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Abstract

In linguistics, interlinear glossing is an essen-
tial procedure for analyzing the morphology of
languages. This type of annotation is useful
for language documentation, and it can also
provide valuable data for NLP applications.
We perform automatic glossing for Otomi, an
under-resourced language. Our work also com-
prises the pre-processing and annotation of the
corpus.

We implement different sequential labelers.
CRF models represented an efficient and good
solution for our task (accuracy above 90%).
Two main observations emerged from our
work: 1) models with a higher number of pa-
rameters (RNNs) performed worse in our low-
resource scenario; and 2) the information en-
coded in the CRF feature function plays an im-
portant role in the prediction of labels; how-
ever, even in cases where POS tags are not
available it is still possible to achieve competi-
tive results.

1 Introduction

One of the important steps of linguistic documenta-
tion is to describe the grammar of a language. Mor-
phological analysis constitutes one of the stages
for building this description. Traditionally, this is
done by means of interlinear glossing. This is an
annotation task where linguists analyze sentences
in a given language and they segment each word
with the aim of annotating the morphosyntactic cat-
egories of the morphemes within this word (see
example in Table 1).

This type of linguistic annotated data is a valu-
able resource not only for documenting a language
but it can also enable NLP technologies, e.g., by
providing training data for automatic morphologi-
cal analyzers, taggers, morphological segmentation,
etc.

However, not all languages have this type of an-
notated corpora readily available. Glossing is a

Sentence hí tó=tsogí
Glossing NEG 3.PRF=leave
Translation ’I have not left it’

Table 1: Example of morpheme-by-morpheme glosses
for Otomi

time consuming task that requires linguistic exper-
tise. In particular, low-resource languages lack of
documentation and language technologies (Mager
et al., 2018).

Our aim is to successfully produce automatic
glossing annotation in a low resource scenario. We
focus on Otomi of Toluca, an indigenous language
spoken in Mexico (Oto-Manguean family). This
is a morphological rich language with fusional
tendency. Moreover, it has scarcity of digital re-
sources, e.g., monolingual and parallel corpora.

Our initial resource is a small corpus transcribed
into a phonetic alphabet. We pre-process it and
we perform manual glossing. Once we have this
dataset, we use it for training an automatic glossing
system for Otomi.

By using different variations of Conditional Ran-
dom Fields (CRFs), we were able to achieve good
accuracy in the automatic glossing task (above
90%), regardless the low-resource scenario. Fur-
thermore, computationally more expensive meth-
ods, i.e., neural networks, did not perform as well.

We also performed an analysis of the results
from the linguistics perspective. We explored the
automatic glossing performance for a subset of la-
bels to understand the errors that the model makes.

Our work can be a helpful tool for reducing the
workload when manually glossing. This would
have an impact on language documentation. It can
also lead to an increment of annotated resources
for Otomi, which could be a starting point for de-
veloping NLP technologies that nowadays are not
yet available for this language.
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2 Background

As we have mentioned before, glossing comprises
describing the morphological structure of a sen-
tence by associating every morpheme with a mor-
phological label or gloss. In a linguistic gloss, there
are usually three levels of analysis: a) the segmen-
tation by morphemes; b) the glosses describing
these morphemes; and c) the translation or lexical
correspondences in a reference language.

Several works have tried to automatize this task
by using computational methods. In Snoek et al.
(2014), they use a rule-based approach (Finite State
Transducer) to obtain glosses for Plains Cree, an
Algonquian language. They focus only on the anal-
ysis of nouns. Samardzic et al. (2015) propose a
method for glossing Chintang language; they di-
vide the task into grammatical and lexical gloss-
ing. Grammatical glossing is approached as a su-
pervised part-of-speech tagging, while for lexical
glossing, they use a dictionary. A fully automatized
procedure is not performed since word segmenta-
tion is not addressed.

Some other works have approached the whole
pipeline of automatic glossing as a supervised tag-
ging task using machine learning sequential mod-
els, and they have particularly focused on under-
resourced languages (Moeller and Hulden, 2018;
Anastasopoulos et al., 2018; Zhao et al., 2020). In
Anastasopoulos et al. (2018), they make use of
neural-based models with dual sources, they lever-
age easy-to-collect translations.

