two language learning textbooks,
one storybook and the transcribed sentences from

2ISO 639-3 for the Nahutal languages: nci, nhn,
nch, ncx, naz, nln, nhe, ngu, azz, nhq,
nhk, nhx, nhp, ncl, nhm, nhy, ncj, nht,
nlv, ppl, nhz, npl, nhc, nhv, nhi, nhg,
nuz, nhw, nsu, xpo, nhn, nch, ncx, naz,
nln, nhe, ngu, azz, nhq, nhk, nhx, nhp,
ncl, nhm, nhy, ncj, nht, nlv, ppl, nhz,
npl, nhc, nhv, nhi, nhg, nuz, nhw, nsu,
and xpo.
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one spoken corpus. The sentences belong to three
major dialects: Amubri, Coroma and Salitre.

There are numerous sources of variation in the
Bribri data (Feldman and Coto-Solano, 2020): 1)
There are several different orthographies, which
use different diacritics for the same words. 2)
The Unicode encoding of visually similar diacritics
differs among authors. 3) There is phonetic and
lexical variation across dialects. 4) There is con-
siderable idiosyncratic variation between writers,
including variation in word boundaries (e.g. ikíe
vrs i kie "it is called"). In order to build a stan-
dardized training set, an intermediate orthography
was used to make these different forms comparable
and learning easier. All of the training sentences
are comparable in domain; they come from either
traditional stories or language learning examples.
Because of the nature of the texts, there is very
little code-switching into Spanish. This is different
from regular Bribri conversation, which would con-
tain more borrowings from Spanish and more code-
switching. The development and test sentences
were translated by a speaker of the Amubri dialect
and transformed into the intermediate orthography.

Spanish—Rarámuri Rarámuri is a Uto-
Aztecan language, spoken in northern Mexico
(ISO: tac, twr, tar, tcu, thh). Train-
ing data for Rarámuri consists of a set of extracted
phrases from the Rarámuri dictionary Brambila
(1976). However, we could not find any description
of the dialectal variation to which these examples
belong. The development and test set are transla-
tions from Spanish into the highlands Rarámuri
variant (tar), and may differ from the training set.
As with many polysynthetic languages, challenges
can arise when the boundaries of a morpheme
and a word are not clear and have no consensus.
Native speakers, even with a standard orthography
and from the same dialectal variation, may define
words in a different standards to define word
boundaries.

Spanish—Quechua Quechua is a family of lan-
guages spoken in Argentina, Bolivia, Colombia,
Ecuador, Peru, and Chile with many ISO codes for
its language (quh, cqu, qvn, qvc, qur,
quy, quk, qvo, qve, and quf). The devel-
opment and test sets are translated into the stan-
dard version of Southern Quechua, specifically the
Quechua Chanka (Ayacucho, code: quy) variety.
This variety is spoken in different regions of Peru,

and it can be understood in different areas of other
countries, such as Bolivia or Argentina. This is
the variant used on Wikipedia Quechua pages, and
by Microsoft in its translations of software into
Quechua. Southern Quechua includes different
Quechua variants, such as Quechua Cuzco (quz)
and Quechua Ayacucho (quy). Training datasets
are provided for both variants. These datasets were
created from JW300 (Agić and Vulić, 2019), which
consists of Jehovah’s Witness texts, sentences ex-
tracted from the official dictionary of the Minister
of Education (MINEDU), and miscellaneous dictio-
nary entries and samples which have been collected
and reviewed by Huarcaya Taquiri (2020).

Spanish–Aymara Aymara is a Aymaran lan-
guage spoken in Bolivia, Peru, and Chile (ISO
codes aym, ayr, ayc). The development and
test sets are translated into the Central Aymara vari-
ant (ayr), specifically Aymara La Paz jilata, the
largest variant. This is similar to the variant of
the available training set, which is obtained from
Global Voices (Prokopidis et al., 2016) (and pub-
lished in OPUS (Tiedemann, 2012)), a news portal
translated by volunteers. However, the text may
have potentially different writing styles that are not
necessarily edited.

Spanish-–Shipibo-Konibo Shipibo-Konibo is a
Panoan language spoken in Perú (ISO shp and
kaq). The training sets for Shipibo-Konibo have
been obtained from different sources and transla-
tors: Sources include translations of a sample from
the Tatoeba dataset (Gómez Montoya et al., 2019),
translated sentences from books for bilingual edu-
cation (Galarreta et al., 2017), and dictionary en-
tries and examples (Loriot et al., 1993). Translated
text was created by a bilingual teacher, and follows
the most recent guidelines of the Minister of Ed-
ucation in Peru, however, the third source is an
extraction of parallel sentences from an old dictio-
nary. The development and test sets were created
following the official convention as in the translated
training sets.

Spanish—Asháninka Asháninka is an
Arawakan language (ISO: cni) spoken in
Peru and Brazil. Training data was created by
collecting texts from different domains such as
traditional stories, educational texts, and environ-
mental laws for the Amazonian region (Ortega
et al., 2020; Romano, Rubén and Richer, Sebastián,
2008; Mihas, 2011). The texts belong to domains
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such as: traditional stories, educational texts,
environmental laws for the Amazonian region. Not
all the texts are translated into Spanish, there is
a small fraction of these that are translated into
Portuguese because a dialect of pan-Ashaninka is
also spoken in the state of Acre in Brazil. The texts
come from different pan-Ashaninka dialects and
have been normalized using the AshMorph (Ortega
et al., 2020). There are many neologisms that are
not spread to the speakers of different communities.
The translator of the development and test sets
only translated the words and concepts that are
well known in the communities, whereas other
terms are preserved in Spanish. Moreover, the
development and test sets were created following
the official writing convention proposed by the
Peruvian Government and taught in bilingual
schools.

Spanish-–Otomí Otomí (also known as Hñähñu,
Hñähño, Ñhato, Ñûhmû, depending on the re-
gion) is an Oto-Manguean language spoken in
Mexico (ISO codes: ott, otn, otx, ote,
otq, otz, otl, ots, otm). The training
set3 was collected from a set of different sources,
which implies that the text contains more than one
dialectal variation and orthographic standard, how-
ever, most texts belong to the Valle del Mezquital
dialect (ote). This was specially challenging for
the translation task, since the development and test
sets are from the Ñûhmû de Ixtenco, Tlaxcala, vari-
ant (otz), which also has its own orthographic
system. This variant is especially endangered as
less than 100 elders still speak it.

3.3 External Data Used by Participants

In addition to the provided datasets, participants
also used additional publicly available parallel data,
monolingual corpora or newly collected data sets.
The most common datasets were JW300 (Agić
and Vulić, 2019) and the Bible’s New Testament
(Mayer and Cysouw, 2014; Christodouloupoulos
and Steedman, 2015; McCarthy et al., 2020). Be-
sides those, GlobalVoices (Prokopidis et al., 2016)
and datasets available at OPUS (Tiedemann, 2012)
were added. New datasets were extracted from con-
stitutions, dictionaries, and educational books. For
monolingual text, Wikipedia was most commonly
used, assuming one was available in a language.

3Otomí online corpus: https://tsunkua.elotl.mx/about/

4 Baseline and Submitted Systems

We will now describe our baseline as well as all sub-
mitted systems. An overview of all teams and the
main ideas going into their submissions is shown
in Table 2.

4.1 Baseline
Our baseline system was a transformer-based se-
quence to sequence model (Vaswani et al., 2017).
We employed the hyperparameters proposed by
Guzmán et al. (2019) for a low-resource scenario.
We implemented the model using Fairseq (Ott et al.,
2019). The implementation of the baseline can be
found in the official shared task repository.4

4.2 University of British Columbia
The team of the University of British Columbia
(UBC-NLP; Billah-Nagoudi et al., 2021) partici-
pated for all ten language pairs and in both tracks.
They used an encoder-decoder transformer model
based on T5 (Raffel et al., 2020). This model was
pretrained on a dataset consisting of 10 indige-
nous languages and Spanish, that was collected by
the team from different sources such as the Bible
and Wikipedia, totaling 1.17 GB of text. How-
ever, given that some of the languages have more
available data than others, this dataset is unbal-
anced in favor of languages like Nahuatl, Guarani,
and Quechua. The team also proposed a two-stage
fine-tuning method: first fine-tuning on the entire
dataset, and then only on the target languages.

4.3 Helsinki
The University of Helsinki (Helsinki; Vázquez
et al., 2021) participated for all ten language pairs
in both tracks. This team did an extensive explo-
ration of the existing datasets, and collected addi-
tional resources both from commonly used sources
such as the Bible and Wikipedia, as well as other
minor sources such as constitutions. Monolingual
data was used to generate paired sentences through
back-translation, and these parallel examples were
added to the existing dataset. Then, a normaliza-
tion process was done using existing tools, and
the aligned data was further filtered. The quality
of the data was also considered, and each dataset
was assigned a weight depending on a noisiness
estimation. The team used a transformer sequence-
to-sequence model trained via two steps. For their
main submission they first trained on data which

4https://github.com/AmericasNLP/americasnlp2021
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Team Langs. Sub. Data Models Multilingual Pretrained

CoAStaL (Boll-
mann et al., 2021)

10 20 Bible, JW300, OPUS,
Wikipedia, New col-
lected data

PB-SMT,
Constrained
Random Strings

No No

Helsinki (Vázquez
et al., 2021)

10 50 Bible, OPUS, Con-
stitutions, Normaliza-
tion, Filtering, Back-
Translation

Transformer
NMT

Yes, all ST
languages +
Spanish-English

No

NRC-CNRC (Knowles
et al., 2021)

4 17 No external data,
preoricessing, BPE
Dropout.

Transofrmer
NMT

Yes, 4-
languages

No

REPUcs (Moreno,
2021)

1 2 JW300, New dataset,
Europarl

Transformer
NMT.

Yes, with
Spanish-English

Spanish-English
pretraining

Tamalli (Parida
et al., 2021)

10 42 - WB-SMT.
Transformer
NMT,

10-languages No

UBC-NLP (Billah-
Nagoudi et al.,
2021)

8 29 Bible, Wikipedia Transformer T5 10-Languages New T5

UTokyo (Zheng
et al., 2021)

10 40 Monolingual from
other languages. Data

Transformer Yes New mBART

Anonymous 8 14 - - - -

Table 2: Participating team (Team) with system description paper, number of languages that system outputs were
submitted for (Langs.), total number of submissions (Sub.), external data (Data), models (Models), if training was
multilingual (Multilingual), and if pretraining was done (Pretrained). More details can be found in the text.

was 90% Spanish–English and 10% indigenous
languages, and then changed the data proportion
to 50% Spanish–English and 50% indigenous lan-
guages.

4.4 CoAStaL
The team of the University of Copenhagen
(CoAStaL) submitted systems for both tracks
(Bollmann et al., 2021). They focused on addi-
tional data collection and tried to improve the re-
sults with low-resource techniques. The team dis-
covered that it was even hard to generate correct
words in the output and that phrase-based statisti-
cal machine translation (PB-SMT) systems work
well when compared to the state-of-the-art neu-
ral models. Interestingly, the team introduced a
baseline that mimicked the target language using
a character-trigram distribution and length con-
straints without any knowledge of the source sen-
tence. This random text generation achieved even
better results than some of the other submitted sys-
tems. The team also reported failed experiments,
where character-based neural machine translation
(NMT), pretrained transformers, language model
priors, and graph convolution encoders using UD
annotations could not get any meaningful results.

4.5 REPUcs
The system of the Pontificia Universidad Católica
del Perú (REPUcs; Moreno, 2021) submitted to

the the Spanish–Quechua language pair in both
tracks. The team collected external data from 3 dif-
ferent sources and analyzed the domain disparity
between this training data and the development set.
To solve the problem of domain mismatch, they
decided to collect additional data that could be a
better match for the target domain. The used data
from a handbook (Iter and Ortiz-Cárdenas, 2019),
a lexicon,5 and poems on the web (Duran, 2010).6

Their model is a transformer encoder-decoder ar-
chitecture with SentencePiece (Kudo and Richard-
son, 2018) tokenization. Together with the existing
parallel corpora, the new paired data was used for
finetuning on top of a pretrained Spanish–English
translation model. The team submitted two ver-
sions of their system: the first was only finetuned
on JW300+ data, while the second one additionally
leveraged the newly collected dataset.

4.6 UTokyo

The team of the University of Tokyo (UTokyo;
Zheng et al., 2021) submitted systems for all lan-
guages and both tracks. A multilingual pretrained
encoder-decoder model (mBART; Liu et al., 2020)
was used, implemented with the Fairseq toolkit
(Ott et al., 2019). The model was first pretrained
on a huge amount of data (up to 13GB) from var-

5https://www.inkatour.com/dico/
6https://lyricstranslate.com/
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Lang. Rank Team Sub BLEU ChrF

aym

1 Helsinki 2 2.80 31.0
2 Helsinki 1 2.91 30.2
3 Helsinki 3 2.35 26.1
4 UTokyo 1 1.17 21.4
5 CoAStaL 1 1.11 19.1
6 UBC-NLP 2 0.99 19.0
7 UBC-NLP 4 0.76 18.6
8 UTokyo 2 1.18 14.9
9 Anonym 1 0.01 7.3

Rank Team Sub BLEU ChrF

bzd

1 Helsinki 2 5.18 21.3
2 Helsinki 1 4.93 20.4
3 CoAStaL 1 3.60 19.6
4 Helsinki 3 3.68 17.7
5 UTokyo 1 1.70 14.3
6 UBC-NLP 2 0.94 11.3
7 UTokyo 2 1.28 11.2
8 UBC-NLP 4 0.89 11.1
9 Anonym 1 0.14 6.1

Lang. Rank Team Sub BLEU ChrF

cni

1 Helsinki 2 6.09 33.2
2 Helsinki 1 5.87 32.4
3 Helsinki 3 5.00 30.6
4 CoAStaL 1 3.02 26.5
5 UTokyo 1 0.20 21.6
6 UTokyo 2 0.84 18.9
7 UBC-NLP 2 0.08 18.3
8 UBC-NLP 4 0.09 17.8
9 Anonym 1 0.08 11.4

Lang. Rank Team Sub BLEU ChrF

gn

1 Helsinki 2 8.92 37.6
2 Helsinki 1 8.18 36.7
3 Helsinki 3 5.97 31.1
4 NRC-CNRC 0 4.73 30.4
5 NRC-CNRC 4 5.27 30.3
6 NRC-CNRC 2 4.06 28.8
7 UTokyo 1 3.21 26.5
8 CoAStaL 1 2.20 24.1
9 UTokyo 2 3.18 23.3

10 NRC-CNRC 3 0.64 16.3
11 Anonym 1 0.03 8.5

Lang Rank Team Sub BLEU ChrF

hch

1 Helsinki 2 15.67 36.0
2 Helsinki 1 14.71 34.8
3 NRC-CNRC 0 14.90 32.7
4 NRC-CNRC 2 13.65 31.5
5 Helsinki 3 13.72 31.1
6 CoAStaL 1 8.80 25.7
7 UTokyo 1 7.09 23.8
8 NRC-CNRC 3 4.62 20.0
9 UBC-NLP 2 5.52 19.5

10 UBC-NLP 4 5.09 18.6
11 UTokyo 2 6.30 18.4
12 Amonym 1 0.06 8.1

Lang Rank Team Sub BLEU ChrF

nah

1 Helsinki 2 3.25 30.1
2 Helsinki 1 2.8 29.4
3 NRC-CNRC 0 2.13 27.7
4 NRC-CNRC 2 1.78 27.3
5 Helsinki 3 2.76 27.3
6 UTokyo 1 0.55 23.9
7 CoAStaL 1 2.06 21.4
8 UTokyo 2 0.98 19.8
9 UBC-NLP 2 0.16 19.6
10 NRC-CNRC 3 0.14 18.1
11 Anonym 2 0.09 10.3
12 Anonym 3 0.09 9.7
13 Anonym 4 0.08 9.5
14 Anonym 1 0.04 8.7

Lang Rank Team Sub BLEU ChrF

oto

1 Helsinki 2 5.59 22.8
2 Helsinki 1 3.85 19.1
3 CoAStaL 1 2.72 18.4
4 Helsinki 3 2.9 18.1
5 UTokyo 2 2.45 15.2
6 UTokyo 1 0.12 12.8
7 Anonym 1 0.15 10.2
8 UBC-NLP 2 0.04 8.4
9 UBC-NLP 4 0.04 8.3

Lang Rank Team Sub BLEU ChrF

quy

1 Helsinki 2 5.38 39.4
2 Helsinki 1 5.16 38.3
3 REPUcs 2 3.1 35.8
4 UTokyo 1 2.35 33.2
5 UTokyo 2 2.62 32.8
6 Helsinki 3 3.56 31.8
7 CoAStaL 1 1.63 26.9
8 Anonym 2 0.23 10.3
9 Anonym 4 0.13 9.8
10 Anonym 1 0.06 9.0
11 Anonym 3 0.03 6.6

Lang Rank Team Sub BLEU ChrF

shp

1 Helsinki 2 10.49 39.9
2 Helsinki 1 9.06 38.0
3 CoAStaL 1 3.9 29.7
4 Helsinki 3 6.76 28.6
5 UTokyo 1 0.33 16.3
6 UTokyo 2 0.46 15.5
7 UBC-NLP 2 0.23 12.4

Lang Rank Team Sub BLEU ChrF

tar

1 Helsinki 2 3.56 25.8
2 Helsinki 1 3.24 24.8
3 NRC-CNRC 0 2.69 24.7
4 NRC-CNRC 2 2.1 23.9
5 Helsinki 3 1.8 21.6
6 NRC-CNRC 3 0.83 16.5
7 CoAStaL 1 1.05 15.9
8 UTokyo 1 0.1 12.2
9 UBC-NLP 2 0.05 10.5
10 UBC-NLP 4 0.1 10.5
11 UTokyo 2 0.69 8.4

Table 3: Results of Track 1 (development set used for training) for all systems and language pairs. The results
are ranked by the official metric of the shared task: ChrF. One team decided to send a anonymous submission
(Anonym). Best results are shown in bold, and they are significantly better than the second place team (in each
language-pair) according to the Wilcoxon signed-ranked test and Pitman’s permutation test with p<0.05 (Dror
et al., 2018).
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ious high-resource languages, and then finetuned
for each target language using the official provided
data.

4.7 NRC-CNRC

The team of the National Research Council Canada
(NRC-CNRC; Knowles et al., 2021) submitted sys-
tems for the Spanish to Wixárika, Nahuatl, Rará-
muri and Guarani language pairs for both tracks.
Due to ethical considerations, the team decided not
to use external data, and restricted themselves to the
data provided for the shared task. All data was pre-
processed with standard Moses tools (Koehn et al.,
2007). The submitted systems were based on a
Transformer model, and used BPE for tokenization.
The team experimented with multilingual models
pretrained on either 3 or 4 languages, finding that
the 4 language model achieved higher performance.
Additionally the team trained a Translation Mem-
ory (Simard and Fujita, 2012) using half of the ex-
amples of the development set. Surprisingly, even
given its small amount of training data, this system
outperformed the team’s Track 2 submission for
Rarámuri.

4.8 Tamalli

The team Tamalli7 (Parida et al., 2021) partic-
ipated in Track 1 for all 10 language pairs. The
team used an IBM Model 2 for SMT, and a trans-
former model for NMT. The team’s NMT mod-
els were trained in two settings: one-to-one, with
one model being trained per target language, and
one-to-many, where decoder weights were shared
across languages and a language embedding layer
was added to the decoder. They submitted 5 sys-
tems per language, which differed in their hyperpa-
rameter choices and training setup.

5 Results

5.1 Track 1

The complete results for all systems submitted to
Track 1 are shown in Table 3. Submission 2 of
the Helsinki team achieved first place for all
language pairs. Interestingly, for all language pairs,
the Helsinki team also achieved the second
best result with their Submission 1. Submission 3
was less successful, achieving third place on three

7Participating universities: Idiap Research Institute, City
University of New York, BITS-India, Universidad Autónoma
Metropolitana-México, Ghent University, and Universidad
Politécnica de Tulancingo-México

pairs. The NRC-CNRC team achieved third place
for Wixárika, Nahuatl, and Rarámuri, and fourth
for Guarani.The lower automatic scores of their sys-
tems can also be partly due to the team not using
additional datasets. The REPUcs system obtained
the third best result for Quechua, the only language
they participated in. CoAStaL’s first system, a
PB-SMT model, achieved third place for Bribri,
Otomí, and Shipibo-Konibo, and fourth place for
Ashaninka. This suggests that SMT is still com-
petitive for low-resource languages. UTokyo and
UBC-NLP were less successful than the other ap-
proaches. Finally, we attribute the bad performance
of the anonymous submission to a possible bug.
Since our baseline system was not trained on the
development set, no specific baseline was available
for this track.

5.2 Track 2

All results for Track 2, including those of our base-
line system, are shown in Table 5.

Most submissions outperformed the baseline by
a large margin. As for Track 1, the best system was
from the Helsinki team (submission 5), winning
9 out of 10 language pairs. REPUcs achieved the
best score for Spanish–Quechua, the only language
pair they submitted results for. Their pretraining on
Spanish–English and the newly collected dataset
proved to be successful.

Second places were more diverse for Track 2
than for Track 1. The NRC-CNRC team achieved
second place for two languages (Wixarika and
Guarani), UTokyo achieved second place for three
languages (Aymara, Nahuatl and Otomí), and the
Helsinki team came in second for Quechua.
Tamalli only participated in Track 2, with 4
systems per language. Their most successful
one was submission 1, a word-based SMT sys-
tem. An interesting submission for this track was
the CoAStaL submission 2, which created a ran-
dom generated output that mimics the target lan-
guage distribution. This system consistently outper-
formed the official baseline and even outperformed
other approaches for most languages.

5.3 Supplementary Evaluation Results

As explained in §2, we also conducted a small
human evaluation of system outputs based on ad-
equacy and fluency on a 5-points scale, which
was performed by a professional translator for two
language-pairs: Spanish to Shipibo-Konibo and
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System aym bzd cni gn hch nah oto quy shp tar Avg.

Baseline 49.33 52.00 42.80 55.87 41.07 54.07 36.50 59.87 52.00 43.73 48.72
Helsinki-5 57.60 48.93 55.33 62.40 55.33 62.33 49.33 60.80 65.07 58.80 57.59
NRC-CNRC-1 - - - 57.20 50.40 58.94 - - - 53.47 55.00∗

Table 4: Results of the NLI analysis. * indicates that the average score is not directly comparable as the number of
languages differs for the given system.