In Moeller and Hulden (2018), they perform au-
tomatic glossing for Lezgi (Nakh-Daghestanian
family) under challenging low-resource condi-
tions. They implement different methods, i.e., CRF,
CRF+SVM, Seq2Seq neural network. The best re-
sults are obtained with a CRF model that leverages
POS tags. The glossing is mainly focused on tag-
ging grammatical (functional) morphemes. While
the lexical items are tagged simply as stems.

This latter approach especially influences our
work. In fact, Moeller and Hulden (2018) highlight
the importance of testing these models on other lan-
guages, particularly polysynthetic languages with
fusion and complex morphonology. Our case of
study, Otomi, is precisely a language highly fu-
sional with complex morphophonological patterns,
as we will discuss on Section 3.

Finally, automatic glossing is not only crucial
for aiding linguistic research and language docu-
mentation. This type of annotation is also a valu-

able source of morphological information for sev-
eral NLP tasks. For instance, it could be used
to train state-of-the-art morphological segmenta-
tion systems for low-resource languages (Kann and
Schütze, 2018). The information contained in the
glosses is also helpful for training morphological
reinflection systems (Cotterell et al., 2016), this
consists in predicting the inflected form of a word
given its lemma. It also can help in the automatic
generation of morphological paradigms (Moeller
et al., 2020).

These morphological tools can then be used to
build downstream applications, e.g., machine trans-
lation, text generation. It is noteworthy that these
are language technologies that are not yet available
for all languages, especially for under-resourced
ones.

3 Methodology

3.1 Corpus

Otomi is considered a group of languages spoken
in Mexico (around 300,000 speakers). It belongs
to the Oto-Pamean branch of the Oto-Manguean
family (Barrientos López, 2004). It is a morpho-
logically rich language that shows particular phe-
nomena (Baerman et al., 2019; Lastra, 2001):

• fusional patterns for the inflection of the verbs
(it fuses person, aspect, tense and mood in a
single affix);

• a complex system of inflectional classes;

• stem alternation, e.g., dí=pädi ‘I know’ and
bi=mbädi ‘He knew’;

• complex morphophnological patterns, e.g.,
dí=pädi ‘I know’, dí=pä-hu

¯
‘We know’;

• complex noun inflectional patterns.

Furthermore, digital resources are scarce for this
language.

We focus on the Otomi of Toluca variety.1 Our
starting point is the corpus compiled by Lastra
(1992), which is comprised of narrations and dia-
logues. The corpus was originally transcribed into
a phonetic alphabet. We pre-processed this corpus,
i.e., we performed digitization and orthographic

1An Otomi language spoken in the region of San Andrés
Cuexcontitlán, Toluca, State of Mexico. Usually regarded as
ots (iso639).
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normalization.2 We used the orthographic standard
proposed by INALI (INALI, 2014), although we
had problems in processing the appropriate UTF-8
representations for some of the vocals (Otomi has
a wide range of vowels).

The corpus, then, was manually tagged,3 i.e.,
interlinear glossing and Part Of Speech (POS). We
followed the Leipzig glossing rules (Comrie et al.,
2008).

Domain Count
Narrative 32
Dialogues 4
Total sentences 1769
Total words (tokens) 8550

Table 2: General information about the Otomi corpus

In addition to this corpus, we included 81 extra
short sentences that a linguist annotated; these ex-
amples contained particularly difficult phenomena,
e.g., stem alternation, reduction of the stem and
others. Table 2 contains general information about
the final corpus size.

We also show in Table 3 the top ten most com-
mon POS tags and gloss labels in the corpus. We
can see that the size of our corpus is small com-
pared to the magnitude of resources usually used
for doing in NLP in other languages.

POS tags freq
V 2579
OBL 2443
DET 973
CNJ 835
DEM 543
UNKWN 419
NN 272
NEG 176
P.LOC 81
PRT 49

Gloss freq
stem 7501
DET 733
3.CPL 444
PSD 413
LIM 370
PRAG 357
3.ICP 341
LIG 287
1.ICP 270
DET.PL 269

Table 3: More frequent POS tags and gloss in corpus

3.2 Automatic glossing

We focus on the two first levels of glossing, i.e.,
given an Otomi sentence, our system will be able
to morphologically segment each word and gloss

2The digitized corpus, without any type of annotation, can
be consulted in https://tsunkua.elotl.mx/.