Otomí.8 This evaluation was performed given the
extremely low automatic evaluation scores, and the
natural question about the usefulness of the out-
puts of MT systems at the current state-of-the-art.
While we selected two languages as a sample to
get a better approximation to this question, further
studies are needed to draw stronger conclusions.

Figure 1 shows the adequacy and fluency
scores annotated for Spanish–Shipibo-Konibo and
Spanish–Otomí language-pairs. considering the
baseline and the three highest ranked systems ac-
cording to ChrF. For both languages, we observe
that the adequacy scores are similar between all
systems except for Helsinki, the best ranked
submission given the automatic evaluation metric,
which has more variance than the others. However,
the average score is low, around 2, which means
that only few words or phrases express the meaning
of the reference.

Looking at fluency, there is less similarity be-
tween the Shipibo-Konibo and Otomí annotations.
For Shipibo-Konibo, there is no clear difference
between the systems in terms of their average
scores. We note that Tamalli’s system obtained
the larger group with the relatively highest score.
For Otomí, the three submitted systems are at least
slightly better than the baseline on average, but
only in 1 level of the scale. The scores for fluency
are similar to adequacy in this case. Besides, ac-
cording to the annotations, the output translations
in Shipibo-Konibo were closer to human-produced
texts than in Otomí.

We also show the relationship between ChrF
and the adequacy and fluency scores in Figure 2.
However, there does not seem to be a correlation
between the automatic metric and the manually
assigned scores.

8In the WMT campaigns, it is common to perform a crowd-
sourced evaluation with several annotators. However, we
cannot follow that procedure given the low chance to find
native speakers of indigenous languages as users in crowd-
sourcing platforms.

5.4 Analysis: NLI

One approach for zero-shot transfer learning of a
sequence classification task is the translate-train
approach, where a translation system is used to
translate high-resource labeled training data into
the target language. In the case of pretrained multi-
lingual models, these machine translated examples
are then used for finetuning. For our analysis, we
used various shared task submissions to create dif-
ferent sets of translated training data. We then
trained a natural language inference (NLI) model
using this translated data, and used the downstream
NLI performance as an extrinsic evaluation of trans-
lation quality.

Our experimental setup was identical to
Ebrahimi et al. (2021). We focused only on submis-
sions from Track 2, and analyzed the Helsinki-
5 and the NRC-CNRC-1 system. We present re-
sults in Table 4. Performance from using the
Helsinki system far outperforms the baseline
on average, and using the NRC-CNRC system also
improves over the baseline. For the four languages
covered by all systems, we can see that the rank-
ing of NLI performance matches that of the auto-
matic ChrF evaluation. Between the Helsinki and
Baseline systems, this ranking also holds for every
other language except for Bribri, where the Base-
line achieves around 3 percentage points higher ac-
curacy. Overall, this evaluation both confirms the
ranking created by the ChrF scores and provides
strong evidence supporting the use of translation-
based approaches for zero-shot tasks.

6 Error Analysis

To extend the analysis in the previous sections, Ta-
bles 6 and 7 show output samples using the best
ranked system (Helsinki-5) for Shipibo-Konibo
and Otomí, respectively. In each table, we present
the top-3 outputs ranked by ChrF and the top-3
ranked by Adequacy and Fluency.

For Shipibo-Konibo, in Table 6, we observe that
the first three outputs (with the highest ChrF) are
quite close to the reference. Surprisingly, the ad-
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Lang. Rank Team Sub BLEU ChrF

aym

1 Helsinki 5 2.29 28.3
2 Helsinki 4 1.41 21.6
3 UTokyo 3 1.03 20.9
4 Tamalli 1 0.03 20.2
5 Tamalli 3 0.39 19.4
6 UBC-NLP 3 0.82 18.2
7 UBC-NLP 1 1.01 17.8
8 UTokyo 4 1.34 17.2
9 CoAStaL 2 0.05 16.8

10 Tamalli 2 0.07 16.6
11 Baseline 1 0.01 15.7
12 Tamalli 5 0.12 15.1

Lang. Rank Team Sub BLEU ChrF

bzd

1 Helsinki 5 2.39 16.5
2 Tamalli 3 1.09 13.2
3 UTokyo 3 1.29 13.1
4 Helsinki 4 1.98 13.0
5 Tamalli 1 0.03 11.3
6 UBC-NLP 1 0.99 11.2
7 UBC-NLP 3 0.86 11.0
8 CoAStaL 2 0.06 10.7
9 Tamalli 5 0.36 10.6

10 UTokyo 4 1.13 10.4
11 Baseline 1 0.01 6.8
12 Tamalli 2 0.25 3.7

Lang. Rank Team Sub BLEU ChrF

cni

1 Helsinki 5 3.05 25.8
2 Tamalli 1 0.01 25.3
3 Helsinki 4 3.01 23.6
4 UTokyo 3 0.47 21.4
5 CoAStaL 2 0.03 21.2
6 Tamalli 3 0.18 18.6
7 UTokyo 4 0.76 18.4
8 UBC-NLP 1 0.07 17.8
9 UBC-NLP 3 0.09 17.6

10 Tamalli 5 0.07 17.4
11 Tamalli 2 0.06 13.0
12 Baseline 1 0.01 10.2

Lang. Rank Team Sub BLEU ChrF

gn

1 Helsinki 5 6.13 33.6
2 Helsinki 4 4.10 27.6
3 NRC-CNRC 1 2.86 26.1
4 UTokyo 3 3.16 25.4
5 UTokyo 4 2.97 25.1
6 Tamalli 5 1.90 20.7
7 Baseline 1 0.12 19.3
8 Tamalli 3 1.03 18.7
9 Tamalli 1 0.05 17.2

10 CoAStaL 2 0.03 12.8
11 Tamalli 2 0.13 10.8

Lang. Rank Team Sub BLEU ChrF

hch

1 Helsinki 5 9.63 30.4
2 NRC-CNRC 1 7.96 26.4
3 Helsinki 4 9.13 25.4
4 UTokyo 3 6.74 22.9
5 UTokyo 4 6.74 21.6
6 Tamalli 1 0.01 21.4
7 Tamalli 3 5.02 20.6
8 UBC-NLP 1 5.10 19.4
9 CoAStaL 2 2.07 19.1

10 UBC-NLP 3 4.95 18.6
11 Tamalli 5 4.71 16.9
12 Baseline 1 2.20 12.6
13 Tamalli 2 3.29 9.4

Lang Rank Team Sub BLEU ChrF

nah

1 Helsinki 5 2.38 26.6
2 Helsinki 4 2.02 24.3
3 UTokyo 4 1.2 23.8
4 NRC-CNRC 1 0.83 23.7
5 UTokyo 3 0.29 23.6
6 Tamalli 1 0.03 21.8
7 UBC-NLP 1 0.12 19.5
8 UBC-NLP 3 0.15 18.8
9 CoAStaL 2 0.03 18.4
10 Tamalli 3 0.11 17.4
11 Tamalli 5 0.10 16.6
12 Baseline 1 0.01 15.7
13 Tamalli 4 0.08 14.5
14 Tamalli 2 0.03 11.2

Lang Rank Team Sub BLEU ChrF

oto

1 Helsinki 5 1.69 14.7
2 Helsinki 4 1.37 14.1
3 UTokyo 4 1.28 13.3
4 UTokyo 3 0.05 12.5
5 Tamalli 1 0.01 11.8
6 Tamalli 3 0.12 11.0
7 CoAStaL 2 0.03 10.1
8 UBC-NLP 1 0.03 8.2
9 UBC-NLP 3 0.03 8.1
10 Tamalli 5 0.01 7.4
11 Baseline 1 0.00 5.4
12 Tamalli 2 0.00 1.4

Lang Rank Team Sub BLEU ChrF

quy

1 REPUcs 1 2.91 34.6
2 Helsinki 5 3.63 34.3
3 UTokyo 4 2.47 33.0
4 UTokyo 3 2.1 32.8
5 Baseline 1 0.05 30.4
6 Tamalli 5 0.96 27.3
7 Tamalli 3 0.64 26.3
8 Helsinki 4 2.67 25.2
9 Tamalli 1 0.22 24.4
10 Tamalli 2 0.69 23.2
11 CoAStaL 2 0.02 23.2

Lang Rank Team Sub BLEU ChrF

shp

1 Helsinki 5 5.43 32.9
2 Helsinki 4 4.53 29.4
3 Tamalli 1 0.06 20.4
4 UTokyo 3 0.71 17.5
5 CoAStaL 2 0.04 17.3
6 UTokyo 4 0.64 16.4
7 Tamalli 3 0.31 14.9
8 Tamalli 5 0.28 12.5
9 UBC-NLP 1 0.16 12.4
10 Baseline 1 0.01 12.1
11 Tamalli 2 0.09 8.9

Lang Rank Team Sub BLEU ChrF

tar

1 Helsinki 5 1.07 18.4
2 Tamalli 1 0.04 15.5
3 Helsinki 4 0.81 15.5
4 NRC-CNRC 1 0.27 14.3
5 UTokyo 3 0.06 12.3
6 UTokyo 4 0.06 11.9
7 CoAStaL 2 0.06 11.3
8 UBC-NLP 1 0.08 10.2
9 UBC-NLP 3 0.06 10.2
10 Tamalli 4 0.05 8.9
11 Tamalli 3 0.04 8.4
12 Tamalli 5 0.02 7.3
13 Baseline 1 0.00 3.9
14 Tamalli 2 0.01 2.8

Table 5: Results of Track 2 (development set not used for training) for all systems and language pairs. The results
are ranked by the official metric of the shared task: ChrF. Best results per language pair are shown in bold, and they
are significantly better than the second place team (in each language-pair) according to the Wilcoxon signed-ranked
test and Pitman’s permutation test with p<0.05 (Dror et al., 2018).
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(a) Shipibo-Konibo: Adequacy
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(b) Otomí: Adequacy

Baseline Helsinki.5 Tamalli.1 UTokyo.4
system

0

20

40

60

80

100

%
 a

de
qu

ac
y 

sc
or

es

1
2
3
4
5

(c) Shipibo-Konibo: Fluency

Baseline Helsinki.5 Tamalli.1 UTokyo.3
system

0

20

40

60

80

100

%
 fl

ue
nc

y 
sc

or
es

1
2
3
4
5

(d) Otomí: Fluency
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Figure 1: Adequacy and fluency distribution scores for
Shipibo-Konibo and Otomí.

equacy annotation of the first sample is relatively
low. We can also observe that many subwords are
presented in both the reference and the system’s
output, but not entire words, which shows why
BLEU may not be a useful metric to evaluate per-
formance. However, the subwords are still located
in different order, and concatenated with different
morphemes, which impacts the fluency. Concern-
ing the most adequate and fluent samples, we still
observe a high presence of correct subwords in the
output, and we can infer that the different order
or concatenation of different morphemes did not
affect the original meaning of the sentence.

For Otomí, in Table 7, the scenario was less pos-
itive, as the ChrF scores are lower than for Shipibo-
Konibo, on average. This was echoed in the top-3
outputs, which are very short and contain words or
phrases that are preserved in Spanish for the ref-
erence translation. Concerning the most adequate
and fluent outputs, we observed a very low over-
lapping of subwords (less than in Shipibo-Konibo),
which could only indicate that the outputs preserve
part of the meaning of the source but they are ex-
pressed differently than the reference. Moreover,
we noticed some inconsistencies in the punctuation,
which impacts in the ChrF overall score.

In summary, there are some elements to explore
further in the rest of the outputs: How many loan-
words or how much code-switched text from Span-
ish is presented in the reference translation? Is
there consistency in the punctuation, e.g., period at
the end of a segment, between all the source and
reference sentences?

7 Conclusion

This paper presents the results of the AmericasNLP
2021 Shared Task on OMT. We received 214 sub-
missions of machine translation systems by 8 teams.
All systems suffered from the minimal amount of
data and the challenging orthographic, dialectal
and domain mismatches of the training and test
set. However, most teams achieved huge improve-
ments over the official baseline. We found that
text cleaning and normalization, as well as domain
adaptation played large roles in the best performing
systems. The best NMT systems were multilingual
approaches with a limited size (over massive multi-
lingual). Additionally, SMT models also performed
well, outperforming larger pretrained submissions.
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(a) Shipibo-Konibo: Adequacy
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(b) Shipibo-Konibo: Fluency
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(c) Otomí: Adequacy
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Figure 2: Relationship between ChrF scores and annotations for adequacy (left) and fluency (right).

Scores Sentences
C: 66.7 SRC: Un niño murió de los cinco.
A: 1 REF: Westiora bakera mawata iki pichika batiayax.
F: 4 OUT: Westiora bakera pichika mawata iki.
C: 60.9 SRC: Sé que no puedes oírme.
A: 4 REF: Eanra onanke min ea ninkati atipanyama.
F: 3 OUT: Minra ea ninkati atipanyamake.
C: 60.1 SRC: Necesito un minuto para recoger mis pensamientos.
A: 4 REF: Eara westiora minuto kenai nokon shinanbo biti kopi.
F: 3 OUT: Westiora serera ea kenai nokon shinanbo biti.
C: 57.1 SRC: Hoy no he ido, así que no lo he visto.
A: 5 REF: Ramara ea kama iki, jakopira en oinama iki.
F: 5 OUT: Ramara ea kayamake, jaskarakopira en oinyamake
C: 53.6 SRC: El U2 tomó mucha película.
A: 5 REF: Nato U2ninra kikin icha película bike.
F: 5 OUT: U2ninra icha pelicula bike.
C: 48.3 SRC: No teníamos televisión.
A: 5 REF: Noara televisiónma ika iki.
F: 5 OUT: Televisiónmara noa iwanke.

Table 6: Translation outputs of the best system
(Helsinki) for Shipibo-Konibo. Top-3 samples have
the highest ChrF (C) scores, whereas the bottom-3 have
the best adequacy (A) and fluency (F) values.

Scores Sentences
C: 49.6 SRC: Locust Hill oh claro, sí, genial
A: 1 REF: Locust Hill handa hâ
F: 4 OUT: Locust Hill ohbuho jä’i
C: 42.2 SRC: Kennedy habló con los pilotos.
A: 4 REF: Kennedy bi ñama nen ya pilotos.
F: 3 OUT: Kennedy bi ñäui ya pihnyo.
C: 32.2 SRC: ¿Te gustan los libros de Harry Potter o no?
A: 4 REF: ¿ di ho-y ya ynttothoma on Harry Potter a hin?
F: 3 OUT: ¿ Gi pefihu na rä libro ra Harry Potter o hina?
C: 13.1 SRC: Un niño murió de los cinco.
A: 5 REF: nā mehtzi bidû on ya qda
F: 5 OUT: N’a ra bätsi bi du ko ya kut’a.
C: 13.9 SRC: Él recibe ayuda con sus comidas y ropa.
A: 4 REF: na di hiâni mâhte nen ynu ynñuni xi áhxo
F: 4 OUT: Nu’a hä häni ko ya hñuni ne ya dutu.
C: 13.3 SRC: Ni siquiera entendió la ceremonia nupcial, ni siquiera

sabía que se había casado, en serio–
A: 4 REF: Hin bi ôccode na nînthadi, hin mipâca guê bin miqha

nthâdi,maqhuani ngu -a.
F: 4 OUT: Inbi bädi te ra nge’a bi nthati, bi ot’e ra guenda...

Table 7: Translation outputs of the best system
(Helsinki) for Otomí. Top-3 samples have the high-
est ChrF (C) scores, whereas the bottom-3 have the best
adequacy (A) and fluency (F) values.
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Abstract

This paper describes the team ("Tamalli")’s
submission to AmericasNLP2021 shared task
on Open Machine Translation for low resource
South American languages. Our goal was to
evaluate different Machine Translation (MT)
techniques, statistical and neural-based, un-
der several configuration settings. We ob-
tained the second-best results for the language
pairs “Spanish-Bribri", “Spanish-Asháninka",
and “Spanish-Rarámuri" in the category “De-
velopment set not used for training". Our per-
formed experiments will serve as a point of
reference for researchers working on MT with
low-resource languages.

1 Introduction

The main challenges in automatic Machine Transla-
tion (MT) are the acquisition and curation of paral-
lel data and the allocation of hardware resources for
training and inference purposes. This situation has
become more evident for Neural Machine Trans-
lation (NMT) techniques, where their translation
quality depends strongly on the amount of available
training data when offering translation for a lan-
guage pair. However, there is only a handful of lan-
guages that have available large-scale parallel cor-
pora, or collections of sentences in both the source
language and corresponding translations. Thus,
applying recent NMT approaches to low-resource
languages represent a challenging scenario.

In this paper, we describe the participation of our
team (aka, Tamalli) in the Shared Task on Open
Machine Translation held in the First Workshop
on NLP for Indigenous Languages of the Amer-
icas (AmericasNLP) (Mager et al., 2021).1 The
main goal of the shared task was to encourage the
development of machine translation systems for
indigenous languages of the Americas, categorized
as low-resources languages. This year 8 different
teams participated with 214 submissions.

Accordingly, our main goal was to evaluate
the performance of traditional statistical MT tech-
niques, as well as some recent NMT techniques
under different configuration settings. Overall, our
results outperformed the baseline proposed by the
shared task organizers, and reach promising results
for many of the considered pair languages.

The paper is organized as follows: Section 2
briefly describes some related work; Section 3 de-
picts the methodology we followed for performing
our experiments. Section 4 provides the dataset
descriptions. Section 5 provides the details from
our different settings, and finally Section 6 depict
our main conclusions and future work directions.

2 Related work

Machine Translation (Garg and Agarwal, 2018) is
a field in NLP that aims to translate natural lan-

1http://turing.iimas.unam.mx/
americasnlp/st.html
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guages. Particularly, the development of (MT)
systems for indigenous languages in both South
and North America, faces different challenges such
as a high morphological richness, agglutination,
polysynthesis, and orthographic variation (Mager
et al., 2018b; Llitjós et al., 2005). In general, MT
systems for these languages in the state-of-the-
art have been addressed by the sub-fields of ma-
chine translation: rule-based (Monson et al., 2006),
statistical (Mager Hois et al., 2016) and neural-
based approaches (Ortega et al., 2020; Le and Sa-
dat, 2020). Recently, NMT approaches (Stahlberg,
2020) have gained prominence; they commonly
are based on sequence-to-sequence models using
encoder-decoder architectures and attention mech-
anisms (Yang et al., 2020). From this perspective,
different morphological segmentation techniques
have been explored (Kann et al., 2018; Ortega et al.,
2020) for Indigenous American languages.

It is known that the NMT approaches are based
on big amounts of parallel corpora as source knowl-
edge. To date, important efforts toward creating
parallel corpora have been carried out for spe-
cific indigenous languages of America. For exam-
ple, for Spanish-Nahuatl (Gutierrez-Vasques et al.,
2016), Wixarika-Spanish (Mager et al., 2020) and
Quechua-Spanish (Llitjós et al., 2005) which in-
cludes morphological information. Also, the JHU
Bible Corpus, a parallel text, has been extended
by adding translations in more than 20 Indigenous
North American languages (Nicolai et al., 2021).
The usability of the corpus was demonstrated by
using multilingual NMT systems.

3 Methodology

Since the data sizes are small in most language
pairs as shown in Table 1, we used a statistical
machine translation model. We also used NMT
models. In the following sections, we describe the
details of each of these approaches.

3.1 Statistical MT

For statistical MT, we relied on an IBM model
2 (Brown et al., 1993) which comprises a lexical
translation model and an alignment model. In ad-
dition to the word-level translation probability, it
models the absolute distortion in the word posi-
tioning between source and the target languages
by introducing an alignment probability, which en-
ables to handle word reordering.

3.2 Neural MT
For NMT, we first tokenized the text using sen-
tence piece BPE tokenization (Kudo and Richard-
son, 2018).2 The translation model architecture we
used for NMT is the transformer model (Vaswani
et al., 2017). We trained the model in two different
setups as outlined below.

One-to-one: In this setup, we trained the model
using the data from one source language and one
target language only. In the AmericasNLP20213

shared task, the source language is always Span-
ish (es). We trained the transformer model using
Spanish as the source language and one of the in-
digenous languages as the target language.

One-to-many: Since the source language (Span-
ish) is constant for all the language pairs, we consid-
ered sharing the NMT parameters across language
pairs to obtain gains in translation performance as
shown in previous work (Dabre et al., 2020). For
this, we trained a one-to-many model by sharing
the decoder parameters across all the indigenous
languages. Since the model needs to generate the
translation in the intended target language, we pro-
vided that information as a target language tag in
the input (Lample and Conneau, 2019). The token
level representation is obtained by the sum of token
embedding, positional embedding, and language
embedding.

4 Dataset

For training and evaluating our different configu-
rations, we used the official datasets provided by
the organizers of the shared task. It is worth men-
tioning that we did not use additional datasets or
resources for our experiments.

A brief description of the dataset composition
is shown in Table 1. For all the language pairs,
the task was to translate from Spanish to some of
the following indigenous languages: Hñähñu (oto),
Wixarika (wix), Nahuatl (nah), Guaraní (gn), Bribri
(bzd), Rarámuri (tar), Quechua (quy), Aymara
(aym), Shipibo-Konibo (shp), Asháninka (cni). For
the sake of brevity, we do not provide all the char-
acteristics of every pair of languages. The inter-
ested reader is referred to (Gutierrez-Vasques et al.,

2We also compared the BPE subword tokenization to word-
level tokenization using Moses tokenizer and character level
tokenization. We found that the best results were obtained
using the BPE subword tokenization.

3http://turing.iimas.unam.mx/
americasnlp/
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Language-pair
Train(#Tokens) Dev(#Tokens) Test(#Tokens)

#Sentences Source Target #Sentences Source Target #Sentences Source

es-aym 6531 128154 97276 996 11129 7080 1003 10044
es-bzd 7508 46820 41141 996 11129 12974 1003 10044
es-cni 3883 48752 26096 883 9605 6070 1003 10044
es-gn 26032 604841 405984 995 11129 7191 1003 10044
es-hch 8966 68683 48919 994 11129 10296 1003 10044
es-nah 16145 470003 351580 672 6329 4300 1003 10044
es-oto 4889 68226 72280 599 5115 5069 1003 10044
es-quy 125008 1898377 1169644 996 11129 7406 1003 10044
es-shp 14592 88447 62850 996 11129 9138 1003 10044
es-tar 14720 141526 103745 995 11129 10377 1003 10044

Table 1: Statistics of the official dataset. The statistics include the number of sentences and tokens (train/dev/test)
for each language pair.

Task
Baseline Tamalli Best Competitor

BLEU CharF Submission# BLEU CharF BLEU CharF

es-aym 0.01 0.157 4 0.03 0.202 2.29 0.283
es-bzd 0.01 0.068 3 1.09 0.132 2.39 0.165
es-cni 0.01 0.102 1 0.01 0.253 3.05 0.258
es-gn 0.12 0.193 5 1.9 0.207 6.13 0.336
es-hch 2.2 0.126 1 0.01 0.214 9.63 0.304
es-nah 0.01 0.157 1 0.03 0.218 2.38 0.266
es-oto 0 0.054 1 0.01 0.118 1.69 0.147
es-quy 0.05 0.304 5 0.96 0.273 2.91 0.346
es-shp 0.01 0.121 1 0.06 0.204 5.43 0.329
es-tar 0 0.039 1 0.04 0.155 1.07 0.184

Table 2: Evaluation Results. All results are from the “Track2: Development Set Not Used for Training". For all
the tasks, the source language is Spanish. The table contains the best results of our team against the best score by
the competitor in its track.

2016; Mager et al., 2018a; Chiruzzo et al., 2020;
Feldman and Coto-Solano, 2020; Agić and Vulić,
2019; Prokopidis et al., 2016; Galarreta et al., 2017;
Ebrahimi et al., 2021) for knowing these details.

5 Experimental results

We used 5 settings for all the 10 pair translations.
The output of each set is named as version [1-5]
and submitted for evaluation (shown under column
Submission# in Table 2). Among the 5 versions,
version [1] is based on statistical MT, and version
[2-5] is based on NMT with different model con-
figurations. For model evaluation, organizers pro-
vided a script that uses the metrics BLEU and ChrF
for machine translation evaluation. The versions
and their configuration details are explained be-
low. We included the best results only from all the

versions [1-5] in Table 2.

Version 1: Version 1 uses the statistical MT. The
source and target language text were first tok-
enized using Moses tokenizer setting the language
to Spanish. Then we trained the IBM transla-
tion model 2 (Brown et al., 1993) implemented
in nltk.translate api. After obtaining the
translation target tokens, the detokenization was
carried out using the Moses Spanish detokenizer.

Version 2: This version uses the one-to-one
NMT model. First, we learned sentence piece BPE
tokenization (Kudo and Richardson, 2018) by com-
bining the source and target language text. We set
the maximum vocabulary size to {8k, 16k, 32k}
in different runs and we considered the run that
produced the best BLEU score on the dev set. The
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transformer model (Vaswani et al., 2017) was im-
plemented using PyTorch (Paszke et al., 2019). The
number of encoder and decoder layers was set to 3
each and the number of heads in those layers was
set to 8. The hidden dimension of the self-attention
layer was set to 128 and the position-wise feed-
forward layer’s dimension was set to 256. We used
a dropout of 0.1 in both the encoder and the de-
coder. The encoder and decoder embedding layers
were not tied. We trained the model using early
stopping with a patience of 5 epochs, that is, we
stop training if the validation loss does not improve
for 5 consecutive epochs. We used greedy decod-
ing for generating the translations during inference.
The training and translation were done using one
GPU.

Version 3: This version uses the one-to-many
NMT model. For tokenization, we learned sen-
tence piece BPE tokenization (Kudo and Richard-
son, 2018) by combining the source and target lan-
guage text from all the languages (11 languages in
total). We set the maximum shared vocabulary size
to {8k, 16k, 32k} in different runs and we consid-
ered the run that produced the best BLEU score on
the dev set. The transformer model’s hyperparame-
ters were the same as in version 2. The language
embedding dimension in the decoder was set to 128.
The encoder and decoder embedding layers were
not tied. We first trained the one-to-many model till
convergence using early stopping with the patience
of 5 epochs, considering the concatenation of the
dev data from all the language pairs. Then we
fine-tuned the best checkpoint using each language
pair’s data separately. The fine-tuning process was
also done using early stopping with patience of
5 epochs. Finally, we used greedy decoding for
generating the translations during inference. The
training and translation were done using one GPU.

Version 4: This version is based on one-to-one
NMT. We have used the Transformer model as
implemented in OpenNMT-py (PyTorch version)
(Klein et al., 2017).4. To train the model, we used
a single GPU and followed the standard “Noam”
learning rate decay,5 see (Vaswani et al., 2017;
Popel and Bojar, 2018) for more details. Our start-
ing learning rate was 0.2 and we used 8000 warm-
up steps. The model es-nah trained up to 100K
iterations and the model checkpoint at 35K was

4http://opennmt.net/
5https://nvidia.github.io/OpenSeq2Seq/

html/api-docs/optimizers.html

selected based on the evaluation score (BLEU) on
the development set.

Version 5: This version is based on One-to-One
NMT. We have used the Transformer model as im-
plemented in OpenNMT-tf (Tensorflow version)
(Klein et al., 2017). To train the model, we used
a single GPU and followed the standard “Noam”
learning rate decay,6 see (Vaswani et al., 2017;
Popel and Bojar, 2018) for more details. We used
8K shared vocab size for the models and the model
checkpoints were saved at an interval of 2500 steps.
The starting learning rate was 0.2 and 8000 warm-
up steps were used for model training. The early-
stopping criterion was ‘less than 0.01 improvement
in BLEU score’ for 5 consecutive saved model
checkpoints. The model es-gn was trained up to
37.5K iterations and the model checkpoint at 35K
was selected based on evaluation scores on the de-
velopment set. The model es-quy was trained up to
40K iterations and the model checkpoint at 32.5K
was selected based on evaluation scores on the de-
velopment set.

We report the official automatic evaluation re-
sults in Table 2. The machine translation evalu-
ation matrices BLEU (Papineni et al., 2002) and
ChrF (Popović, 2017) used by the organizers to
evaluate the submissions. Based on our observa-
tion, the statistical approach performed well as
compared to NMT for many language pairs as
shown in the Table 2 (Parida et al., 2019). Also,
among NMT model settings one-to-one and one-
to-many perform well based on the language pairs.

6 Conclusions

Our participation aimed at analyzing the perfor-
mance of recent NMT techniques on translating in-
digenous languages of the Americas, low-resource
languages. Our future work directions include: i)
investigating corpus filtering and iterative augmen-
tation for performance improvement (Dandapat and
Federmann, 2018), ii) review already existing ex-
tensive analyses of these low-resource languages
from a linguistic point of view and adapt our meth-
ods for each language accordingly, iii) exploring
transfer learning approach by training the model
on a high resource language and later transfer it to
a low resource language (Kocmi et al., 2018).

6https://nvidia.github.io/OpenSeq2Seq/
html/api-docs/optimizers.html
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Abstract
We describe the NRC-CNRC systems submit-
ted to the AmericasNLP shared task on ma-
chine translation. We submitted systems trans-
lating from Spanish into Wixárika, Nahuatl,
Rarámuri, and Guaraní. Our best neural ma-
chine translation systems used multilingual
pretraining, ensembling, finetuning, training
on parts of the development data, and subword
regularization. We also submitted translation
memory systems as a strong baseline.

1 Introduction

This paper describes experiments on translation
from Spanish into Wixárika, Nahuatl, Rarámuri,
and Guaraní, as part of the First Workshop on Nat-
ural Language Processing (NLP) for Indigenous
Languages of the Americas (AmericasNLP) 2021
Shared Task on open-ended machine translation.
Our approach to this task was to explore the ap-
plication of simple, known methods of performing
neural machine translation (NMT) for low-resource
languages to a subset of the task languages. Our
initial experiments were primarily focused on the
following questions: (1) How well does multilin-
gual NMT work in these very low resource set-
tings? (2) Is it better to build multilingual NMT
systems using only closely-related languages or
does it help to add data from additional languages?
(3) Is applying subword regularization helpful?

As we progressed through the task, it raised ques-
tions regarding domain and about use cases for
low-resource machine translation. The approaches
that we used for this task are not entirely language-
agnostic; they might be more appropriately charac-
terized as “language naïve” in that we applied some
simple language-specific pre- and post-processing,
but did not incorporate any tools that required in-
depth knowledge of the language.

We submitted four systems, including ensem-
bles, single systems, and a translation memory
baseline. Our best system (S.0) consisted of an

Language Family Train Dev
Nahuatl Uto-Aztecan 16145 672
Rarámuri Uto-Aztecan 14720 995
Wixárika Uto-Aztecan 8966 994
Guaraní Tupian 26032 995

Table 1: Language, language family, and number of
lines of training and development data.

ensemble of systems incorporating multilingual
training and finetuning (including on development
data as pseudo-in-domain data).

2 Data and Preprocessing

The shared task provided data for 10 language
pairs, all with the goal of translating from Span-
ish. We chose to start with Wixárika (hch; Mager
et al., 2018), Nahuatl (nah; Gutierrez-Vasques et al.,
2016), and Rarámuri (tar; Brambila, 1976) as our
main three languages of interest, all of which
are languages in the Uto-Aztecan family indige-
nous to Mexico. We added Guaraní (gn; Chiruzzo
et al., 2020) as an unrelated language (as spo-
ken in Paraguay), to explore building multilingual
NMT systems within and across language families.
Ebrahimi et al. (2021) describes work on collect-
ing development and test sets for the languages
in the shared task. The datasets vary in size, di-
alect and orthographic variation/consistency, and
level of domain match to the development and test
data. Due to space considerations, we direct read-
ers to the task page and the dataset information
page for more information on the languages and on
the datasets provided for the task.1

Given the size of the data (Table 1), additional
data collection (particularly of data in the domain
of interest) is likely one of the most effective ways
to improve machine translation quality. However,

1Task page: http://turing.iimas.unam.mx/
americasnlp/, Dataset descriptions: https://
github.com/AmericasNLP/americasnlp2021/
blob/main/data/information_datasets.pdf
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noting both ethical (Lewis et al., 2020) and quality
(Caswell et al., 2021) concerns when it comes to
collecting or using data for Indigenous languages
without community collaboration, we limited our
experiments to data provided for the shared task.

2.1 Preprocessing and Postprocessing

We used standard preprocessing scripts
from Moses (Koehn et al., 2007):
clean-corpus-n.perl (on training data
only), normalize-punctuation.perl, and
tokenizer.perl (applied to all text, regard-
less of whether it already appeared tokenized).2

The only language-specific preprocessing we
performed was to replace “+” with an alternative
character (reverted in postprocessing) for Wixárika
text to prevent the tokenizer from oversegmenting
the text. We note that the 13a tokenizer used by
sacrebleu (Post, 2018) tokenizes “+”, meaning
that scores that incorporate word n-grams, like
BLEU (Papineni et al., 2002), are artificially
inflated for Wixárika.

We detokenize (after unBPEing) the text and per-
form a small amount of language-specific postpro-
cessing, which we found to have minimal effect on
CHRF (Popović, 2015) and some effect on BLEU
on development data.

2.2 BPE and BPE-Dropout

Following (Ding et al., 2019), we sweep a range
of byte-pair encoding (BPE; Sennrich et al., 2016)
vocabulary sizes: 500, 1000, 2000, 4000, and 8000
merges (we do not go beyond this, because of spar-
sity/data size concerns, though some results sug-
gest we should consider larger sizes).

For each language pair or multilingual grouping,
we learned a BPE model jointly from the concate-
nation of the source and target sides of the parallel
data using subword-nmt (Sennrich et al., 2016),
and then extracted separate source- and target-side
vocabularies. We then applied the joint BPE model,
filtered by the source or target vocabulary, to the
corresponding data.

We apply BPE-dropout (Provilkov et al., 2020)
in part to assist with data sparsity and in part be-
cause it may be an effective way of handing ortho-
graphic variation (as a generalization of the spelling
errors that it helps systems become more robust to).
Usually, BPE-dropout would be performed dur-
ing training as mini-batches are generated, but we

2See Appendix B for details.

opted to generate 10 BPE-dropout versions of the
training corpus using a dropout rate of 0.1 as part of
our preprocessing. We then simply concatenate all
10 alternate versions to form the training corpus.

3 Models and Experiments

We report CHRF (Popović, 2015) scores computed
with sacrebleu (Post, 2018).

3.1 Models

We trained Transformer (Vaswani et al., 2017) mod-
els using Sockeye-1.18.115 (Hieber et al., 2018)
and cuda-10.1. We used the default value of 6 en-
coder/decoder layers, 8 attention heads, the Adam
(Kingma and Ba, 2015) optimizer, label smoothing
of 0.1, a cross-entropy loss, a model size of 512
units with a FFN size of 2048, and the vocabulary
was not shared. We performed early stopping after
32 checkpoints without improvement. We chose
custom checkpoint intervals of approximately two
checkpoints per epoch. We optimized for CHRF
instead of BLEU and used the whole validation set
during validation. The batch size was set to 8192
tokens, and the maximum sequence length for both
source and target was set to 200 tokens. We did
not use weight tying, but we set gradient clipping
to absolute and lowered the initial learning rate to
0.0001.

We performed preliminary experiments decreas-
ing the number of encoder and decoder layers in
our bilingual systems to 3 each, but did not ob-
serve improvements. Nevertheless, a wider search
of architecture parameters, as in Araabi and Monz
(2020), could yield improvements. After submis-
sion, we performed some additional experiments,
building multilingual models with a range of num-
bers of decoder heads (1, 2, 4, 8), finding that
a smaller number of decoder heads (e.g., 2) may
be a promising avenue to explore in future work.
Other approaches from Araabi and Monz (2020)
also appear to show promise in our preliminary
post-submission experiments, including a 4 layer
encoder with a 6 layer decoder and changing layer
normalization from pre to post, demonstrating that
there are additional ways to improve upon our sub-
mitted systems.

3.2 MT Baselines

For each of the four language pairs, we build base-
line systems translating out of Spanish. The best
baseline systems with their respective BPE sizes
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System gn hch nah tar
Official (Organizer) Baseline 0.220 0.126 0.182 0.046
Baseline 0.222 (4k) 0.201 (2k) 0.201 (1k) 0.141 (2k)
+ Dropout 0.238 (8k) 0.226 (8k) 0.216 (4k) 0.127 (2k)
Multilingual-3 – 0.183 (4k) 0.203 (2k) 0.122 (4k)
Multilingual-4 0.222 (2k) 0.209 (4k) 0.213 (4k) 0.127 (8k)
+ Dropout 0.247 (8k) 0.226 (2k) 0.243 (4k) 0.142 (1k)
Multi.-4 + Dropout; Language Finetune (no dr.) 0.251 (8k) 0.265 (2k) 0.250 (4k) 0.149 (8k)
Multi.-4 + Dropout; Language Finetune 0.258 (8k) 0.262 (2k) 0.252 (2k) 0.134 (4k)

Table 2: System scores (CHRF) on the development set. Vocabulary size in parentheses.

are shown in Table 2. All of our baseline CHRF
scores are higher than the official baselines released
during the shared task,3 likely due in part to more
consistent tokenization between training and devel-
opment/test (see Appendix C for additional discus-
sion of training and development/test mismatch).
For all languages except Rarámuri, adding BPE-
dropout improved performance.

3.3 Multilingual Systems
Both Johnson et al. (2017) and Rikters et al. (2018)
train multilingual systems by prepending a special
token at the start of the source sentence to indicate
the language into which the text should be trans-
lated. For example, the token “<nah>” prepended
(space-separated) to a Spanish source sentence indi-
cates that the text should be translated into Nahuatl.
To train such a model, we concatenate all training
data after adding these special tokens; the develop-
ment data is similarly the concatenation of all devel-
opment data. We do not perform any upsampling
or downsampling to even out the distribution of lan-
guages in our training or development data (rather,
we rely on language finetuning, as described in
Section 3.4 to improve translation quality).

One of our initial questions was whether lan-
guage relatedness mattered for building mul-
tilingual systems, so we first built a three-
language (Wixárika, Nahuatl, Rarámuri) model,
Multiligual-3, and then built a four-language
(Guaraní, Wixárika, Nahuatl, Rarámuri) model,
Multilingual-4. The Multilingual-4 system had
consistently higher scores for all languages than
the Multilingual-3 system, so we moved forward
with experiments on Multilingual-4. Adding BPE-
dropout to Multilingual-4 appeared to improve
performance for all languages, but in the case of
Wixárika (the language with the smallest amount of
data), it was nearly identical to the baseline. Within

3https://github.com/AmericasNLP/
americasnlp2021/tree/main/baseline_
system

the scope of this paper, we do not experiment with
a wider range of languages (i.e., the remaining 6
languages), though it would not be surprising to
find that additional language resources might also
be beneficial.

Lang. 1k 2k 4k 8k
gn 889 1737 3299 5936
hch 516 728 1006 1389
nah 817 1502 2513 4033
tar 529 762 1072 1500

Table 3: Number of unique subwords in each lan-
guage’s training corpus (target side) for 1k, 2k, 4k, and
8k BPE merges in a Multilingual-4 scenario.

For the Multilingual-3 and Multilingual-4 mod-
els, the vocabulary is trained and extracted from
the respective concatenated training corpus, so the
target vocabulary is shared by all target languages
as a single embedding matrix. Where languages
share subwords, these are shared in the vocabulary
(i.e., the language-specific tags are applied at the
sentence level, not at the token level). The conse-
quence of this is that each particular target language
may not use the full multilingual vocabulary; we
expect the system to learn which vocabulary items
to associate (or not associate) with each language.
For example, with a vocabulary produced through
8k merges, the full Multilingual-4 target side train-
ing corpus contains 7431 unique subwords, but the
language-specific subcorpora that combine to make
it only use subsets of that: Guaraní training data
contains 5936 unique subwords, while Wixárika
contains only 1389 (the overlap between Guaraní
and Wixárika subwords is 1089 subwords). Table 3
shows the number of unique subwords in the target
language training corpus for the Multilingual-4 set-
ting. Our systems are free to generate any subword
from the full combined vocabulary of target sub-
words since there is no explicit restriction during
decoding. Thus, in some cases, our multilingual
systems do generate subwords that were not seen in
a specific language’s training data vocabulary sub-
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set; while some of these could result in translation
errors, a preliminary qualitative analysis suggests
that many of them may be either source language
words (being copied) or numerical tokens, both of
which point to potential benefits of having used the
larger concatenated multilingual corpus.

3.4 Language Finetuning

We can then finetune4 the multilingual models to
be language-specific models.5 The intuition here
is that the multilingual model may be able to en-
code useful information about the source language,
terms that should be copied (e.g., names/numbers),
target grammar, or other useful topics, and can
then be specialized for a specific language, while
still retaining the most relevant or most general
things learned from all languages trained on. We
do this finetuning based on continued training on
each language’s training data, with that language’s
development data, building a new child system for
each language based on the parent Multilingual-4
system (with or without dropout).6 When we do
this, we no longer use the language-specific tags
used during multilingual model training.

Language finetuning appears to produce im-
provements, with some performing better with
dropout and some better without, as seen in the
final two lines of Table 2. Rarámuri appears to
have a drop in performance after language finetun-
ing with dropout. However, all Rarámuri scores
are extremely low; it is likely that many of the
decisions we make on Rarámuri do not represent
real improvements or performance drops, but rather
noise, so we have very low confidence in the gener-
alizability of the choices (Mathur et al., 2020).

3.5 Development Finetuning

Noting that the development data was of a different
domain, and sometimes even a different dialect or
orthography than the training data, we followed
an approach used in Knowles et al. (2020): we
divided the development set (in this case in half),
performing finetuning with half of it and using the
remainder for early stopping (and evaluation). We

4In our tables, we use the following notation to indicate
finetuning: “[parent model]; [child finetuning]” and this no-
tation stacks, such that “X; Y; Z” indicates a parent model X,
finetuned as Y, and then subsequently finetuned as Z.

5We note that all finetuning experiments reported in this
paper used BPE-dropout unless otherwise noted.

6We note that some catastrophic forgetting may occur dur-
ing this process; it may be worth considering modifying the
learning rate for finetuning, but we leave this to future work.

acknowledge that, given the very small sizes of the
development sets, minor differences we observe are
likely to be noise rather than true improvements
(or true drops in performance); while we made
choices about what systems to submit based on
those, we urge caution in generalizing these results
or drawing strong conclusions.

We show performance of models finetuned on
the first half of the development set (performance
measured on the second half of the development
set), both with and without first finetuning for lan-
guage, in Table 4. We also compare these against
the best systems we trained without training on
development data, as well as with the translation
memory approach (Section 4.3).

4 Submitted Systems

4.1 Systems with Dev. (S.0, S.2, and S.4)

We submitted single systems (not ensembled) that
were trained using the first half of the development
set (labeled S.2 in submission). They were selected
based on highest scores on the second half of the
development set (see Table 4 for scores and vocab-
ulary sizes). For Guaraní, Wixárika, and Nahuatl,
we selected systems of the type Multi.-4 + BPE
Dr.; Lang. finetuning; 1/2 Dev. finetuning. For
Rarámuri, we selected a system with only 1/2 dev.
finetuning (Multi.-4 + BPE Dr.; 1/2 Dev. Ft.).

Our best systems were ensembles (labeled S.0
in submission) of the systems described above and
their corresponding system trained with the second
half of the development set. For Guaraní, we also
submitted an ensemble of four systems; the two
Multi.-4 + BPE Dr.; Lang. finetuning; 1/2 Dev
finetuning systems and the two Multi.-4 + BPE Dr.;
1/2 Dev Ft. systems (S.4). It performed similarly
to the two-system ensemble.

4.2 Systems without Dev. (S.1)

We also submitted systems that were not trained
on development data. For these, we were able to
select the best system from our experiments, based
on its CHRF score on the full development set. For
Guaraní and Nahuatl, these were Multi.4 + BPE
Dr.; Lang. ft. systems, for Rarámuri it was the
Multi.4 + BPE Dr.; Lang. ft. (no dr.) system, and
for Wixárika it was an ensemble of the two.