3The manual glossing of this corpus was part of a linguis-
tics PhD dissertation (Mijangos, 2021).

each of the morphemes within the words, as it is
shown in the Example 1. Translation implies a
different level of analysis and, due to the scarce
digital resources, it is not addressed here.

Similar to previous works, we use a closed set of
labels, i.e., we have labels for all the grammatical
(functional) morphemes and a single label for all
the lexical morphemes (stem). We can see in the
Example 1 that morphemes like tsogí (‘leave’) are
labeled as stem.

(1) hí
NEG

tó=tsogí
3.PRF=stem

Once we have a gloss label associated to each
morpheme, we prepare the training data, i.e., we
pair each letter with a BIO-label. BIO-labeling
consists on associating each original label with a
Beginning-Inside-Outside (BIO) label. This means
that each position of a morpheme is declared either
as the beginning (B) or inside (I). We neglected O
(outside). BIO-labels include the morpheme cate-
gory (e.g. B-stem) or affix glosses (e.g. B-PST, for
past tense). For example, the labeled representation
of the word tótsogí would be as follows:

(2) t
B-3.PRF

ó
I-3.PRF

t
B-stem

s
I-stem

o
I-stem

g
I-stem

í
I-stem

As we can see, BIO-labels help to mark the
boundaries of the morphemes within a word, and
they also assign a gloss label to each morpheme.
We followed this procedure from Moeller and
Hulden (2018). Once we have this labeling, we can
train a model, i.e., predict the labels that indicate
the morphological segmentation and the associated
gloss of each morpheme.

In this task, the input would be a string of char-
acters c1, ..., cN and the output is another string
g1, ..., gN which corresponds to a sequence of la-
bels (from a finite set of labels), i.e., the glossing.
In order to perform automatic glossing, we need to
learn a mapping between the input and the output.

3.2.1 Conditional Random Fields
We approach the task of automatic glossing as a
supervised structured prediction. We use CRFs for
predicting the sequence of labels that represents
the interlinear glossing. In particular, we used a
linear-chain CRF.

The CRFs need to represent each of the char-
acters from the input sentence as a vector. This
is done by means of a feature function. In order

https://tsunkua.elotl.mx/
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to map the input sequence into vectors, the fea-
ture function need to take into account relevant
information about the input and output sequences
(features).

Feature functions play a major role in the perfor-
mance of CRF models. In our case, we build these
vectors by taking into account information about
the current letter, the current, previous and next
POS tags, beginning/end of words and sentences,
letter position, and others (see Section 4.1).

LetX = (c1, ..., cN ) be a sequence of characters
representing the input of our model (a sentence),
and Y = (g1, ..., gN ) the output (a sequence of
BIO-labels). The CRF model estimates the proba-
bility:

p(Y |X) =
1

Z

N∏
i=1

exp{wTφ(Y,X, i)} (1)

Here Z is the partition function and w is the
weights vector. φ(Y,X, i) is the vector represent-
ing the ith element in the input sentence. This
vector is extracted by the feature function φ.

The features taken into account by the feature
function depend on the experimental settings, we
specify them below (Section 4.1). Training the
model consists in learn the weights contained in w.

Following Moeller and Hulden (2018), we used
CRFsuite (Okazaki, 2007). This implementa-
tion uses the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) optimization algo-
rithm in order to learn the parameters of the CRF.
Elastic Net regularization (consisting of L1 and
L2 regularization terms) were incorporated in the
optimization procedure.

3.2.2 Other sequential models
We explored three additional sequential models: 1)
a traditional Hidden Markov Model; 2) a vanilla Re-
current Neural Network (RNN); and 3) a biLSTM
model.