4.3 Translation Memory (S.3)

Noting the very low automatic metric scores across
languages and without target language expertise to
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System gn hch nah tar
Multi.-4 + Dropout 0.249 (8k) 0.228 (2k) 0.247 (8k) 0.145 (1k)
Multi.-4 + Dr.; Lang. Finetune 0.260 (8k) 0.261 (2k) 0.252 (2k) 0.137 (500)
Multi.-4 + Dr.; 1/2 Dev. Finetune 0.331 (4k) 0.367 (4k) 0.368 (8k) 0.289 (4k)
Multi.-4 + Dr.; Lang. Finetune; 1/2 Dev. Ft. 0.338 (4k) 0.368 (8k) 0.376 (8k) 0.280 (2k)
S.1 (no dev) 0.260 (8k) 0.266 (2k) 0.252 (2k) 0.150 (8k)
S.2 (1/2 dev, single system) 0.338 (4k) 0.368 (8k) 0.376 (8k) 0.289 (4k)
Translation Memory 0.257 (na) 0.273 (na) 0.285 (na) 0.246 (na)

Table 4: System scores on the second half of the development set.

System gn hch nah tar
S.0 0.304 0.327 0.277 0.247
S.4 0.303 – – –
S.2 0.288 0.315 0.273 0.239
S.3/TM 0.163 0.200 0.181 0.165
S.1/no dev 0.261 0.264 0.237 0.143
Helsinki 2 0.376 0.360 0.301 0.258

Table 5: Submitted systems scores (CHRF) on test data.
Final row shows best overall submitted system for each
language, Helsinki submission 2.

determine if the output is fluent but not adequate,
adequate but not fluent, or neither fluent nor ade-
quate, we decided to build a translation memory
submission. In computer aided translation (CAT),
a “translation memory” (TM) is a database of prior
source-target translation pairs produced by human
translators. It can be used in CAT as follows: when
a new sentence arrives to be translated, the system
finds the closest source-language “fuzzy match”
(typically a proprietary measure that determines
similarity; could be as simple as Levenshtein dis-
tance) and returns its translation (possibly with
annotations about the areas where the sentences
differed) to the translator for them to “post-edit”
(modify until it is a valid translation of the new
sentence to be translated).

With the understanding that the development and
test sets are closer to one another in terms of do-
main and dialect than they are to the training data,
we treat the development set as a TM. Following
Simard and Fujita (2012), we use an MT evalua-
tion metric (CHRF) as the similarity score between
the test source sentences and the TM source sen-
tences, with the translation of the closest source
development set sentence as the output.7

We validated this approach on the two halves of
the development set (using the first half as a TM
for the second half and vice versa). On half the de-
velopment set, for all languages except for Guaraní,
the TM outperformed the system trained without

7In the event of a tie, we chose the first translation.

any development data (S.1), highlighting the differ-
ences between the training and development/test
data (Table 4), particularly striking because the TM
used for these experiments consisted of only half
the development set (<500 lines) as compared to
the full training set.8 On the test set, only the Rará-
muri TM outperformed the best of our MT systems
built without training on development.

5 Results

Our results consistently placed our submissions as
the second-ranking team (behind Helsinki’s top 2-3
submissions) in the with-development-set group,
and second or third ranking team (2nd, 3rd, or 4th
submission) within the no-development-set cluster
as measured by CHRF. For Wixárika and Rarámuri
particularly, our TM submission proved to be a
surprisingly strong baseline.

We note that CHRF and BLEU are not strictly
correlated, and for all languages, scores are low.
This raises questions about goals, metrics, and
use cases for very low resource machine transla-
tion. We provide a short discussion of this in Ap-
pendix A. It will require future work and human
evaluation to determine whether such systems are
useful or harmful in downstream tasks.
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A When does it make sense to build MT
systems?

Our recent participation in shared tasks has made us
consider scenarios and use cases for low-resource
MT, which we discuss in this appendix.

At the WMT 2020 News translation task, the
Inuktitut-English translation task was arguably mid-
resource (over a million lines of parallel legislative
text), with the Hansard (legislative assembly) por-
tion of the development and test set being a strong
domain match to the training data. The news data in
the development and test sets represented a domain
mismatch.

In the supervised low-resource task at WMT,
there was an arguably low-resource (approximately
60,000 lines of parallel text) language pair of
German-Upper Sorbian. However, the test set
was extremely well-matched to the training data
(though not exact duplicates), resulting in surpris-
ingly high automatic metric scores (BLEU scores
in the 50s and 60s).

In this AmericasNLP shared task, we observed
perhaps the hardest scenario (outside of zero-shot):
low resource with domain/dialect/orthographic mis-
match. It should come as no surprise, then, that we
observe extremely low automatic metric scores for
this task.

Domain Match Mismatch
Low-Res. Upper Sorbian AmericasNLP
Mid-Res. Inuktitut Hansard Inuktitut News

Table 6: Comparison of recent shared tasks on low-
resource machine translation.

For both the Inuktitut and Upper Sorbian sys-
tems, we know of community and/or government
organizations that may be interested in using ma-
chine translation technology, for example as part
of a computer aided translation (CAT) tool.10 Pro-
vided that human evaluation found the quality level
of the machine translation output appropriately
high (no human evaluation was performed in the
Upper Sorbian task, and the Inuktitut human evalu-
ation is ongoing), there appear to be clear suitable
use cases here, such as as part of a human trans-
lation workflow translating the Hansard as it is

10For example, the presentation of the Upper Sorbian-
German machine translation tool sotra (https://soblex.
de/sotra/) encourages users to proofread and correct the
output where necessary: https://www.powtoon.com/
online-presentation/cr2llmDWRR9/

produced or translating more of the same domain
Upper Sorbian/German text. It is less clear, where
there is a domain mismatch, whether the quality is
anywhere near high enough for use in a CAT setting.
We know that the usefulness of machine translation
in CAT tools varies by translator (Koehn and Ger-
mann, 2014); some find even relatively low-quality
translations useful, while others benefit only from
very high-quality translations, and so on. There are
also potential concerns that MT may influence the
way translators choose to translate text.

But what about this low-resource, domain mis-
match setting? While human evaluation would be
the real test, we suspect that the output quality may
be too low to be beneficial to most translators. As
a brief example, we consider the CHRF scores that
were generated between two Spanish sentences as
a byproduct of the creation of our translation mem-
ory submission.

• Washington ha perdido todos los partidos.
(Washington has lost all the games.)

• Continuaron visitando todos los días.
(They continued visiting every day.)

In part on the basis of the 10-character (spaces
ignored) substring “do todos los” (for which “todos
los” can be glossed as “every”, but the string-initial
“do” suffix belongs to two different verbs, one of
which is in its past participle form and the other of
which is in its present participle form), these sen-
tences have a score of 0.366 CHRF (if we consider
the first to be the “system” output and the second
to be the “reference”).

Here of course both sentences are grammati-
cal, but they are clearly not semantic equivalents.
Nevertheless, comparing the two produces a CHRF
score comparable to the the highest scores observed
in this task.11 We argue then, that if the goal is CAT,
then it may be better to consider a TM-based ap-
proach, even though it has lower scores, given that
CAT tools are well-equipped to handle TMs, and
typically provide some sort of indication about the
differences between the sentence to be translated
and its fuzzy-match from the TM as a guide for the
translator. In an MT-based approach, the transla-
tor may be confronted with fluent text that is not
semantically related to the source, ungrammatical
language, or types of other problematic output.

11We acknowledge that this is an imperfect comparison,
since the scores in this task are of course not on Spanish
output and thus should not be compared directly.
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If the goal of these MT tools is not CAT, but
rather for a reader to access text in their preferred
language, we expect that neither the MT systems
nor the TMs would provide the kind of quality that
users of online MT systems have come to expect.
This raises questions of how to alert potential users
to the potential for low-quality MT.

It is possible that there may be other use cases, in
which case a downstream evaluation may be more
appropriate than automatic metrics.

B Pre- and Post-processing Details

Training corpora (but not development or test
corpora) were processed using the Moses
clean-corpus-n.perl script (Koehn et al.,
2007), with a sentence length ratio of 15:1 and
minimum and maximum lengths of 1 and 200, re-
spectively. All corpora were preprocessed with
the normalize-punctuation.perl script,
with the language set to Spanish (since no language-
specific rules are available for the other languages
in this task), and all instances of U+FEFF ZERO

WIDTH NO-BREAK SPACE were removed. The only
additional language-specific preprocessing that we
performed was to replace “+” with U+0268 LATIN

SMALL LETTER I WITH STROKE in the Wixárika
text; this prevents the text from being overseg-
mented by the tokenizer, and is reverted in post-
processing.12 We note that it might be desirable
to perform a similar replacement of apostrophes
with a modifier letter apostrophe, but because some
of the training data was released in tokenized for-
mat we were not confident that we could guarantee
consistency in such an approach.13

All text is then tokenized with the Moses to-
kenizer tokenizer.perl, with aggressive hy-
phen splitting, language set to Spanish, and no
HTML escaping.14 Note that we apply the tok-
enization even to already-tokenized training data,
in the hopes of making the different datasets as
consistent as possible.

Postprocessing consists of unBPEing then detok-
enizing using Moses’ detokenizer.perl. An
extra step is needed for Wixárika to revert back to

12Note, however, that the 13a tokenizer used by
sacrebleu (Post, 2018) tokenizes “+”, meaning that BLEU
scores and other scores that incorporate word n-grams are
artificially inflated for Wixárika.

13With CHRF as the main metric, this is less of a concern
than it would be were the main metric BLEU or human evalu-
ation. We note that even the use of CHRF++, with its use of
word bigrams, would make this a concern.

14tokenizer.perl -a -l es -no-escape

the “+” character. We also perform a small amount
of extra language-specific postprocessing, which
has limited effects on CHRF (it primarily involves
tokenization) with some effect on BLEU. For ex-
ample, for Guaraní, we delete spaces around apos-
trophes and replace sequences of three periods with
U+2026 HORIZONTAL ELLIPSIS. For Wixárika,
we add a space after the “¿” and “¡” characters.
For Nahuatl, we make sure that “$” is separated
from alphabetic characters by a space. For Rará-
muri, we replace three periods with the horizontal
ellipsis, convert single apostrophes or straight quo-
tation marks before “u” or “U” to U+2018 LEFT

SINGLE QUOTATION MARK and remove the space
between it and the letter, and then convert any re-
maining apostrophes or single straight quotes to
U+2019 RIGHT SINGLE QUOTATION MARK as
well as removing any surrounding spaces. These
are all heuristics based on frequencies of those char-
acters in the development data, and we note that
their effect on BLEU scores and CHRF scores is
minimal (as measured on development data).

C Coverage

The Wixárika and Guaraní data was provided un-
tokenized, but Nahuatl and Rarámuri datasets con-
tained training data that was tokenized while the
development and test data was untokenized. Here
we briefly illustrate the impact of the mismatch,
through token and type coverage. In Table 7, we
show what percentage of target language devel-
opment tokens (and types) were also observed in
the training data, before and after applying tok-
enization. Table 8 shows the same for source lan-
guage. Table 9 shows source coverage for the test
data instead of the development data. Finally, Ta-
ble 10 shows what percentage of the source test
data is contained in the development set. Unsurpris-
ingly, coverage is higher across the board for Span-
ish (source), which is less morphologically com-
plex than the target languages. Spanish-Rarámuri
has the lowest coverage in both source and target.
Spanish-Nahuatl has the second-highest coverage
on the source side, but not on the target side, per-
haps due to the historical content in the training
data and/or the orthographic conversions applied.
Spanish-Guaraní has the highest coverage on both
source and target.

Applying BPE results in approximately 100%
coverage, but it is still worth noting the low full-
word coverage, as novel vocabulary may be hard
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Tokens Types
Raw Tok. Raw Tok.

es-hch 54.4% 65.3% 27.5% 31.7%
es-nah 53.8% 63.9% 25.3% 30.0%
es-tar 32.7% 55.0% 8.1% 14.4%
es-gn 61.4% 81.1% 35.0% 46.4%

Table 7: Target language training data coverage on de-
velopment set.

Tokens Types
Raw Tok. Raw Tok.

es-hch 70.5% 78.4% 35.2% 43.7%
es-nah 77.8% 89.1% 51.2% 68.6%
es-tar 66.7% 76.7% 30.4% 41.3%
es-gn 84.5% 90.9% 62.0% 72.8%

Table 8: Source language (Spanish) training data cov-
erage on development set (compared against training
data).

for the systems to translate or to generate.
For all languages except Guaraní, the first half

of the development set had higher target language
coverage on the second half of the development
set, as compared to training target language cover-
age on the full development set (or second half of
the development set), which may explain both the
improved performance of systems that trained on
development data and the quality of the translation
memory system.

Tokens Types
Raw Tok. Raw Tok.

es-hch 74.8% 83.1% 42.0% 51.2%
es-nah 77.6% 89.3% 48.6% 68.0%
es-tar 69.2% 80.9% 34.0% 48.5%
es-gn 83.5% 90.8% 59.5% 71.3%

Table 9: Source language (Spanish) training data cover-
age on test set (compared against training data).

Tokens Types
Raw Tok. Raw Tok.

es-hch 73.3% 81.0% 34.1% 40.3%
es-nah 69.8% 78.2% 27.7% 33.3%
es-tar 73.3% 81.0% 34.1% 40.3%
es-gn 73.3% 81.0% 34.1% 40.3%

Table 10: Source language (Spanish) development data
coverage on test set. Note that Wixárika, Rarámuri, and
Guaraní share identical source data for the development
set, and all languages share identical source data for the
test set.

Tokens Types
Raw Tok. Raw Tok.

es-hch 72.3% 80.4% 38.3% 45.7%
es-nah 69.0% 77.3% 37.4% 43.8%
es-tar 73.1% 81.1% 37.8% 45.8%
es-gn 72.7% 80.2% 37.2% 44.0%

Table 11: Source language (Spanish) first half of the
development data coverage on second half of the devel-
opment data. I.e., for raw es-hch data, 72.3% of source
language tokens in the second half of the development
set appeared somewhere in the first half of the develop-
ment set.

Tokens Types
Raw Tok. Raw Tok.

es-hch 66.3% 74.8% 36.8% 41.4%
es-nah 59.1% 67.8% 33.0% 37.4%
es-tar 73.8% 85.1% 39.1% 46.8%
es-gn 56.7% 77.7% 31.9% 40.2%

Table 12: Target language first half of the development
data coverage on second half of the development data.
I.e., for raw es-hch data, 66.3% of target language to-
kens in the second half of the development set appeared
somewhere in the first half of the development set.
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Abstract

This paper describes UTokyo’s submission to
the AmericasNLP 2021 Shared Task on ma-
chine translation systems for indigenous lan-
guages of the Americas. We present a low-
resource machine translation system that im-
proves translation accuracy using cross-lingual
language model pretraining. Our system
uses an mBART implementation of FAIRSEQ
to pretrain on a large set of monolingual
data from a diverse set of high-resource lan-
guages before finetuning on 10 low-resource
indigenous American languages: Aymara,
Bribri, Asháninka, Guaraní, Wixarika, Náhu-
atl, Hñähñu, Quechua, Shipibo-Konibo, and
Rarámuri. On average, our system achieved
BLEU scores that were 1.64 higher and CHRF
scores that were 0.0749 higher than the base-
line.

1 Introduction

Neural machine translation (NMT) systems have
produced translations of commendable accuracy
under large-data training conditions but are data-
hungry (Zoph et al., 2016) and perform poorly in
low resource languages, where parallel data is lack-
ing (Koehn and Knowles, 2017).

Many of the indigenous languages of the Ameri-
cas lack adequate amounts of parallel data, so exist-
ing NMT systems have difficulty producing accu-
rate translations for these languages. Additionally,
many of these indigenous languages exhibit linguis-
tic properties that are uncommon in high-resource
languages, such as English or Chinese, that are
used to train NMT systems.

One striking feature of many indigenous Ameri-
can languages is their polysynthesis (Brinton, 1885;
Payne, 2014). Polysynthetic languages display
high levels of inflection and are morphologically
complex. However, NMT systems are weak in
translating “low-frequency words belonging to
highly-inflected categories (e.g. verbs)" (Koehn

and Knowles, 2017). Quechua, a low-resource,
polysynthetic American language, has on average
twice as many morphemes per word compared to
English (Ortega et al., 2020b), which makes ma-
chine translation difficult. Mager et al. (2018b)
shows that information is often lost when translat-
ing polysynthetic languages into Spanish due to a
misalignment of morphemes. Thus, existing NMT
systems are not appropriate for indigenous Amer-
ican languages, which are low-resource, polysyn-
thetic languages.

Despite the scarcity of parallel data for these in-
digenous languages, some are spoken widely and
have a pressing need for improved machine trans-
lation. For example, Quechua is spoken by more
than 10 million people in South America, but some
Quechua speakers are not able to access health care
due to a lack of Spanish ability (Freire, 2011).

Other languages lack a large population of speak-
ers and may appear to have relatively low demand
for translation, but many of these languages are
also crucial in many domains such as health care,
the maintenance of cultural history, and interna-
tional security (Klavans, 2018). Improved trans-
lation techniques for low-resource, polysynthetic
languages are thus of great value.

In light of this, we participated in the Americas-
NLP 2021 Shared Task to help further the develop-
ment of new approaches to low-resource machine
translation of polysynthetic languages, which are
not commonly studied in natural language process-
ing. The task consisted of producing translations
from Spanish to 10 different indigenous American
languages.

In this paper, we describe our system designed
for the AmericasNLP 2021 Shared Task, which
achieved BLEU scores that were 1.64 higher and
CHRF scores that were 0.0749 higher than the base-
line on average. Our system improves translation
accuracy by using monolingual data to improve un-
derstanding of natural language before finetuning

234



for each of the 10 indigenous languages.

2 Methods

2.1 Data

Our model employs two types of data:

1. 13 GB of monolingual data from Bulgarian,
English, French, Irish, Korean, Latin, Spanish,
Sundanese, Vietnamese, and Yoruba

2. 140 MB of parallel data between Spanish
and Aymara, Bribri, Asháninka, Guaraní,
Wixarika, Náhuatl, Hñähñu, Quechua,
Shipibo-Konibo, and Rarámuri

2.1.1 Monolingual Data
We selected a variety of widely-spoken languages
across the Americas, Asia, Europe, Africa, and
Oceania for the monolingual data we used during
our pretraining, allowing our model to learn from
a wide range of language families and linguistic
features. These monolingual data were acquired
from CC1001 (Wenzek et al., 2020; Conneau et al.,
2020). We use these monolingual data as part of
our pretraining, as this has been shown to improve
results with smaller parallel datasets (Conneau and
Lample, 2019; Liu et al., 2020; Song et al., 2019).

2.1.2 Parallel Data
The parallel data between Spanish and the indige-
nous American languages were provided by Amer-
icasNLP 2021 (Mager et al., 2021).

We have summarized some important details
of the training data and development/test sets
(Ebrahimi et al., 2021) below. More details about
these data can be found in the AmericasNLP 2021
official repository2.

Aymara The Aymara–Spanish data came from
translations by Global Voices and Facebook AI.
The training data came primarily from Global
Voices3 (Prokopidis et al., 2016; Tiedemann, 2012),
but because translations were done by volunteers,
the texts have potentially different writing styles.
The development and test sets came from transla-
tions from Spanish texts into Aymara La Paz jilata,
a Central Aymara variant.

1http://data.statmt.org/cc-100/
2https://github.com/AmericasNLP/

americasnlp2021/blob/main/data/
information_datasets.pdf

3https://opus.nlpl.eu/GlobalVoices.php

Bribri The Bribri–Spanish data (Feldman and
Coto-Solano, 2020) came from six different
sources (a dictionary, a grammar, two language
learning textbooks, one storybook, and transcribed
sentences from a spoken corpus) and three major
dialects (Amubri, Coroma, and Salitre). Two differ-
ent orthographies are widely used for Bribri, so an
intermediate representation was used to facilitate
training.

Asháninka The Asháninka–Spanish data4 were
extracted and pre-processed by Richard Castro
(Cushimariano Romano and Sebastián Q., 2008;
Ortega et al., 2020a; Mihas, 2011). Though the
texts came from different pan-Ashaninka dialects,
they were normalized using AshMorph (Ortega
et al., 2020a). The development and test sets came
from translations of Spanish texts done by Feli-
ciano Torres Ríos.

Guaraní The Guaraní–Spanish data (Chiruzzo
et al., 2020) consisted of training data from web
sources (blogs and news articles) written in a mix
of dialects and development and test sets written in
pure Guaraní. Translations were provided by Perla
Alvarez Britez.

Wixarika The Wixarika–Spanish data came
from Mager et al. (2018a). The training, devel-
opment, and test sets all used the same dialect
(Wixarika of Zoquipan) and orthography, though
word boundaries were not consistent between the
development/test and training sets. Translations
were provided by Silvino González de la Crúz.

Náhuatl The Náhuatl–Spanish data came from
Gutierrez-Vasques et al. (2016). Náhuatl has a
wide dialectal variation and no standard orthogra-
phy, but most of the training data were close to
a Classical Náhuatl orthographic “standard.” The
development and test sets came from translations
made from Spanish into modern Náhuatl. An ortho-
graphic normalization was applied to these transla-
tions to make them closer to the Classical Náhuatl
orthography found in the training data. This nor-
malization was done by employing a rule-based ap-
proach based on predictable orthographic changes
between modern varieties and Classical Náhuatl.
Translations were provided by Giovany Martinez
Sebastián, José Antonio, and Pedro Kapoltitan.

4https://github.com/hinantin/
AshaninkaMT
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Hñähñu The Hñähñu–Spanish training data
came from translations into Spanish from Hñähñu
text from a set of different sources5. Most of these
texts are in the Valle del Mezquital dialect. The
development and test sets are in the Ñûhmû de Ix-
tenco, Tlaxcala variant. Translations were done by
José Mateo Lino Cajero Velázquez.

Quechua The training set for Quechua–Spanish
data (Agić and Vulić, 2019) came from Jehova’s
Witnesses texts (available in OPUS), sentences ex-
tracted from the official dictionary of the Minis-
ter of Education (MINEDU) in Peru for Quechua
Ayacucho, and dictionary entries and samples col-
lected and reviewed by Diego Huarcaya. Training
sets were provided in both the Quchua Cuzco and
Quechua Ayacucho variants, but our system only
employed Quechua Ayacucho data during training.
The development and test sets came from transla-
tions of Spanish text into Quechua Ayacucho, a
standard version of Southern Quechua. Transla-
tions were provided by Facebook AI.

Shipibo-Konibo The training set of the Shipibo-
Konibo–Spanish data (Galarreta et al., 2017) was
obtained from translations of flashcards and trans-
lations of sentences from books for bilingual ed-
ucation done by a bilingual teacher. Additionally,
parallel sentences from a dictionary were used as
part of the training data. The development and
test sets came from translations from Spanish into
Shipibo-Konibo done by Liz Chávez.

Rarámuri The training set of the Rarámuri–
Spanish data came from a dictionary (Brambila,
1976). The development and tests sets came from
translations from Spanish into the highlands Rará-
muri by María del Cármen Sotelo Holguín. The
training set and development/test sets use different
orthographies.

2.2 Preprocessing

We tokenized all of our data together using Sen-
tencePiece (Kudo and Richardson, 2018) in prepa-
ration for our multilingual model. We used a vo-
cabulary size of 8000 and a character coverage of
0.9995, as the wide variety of languages covered
carry a rich character set.

Then, we sharded our data for faster processing.
With our SentencePiece model and vocabulary, we

5https://tsunkua.elotl.mx/about/

used FAIRSEQ6 (Ott et al., 2019) to build vocabu-
laries and binarize our data.

2.3 Pretraining

We pretrained our model on the 20 languages de-
scribed in 2.1 with an mBART (Liu et al., 2020)
implementation of FAIRSEQ (Ott et al., 2019). We
pretrained on 32 NVIDIA V100 GPUs for three
hours.

Balancing data across languages
Due to the large variability in text data size be-
tween different languages, we used the exponen-
tial sampling technique used in Conneau and Lam-
ple (2019); Liu et al. (2020), where the text is re-
sampled according to smoothing parameter α as
follows:

qi =
pαi∑N
j=1 p

α
j

(1)

In equation 1, qi refers to the resample probabil-
ity for language i, given multinomial distribution
{qi}i=1...N with original sampling probability pi.

As we want our model to work well with the
low-resource languages, we chose a smoothing pa-
rameter of α = 0.25 (compared with α = 0.7 used
in mBART (Liu et al., 2020)) to alleviate model
bias towards the higher proportion of data from
high-resource languages.

Hyperparameters
We used a six-layer Transformer with a hidden di-
mension of 512 and feed-forward size of 2048. We
set the maximum sequence length to 512, with a
batch size of 1024. We optimized the model using
Adam (Kingma and Ba, 2015) using hyperparam-
eters β = (0.9, 0.98) and ε = 10−6. We used a
learning rate of 6 × 10−4 over 10,000 iterations.
For regularization, we used a dropout rate of 0.5
and weight decay of 0.01. We also experimented
with lower dropout rates but found that a higher
dropout rate gave us a model that produces better
translations.

2.4 Finetuning

Using our pretrained model, we performed finetun-
ing on each of the 10 indigenous American lan-
guages with the same hyperparameters used dur-
ing pretraining. For each language, we conducted
our finetuning using four NVIDIA V100 GPUs for
three hours.

6https://github.com/pytorch/fairseq
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Language Baseline1 Dev2 Test13 Test24

BLEU CHRF BLEU CHRF BLEU CHRF BLEU CHRF
Aymara (aym) 0.01 0.157 2.84 0.2338 1.17 0.214 1.03 0.209

Bribri (bzd) 0.01 0.058 1.22 0.1203 1.7 0.143 1.29 0.131
Asháninka (cni) 0.01 0.102 0.48 0.2188 0.2 0.216 0.45 0.214

Guaraní (gn) 0.12 0.193 3.64 0.2492 3.21 0.265 3.16 0.254
Wixarika (hch) 2.2 0.126 4.89 0.2093 7.09 0.238 6.74 0.229

Náhuatl (nah) 0.01 0.157 0.3 0.253 0.55 0.239 1.2 0.238
Hñähñu (oto) 0 0.054 0.04 0.1035 2.45 0.152 1.28 0.133

Quechua (quy) 0.05 0.304 1.46 0.3155 2.35 0.332 2.47 0.33
Shipibo-Konibo (shp) 0.01 0.121 0.49 0.176 0.33 0.163 0.71 0.175

Rarámuri (tar) 0 0.039 0.12 0.1163 0.1 0.122 0.06 0.123
1 Baseline test results provided by AmericasNLP 2021, from a system where the development set was not used for

training
2 Our own results on the development set
3 Our official test results for our system where the development set was used for training
4 Our official test results for our system where the development set was not used for training

Table 1: Results

2.5 Evaluation

Using the SacreBLEU library7 (Post, 2018), we
evaluated our system outputs with detokenized
BLEU (Papineni et al., 2002; Post, 2018). Due to
the polysynthetic nature of the languages involved
in this task, we also used CHRF (Popović, 2015)
to measure performance at the character level and
better see how well morphemes or parts of mor-
phemes were translated, rather than whole words.
For these reasons, we focused on optimizing the
CHRF score.

3 Results

We describe our results in Table 1. Our test re-
sults (Test1 and Test2) show considerable improve-
ments over the baseline provided by AmericasNLP
2021. We also included our own results on the de-
velopment set (Dev) for comparison. The trends we
saw in the Dev results parallel our test results; lan-
guages for which our system achieved high scores
in Dev (e.g. Wixarika and Guaraní) also demon-
strated high scores in Test1 and Test2. Likewise,
languages for which our system performed rela-
tively poorly in Dev (e.g. Rarámuri, whose poor
performance may be attributed to the difference in
orthographies between the training set and develop-
ment/test sets) also performed poorly in Test1 and
Test2. This matches the trend seen in the baseline
scores.

The baseline results and Test2 results were both
7https://github.com/mjpost/sacrebleu

produced using the same test set and by systems
where the development set was not used for train-
ing. Thus, the baseline results and Test2 results
can be directly compared. On average, our system
used to produce the Test2 results achieved BLEU
scores that were 1.54 higher and CHRF scores that
were 0.0725 higher than the baseline. On the same
test set, our Test1 system produced higher BLEU
and CHRF scores for nearly every language. This
is expected, as the system used to produce Test1
was trained on slightly more data; it used the devel-
opment set of the indigenous American languages
provided by AmericasNLP 2021 in addition to the
training set.

If we factor in our results from Test1 to our
Test2 results, we achieved BLEU scores that were
1.64 higher and CHRF scores that were 0.0749
higher than the baseline on average. Overall, we
attribute this improvement in scores primarily to
the cross-lingual language model pretraining (Con-
neau and Lample, 2019) we performed, allowing
our model to learn about natural language from the
monolingual data before finetuning on each of the
10 indigenous languages.

4 Conclusions and Future Work

We described our system to improve low-resource
machine translation for the AmericasNLP 2021
Shared Task. We constructed a system using the
mBART implementation of FAIRSEQ to translate
from Spanish to 10 different low-resource indige-
nous languages from the Americas. We demon-
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strated strong improvements over the baseline by
pretraining on a large amount of monolingual data
before finetuning our model for each of the low-
resource languages.

We are interested in using dictionary augmenta-
tion techniques and creating pseudo-monolingual
data to use during the pretraining process, as
we have seen improved results with these two
techniques when translating several low-resource
African languages. We can also incorporate these
two techniques in an iterative pretraining proce-
dure (Tran et al., 2020) to produce more pseudo-
monolingual data and further train our pretrained
model for potentially better results.

Future research should also explore using prob-
abilistic finite-state morphological segmenters,
which may improve translations by exploiting regu-
lar agglutinative patterns without the need for much
linguistic knowledge (Mager et al., 2018a) and thus
may work well with the low-resource, polysyn-
thetic languages dealt with in this paper.
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Abstract

We present the submission of REPUcs1 to the
AmericasNLP machine translation shared task
for the low resource language pair Spanish–
Quechua. Our neural machine translation sys-
tem ranked first in Track two (development
set not used for training) and third in Track
one (training includes development data). Our
contribution is focused on: (i) the collec-
tion of new parallel data from different web
sources (poems, lyrics, lexicons, handbooks),
and (ii) using large Spanish–English data for
pre-training and then fine-tuning the Spanish–
Quechua system. This paper describes the new
parallel corpora and our approach in detail.

1 Introduction

REPUcs participated in the AmericasNLP 2021 ma-
chine translation shared task (Mager et al., 2021)
for the Spanish–Quechua language pair. Quechua
is one of the most spoken languages in South Amer-
ica (Simons and Fenning, 2019), with several vari-
ants, and for this competition, the target language
is Southern Quechua. A disadvantage of working
with indigenous languages is that there are few doc-
uments per language from which to extract parallel
or even monolingual corpora. Additionally, most
of these languages are traditionally oral, which is
the case of Quechua. In order to compensate the
lack of data we first obtain a collection of new par-
allel corpora to augment the available data for the
shared task. In addition, we propose to use transfer
learning (Zoph et al., 2016) using large Spanish–
English data in a neural machine translation (NMT)
model. To boost the performance of our transfer
learning approach, we follow the work of Kocmi
and Bojar (2018), which demonstrated that sharing
the source language and a vocabulary of subword

1“Research Experience for Peruvian Undergraduates -
Computer Science” is a program that connects Peruvian stu-
dents with researchers worldwide. The author was part of the
2021 cohort: https://www.repuprogram.org/repu-cs.

units can improve the performance of low resource
languages.

2 Spanish→Quechua

Quechua is the most widespread language family in
South America, with more than 6 millions speakers
and several variants. For the AmericasNLP Shared
Task, the development and test sets were prepared
using the Standard Southern Quechua writing sys-
tem, which is based on the Quechua Ayacucho
(quy) variant (for simplification, we will refer to it
as Quechua for the rest of the paper). This is an of-
ficial language in Peru, and according to Zariquiey
et al. (2019) it is labelled as endangered. Quechua
is essentially a spoken language so there is a lack
of written materials. Moreover, it is a polysynthetic
language, meaning that it usually express large
amount of information using several morphemes
in a single word. Hence, subword segmentation
methods will have to minimise the problem of ad-
dressing “rare words” for an NMT system.

To the best of our knowledge, Ortega et al.
(2020b) is one of the few studies that employed
a sequence-to-sequence NMT model for Southern
Quechua, and they focused on transfer learning
with Finnish, an agglutinative language similar to
Quechua. Likewise, Huarcaya Taquiri (2020) used
the Jehovah Witnesses dataset (Agić and Vulić,
2019), together with additional lexicon data, to
train an NMT model that reached up to 39 BLEU
points on Quechua. However, the results in both
cases were high because the development and
test set are split from the same distribution (do-
main) as the training set. On the other hand, Or-
tega and Pillaipakkamnatt (2018) improved align-
ments for Quechua by using Finnish(an agglutina-
tive language) as the pivot language. The corpus
source is the parallel treebank of Rios et al. (Rios
et al., 2012)., so we deduce that they worked with
Quechua Cuzco (quz). (Ortega et al., 2020a)

In the AmericasNLP shared task, new out-of-
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domain evaluation sets were released, and there
were two tracks: using or not the validation set for
training the final submission. We addressed both
tracks by collecting more data and pre-training the
NMT model with large Spanish-English data.

3 Data and pre-processing

In this competition we are going to use the Ameri-
casNLP Shared Task datasets and new corpora ex-
tracted from documents and websites in Quechua.

3.1 AmericasNLP datasets

For training, the available parallel data comes
from dictionaries and Jehovah Witnesses dataset
(JW300; Agić and Vulić, 2019). AmericasNLP
also released parallel corpus aligned with English
(en) and the close variant of Quechua Cusco (quz)
to enhance multilingual learning. For validation,
there is a development set made with 994 sentences
from Spanish and Quechua (quy) (Ebrahimi et al.,
2021).

Detailed information from all the available
datasets with their corresponding languages is as
follows:

• JW300 (quy, quz, en): texts from the religious
domain available in OPUS (Tiedemann, 2012).
JW300 has 121k sentences. The problems
with this dataset are misaligned sentences,
misspelled words and blank translations.

• MINEDU (quy): Sentences extracted from the
official dictionary of the Ministry of Educa-
tion in Peru (MINEDU). This dataset contains
open-domain short sentences. A considerable
number of sentences are related to the coun-
tryside. It only has 650 sentences.

• Dict_misc (quy): Dictionary entries and
samples collected and reviewed by Huar-
caya Taquiri (2020). This dataset is made
from 9k sentences, phrases and word transla-
tions.

Furthermore, to examine the domain resem-
blance, it is important to analyse the similarity be-
tween the training and development. Table 1 shows
the percentage of the development set tokens that
overlap with the tokens in the training datasets on
Spanish (es) and Quechua (quy) after deleting all
types of symbols.

We observe from Table 1 that the domain of the
training and development set are different as the
overlapping in Quechua does not even go above
50%. There are two approaches to address this

Dataset % Dev overlapping
es quy

JW300 85% 45%
MINEDU 15% 5%
Dict_misc 40% 18%

Table 1: Word overlapping ratio between the develop-
ment and the available training sets in AmericasNLP

problem: to add part of the development set into
the training or to obtain additional data from the
same or a more similar domain. In this paper, we
focus on the second approach.

3.2 New parallel corpora
Sources of Quechua documents Even though
Quechua is an official language in Peru, official
government websites are not translated to Quechua
or any other indigenous language, so it is not pos-
sible to perform web scrapping (Bustamante et al.,
2020). However, the Peruvian Government has
published handbooks and lexicons for Quechua Ay-
acucho and Quechua Cusco, plus other educational
resources to support language learning in indige-
nous communities. In addition, there are official
documents such as the Political Constitution of
Peru and the Regulation of the Amazon Parliament
that are translated to the Quechua Cusco variant.

We have found three unofficial sources to extract
parallel corpora from Quechua Ayacucho (quy).
The first one is a website, made by Maximiliano
Duran (Duran, 2010), that encourages the learning
of Quechua Ayacucho. The site contains poems,
stories, riddles, songs, phrases and a vocabulary for
Quechua. The second one is a website for different
lyrics of poems and songs which have available
translations for both variants of Quechua (Lyrics
translate, 2008). The third source is a Quechua
handbook for the Quechua Ayacucho variant elabo-
rated by Iter and Cárdenas (2019).

Sources that were extracted but not used due
to time constrains were the Political Constitution
of Peru and the Regulation of the Amazon Parlia-
ment. Other non-extracted source is a dictionary for
Quechua Ayacucho from a website called InkaTour
2. This source was not used because we already
had a dictionary.

Methodology for corpus creation The available
vocabulary in Duran (2010) was extracted manually
and transformed into parallel corpora using the first

2https://www.inkatour.com/dico/
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pair of parenthesis as separators. We will call this
dataset “Lexicon".

All the additional sentences in Duran (2010) and
a few poems from (Lyrics translate, 2008) were
manually aligned to obtain the Web Miscellaneous
(WebMisc) corpus. Likewise, translations from the
Quechua educational handbook (Iter and Cárdenas,
2019) were manually aligned to obtain a parallel
corpus (Handbook).3

In the case of the official documents for Quechua
Cusco, there was a specific format were the Span-
ish text was followed by the Quechua translation.
After manually arranging the line breaks to sep-
arate each translation pair, we automatically con-
structed a parallel corpus for both documents. Para-
graphs with more than 2 sentences that had the
same number of sentences as their translation were
split into small sentences and the unmatched para-
graphs were deleted.

Corpora description We perform a large num-
ber or rare events (LNRE) modelling to analyse the
WebMisc, Lexicon and Handbook datasets4. The
values are shown in Table 2. The LNRE modelling
for the Quechua Cusco datasets are shown in ap-
pendix as they are not used for the final submission.

WebMisc Lexicon Handbook
es quy es quy es quy

S 985 6161 2297
N 5002 2996 7050 6288 15537 8522
V 1929 2089 3962 3361 4137 5604
V1 1358 1673 2460 1838 2576 4645

V/N 0.38 0.69 0.56 0.53 0.26 0.65
V1/N 0.27 0.55 0.34 0.29 0.16 0.54
mean 2.59 1.43 1.77 1.87 3.75 1.52

Table 2: Corpora description: S = #sentences in cor-
pus; N = number of tokens; V = vocabulary size; V1
= number of tokens occurring once (hapax); V/N = vo-
cabulary growth rate; V1/N = hapax growth rate; mean
= word frequency mean

We notice that the vocabulary and hapax growth
rate is similar for Quechua (quy) in WebMisc and
Handbook even though the latter has more than
twice the number of sentences. In addition, it was
expected that the word frequency mean and the
vocabulary size were lower for Quechua, as this

3All documents are published in: https://github.com/
Ceviche98/REPUcs-AmericasNLP2021

4We used the LNRE calculator created by Kyle Gorman:
https://gist.github.com/kylebgorman/

demonstrates its agglutinative property. However,
this does not happens in the Lexicon dataset, since
is understandable as it is a dictionary that has one
or two words for the translation.

Moreover, there is a high presence of tokens
occurring only once in both languages. In other
words, there is a possibility that our datasets have
spelling errors or presence of foreign words (Na-
gata et al., 2018). However, in this case this could
be more related to the vast vocabulary, as the
datasets are made of sentences from different do-
mains (poems, songs, teaching, among others).

Furthermore, it is important to examine the sim-
ilarities between the new datasets and the devel-
opment set. The percentage of the development
set words that overlap with the words of the new
datasets on Spanish (es) and Quechua (quy) after
eliminating all symbols is shown in Table 3.

Dataset % Dev overlapping
es quy

WebMisc 18.6% 4%
Lexicon 20% 3.4%

Handbook 28% 10.6%

Table 3: Percentage of word overlapping between the
development and the new extracted datasets

Although at first glance the analysis may show
that there is not a significant similarity with the de-
velopment set, we have to take into account that in
Table 1, JW300 has 121k sentences and Dict_misc
is a dictionary, so it is easy to overlap some of the
development set words at least once.However , in
the case of WebMisc and Handbook datasets, the
quantity of sentences are less than 3k per dataset
and even so the percentage of overlapping in Span-
ish is quite good. This result goes according to the
contents of the datasets, as they contain common
phrases and open domain sentences, which are the
type of sentences that the development set has.

3.3 English-Spanish dataset

For pre-training, we used the EuroParl dataset for
Spanish–English (1.9M sentences) (Koehn, 2005)
and its development corpora for evaluation.

4 Approach used

4.1 Evaluation

From the Europarl dataset, we extracted 3,000 sen-
tences for validation. For testing we used the devel-
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opment set from the WMT2006 campaign (Koehn
and Monz, 2006).

In the case of Quechua, as the official develop-
ment set contains only 1,000 sentences there was
no split for the testing. Hence, validation results
will be taken into account as testing ones.

The main metric in this competition is chrF
(Popović, 2017) which evaluates character n-grams
and is a useful metric for agglutinative languages
such as Quechua. We also reported the BLEU
scores (Papineni et al., 2002). We used the imple-
mentations of sacreBLEU (Post, 2018).

4.2 Subword segmentation

Subword segmentation is a crucial process for
the translation of polysinthetic languages such as
Quechua. We used the Byte-Pair-Encoding (BPE;
Sennrich et al., 2016) implementation in Sentence-
Piece (Kudo and Richardson, 2018) with a vocabu-
lary size of 32,000. To generate a richer vocabulary,
we trained a segmentation model with all three lan-
guages (Spanish, English and Quechua), where we
upsampled the Quechua data to reach a uniform
distribution.

4.3 Procedure

For all experiments, we used a Transformer-based
model (Vaswani et al., 2017) with default parame-
ters from the Fairseq toolkit (Ott et al., 2019). The
criteria for early stopping was cross-entropy loss
for 15 steps.

We first pre-trained a Spanish–English model
on the Europarl dataset in order to obtain a good
encoding capability on the Spanish side. Using this
pre-trained model, we implemented two different
versions for fine-tunning. First, with the JW300
dataset, which was the largest Spanish–Quechua
corpus, and the second one with all the available
datasets (including the ones that we obtained) for
Quechua.

5 Results and discussion

The results from the transfer learning models and
the baseline are shown in Table 4. We observe that
the best result on BLEU and chrF was obtained
using the provided datasets together with the ex-
tracted datasets. This shows that the new corpora
were helpful to improve translation performance.

From Table 4, we observe that using transfer
learning showed a considerable improvement in
comparison with the baseline (+0.56 in BLEU and

Dataset Size Direction BLEU chrF
Europarl 1.9M es→en 34.2 0.606

JW300 (baseline) 121k es→quy 1.49 0.317
JW300

(fine-tuning)
121k es→quy 2.05 0.324

All datasets
(fine-tuning)

133k es→quy 2.18 0.336

Table 4: Results of transfer learning experiments

+0.007 in chrF). Moreover, using transfer learning
with all the available datasets obtained the best
BLEU and chrF score. Specially, it had a 0.012
increase in chrF which is quite important as chrF
is the metric that best evaluates translation in this
case. Overall, the results do not seem to be good
in terms of BLEU. However, a manual analysis of
the sentences shows that the model is learning to
translate a considerable amount of affixes.

Input (ES) El control de armas probablemente no
es popular en Texas.

Input (EN) Weapon control is probably not popular
in Texas.

Reference
(QUY)

Texaspiqa sutillapas arma controlayqa
manachusmi hinachu apakun

Output Texas llaqtapi armakuna controlayqa
manam runakunapa runachu

Table 5: Subword analysis on translated and reference
sentence

For instance, the subwords “arma”, “mana”,
among others, have been correctly translated but
are not grouped in the same words as in the refer-
ence. In addition, only the word “controlayqa” is
translated correctly, which would explain the low
results in BLEU. Decoding an agglutinative lan-
guage is a very difficult task, and the low BLEU
scores cannot suggest a translation with proper ad-
equacy and/or fluency (as we can also observe this
from the example). Nevertheless, BLEU works at
word-level so other character-level metrics should
be considered to inspect agglutinative languages.
This would be the case of chrF (Popović, 2017)
were there is an increase of around 3% when using
the AmericasNLP altogether with the new extracted
corpora.

Translations using the transfer learning model
trained with all available Quechua datasets were
submitted for track 2 (Development set not used
for Training). For the submission of track 1 (De-
velopment set used for Training) we retrained the
best transfer learning model adding the validation
to the training for 40 epochs. The official results of
the competition are shown in Table 6.
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Rank Team BLEU chrF

Track 1
1 Helsinki 5.38 0.394
3 REPUcs 3.1 0.358

Track 2
1 REPUcs 2.91 0.346
2 Helsinki 3.63 0.343

Table 6: Official results from AmericasNLP 2021
Shared Task competition on the two tracks.Track 1: De-
velopment set used for Training, Track 2: Development
set not used for Training

6 Conclusion

In this paper, we focused on extracting new datasets
for Spanish–Quechua, which helped to improve the
performance of our model. Moreover, we found
that using transfer learning was beneficial to the
results even without the additional data. By com-
bining the new corpora in the fine-tuning step, we
managed to obtain the first place on Track 2 and
the third place on Track 1 of the AmericasNLP
Shared Task. Due to time constrains, the Quechua
Cusco data was not used, but it can be beneficial
for further work.