Hidden Markov Model: A hidden Markov
Model (HMM) (Baum and Petrie, 1966; Rabiner,
1989) is a classical generative graphical model
which factorizes the joint distribution function into
the product of connected components:

p(g1, ..., gN , c1, ..., cN ) =
N∏
t=1

p(ct|gt)p(gt|gt−1)

(2)

This method calculates the probabilities using
the Maximum Likelihood Estimation method. Like-
wise, the tagging of the test set is made with the
Viterbi algorithm (Forney, 1973).4

Recurrent Neural Networks: In contrast with
HMM, Recurrent Neural Networks are discrimi-
native models which estimate the conditional prob-
ability p(g1, ..., gN |c1, ..., cN ) using recurrent lay-
ers. We used two types of recurrent networks:

1. Vanilla RNN: For the vanilla RNN (Elman,
1990) the recurrent layers were defined as:

h(t) = g(W [h(t−1);x(t)] + b) (3)

Here, x(t) is the embedding vector represent-
ing the character ct, t = 1, ..., N , in the se-
quence and [h(t−1);x(t)] is the concatenation
of the previous recurrent layer with this em-
bedding vector.

2. biLSTM RNN: The bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) or biL-
STM uses different gates to process the recur-
rent information. However, it requires of a
higher number of parameters to train. Each
biLSTM layer is defined by:

h(t) = biLSTM(h(t−1), x(t)) (4)

where h(t−1) = [
−→
h (t−1);

←−
h (t−1)] is the con-

catenation of the forward and backward recur-
rent layers.

In each RNN model we used one embedding
layer previous to the recurrent layers in order to ob-
tain vector representations of the input characters.

4 Experiments

4.1 Experimental Setup

For CRFs we propose three different experimental
settings.5 Each setting varies in the type of fea-
tures that are taken into account. We defined a
general set of features that capture different type of
information:

1. the current character in the input sentence;

4We used Natural Language Toolkit (NLTK) for the HMM
model.

5The code is available on https://github.com/
umoqnier/otomi-morph-segmenter/

https://github.com/umoqnier/otomi-morph-segmenter/
https://github.com/umoqnier/otomi-morph-segmenter/
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2. indication if the character is the beginning/end
of word;

3. indication if the word containing the character
is the beginning/end of a sentence;

4. the position of the character in the word;

5. previous and next characters (character win-
dow);

6. the current word POS tag, and also the previ-
ous and the next one; and

7. a bias term.6

To sum up, the CRF takes the information of the
current character as input; but in order to obtain
contextual information, we also take into consider-
ation the previous and next character. Grammatical
information is provided by the POS tag of the word
in which the character appears. In addition to this,
we add the POS tag of the previous and next words.
These are our CRF settings:

• CRFlinear: This setting considers all the
information available, i.e., the features that
we mentioned above.

• CRFPOSLess: In this setting we excluded
the POS tags.

• CRFHMMLike: This setting takes into ac-
count the minimum information, i.e. infor-
mation about the current letter and the im-
mediately preceding one. We use this name
because this configuration contains similar in-
formation as the HMMs but using CRFs to
build them.7

As previously mentioned, we included other se-
quential methods for the sake of comparison, i.e.,
a simple Hidden Markov Model, which can be see
as the baseline since it is the simpler model, and
two neural-based models: a basic vanilla RNN and
a biLSTM model.

The embedding dimension was 100 units for
both the vanilla RNN and the biLSTM models.8

In both neural-based models we used one hidden,
6The bias feature captures the proportion of a given label

in the training set, i.e., it is a way to express that some labels
are rare while others not.

7The maximum number of iterations in all cases was 50.
8Both RNN models were trained in similar environments:

150 iterations, with a learning rate of 0.1 and Stochastic Gra-
dient Descent (SGD) as optimization method.

recurrent layer; the activation for the vanilla RNN
was the hyperbolic tangent. The dimension of the
vanilla and LSTM hidden layers was 200.9

The features used in the CRF settings are implic-
itly taken into account by the neural-based models.
Except for the POS tags, we did not include that in-
formation in the neural settings. In this sense, these
last neural methods contain the same information
as the CRFPOSLess setting.

4.2 Results

We evaluated our CRF-based automatic glossing
models by using k-Fold Cross-Validation. We used
k = 3 due to the small dataset size.