In general, we found that the translating Quechua
is a challenging task for two reasons. Firstly, there
is a lack of data for all the variants of Quechua,
and the available documents are hard to extract. In
this research, all the new datasets were extracted
and aligned mostly manually. Secondly, the agglu-
tinative nature of Quechua motivates more research
about effective subword segmentation methods.
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A Appendix

Constitution Regulation
es quz es quz

S 999 287
N 14295 9837 14295 3227
V 3404 4030 3404 1591
V1 2145 3037 2145 1248

V/N 0.2381 0.4097 0.2381 0.493
V1/N 0.1501 0.3087 0.1501 0.3867
mean 4.1995 2.4409 4.1995 2.083

Table 7: Description of the corpora extracted, but not
used, for Quechua Cusco (quz). S = #sentences in cor-
pus; N = number of tokens; V = vocabulary size; V1
= number of tokens occurring once (hapax); V/N = vo-
cabulary growth rate; V1/N = hapax growth rate; mean
= word frequency mean
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Abstract

We evaluated a range of neural machine trans-
lation techniques developed specifically for
low-resource scenarios. Unsuccessfully. In the
end, we submitted two runs: (i) a standard
phrase-based model, and (ii) a random bab-
bling baseline using character trigrams. We
found that it was surprisingly hard to beat (i),
in spite of this model being, in theory, a bad
fit for polysynthetic languages; and more inter-
estingly, that (ii) was better than several of the
submitted systems, highlighting how difficult
low-resource machine translation for polysyn-
thetic languages is.

1 Introduction

Shared tasks on machine translation are often con-
ducted on large parallel training corpora: for exam-
ple, the majority of datasets used in the WMT20
shared tasks have sentence pairs in the hundred
thousands, often even millions (Barrault et al.,
2020). In contrast, the AmericasNLP 2021 shared
task (Mager et al., 2021) provided us with as lit-
tle as 3,883 sentence pairs (for Ashaninka), and
with the exception of Quechua (125k pairs), all
languages had fewer than 30k sentence pairs. Addi-
tionally, many of these languages are polysynthetic,
which is known to provide additional challenges for
machine translation (Klavans et al., 2018; Mager
et al., 2018b).

We initially focused our efforts on two areas:
(i) obtaining more data, both parallel and monolin-
gual (Sec. 2); and (ii) exploring a range of different
neural machine translation techniques, particular
those specifically developed for low-resource sce-
narios, to find a promising system to build on and
tweak further. Unfortunately, we were wholly un-
successful in the latter (Sec. 5). All neural models
that we tried performed extremely poorly when
compared to a standard statistical phrase-based
model (Sec. 3.1). The overall low performance
of all our models further prompted us to implement

Language Source(s)

AYM Aymara Prokopidis et al. (2016)
BZD Bribri Feldman and Coto-Solano (2020)
CNI Asháninka Ortega et al. (2020), Cushimar-

iano Romano and Sebastián Q.
(2008), Mihas (2011)

GN Guaraní Chiruzzo et al. (2020)
HCH Wixarika Mager et al. (2018a)
NAH Nahuatl Gutierrez-Vasques et al. (2016)
OTO Hñähñu Comunidad Elotl (2021)
QUY Quechua Agić and Vulić (2019)
SHP Shipibo-Konibo Galarreta et al. (2017)
TAR Rarámuri Brambila (1976)

Table 1: Languages in the shared task with sources of
their training datasets

a “random babbling” baseline (Sec. 3.2): a model
that outputs plausible-looking n-grams in the target
language without any actual relation to the source
sentences. This baseline, together with the phrase-
based model, were the only two systems we ended
up submitting. Our main findings are:

• It was surprisingly hard to beat a standard
phrase-based model, as evidenced not only
by our own failed attempts, but also by this
system taking third place on three languages
in the official evaluation (track 1).

• It is apparently challenging for many MT sys-
tems to even produce well-formed outputs in
the target languages, as our random babbling
baseline outperformed at least one other sys-
tem on nine of the languages, and even took
fifth place out of 12 on Ashaninka (track 2).

2 Data

We train models for all languages provided by the
shared task, using their official training datasets
(cf. Table 1). As the shared task allowed for using
external datasets, we also tried to find more data
sources to use for model training.
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Parallel data We gathered parallel Spanish-to-
target datasets for the following languages which
should not overlap with the data provided by the
shared task organizers: Aymara from JW300 (Agić
and Vulić, 2019); Guarani from Tatoeba; and
Nahuatl and Quechua from the Bible corpus by
Christodouloupoulos and Steedman (2015). We
note that for the Bible corpus, the Nahuatl portion
is from a narrower dialectal region (NHG “Tetel-
cingo Nahuatl”) than the data in the shared task,
and it also covers a different variant of Quechua
(QUW “Kichwa” vs. QUY “Ayacucho Quechua”),
but we hoped that in this extremely low-resource
scenario, this would still prove useful. All datasets
were obtained from OPUS1 (Tiedemann, 2012).

Monolingual data Wikipedias exist for Aymara,
Guaraní, Nahuatl, and Quechua. We use WikiEx-
tractor (Attardi, 2015) to obtain text data from their
respective dumps,2 then use a small set of regular
expressions to clean them from XML tags and enti-
ties. This gives us between 28k and 100k lines of
text per language.

We obtain further monolingual data from sev-
eral online sources in PDF format. For Nahuatl
and Hñähñu, we use a book provided by the Mexi-
can government;3 for Quechua, we use two books:
The Little Prince (Saint-Exupéry, 2018) and Anto-
nio Raimondi’s Once upon a time.. in Peru (Villa-
corta, 2007). The Mexican government also pub-
lishes the series Languages from Mexico which con-
tains books based on short stories in Nahuatl (Gus-
tavo et al., 2007), Raramuri (Arvizu Castillo,
2002), Hñähñu (Mondragón et al., 2002b), and
Wixárika (Mondragón et al., 2002a). Finally, we
also use the Bible translated to Quechua, Guarani,
and Aymara. We extract the text for all of these
resources with the Google OCR API.4

3 Models

We first describe the two models we submitted:
a standard phrase-based model (CoAStaL-1) and
a random babbling baseline (CoAStaL-2). Other
models that we experimented with but did not sub-
mit for evaluation are discussed later in Sec. 5.

1https://opus.nlpl.eu/
2https://dumps.wikimedia.org/
3https://www.gob.mx/inpi/documentos/

libros-en-lenguas-indigenas
4https://cloud.google.com/vision/docs/

pdf

3.1 Phrase-Based MT

We train a statistical phrase-based model with
Moses (Koehn et al., 2007) using default settings,
following the guidelines for training a baseline.5

We do minimal preprocessing: we use the provided
cleaning script and rely on plain whitespace to-
kenization, with the only exception that we also
insert spaces around square brackets. The language
model is trained with 5-grams instead of 3-grams,
as this improved the results very slightly on the
development sets. We train a separate model for
each language and use the respective development
set for tuning before translating the test set.

The models we submitted did, mistakenly, not
make use of the additional parallel data we gath-
ered (cf. Sec. 2). We evaluated the same system
trained with this additional data after the deadline,
but unfortunately did not observe an improvement;
we present results for both variants in Sec. 4.

3.2 Random Babbling Baseline

Since we observed very low scores for all the mod-
els we tried, we wanted to compare with a baseline
that generates text based only on (i) n-gram distri-
butions in the target language, and (ii) lengths of
the source sentences. We call this baseline random
babbling because it is in no way conditioned on the
actual words in the source sentences.

Concretely, we “train” our baseline by extracting
and counting all character trigrams in the training
file of the target language. Characters were cho-
sen over words as the official evaluation metric of
the shared task, chrF, is character-based. We also
calculate the average length ratio of the sentence
pairs in order to determine the desired length of our
“translation” at test time. To generate output, we
simply choose the top n most frequent character
trigrams, with n chosen so that the desired sentence
length is reached.6

Lastly, we perform a few tweaks to disguise this
babbling as an actual translation: (i) we random-
ize the order of the chosen trigrams, (ii) reduce
multiple consecutive whitespace characters to a
single space, (iii) lowercase all characters that are
not word-initial and uppercase the sentence-initial

5http://www.statmt.org/moses/?n=Moses.
Baseline

6We also tried random baseline models with other n-gram
lengths, sampling from the distribution (instead of always
picking the most frequent items), and training a simple lan-
guage model, but found nothing that significantly improved
on this approach on the development set.
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Set System Track Languages

AYM BZD CNI GN HCH NAH OTO QUY SHP TAR

DEV
CoAStaL-1: Phrase-based 1 .225 .213 .253 .235 .261 .204 .160 .276 .276 .174
CoAStaL-2: Random 2 .178 .113 .214 .132 .195 .189 .094 .234 .182 .116

TEST

Helsinki-2 (best) 1 .310 .213 .332 .376 .360 .301 .228 .394 .399 .258
CoAStaL-1: Phrase-based 1 .191 .196 .265 .241 .257 .214 .184 .269 .297 .159

+ extra data 1 .188 – – .242 – .216 – .250 – –
CoAStaL-2: Random 2 .168 .107 .212 .128 .191 .184 .101 .232 .173 .113
Baseline 2 .157 .068 .102 .193 .126 .157 .054 .304 .121 .039

(a) chrF

AYM BZD CNI GN HCH NAH OTO QUY SHP TAR

DEV
CoAStaL-1: Phrase-based 1 2.57 3.83 2.79 2.59 6.81 2.33 1.44 1.73 3.70 1.26
CoAStaL-2: Random 2 0.02 0.03 0.04 0.02 1.14 0.02 0.02 0.02 0.06 0.02

TEST

Helsinki-2 (best) 1 2.80 5.18 6.09 8.92 15.67 3.25 5.59 5.38 10.49 3.56
CoAStaL-1: Phrase-based 1 1.11 3.60 3.02 2.20 8.80 2.06 2.72 1.63 3.90 1.05

+ extra data 1 1.07 – – 2.24 – 2.06 – 1.24 – –
CoAStaL-2: Random 2 0.05 0.06 0.03 0.03 2.07 0.03 0.03 0.02 0.04 0.06
Baseline 2 0.01 0.01 0.01 0.12 2.20 0.01 0.00 0.05 0.01 0.00

(b) BLEU

Table 2: Results for our submitted models on DEV and TEST sets. All TEST results are from the official evaluation
except for the “Phrase-based + extra data” setting, which we evaluated after the deadline.

character, and (iv) if the sequence does not end in a
punctuation mark but the Spanish source sentence
did, we copy and add this punctuation character
from the source side.

4 Results

Results of our models are shown in Table 2, both
for our own evaluation on the development sets and
for the official evaluation on the test sets (Ebrahimi
et al., 2021).

Phrase-Based MT Our phrase-based model
(Sec. 3.1) was ranked in track 1 of the shared task
evaluation as it makes use of the development sets
for tuning. Compared to the other systems evalu-
ated in this track, we observe a solid average perfor-
mance of our model—it usually ranks in the middle
of the field, with the best placement being 3rd on
Bribri, Hñähñu, and Shipibo-Konibo, and the worst
ranking being 8th out of 11 on Guarani. In terms
of chrF score, the model ranges between 0.159
(on Raramuri) and 0.297 (on Shipibo-Konibo), but
we note that there is a noticeable gap to the best-
performing system, Helsinki-2, which outperforms
ours by about +0.09 chrF on average.

Random Babbling Our random babbling base-
line (Sec. 3.2) did not make use of the develop-
ment sets and was therefore ranked in track 2 of
the official evaluation. Amazingly, it almost never

ranks last and even takes 5th place out of 12 on
Ashaninka. It also outperforms the official baseline
on eight of the languages. In terms of BLEU score,
on the other hand, this model usually scores close
to zero. This is because we based it on character
trigrams; if we wanted to optimize for BLEU, we
could have chosen word-based babbling instead.
Comparing across the tracks with our first, phrase-
based system, we observe that the latter scores
consistently better, which is reassuring.

4.1 Discussion

We intended our phrase-based Moses system more
as a baseline for our experiments with different
neural models than as an actual system submission.
It was surprising to us how clearly this system out-
performed our attempts at building a neural MT
system, and that it already did so with its default
configuration. In theory, whitespace tokenization
should be a bad fit for polysynthetic languages,
as a high degree of morphological complexity ex-
acerbates the problem of data sparsity and rarely
seen word forms. We experimented with different
subword tokenization techniques in combination
with Moses, but this always resulted in degraded
performance on the development sets.

The random babbling baseline was motivated by
two observations: (i) performance was extremely
low for all models we tried, and (ii) outputs of the
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neural models frequently looked very unnatural, to
the point that the models had not yet learned how
to form plausible-looking sentences in the target
languages. This is quite typical behavior for un-
derfitted neural models. As an example, this is an
output we observed when running the official base-
line system on the development set for Raramuri:

(1) IN: Realmente no me importa si tengo un
lugar para vivir.

GOLD: Ke chibi iré mapure ke nirúlisaka
kúmi ne betélima.

PRED: ( 2 ) ( a ) ké ne ga’rá ne ga’rá ne ga’rá
ga’rá ne ga’rá ne ga’rá ne ga’rá ne
ga’rá ne ga’rá ne ga’rá ne ga’rá ne
ga’rá ne ga’rá ne ga’rá ne ga’rá ne
ga’rá ne ga’rá ne ga’rá ne ga’rá ne
ga’rá ne ga’rá ne ga’rá ne ga’rá [. . . ]

This prompted us to implement a baseline which,
while having no relation to the actual input sen-
tence, at least better resembles the typical distri-
bution of character n-grams in the given language.
Here is an example from the test set for Ashaninka
with outputs from both our phrase-based (SYS-1)
and random (SYS-2) model:

(2) IN: Todavía estoy trabajando para este
día.

GOLD: Irosatitatsi nantabeeti oka kitaiteriki.
SYS-1: Tekirata nosaikaki trabajando in-

chamenta itovantarori.” día.
SYS-2: Iritsiri irotakntakanarishiantakiro

aka.

We can see that both system outputs bear very lit-
tle resemblance to the gold translation or to each
other. While Moses (SYS-1) copies a few Spanish
words and includes implausibly placed punctuation
marks, random babbling (SYS-2) produces output
of similar length to the correct translation and over-
laps with it in several observable character trigrams
(e.g. iro, tsi, ant).

Obviously, the random babbling baseline is not
meant as an actual suggestion for a translation
system—it literally does not “translate” anything.
However, as the official shared task evaluation and
the examples above show, it can serve as a useful
“sanity check” for situations where the performance
of actual MT systems is so low that it is unclear
whether they even acquired superficial knowledge
of character distributions in the target language.

5 Things that did not work

Here we briefly describe other ideas that we pur-
sued, but were unfortunately not successful with,
so we did not submit any systems based on these
techniques for evaluation.

Pre-trained Transformers Following Rothe
et al. (2020), we use an auto-encoding transformer
as the encoder and an auto-regressive transformer
as the decoder of a sequence-to-sequence model.
Out of the several configurations we experimented
with, the best performance was observed when the
encoder is pre-trained on the Spanish OSCAR cor-
pus (Ortiz Suárez et al., 2020) and the decoders are
pre-trained on language-specific monolingual cor-
pora collected from the web (cf. Sec. 2) along with
the target files of the training data. However, the
results were not on-par with the simpler models;
averaging over all languages, we observed a chrF
score of 0.12 on the dev sets, compared to 0.23
with the phrase-based model (cf. Sec. 3.1). We pos-
tulate that the training data was just not enough to
train the cross-attention weights between the en-
coder and decoders. Note that these weights need
to be trained from scratch, as opposed to the other
weights which are initialized from language mod-
elling checkpoints.

Back-translation In an attempt to improve the
transformer-based models, we used the shared task
data to train similar transformer-based models in
the reverse direction, i.e. to Spanish, in order to
back-translate the monolingual corpora (cf. Sec. 2).
This would give us automatically translated Span-
ish outputs to use as the source side for additional
training data (Sennrich et al., 2016; Hoang et al.,
2018). Since monolingual data in Spanish—which
was used to pre-train the decoder’s language model
for this experiment—is abundant, we expected the
machine-translated Spanish text to be of reasonably
good quality. However, the models turned out to
perform quite badly, with the resulting Spanish text
being of very low quality and often very repetitive.
We therefore decided to abandon this direction after
preliminary experiments.

Character-Level NMT Since many of the lan-
guages in the shared task are polysynthetic, a
character-level model might be better suited here,
as it can better learn morphology (Belinkov et al.,
2017). We train fully character-level models fol-
lowing Lee et al. (2017), which are based on com-
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bining convolutional and recurrent layers.7 Finding
a good hyperparameter configuration for this model
proved very time-consuming; the best configura-
tion we found modifies the original model by using
half the number of units in the embedding layer
and decoder layers (256 and 512, respectively). For
Quechua, which we initially experimented on, this
yielded a chrF score of 0.33 on the dev set vs. 0.27
with phrase-based MT, but we ran out of time to
train models for the other languages. A post-hoc
evaluation on the other languages failed to replicate
this success, though. Potentially, the hyperparame-
ter configuration is very sensitive to the language
in question, or the amount of training data was not
enough for the other languages (Quechua had by
far the largest training set of all languages in the
shared task).

Language Model Prior We train NMT models
using a language model prior, following Bazio-
tis et al. (2020). This method allows us to make
use of the additional monolingual data we gath-
ered (cf. Sec. 2) within a neural MT framework,
and we hoped that this would help the model to
produce valid words in the target languages, i.e.,
reduce the “babbling” effect we saw in outputs like
Example (1) above. We focused our efforts on
the LSTM-based models provided by the authors8

rather than the transformer ones, since we believe
that those should be easier to train in this extremely
low-resource setting. Despite experimenting with
different hyperparameters (including number and
size of LSTM layers), we could not exceed an av-
erage 0.16 chrF on the dev sets (compared to 0.23
with the phrase-based model).

Graph Convolutional Encoders We experi-
ment with graph convolutional encoders using the
framework by Bastings et al. (2017). Thus, we train
NMT systems that operate directly over graphs; in
our case, syntactic annotations of the source sen-
tences following the Universal Dependencies (UD)
scheme (Nivre et al., 2020). We parsed the all the
source sentences from training set provided by the
task organizer with Stanza (Qi et al., 2020). We
were initially motivated to follow this approach be-
cause UD annotation can provide extra information
to the encoder to generate better translations, ide-
ally with less data. Even though we tested several
configurations, not even our best architecture—two

7We use our own reimplementation of the authors’ code.
8https://github.com/cbaziotis/

lm-prior-for-nmt

layers of GCN encoder with 250 units, and LSTM
decoder with 250 units, trained for 5 epochs, with
a vocabulary of 5000 words in source and target—
was able to outperform the random babbling sys-
tem. We hypothesize that with this amount of ex-
amples, UD’s external information is not sufficient
to produce an efficient encoder.

6 Conclusion

The (relative) success of our random babbling base-
line shows that many MT systems fail to reproduce
even superficial characteristics of word formation
and character distribution in the target languages;
a result that was confirmed by our own failed at-
tempts at training a competitive neural MT model.

Out of the neural models we tried, purely
character-level MT was among the more promising
ones. We speculate that in the Spanish-to-target
setting, a model that combines a strong pre-trained
Spanish encoder with a purely character-level de-
coder might be a promising direction for further
experiments.

We also note that there are several language-
specific resources, such as morphological segmen-
tation tools,9 that might be worth using. We fo-
cused our efforts here on finding a broadly appli-
cable architecture without any language-specific
components, but would be curious to see if includ-
ing such components can yield significant improve-
ments on individual languages.

Acknowledgements

Marcel Bollmann was funded from the European
Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant
agreement No. 845995. Rahul Aralikatte and An-
ders Søgaard were funded by a Google Focused Re-
search Award. Miryam de Lhoneux was funded by
the Swedish Research Council (grant 2020-00437).

References
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Abstract

The University of Helsinki participated in the
AmericasNLP shared task for all ten language
pairs. Our multilingual NMT models reached
the first rank on all language pairs in track
1, and first rank on nine out of ten language
pairs in track 2. We focused our efforts on
three aspects: (1) the collection of additional
data from various sources such as Bibles and
political constitutions, (2) the cleaning and
filtering of training data with the OpusFilter
toolkit, and (3) different multilingual training
techniques enabled by the latest version of the
OpenNMT-py toolkit to make the most effi-
cient use of the scarce data. This paper de-
scribes our efforts in detail.

1 Introduction

The University of Helsinki participated in the
AmericasNLP 2021 Shared Task on Open Ma-
chine Translation for all ten language pairs. The
shared task is aimed at developing machine transla-
tion (MT) systems for indigenous languages of the
Americas, all of them paired with Spanish (Mager
et al., 2021). Needless to say, these language pairs
pose big challenges since none of them benefits
from large quantities of parallel data and there is
limited monolingual data. For our participation,
we focused our efforts mainly on three aspects: (1)
gathering additional parallel and monolingual data
for each language, taking advantage in particular
of the OPUS corpus collection (Tiedemann, 2012),
the JHU Bible corpus (McCarthy et al., 2020) and
translations of political constitutions of various
Latin American countries, (2) cleaning and filter-
ing the corpora to maximize their quality with the
OpusFilter toolbox (Aulamo et al., 2020), and (3)
contrasting different training techniques that could
take advantage of the scarce data available.

We pre-trained NMT systems to produce back-
translations for the monolingual portions of the
data. We also trained multilingual systems that

make use of language labels on the source sentence
to specify the target language (Johnson et al., 2017).
This has been shown to leverage the information
available data across different language pairs and
boosts performance on the low-resource scenarios.

We submitted five runs for each language pair,
three in track 1 (development set included in train-
ing) and two in track 2 (development set not in-
cluded in training). The best-performing model is
a multilingual Transformer pre-trained on Spanish–
English data and fine-tuned to the ten indigenous
languages. The (partial or complete) inclusion of
the development set during training consistently
led to substantial improvements.