For the other sequential methods, we performed
a hold-out evaluation.10 In all cases we preserved
the same proportion between training and test
datasets (see Table 4).

Instances (sentences)
Train 1180
Test 589

Table 4: Dataset information for every model

We report the accuracy, we also calculated the
precision, recall and F1-score for every label in the
corpus. Table 5 contains the results for all settings.

We can see that the CRF based models outper-
formed the other methods in the automatic glossing
task. Among the CRF settings, CRFHMMLike was
the one with the lowest accuracy (and also preci-
sion and recall), this CRF used the least informa-
tion/features, i.e., the current character of the input
sentence and the previous emitted label.

This is probably related to the fact that Otomi
has a rich morphological system (with prefixes and
suffixes), therefore, the lack of information about
previous and subsequent characters affects the ac-
curacy in the prediction of gloss labels.

The CRF settings CRFPOSLess and the
CRFlinear are considerably better. The variations
between these two settings is small, although the
accuracy of CRFlinear is higher. Interestingly, the
lack of POS tags does not seem to affect the ac-
curacy that much. If the glossing is still accurate
(above 90%) after excluding POS tags, this could
be convenient, especially in low-resource scenarios,

9The code for the neural-based models is available
on https://github.com/VMijangos/Glosado_
neuronal

10We took this decision due to computational cost.

https://github.com/VMijangos/Glosado_neuronal
https://github.com/VMijangos/Glosado_neuronal
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Accuracy Precision
(avg)

Recall
(avg)

F1-score
(avg)

CRFlinear 0.962 0.910 0.880 0.870
CRFPOSLess 0.948 0.909 0.838 0.856
CRFHMMLike 0.880 0.790 0.791 0.754
HMM 0.878 0.877 0.851 0.858
Vanilla RNN 0.741 0.504 0.699 0.583
biLSTM 0.563 0.399 0.654 0.489

Table 5: Results for the different experimental setups

where this type of annotation may not always be
available for training the model.

We do not know if this observation could be gen-
eralized to all languages. In the case of Otomi, the
information encoded in the features could be good
enough for capturing the morphological structure
and word order that is important for predicting the
correct label.

Additionally, we tried several variations on
the hyperparameters of Elastic Net regularization
(CRFs), however, we did not obtain significant im-
provements (see Appendix A).

The model that we took as the baseline, the
HMM, obtained a lower performance compared to
the CRF settings (0.878). However, if we take into
consideration that HMM was the simpler model,
its performance is surprisingly good.

The performance of CRFHMMLike is very simi-
lar to that of HMM. As we mentioned before, these
two settings make use of the same information, but
their approach is different: CRFs are discriminative
while HMMs are generative.

The neural approaches that we implemented
were not the most suitable for our task. They ob-
tained the lowest accuracy, 0.741 for the vanilla
RNN and 0.563 for the biLSTM. This result might
seem striking, especially since neural approaches
are by far the most popular nowadays in NLP.

5 Discussion

5.1 CRFs vs RNNs
We have several conjectures that could explain why
neural approaches were not the most accurate for
our particular task. For instance, we observed that
the performance of the RNN models (vanilla and
biLSTM) was highly sensitive to the frequency of
the labels. Both neural models performed better for
high frequency labels (such as stem).

In principle, the models that we used for auto-
matic glossing have conceptual differences. HMMs

are generative models, while CRFs and neural mod-
els are discriminative. This distinction, however,
does not seem to influence the results. The HMM
performed better than the neural-based models but
it was outperformed by the CRFs.

CRFs and neural networks mainly in the way
they process the input data. While CRFs depend on
the initial features selected by an expert, neural net-
works process a simple representation of the input
data (one-hot vectors) through a series of hidden
layers which rely on a large number of parameters.

The number of parameters is a key factor in neu-
ral networks, they usually have a large number of
parameters that allows them to generalize well in
complex tasks. For example, the biLSTM model
has the highest number of parameters, while the
vanilla RNN has a considerably reduced number of
parameters.