The collected data sets and data processing code
are available from our fork of the organizers’ Git
repository.1

2 Data preparation

A main part of our effort was directed to finding
relevant corpora that could help with the translation
tasks, as well as to make the best out of the data
provided by the organizers. In order to have an ef-
ficient procedure to maintain and process the data
sets for all the ten languages, we utilized the Opus-
Filter toolbox2 (Aulamo et al., 2020). It provides
both ready-made and extensible methods for com-
bining, cleaning, and filtering parallel and mono-
lingual corpora. OpusFilter uses a configuration
file that lists all the steps for processing the data;
in order to make quick changes and extensions pro-
grammatically, we generated the configuration file
with a Python script.

Figure 1 shows a part of the applied OpusFil-
ter workflow for a single language pair, Spanish–
Raramuri, and restricted to the primary training
data. The provided training set and (concatenated)

1https://github.com/Helsinki-NLP/
americasnlp2021-st

2https://github.com/Helsinki-NLP/
OpusFilter, version 2.0.0-beta.
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Figure 1: Diagram of the OpusFilter workflow used for
Spanish (es) – Raramuri (tar) training data. Boxes are
OpusFilter steps and arrows are data files.

additional parallel data are first independently nor-
malized and cleaned (preprocess), then concate-
nated, preprocessed with common normalizations,
filtered from duplicates, and finally filtered from
noisy segments.

2.1 Data collection

We collected parallel and monolingual data from
several sources. An overview of the resources, in-
cluding references and URLs, is given in Tables 3
and 4 in the appendix.

Organizer-provided resources The shared task
organizers provided parallel datasets for training
for all ten languages. These datasets are referred
to as train in this paper. For some of the languages
(Ashaninka, Wixarika and Shipibo-Konibo), the
organizers pointed participants to repositories con-
taining additional parallel or monolingual data. We
refer to these resources as extra and mono respec-
tively. Furthermore, the organizers provided devel-
opment and test sets for all ten language pairs of
the shared task (Ebrahimi et al., 2021).

OPUS The OPUS corpus collection (Tiedemann,
2012) provides only few datasets for the relevant
languages. Besides the resources for Aymara
and Quechua provided by the organizers as offi-

cial training data, we found an additional paral-
lel dataset for Spanish–Quechua, and monolingual
data for Aymara, Guarani, Hñähñu, Nahuatl and
Quechua. These resources are also listed under
extra and mono.

Constitutions We found translations of the Mex-
ican constitution into Hñähñu, Nahuatl, Raramuri
and Wixarika, of the Bolivian constitution into Ay-
mara and Quechua, and of the Peruvian constitu-
tion into Quechua.3 We extracted the data from
the HTML or PDF sources and aligned them with
the Spanish version on paragraph and sentence lev-
els. The latter was done using a standard length-
based approach with lexical re-alignment, as in
hunalign4 (Varga et al., 2005), using paragraph
breaks as hard boundaries. They are part of the
extra resources.

Bibles The JHU Bible corpus (McCarthy et al.,
2020) covers all languages of the shared task with
at least one Bible translation. We found that some
translations were near-duplicates that only differed
in tokenization, and removed them. For those lan-
guages for which several dialectal varieties were
available, we attempted to select subsets based on
the target varieties of the shared task, as specified
by the organizers (see Tables 3 and 4 for details).
All Spanish Bible translations in the JHUBC are
limited to the New Testament. In order to maxi-
mize the amount of parallel data, we substituted
them by full-coverage Spanish Bible translations
from Mayer and Cysouw (2014).5

Since we have multiple versions of the Bible in
Spanish as well as in some of the target languages,
we applied the product method in OpusFilter
to randomly take at most 5 different versions of
the same sentence (skipping empty and duplicate
lines).

2.2 Data normalization and cleaning

We noticed that some of the corpora in the same
language used different orthographic conventions
and had other issues that would hinder NMT model
training. We applied various data normalization

3Two additional resources, a translation of a Peruvian law
into Shipibo-Konibo and a translation of the Paraguayan con-
stitution into Guarani, are provided on our repository, but they
became available too late to be included in the translation
models. They are listed under extra* in Tables 3 and 4.

4https://github.com/danielvarga/
hunalign

5We would like to thank Garrett Nicolai for helping us
with the conversion.
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language code train extra combined dedup filtered bibles monoling backtr dev

Ashaninka cni 3883 0 3883 3860 3858 38846 13195 17278 883
Aymara aym 6531 8970 15501 8889 8352 154520 16750 17886 996
Bribri bzd 7508 0 7508 7303 7303 38502 0 0 996
Guarani gn 26032 0 26032 14495 14483 39457 40516 62703 995
Hñähñu oto 4889 2235 7124 7056 7049 39726 537 366 599
Nahuatl nah 16145 2250 18395 17667 17431 39772 9222 8450 672
Quechua quy 125008 284517 409525 260680 228624 154825 60399 68503 996
Raramuri tar 14720 2255 16975 16815 16529 39444 0 0 995
Shipibo-Konibo shp 14592 28936 43528 28854 28854 79341 23595 38329 996
Wixarika hch 8966 2654 11620 11541 11525 39756 511 493 994

Table 1: Numbers of segments in the data sets (train: training set provided by the organizers, extra: additional
training data collected by the organizers and us, combined: combined training data, dedup: combined training
without duplicates, filtered: training data filtered with all filters, bibles: generated Bible data segments after fil-
tering, monoling: monolingual data after filtering, backtr: back-translations created from monolingual data after
filtering, dev: development set)

and cleaning steps to improve the quality of the
data, with the goal of making the training data
more similar to the development data (which we
expected to be similar to the test data).

For Bribri, Raramuri and Wixarika, we found
normalization scripts or guidelines on the organiz-
ers’ Github page or sources referenced therein (cf.
the norm entries in Tables 3 and 4). We reimple-
mented them as custom OpusFilter preprocessors.

Bribri, Hñähñu, Nahuatl, and Raramuri training
sets were originally tokenized. Following our de-
cision to use untokenized input for unsupervised
word segmentation, we detokenized the respective
corpora with the Moses detokenizer supported by
OpusFilter, using the English patterns.

Finally, for all datasets, we applied OpusFil-
ter’s WhitespaceNormalizer preprocessor, which
replaces all sequences of whitespace characters
with a single space.

2.3 Data filtering

The organizer-provided and extra training data sets
were concatenated before the filtering phase. Then
all exact duplicates were removed from the data
using OpusFilter’s duplicate removal step. After
duplicate removal, we applied some predefined fil-
ters from OpusFilter. Not all filters were applied to
all languages; instead, we selected the appropriate
filters based on manual observation of the data and
the proportion of sentences removed by the filter.
Appendix A describes the filters in detail.

2.4 Back-translations

We translated all monolingual data to Spanish, us-
ing early versions of both Model A and Model
B (see Section 3), in order to create additional

synthetic parallel training data. A considerable
amount of the back-translations produced by Model
A ended up in a different language than Spanish,
whereas some translations by Model B remained
empty. We kept both outputs, but aggressively fil-
tered them (see Appendix A), concatenated them,
and removed exact duplicates.

2.5 Data sizes

For most language pairs, the Bibles made up the
largest portion of the data. Thus we decided to
keep the Bibles separate from the other smaller,
but likely more useful, training sources. Table 1
shows the sizes of the training datasets before and
after filtering as well as the additional datasets. It
can be seen that there is a difference of almost
two orders of magnitude between the smallest (cni)
and largest (quy) combined training data sets. The
addition of the Bibles and back-translations evens
out the differences to some extent.

2.6 Spanish–English data

Model B (see below) takes advantage of abun-
dant parallel data for Spanish–English. These re-
sources come exclusively from OPUS (Tiedemann,
2012) and include the following sources: Open-
Subtitles, Europarl, JW300, GlobalVoices, News-
Commentary, TED2020, Tatoeba, bible-uedin. All
corpora are again filtered and deduplicated, yield-
ing 17,5M sentence pairs from OpenSubtitles and
4,4M sentence pairs from the other sources taken
together. During training, both parts are assigned
the same weight to avoid overfitting on subtitle data.
The Spanish–English WMT-News corpus, also from
OPUS, is used for validation.
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Data Model Run aym bzd cni gn hch nah oto quy shp tar Average

dev B-50dev 1 0.390 0.392 0.414 0.408 0.409 0.426 0.313 0.457 0.452 0.317 0.398
A-50dev 3 0.330 0.322 0.385 0.337 0.351 0.359 0.251 0.361 0.352 0.272 0.332
B-0dev 5 0.327 0.238 0.268 0.311 0.299 0.298 0.147 0.338 0.317 0.196 0.274
A-0dev 4 0.245 0.188 0.240 0.260 0.255 0.251 0.138 0.245 0.292 0.159 0.227

test B-100dev 2 0.310 0.213 0.332 0.376 0.360 0.301 0.228 0.394 0.399 0.258 0.317
B-50dev 1 0.302 0.204 0.324 0.367 0.348 0.294 0.191 0.383 0.380 0.248 0.304
A-50dev 3 0.261 0.177 0.306 0.311 0.311 0.273 0.181 0.318 0.286 0.216 0.264
B-0dev 5 0.283 0.165 0.258 0.336 0.304 0.266 0.147 0.343 0.329 0.184 0.262
A-0dev 4 0.216 0.130 0.236 0.276 0.254 0.243 0.141 0.252 0.294 0.155 0.220

Table 2: chrF2 scores for the five submissions, computed on the development set and test set. Note that only 50%
of the development set is used for evaluation for the 50dev submissions. The chrF2 scores for B-100dev on the
development set are all above 0.98, but they are not meaningful since it was fully included in training. The Run
column provides the numeric IDs with which our submissions are listed in the overview paper.

3 Models

We experimented with two major model setups,
which we refer to by A and B below. Both are mul-
tilingual NMT models based on the Transformer
architecture (Vaswani et al., 2017) and are imple-
mented with OpenNMT-py 2.0 (Klein et al., 2017).
All models were trained on a single GPU.

The training data is segmented using Sentence-
Piece (Kudo and Richardson, 2018) subword mod-
els with 32k units, trained jointly on all languages.
Following our earlier experience (Scherrer et al.,
2020), subword regularization (Kudo, 2018) is ap-
plied during training. Further details of the config-
urations are listed in Appendix B.

3.1 Model A

Model A is a multilingual translation model with
11 source languages (10 indigenous languages +
Spanish) and the same 11 target languages. It is
trained on all available parallel data in both direc-
tions as well as all available monolingual data. The
target language is specified with a language label
on the source sentence (Johnson et al., 2017).

The model was first trained for 200 000 steps,
weighting the Bibles data to occur only 0.3 times
as much as all the other corpora. We picked the last
checkpoint, since it attained the best accuracy and
perplexity in the combined development set. This
model constitutes submission A-0dev.

Then, independently for each of the languages,
we fine-tuned this model for another 2 500 steps on
language-specific data, including 50% of the devel-
opment set of the corresponding language. These
models, one per language, constitute submission
A-50dev.

3.2 Model B
Model B is a multilingual translation model with
one source language (Spanish) and 11 target lan-
guages (10 indigenous languages + English). It is
trained on all available parallel data with Spanish
on the source side using target language labels.6

The training takes place in two phases. In the
first phase, the model is trained on 90% of Spanish–
English data and 1% of data coming from each of
the ten American languages. With this first phase,
we aim to take advantage of the large amounts
of data to obtain a good Spanish encoder. In the
second phase, the proportion of Spanish–English
data is reduced to 50%.7

We train the first phase for 100k steps and pick
the best intermediate savepoint according to the
English-only validation set, which occurred after
72k steps. We then initialize two phase 2 models
with this savepoint. For model B-0dev, we change
the proportions of the training data and include the
back-translations. For model B-50dev, we addi-
tionally include a randomly sampled 50% of each
language’s development set. We train both mod-
els until 200 000 steps and pick the best interme-
diate savepoint according to an eleven-language
validation set, consisting of WMT-News and the
remaining halves of the ten development sets.

Since the inclusion of development data showed
massive improvements, we decided to continue
training from the best savepoint of B-50dev (156k),
adding also the remaining half of the development

6To generate the back-translations, we used an analogous,
but distinct model trained on 11 source languages and one
target language.

7We experimented also with language-specific second
phase training, but ultimately opted for a single run combining
all eleven language pairs.
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Figure 2: ChrF2 scores obtained with different training configurations of model B. Note: to improve the readability
of the graph, the plotted values are smoothed by averaging over three consecutive training steps.

set to the training data. This model, referred to as B-
100dev, was trained for an additional 14k steps until
validation perplexity reached a local minimum.

4 Results

We submitted three systems to track 1 (develop-
ment set allowed for training), namely A-50dev,
B-50dev and B-100dev, and two systems to track 2
(development set not allowed for training), namely
A-0dev and B-0dev. The results are in Table 2.

In track 1, our model B-100dev reached first rank
and B-50dev reached second rank for all ten lan-
guages. Model A-50dev was ranked third to sixth,
depending on the language. This shows that model
B consistently outperformed model A, presumably
thanks to its Spanish–English pre-training. Includ-
ing the full development set in training (B-100dev)
further improves the performance, although this im-
plies that savepoint selection becomes guesswork.

For track 2, the tendency is similar. Model B-
0dev was ranked first for nine out of ten languages,
taking 2nd rank for Spanish–Quechua. A-0dev was
ranked second to fourth on all except Quechua.8

4.1 Ablation study
We investigate the impact of our data selection
strategies via an ablation study where we repeat
the second training phase of model B with several
variants of the B-0dev setup. In Figure 2 we show
intermediate evaluations on the concatenation of
the 10 development sets every 2000 training steps.

8After submission, we noticed that the Quechua backtrans-
lations were generated with the wrong model. This may ex-
plain the poor performance of our systems on this language.

The green curve, which corresponds to the B-
0dev model, obtains the highest maximum scores.
The impact of the back-translations is considerable
(blue vs. green curve) despite their presumed low
quality. The addition of Bibles did not improve the
chrF2 scores (blue vs. orange curve). We presume
that this is due to the mismatch in linguistic vari-
eties, spelling and genre. It would be instructive to
break down this effect according to the language.

The application of the OpusFilter pipeline to
the train and extra data (yellow vs. orange curve)
shows a positive effect at the beginning of the train-
ing, but this effect fades out later.

Finally, and rather unsurprisingly, our corpus
weighting strategy (50% English, 50% indigenous
languages, blue curve) outperforms the weighting
strategy employed during the first training phase
(90% English, 10% indigenous languages, grey
curve). It could be interesting to experiment with
even lower proportions of English data, taking into
account the risk of catastrophic forgetting.

5 Conclusions

In this paper, we describe our submissions to
the AmericasNLP shared task, where we submit-
ted translations for all ten language pairs in both
tracks. Our strongest system is the result of gath-
ering additional relevant data, carefully filtering
the data for each language pair and pre-training a
Transformer-based multilingual NMT system with
large Spanish-English parallel data. Except for
Spanish-Quechua in track 2, all our submissions
ranked top for both tracks.
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A OpusFilter settings

The following filters were used for the training data
except for back-translated data and Bibles:

• LengthFilter: Remove sentences longer than
1000 characters. Applied to Aymara, Nahuatl,
Quechua, Raramuri.

• LengthRatioFilter: Remove sentences with
character length ratio of 4 or more. Applied to
Ashaninka, Aymara, Guarani, Hñähñu, Nahu-
atl, Quechua, Raramuri, Wixarika.

• CharacterScoreFilter: Remove sentences for
which less than 90% characters are from the
Latin alphabet. Applied to Aymara, Quechua,
Raramuri.

• TerminalPunctuationFilter: Remove sen-
tences with dissimilar punctuation; threshold
-2 (Vázquez et al., 2019). Applied to Aymara,
Quechua.

• NonZeroNumeralsFilter: Remove sentences
with dissimilar numerals; threshold 0.5
(Vázquez et al., 2019). Applied to Aymara,
Quechua, Raramuri, Wixarika.

The Bribri and Shipibo-Konibo corpora seemed
clean enough that we did not apply any filters for
them.

After generating the Bible data, we noticed that
some of the lines contained only a single ’BLANK’
string. The segments with these lines were removed
afterwards.

From the provided monolingual datasets, we fil-
tered out sentences with more than 500 words.

The back-translated data was filtered with the
following filters:

• LengthRatioFilter with threshold 2 and word
units

• CharacterScoreFilter with Latin script and
threshold 0.9 on the Spanish side and 0.7 on
the other side

• LanguageIDFilter with a threshold of 0.8 for
the Spanish side only.

B Hyperparameters

Model A uses a 6-layered Transformer with 8
heads, 512 dimensions in the embeddings and 1024
dimensions in the feed-forward layers. The batch
size is 4096 tokens, with an accumulation count
of 8. The Adam optimizer is used with beta1=0.9
and beta2=0.998. The Noam decay method is used
with a learning rate of 3.0 and 40000 warm-up
steps. Subword sampling is applied during training
(20 samples, α = 0.1).

Model B uses a 8-layered Transformer with 16
heads, 1024 dimensions in the embeddings and
4096 dimensions in the feed-forward layers. The
batch size is 9200 tokens in phase 1 and 4600 to-
kens in phase 2, with an accumulation count of
4. The Adam optimizer is used with beta1=0.9
and beta2=0.997. The Noam decay method is used
with a learning rate of 2.0 and 16000 warm-up
steps. Subword sampling is applied during training
(20 samples, α = 0.1). As a post-processing step,
we removed the <unk> tokens from the outputs of
model B.
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Aymara
aym

train GlobalVoices (Tiedemann, 2012; Prokopidis et al., 2016)

extra BOconst: https://www.kas.de/c/document_library/get_
file?uuid=8b51d469-63d2-f001-ef6f-9b561eb65ed4&
groupId=288373

bibles ayr-x-bible-2011-v1, ayr-x-bible-1997-v1

mono Wikipedia crawls (Tiedemann, 2020)

Bribri
bzd

train (Feldman and Coto-Solano, 2020)

bibles bzd-x-bible-bzd-v1

norm https://github.com/AmericasNLP/
americasnlp2021/blob/main/data/bribri-spanish/
orthographic-conversion.csv

Ashaninka
cni

train https://github.com/hinantin/AshaninkaMT (Ortega et al.,
2020; Cushimariano Romano and Sebastián Q., 2008; Mihas, 2011)

bibles cni-x-bible-cni-v1

mono ShaShiYaYi (Bustamante et al., 2020): https://github.com/
iapucp/multilingual-data-peru

Guarani
gn

train (Chiruzzo et al., 2020)

extra* PYconst: http://ej.org.py/principal/
constitucion-nacional-en-guarani/

bibles gug-x-bible-gug-v1

mono Wikipedia crawls (Tiedemann, 2020)

Wixarika
hch

train https://github.com/pywirrarika/wixarikacorpora (Mager
et al., 2018)

extra MXconst: https://constitucionenlenguas.inali.gob.mx/

bibles hch-x-bible-hch-v1

mono https://github.com/pywirrarika/wixarikacorpora (Mager
et al., 2018)

norm https://github.com/pywirrarika/wixnlp/blob/master/
normwix.py (Mager Hois et al., 2016)

Nahuatl
nah

train Axolotl (Gutierrez-Vasques et al., 2016)

extra MXConst: https://constitucionenlenguas.inali.gob.mx/

bibles nch-x-bible-nch-v1, ngu-x-bible-ngu-v1, nhe-x-bible-nhe-v1, nhw-x-bible-nhw-
v1

mono Wikipedia crawls (Tiedemann, 2020)

Table 3: Data used for training (1). train refers to the official training data provided by the organizers, whereas
extra refers to additional parallel non-Bible data. Corpora marked with extra* are available on our repository but
were not used in the translation experiments.
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Hnähñu
oto

train Tsunkua: https://tsunkua.elotl.mx/about/

extra MXConst: https://constitucionenlenguas.inali.gob.mx/

bibles ote-x-bible-ote-v1

mono JW300 (Tiedemann, 2012; Agić and Vulić, 2019)

Quechua
quy

train JW300 (quy+quz) (Agić and Vulić, 2019)

MINEDU + dict_misc: https://github.com/AmericasNLP/
americasnlp2021/tree/main/data/quechua-spanish

extra Tatoeba (Tiedemann, 2012)

BOconst: https://www.kas.de/documents/252038/
253252/7_dokument_dok_pdf_33453_4.pdf/
9e3dfb1f-0e05-523f-5352-d2f9a44a21de?version=1.
0&t=1539656169513

PEconst: https://www.wipo.int/edocs/lexdocs/laws/qu/
pe/pe035qu.pdf

bibles quy-x-bible-quy-v1, quz-x-bible-quz-v1

mono Wikipedia crawls (Tiedemann, 2020)

Shipibo-
Konibo
shp

train (Galarreta et al., 2017; Montoya et al., 2019)

extra Educational and Religious from http://chana.inf.pucp.edu.pe/
resources/parallel-corpus/

extra* LeyArtesano: https://cdn.www.gob.pe/uploads/document/
file/579690/Ley_Artesano_Shipibo_Konibo_baja__1_
.pdf

bibles shp-SHPTBL

mono ShaShiYaYi (Bustamante et al., 2020): https://github.com/
iapucp/multilingual-data-peru

Raramuri
tar

train (Brambila, 1976)

extra MXConst: https://constitucionenlenguas.inali.gob.mx/

bibles tac-x-bible-tac-v1

norm https://github.com/AmericasNLP/americasnlp2021/
pull/5

Spanish bibles spa-x-bible-americas, spa-x-bible-hablahoi-latina, spa-x-bible-lapalabra, spa-
x-bible-newworld, spa-x-bible-nuevadehoi, spa-x-bible-nuevaviviente, spa-x-
bible-nuevointernacional, spa-x-bible-reinavaleracontemporanea

Table 4: Data used for training (2). train refers to the official training data provided by the organizers, whereas
extra refers to additional parallel non-Bible data. Corpora marked with extra* are available on our repository but
were not used in the translation experiments.
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Abstract

Transformer language models have become
fundamental components of natural language
processing based pipelines. Although several
Transformer models have been introduced to
serve many languages, there is a shortage of
models pre-trained for low-resource and In-
digenous languages. In this work, we intro-
duce IndT5, the first Transformer language
model for Indigenous languages. To train
IndT5, we build IndCorpus–a new dataset for
ten Indigenous languages and Spanish. We
also present the application of IndT5 to ma-
chine translation by investigating different ap-
proaches to translate between Spanish and the
Indigenous languages as part of our contribu-
tion to the AmericasNLP 2021 Shared Task on
Open Machine Translation. IndT5 and IndCor-
pus are publicly available for research.1

1 Introduction

Indigenous languages are starting to attract at-
tention in the field of natural language process-
ing (NLP), with the number of related publica-
tions growing in recent years (Mager et al., 2018).
In spite of this interest, there remains a multi-
tude of challenges for handling Indigenous lan-
guages. Complexity of the morphological systems
of some of these languages and lack of standard
orthography for writing them are among these chal-
lenges (Mager et al., 2018; Littell et al., 2018). The
most fundamental issue facing NLP efforts, how-
ever, remains the lack of digital textual data that
can be exploited for systems development.