However, theoretically, a model with higher ca-
pacity will also require a larger number of examples
to generalize adequately (Vapnik, 1998). The ca-
pacity on neural-based models depends on the num-
ber of parameters (Shalev-Shwartz and Ben-David,
2014). This could be problematic in terms of low-
resource scenarios. In fact, in our experiments, the
model with the highest number of parameters, the
biLSTM, performed the worst. Models with fewer
parameters, such as HMM and CRFs outperformed
the neural-based models by a large margin.

It is worth mentioning that we are aware that
hyperparameters and other factors can strongly in-
fluence neural model’s performance. There could
be variations that result in more suitable solutions
for this task. However, overall, this would proba-
bly represent a more expensive solution than using
CRFs (or even a HMM).

Our results seem consistent with previous works
for the same task where neural approaches fail
to outperform CRFs in low-resource scenarios
(Moeller and Hulden, 2018).
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Complex models with many parameters might
not be the most efficient solution in these types of
low-resource scenarios. However, we leave this as
an interesting research question for the future.

Finally, our proposed models, CRFlinear and the
CRFPOSLess, seemed to be the best alternative for
the task of automatic glossing of Otomi.

5.2 Linguistic perspective

In this section we focus on the results from a more
qualitative point of view. We discuss some inguis-
tic particularities of Otomi and how they affected
the performance of the models. We also present
an analysis of how the best evaluated method, i.e.
CRFlinear, performed for a selected subset of gloss
labels.

As we mentioned in previous sections, the in-
formation comprised in the features seems to be
decisive in the performance of the CRF models.
When some of these features were removed, per-
formance tended to decay.

For the correct labeling of Otomi morphology,
contextual information (previous and next charac-
ters in the sentence) did have an impact in perfor-
mance. This may be attributed to the presence of
both prefixes and affixes in Otomi words. Stem
alternation, for example, is conditioned by the pre-
fixes in the word. Stem reduction is conditioned by
the suffixes. In order to correctly label both stem
and affixes, the system must consider the previous
and next elements.

There exist morphological or syntactic elements
in the sentence that contributes to identify words
category. For example, most of the nouns are pre-
ceded by a determiner (ri

¯
, singular, or yi

¯
, plural).

This kind of information is captured in the features
and can help in the performance of the automatic
glossing task.

Frequency of labels is a factor that influence the
performance of the models. Labels with high fre-
quency are better evaluated. For the neural-based
models the impact of frequency was more pro-
nounced. However, despite of the low-resource
scenario we were able to achieve good results with
the CRFs (above 90%).

Languages exhibit a wide range of complexity
in their morphological systems. Otomi has several
phenomena that may seem difficult to capture by
the automatic models. However, even when lan-
guages have complex morphological systems, there
are frequent and informative patterns (e.g. inflec-

tional affixes) that can help to the recognition of
them. This hypothesis is reflected in the low en-
tropy conjecture (Ackerman and Malouf, 2013),
which concerns the organization of morphological
patterns in order to make morphology learnable.
This hypothesis points out that morphological or-
ganization seeks to reduce uncertainty.

Label Precision Recall F1-score Instances
DET 1 0.99 1 228

DET.PL 0.99 0.99 0.99 91
3.CPL 0.96 1 0.98 144
PRAG 0.97 0.99 0.98 116
stem 0.96 0.97 0.96 2396
CTRF 0.95 0.97 0.96 89
3.ICP 0.93 0.94 0.94 118
3.PLS 1 0.86 0.92 28
3.PSS 0.80 1 0.89 8
PRT 0.50 0.22 0.31 18

Table 6: Results from the CRFlinear model on a subset
of the glossing labels

Table 6 presents the evaluation results for a sub-
set of the labels used for the automatic glossing.
These labels are linguistically interesting as there
is a contrast between productive and unproductive
elements.

We can observe that labels like stem, 3.CPL

(third person completive) or CTRF (counterfactual)
were correctly labeled most of the time, as they
were systematic and very frequent.

Items like PRT (particle) had lower frequency, a
lower recall and lower precision. The lower recall
could be attributed to the fact that PRT is not sys-
tematic, i.e. multiple forms can take the same label.
Therefore, it is more difficult to discriminate.

PRAG (pragmatic mark) appears only in verbs,
and always in the same position (at the end of the
word), this probably made this mark more easy
to discriminate, thus, more easy to predict by the
model. It is interesting that this morpheme was
relatively frequent but it did not bear semantic in-
formation as it only provided discursive nuances
(it can be translated as the filler word ‘well’).

The 3.ICP (third person incompletive) label rep-
resents an aspect morpheme which is used very
often since it is applied in the present tense and
habitual situations. It always appears before the
verb and in the same position, it seemed easier to
predict. Therefore, this label has a high precision
and recall.

The 3.PLS (third person pluscuamperfect) label
also shows a systematic use before the verb; how-
ever, the latter did have a lower frequency on the
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corpus, what seems to have caused a lower recall.
Otomi has two determiner morphemes: one for

singular number (DET) and one for plural number
(DET.PL). The one for the plural is clearly distin-
guished from other morphemes as it has the form
yi
¯
. However, for the singular number, the form is ri

¯which is the same as the form for the third person
possessive (3.PSS). We believe that this fact made
the label 3.PSS more prone to be incorrectly labeled
(it showed a lower precision). In some cases, the
model tended to incorrectly label the form ri

¯
by

preferring the most frequent label DET. This could
explain the lower accuracy of 3.PSS compared to
DET.

In general, productive affixes were correctly la-
beled by our automatic system. This may represent
a significant advantage in terms of aiding linguis-
tic manual annotation. Productive and frequent
morphemes may represent a repetitive annotation
task that can be easily substituted by an automatic
glossing system.

Even in the understanding that the glossing sys-
tem is not 100% accurate, it is probably easier for
a human annotator to correct problematic misla-
bels than to do all the process from scratch. In this
sense, automatic glossing can simplify the task of
manually glossing, and, therefore, it can help in the
process of language documentation.

6 Conclusion

We focused on the task of automatic glossing for
Otomi of Toluca, an indigenous language with com-
plex morphological phenomena. We faced a low-
resource scenario where we had to digitize, nor-
malize and annotate a corpus available for this lan-
guage.

We applied a CRF based labeler with different
variations in regard to the features that were taken
into account by the model. Moreover, we included
other sequential models, a HMM (baseline) and
two RNN models.

CRFs outperfomed the baseline (HMM) but also
the RNN models (Vanilla RNN and biLSTM). The
CRF setting that took into account more informa-
tion (encoded by the feature function) had the best
performance. We also noticed that excluding POS
tags do not seem to harm the system’s performance
that much. This could be an advantage since auto-
matic POS tagging is a resource not always avail-
able for under resourced languages.

Furthermore, we provided a linguistically moti-

vated insight of which labels were easier to predict
by our system.

Our automatic glossing labeler was able to
achieve an accuracy of 96.2% (and 94.8% with-
out POS tags). This sounds promising for reducing
the workload when manually glossing. This can
represent a middle step not only for strengthen lan-
guage documentation but also for facilitating the
creation of language technologies that can be useful
for the speakers of Otomi.
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A Appendix

The following are the detailed results of the three
different settings for CRF models. We report
average accuracy score. The prefixes in the
model names mean whether regularization terms
L1 and/or L2 were configured.

For example, the prefix reg means that both
terms were present and conversely noreg means
that no term is considered. Finally, l1_zero and
l2_zero means if L1 or L2 term is equal to zero.

The variation of regularization parameters
probed slight improvements between models of
the same setting as can be showed in tables 7, 8
and 9.

Accuracy
CRFHMMLike_l2_zero 0.8800

CRFHMMLike_reg 0.8760
CRFHMMLike_noreg 0.8710

CRFHMMLike_l1_zero 0.8707

Table 7: CRFHMMLike setting results

Accuracy
CRFPOSLess_reg 0.9482

CRFPOSLess_l2_zero 0.9472
CRFPOSLess_l1_zero 0.9442
CRFPOSLess_noreg 0.9407

Table 8: CRFPOSLess setting results

Accuracy
CRFlinear_reg 0.9624

CRFlinear_l2_zero 0.9598
CRFlinear_l1_zero 0.9586
CRFlinear_noreg 0.9586

Table 9: CRFlinear setting results