In this work, we describe a scenario usually
faced when trying to develop NLP systems for In-
digenous languages and we focus on machine trans-
lation (MT). We adopt a neural machine translation
approach (NMT) (Koehn, 2017) as our method. We
show that, in spite of its recent success on many

1https://github.com/UBC-NLP/IndT5

Figure 1: A map of the ten Indigenous languages cov-
ered by IndT5, our text-to-text Transformer model, and
our IndCorpus dataset. The languages are mainly spo-
ken in five Latin American countries.

contexts, NMT still struggles in very low-resource
settings involving Indigenous languages. This is
due to the core difficulty of lack of parallel textual
data, but also even monolingual data.

Although our main goal in this work in particu-
lar is to develop translation models from Spanish
to several Indigenous languages of the Americas,
we adopt a transfer learning approach where we
offer resources that can be exploited for other down-
stream tasks. Namely, we build a dataset for ten
Indigenous languages and Spanish which we refer
to as IndCorpus. Figure 1 and Table 1 provide
an overview of the ten Indigenous languages in our
new dataset (Eberhard et al., 2021). We also exploit
IndCorpus for pre-training a Transformer lan-
guage model following the unified approach intro-
duced by (Raffel et al., 2019). Our resulting model,
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Language Code Main location Speakers
Aymara aym Bolivia 1,677,100
Asháninka cni Peru 35,200
Bribri bzd Costa Rica 7,000
Guarani gn Paraguay 6,652,790
Hñähñu oto Mexico 88,500
Nahuatl nah Mexico 410,000
Quechua quy Peru 7,384,920
Rarámuri tar Mexico 9,230
Shipibo-Konibo shp Peru 22,500
Wixarika hch Mexico 52,500

Table 1: Overview of our ten Indigenous languages
(Eberhard et al., 2021).

IndT5, treats every text NLP problem as a “text-
to-text" problem, i.e. taking text as input and pro-
ducing new text as output. We apply IndT5 to the
MT task as a way to transfer knowledge acquired
by the model to this particular context. Our experi-
ments show the utility of our new language model
and the dataset it exploits for the downstream In-
digenous MT task but that very large space for
improvement still exists.

The rest of the paper is organized as follows: In
Section 2, we introduce recent MT work in low-
resource and Indigenous languages settings. In
Section 3, we describe how we develop our new
language model for ten Indigenous languages. In
Section 4, we describe our NMT models. We con-
clude in Section 5.

2 Related Work

2.1 Low-Resource MT
A number of methods and techniques have been
proposed to mitigate the effects of having rather
small datasets for machine translation. These in-
clude data augmentation, transfer learning, hyper-
parameter tuning, incorporating linguistic knowl-
edge, and knowledge distillation.

Since the main bottleneck of low-resource MT is
the lack of abundant parallel textual data, data aug-
mentation is straightforwardly a potential method
to enhance the model performance. Back transla-
tion is a way to augment parallel data (Sennrich
et al., 2016a). By training a target-to-source transla-
tion model with original data and feeding in mono-
lingual data of target language, synthetic parallel
data is generated. If the target language is rich in
textual data, much synthetic parallel data can be
added into training data and may benefit the final
translation model.

Transfer learning is another method that can
boost the performance of MT on low-resource lan-
guages (Zoph et al., 2016; Nguyen and Chiang,
2017; Kocmi and Bojar, 2018). The rationale be-
hind one approach to transfer learning is that knowl-
edge obtained while translating high-resource lan-
guages may be transferable to translation of low-
resource languages. In Zoph et al. (2016), a parent
model is first trained on a high-resource language
pair (i.e., French to English) then a child model is
trained on a low-resource language pair (i.e., Uzbek
to English). The Uzbek-English model has 10.7
BLEU score without parent model and 15.0 with
the parent model. It is also shown that the more
similar the two source languages, the more perfor-
mance gain is possible. For example, a Spanish-
English MT model has 16.4 BLEU score without
parent model and 31.0 with French-English parent
model. The performance gain is much more than
when transferring French-English parent model to
the more distant context of the Uzbek-English child
model.

Sennrich and Zhang (2019) argue that instead of
using hyperparameters that work in high-resource
settings, there should be a set of hyperparameters
specific to the low-resource scenario. For example,
keeping the vocabulary size small, training a model
with relatively small capacity, and having smaller
batch size may be beneficial to model performance.
When building a vocabulary with BPE, by reduc-
ing the the number of merge operations, a smaller
vocabulary can be obtained and an inclusion of low-
frequency (sub)words can be avoided. Inclusion of
inclusion of low-frequency (sub)words could other-
wise negatively influencing representation learning
effectiveness.

Leveraging linguistic knowledge for data aug-
mentation, Zhou et al. (2019) use a rule-based syn-
tax parser and a dictionary to generate parallel
data. By reordering target-language sentences into
source-language syntactic structure and then map-
ping target-language words into source-language
words with a dictionary, the size of parallel data is
enlarged and translation performance is improved.

Baziotis et al. (2020) leverage a language model
to help enhance the performance of the translation
model. Similar to the idea of knowledge distillation
(Hinton et al., 2015), a teacher model and a student
model are trained where the language model plays
the role of teacher and translation model plays the
role of student. With this design, the teacher model
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needs only monolingual data and does not have to
rely on large parallel data.

2.2 MT of Indigenous Languages

Unlike high-resource languages such as English
and French, Indigenous languages are often low-
resource. Due to this, it is common that researchers
of Indigenous languages adopt methods that can
fare well in low-resource scenarios. This includes
using the Transformer architecture and its variants
in both low-resource (Adebara et al., 2021, 2020;
Przystupa and Abdul-Mageed, 2019) and Indige-
nous language (Feldman and Coto-Solano, 2020;
Orife, 2020; Le and Sadat, 2020) settings.

Despite the fact that Indigenous languages face
difficulties similar to most low-resource languages,
there are some challenges specific to Indigenous
languages. As Mager et al. (2018) point out, some
Indigenous languages have complex morphological
systems and some have various non-standardized
orthographic conventions. For example, Micher
(2018) shows that in Inuktitut, an Indigineous lan-
guage in North America with a complex morpho-
logical system, a corpus of one million tokens,
there are about 225K different types for Inuktitut
while about 30K types for English. Also, Micher
(2018) shows that there can be lack of standardized
spelling for some words. For example, the word
Haammalat in Inuktitut has another seven different
forms.

To cope with the issue of complex morphol-
ogy, Ortega et al. (2020) build a translation model
for Qeuchua, an Indigenous language of South
America, with an integrated morphological seg-
mentation method. To treat orthographic variation,
Feldman and Coto-Solano (2020) standardize text
with a rule-based system which converts diacritics
and letters to contemporary orthographic conven-
tion.

3 IndT5

We train an Indigenous language model adopting
the unified and flexible text-to-text transfer Trans-
former (T5) approach (Raffel et al., 2019). T5
treats every text-based language task as a “text-
to-text" problem, taking text format as input and
producing new text format as output. T5 is essen-
tially an encoder-decoder Transformer (Vaswani
et al., 2017), with the encoder and decoder simi-
lar in configuration and size to a BERTBase(Devlin
et al., 2019) but with some architectural modifica-

tions. Modifications include applying a normaliza-
tion layer before a sub-block and adding a pre-norm
(i.e., initial input to the sub-block output). We call
our resulting model IndT5. We now describe our
dataset, vocabulary, and pre-training method for
developing IndT5.

3.1 Training Data

We build IndCorpus, a collection of ten Indige-
nous languages and Spanish comprising 1.17 GB
of text (∼5.37M sentences), to pre-train IndT5.
IndCorpus is collected from both Wikipedia and
the Bible. Table 2 provides the size and number of
sentences for each language in our dataset.

3.2 IndT5 Vocabulary

The T5 (Raffel et al., 2019) model is based on a
vocabulary acquired by the SentencePiece library2

using English, French, German, and Romanian web
pages from “Colossal Clean Crawled Corpus" (or
C4 for short). We use a similar procedure to create
our Indigenous languages vocabulary. Namely, we
use SentencePiece (Kudo, 2018) to encode text as
WordPiece (Sennrich et al., 2016b) tokens with
a vocabulary size of 100K WordPieces extracted
from IndCorpus.

3.3 Unsupervised Pre-Training

We leverage our unlabeled Indigenous corpus,
IndCorpus, to pre-train IndT5. For that, we
use a denoising objective (Raffel et al., 2019) that
does not require labels. The main idea is feeding
the model with corrupted (masked) versions of the
original sentence, and training it to reconstruct the
original sentence. Inspired by BERT’s objective
(i.e., masked language model) (Devlin et al., 2019),
the denoising objective (Raffel et al., 2019) works
by randomly sampling and dropping out 15% of
tokens in the input sequence. All consecutive spans
of dropped-out tokens are then replaced by a sin-
gle sentinel token. We pre-train our model for
100K steps on the IndCorpus using the T5Base

architecture.3 We refer to this model as IndT5100k.
Afterwards, we further pre-train on only the ten
Indigenous languages part of our dataset (i.e., with-
out the Spanish data) for 40K steps. We refer to
this version of the model as IndT5140k. For both
pre-training steps, we use a learning rate of 0.01,

2https://github.com/google/
sentencepiece

3Both encoder and decoder of T5Base model has 12 layers
each with 12 attention heads, and 768 hidden units.
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Target language Wikipedia Bible
Size (MB) Sentences Size (MB) Sentences

Hñähñu - - 1.4 7.5K
Wixarika - - 1.3 7.5K
Nahuatl 5.8 61.1K 1.5 7.5K
Guarani 3.7 28.2K 1.3 7.5K
Bribri - - 1.5 7.5K
Rarámuri - - 1.9 7.5K
Quechua 5.9 97.3K 4.9 31.1K
Aymara 1.7 32.9K 5 30.7K
Shipibo-Konibo - - 1 7.9K
Asháninka - - 1.4 7.8K
Spanish 1.13K 5M - -

Total 1.15K 5.22M 19.8 125.3K

Table 2: Datasets in IndCorpus by language

Languages Train Dev Test
es-aym 6, 531 996 1, 003
es-cni 3, 883 883 1, 003
es-bzd 7, 506 996 1, 003
es-gn 26, 032 995 1, 003
es-oto 4, 889 599 1, 003
es-nah 16, 145 672 1, 003
es-quy 125, 008 996 1, 003
es-tar 14, 720 995 1, 003
es-shp 14, 592 996 1, 003
es-hch 8, 966 994 1, 003

Table 3: Distribution of MT data

a batch size of 128 sequences, and a maximum
sequence length of 512. We use the original imple-
mentation of T5 in the TensorFlow framework. 4.
We train the models on Google Cloud TPU with
8 cores (v3.8) from TensorFlow Research Cloud
(TFRC).5

4 Our Machine Translation Models

4.1 Parallel Data
As part of the AmericasNLP 2021 Shared Task on
Open Machine Translation, the training (Train) and
development (Dev) datasets for ten target Indige-
neous languages along with the source language
Spanish were released. All the datasets are manu-
ally translated. Table 3 shows the number of sen-
tences of different language pairs in shared task

4https://github.com/google-research/
text-to-text-transfer-transformer

5https://www.tensorflow.org/tfrc

data. Table 4 provides example sentences extracted
from the Dev dataset with their corresponding trans-
lations.

4.2 Approach

For all languages pairs except quy and gn, we
fine-tune each of the two versions of our language
model, i.e., both IndT5100k and IndT5140k, under
two conditions: (A) we train on Train using 100%
of Dev data for validation, for 150 epochs; (B)
we fine-tune the best epoch from setting A for 50
epochs, adding 80% of Dev data to Train (using
the remaining 20% Dev for validation).

4.3 Evaluation

We report the results of both IndT5100k and
IndT5140k models using two metrics: BLEU
score (Papineni et al., 2002) and ChrF++ (Popović,
2017). Tables 5 and 6 show the results of both
models on Test sets for each of the language pairs
using settings A and B described in Section 4.2,
respectively.

4.4 Discussion

The results presented in Table 5 and Table 6 show
that all our models, with both settings A and B,
outperform the respective baselines across all lan-
guages. An exception is the languages aym and
shp. As expected, fine-tuning the IndT5100k and
IndT5140k models using the training data and 80%
of the Dev data (i.e., setting B) improves the results
with a mean of +0.003% and +0.04% in ChrF++
on the Test data, respectively. Interestingly, fur-
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Pair Sentence Translation

es-aym
Algunos actores usan el teatro comunitario para mejorar. Yaqhip akturanakax juk’amp yatsuñatakiw ayllunkir tiyatrur mantapxi.

Los artistas de IRT ayudan a los niños en las escuelas. IRT artistanakax jisk’a yatiqañ utankir wawanakaruw yanapapxi.

es-cni
Pensé que habías ido al campamento. Nokenkeshireashitaka pijaiti imabeyetinta.

Viajar es un beneficio que obtenemos. Akenayeeterika aparo ayeeti aneakeri.

es-bzd
Fui a un seminario que se hizo vía satélite. Ye’ dë’rö seminario ã wéx yö’ satélite kı̃.

El grupo está interesado en temas ambientales. E’ wakpa kı̃ ujtè kiànã e’ dör káx ajkóqnũk.

es-gn
Veía a su hermana todos los días. Ko’êko’êre ohecha heindýpe.

Ramona nunca ha estado en Concord. Ramona noîriva Concord-pe.

es-nah
Santo trabajó para Disney y operó las tazas de té. zanto quitequitilih Disney huan quinpexontih in cafen caxitl

La hermana de la abuela no era blanca. ihueltiuh in cihtli ixchipahuac catca

es-quy
De vez en cuando me gusta comer ensalada. Yananpiqa ensaladatam mikuytam munani

Ellos vivían en Broad Street. Broad Streetpi paykuna yacharqaku.

es-tar
Es un hombre griego. Bilé rejói Griego ju

Nuestro padre dijo que no los llamaran animales. Kini onó aniyé mapu ke chuwé namúti anéba ajaré jákami.

es-shp
El Museo se ve afectado por las inversiones. Ja Museora en oinai inversionesbaon afectana.

Loren Field es el científico principal de la escuela Nato Loren Field riki científico rekena axeti xobonko

es-hch
Era una selva tropical. pe h+k+t+kai metsi+ra+ ye tsie nieka ti+x+kat+.

Son más económicos porque son realmente buenos en gas. p+ h+k+ nip+ka raye at+ka aix+ m+ anenek+ ik+ gas.

Table 4: Example sentences of the various language pairs and corresponding translations (from Dev set).

Pair Baseline Setting A Setting B
Bleu ChrF++ Bleu ChrF++ Bleu ChrF++

aym 0.3 0.188 1.01 0.178 0.76 0.186
cni 0.03 0.104 0.09 0.176 0.09 0.178
bzd 0.54 0.077 0.86 0.11 0.89 0.111
oto 0.01 0.059 0.03 0.081 0.04 0.083
nah 0.33 0.182 - - 0.16 0.196
tar 0.01 0.046 0.06 0.102 - -
hch 3.18 0.126 4.95 0.186 5.09 0.186

Table 5: Evaluation results of IndT5100k in BLEU and
ChrF++ on the Test sets for the different language pairs.

ther pre-training IndT5 on only the ten Indigenous
languages (i.e. target languages) produces better
results with an average improvement of +0.003%
and +0.004% in settings A and B, respectively.
Overall, the impact of limited data is clear.

5 Conclusion

In this work, we introduced a new Trans-
former language model (IndT5) and a dataset
(IndCorpus) for ten Indigenous languages and
Spanish. We applied IndT5 to the MT task on
eight languages pairs as part of our submission
to the AmericasNLP 2021 Shared Task. While
IndT5 helps improve translation, the task remains
hard due to absence of parallel as well as mono-

Pair Baseline Setting A Setting B
Bleu ChrF++ Bleu ChrF++ Bleu ChrF++

aym 0.3 0.188 0.820 0.182 0.990 0.190
cni 0.03 0.104 0.070 0.178 0.080 0.183
bzd 0.54 0.077 0.990 0.112 0.940 0.113
oto 0.01 0.059 0.030 0.082 0.040 0.084
nah 0.33 0.182 0.150 0.188 0.160 0.196
tar 0.01 0.046 0.080 0.102 0.050 0.105
shp 0.34 0.139 0.160 0.124 0.230 0.124
hch 3.18 0.126 5.100 0.194 5.520 0.195

Table 6: Evaluation results of IndT5140k in BLEU and
ChrF++ on the Test sets for the different language pairs.

lingual data. In the future, we plan to integrate
statistical MT methods to augment our data as well
as investigate best hyperparameters for our neural
models.
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Doğruöz, A. Seza, 218

Ebrahimi, Abteen, 202

Fan, Angela, 202
Fernanda Pereira de Freitas, Marília, 28

Giménez-Lugo, Gustavo, 202
Giossa, Nicolás, 153
Góngora, Santiago, 153
Gutierrez-Vasques, Ximena, 34, 202

Hämäläinen, Mika, 28
Harrigan, Atticus, 113, 143
Henderson, Robert, 10
Hernández, Amadeo, 218
Hershcovich, Daniel, 248
Howell, Nick, 44

Ingunza Torres, Adriano, 102

Jimerson, Robert, 90

Kann, Katharina, 202

Knowles, Rebecca, 224
Kuznetsova, Anastasia, 81

Larkin, Samuel, 224
Le, Ngoc Tan, 159
Lillehaugen, Brook, 185
Littell, Patrick, 224
Liu, Zoey, 90
Lopez, Felipe, 185

Mager-Hois, Elisabeth, 202
Mager, Manuel, 202
Marrese-Taylor, Edison, 234
Matsuo, Yutaka, 234
Meza Ruiz, Ivan Vladimir, 168, 202
Mijangos, Victor, 34
Miller, John, 102
Moreno, Oscar, 241
Motlicek, Petr, 218
Murrieta Bello, Héctor, 248

Nagoudi, El Moatez Billah, 265
Neubig, Graham, 202
Nitschke, Remo, 122
Nouvel, Damien, 163

Oncevay, Arturo, 102, 194, 202
Ortega-Mendoza, Rosa M., 218
Ortega, John, 202

Palmer, Alexis, 202
Panda, Subhadarshi, 218
Pankratz, Elizabeth, 1
Parida, Shantipriya, 218
Park, Hyunji, 131
Partanen, Niko, 28
Prud’hommeaux, Emily, 90
Pugh, Robert, 21

Ramos, Ricardo, 202
Reid, Machel, 234
Rios, Annette, 202
Rueter, Jack, 28

Sadat, Fatiha, 159
Scherrer, Yves, 255

273



Schwartz, Lane, 131
Sharma, Yashvardhan, 218
Shi, Jiatong, 53, 64
Søgaard, Anders, 248
Stewart, Darlene, 224

Tiedemann, Jörg, 255
Tyers, Francis, 10, 21, 44, 81, 131

Vázquez, Raúl, 255
Villatoro-Tello, Esau, 218
Virpioja, Sami, 255
Vu, Ngoc Thang, 202

Washington, Jonathan, 185
Watanabe, Shinji, 53
Wolvengrey, Arok, 143

Yan, Brian, 53

Zacarías Márquez, Delfino, 168
Zariquiey Biondi, Roberto, 102
Zheng, Francis, 234


	Program
	qxoRef 1.0: A coreference corpus and mention-pair baseline for coreference resolution in Conchucos Quechua
	A corpus of K'iche' annotated for morphosyntactic structure
	Investigating variation in written forms of Nahuatl using character-based language models
	Apurinã Universal Dependencies Treebank
	Automatic Interlinear Glossing for Otomi language
	A survey of part-of-speech tagging approaches applied to K'iche'
	Highland Puebla Nahuatl Speech Translation Corpus for Endangered Language Documentation
	End-to-End Automatic Speech Recognition: Its Impact on the Workflowin Documenting Yoloxóchitl Mixtec
	A finite-state morphological analyser for Paraguayan Guaraní
	Morphological Segmentation for Seneca
	Representation of Yine [Arawak
	Leveraging English Word Embeddings for Semi-Automatic Semantic Classification in Nêhiyawêwin (Plains Cree)
	Restoring the Sister: Reconstructing a Lexicon from Sister Languages using Neural Machine Translation
	Expanding Universal Dependencies for Polysynthetic Languages: A Case of St. Lawrence Island Yupik
	The More Detail, the Better? – Investigating the Effects of Semantic Ontology Specificity on Vector Semantic Classification with a Plains Cree / nêhiyawêwin Dictionary
	Experiments on a Guarani Corpus of News and Social Media
	Towards a First Automatic Unsupervised Morphological Segmentation for Inuinnaqtun
	Toward Creation of Ancash Lexical Resources from OCR
	Ayuuk-Spanish Neural Machine Translator
	Explicit Tone Transcription Improves ASR Performance in Extremely Low-Resource Languages: A Case Study in Bribri
	Towards a morphological transducer and orthography converter for Western Tlacolula Valley Zapotec
	Peru is Multilingual, Its Machine Translation Should Be Too?
	Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas
	Open Machine Translation for Low Resource South American Languages (AmericasNLP 2021 Shared Task Contribution)
	NRC-CNRC Machine Translation Systems for the 2021 AmericasNLP Shared Task
	Low-Resource Machine Translation Using Cross-Lingual Language Model Pretraining
	The REPU CS’ Spanish–Quechua Submission to the AmericasNLP 2021 Shared Task on Open Machine Translation
	Moses and the Character-Based Random Babbling Baseline: CoAStaL at AmericasNLP 2021 Shared Task
	The Helsinki submission to the AmericasNLP shared task
	IndT5: A Text-to-Text Transformer for 10 Indigenous Languages

