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Abstract

This paper describes the team ("Tamalli")’s
submission to AmericasNLP2021 shared task
on Open Machine Translation for low resource
South American languages. Our goal was to
evaluate different Machine Translation (MT)
techniques, statistical and neural-based, un-
der several configuration settings. We ob-
tained the second-best results for the language
pairs “Spanish-Bribri", “Spanish-Asháninka",
and “Spanish-Rarámuri" in the category “De-
velopment set not used for training". Our per-
formed experiments will serve as a point of
reference for researchers working on MT with
low-resource languages.

1 Introduction

The main challenges in automatic Machine Transla-
tion (MT) are the acquisition and curation of paral-
lel data and the allocation of hardware resources for
training and inference purposes. This situation has
become more evident for Neural Machine Trans-
lation (NMT) techniques, where their translation
quality depends strongly on the amount of available
training data when offering translation for a lan-
guage pair. However, there is only a handful of lan-
guages that have available large-scale parallel cor-
pora, or collections of sentences in both the source
language and corresponding translations. Thus,
applying recent NMT approaches to low-resource
languages represent a challenging scenario.

In this paper, we describe the participation of our
team (aka, Tamalli) in the Shared Task on Open
Machine Translation held in the First Workshop
on NLP for Indigenous Languages of the Amer-
icas (AmericasNLP) (Mager et al., 2021).1 The
main goal of the shared task was to encourage the
development of machine translation systems for
indigenous languages of the Americas, categorized
as low-resources languages. This year 8 different
teams participated with 214 submissions.

Accordingly, our main goal was to evaluate
the performance of traditional statistical MT tech-
niques, as well as some recent NMT techniques
under different configuration settings. Overall, our
results outperformed the baseline proposed by the
shared task organizers, and reach promising results
for many of the considered pair languages.

The paper is organized as follows: Section 2
briefly describes some related work; Section 3 de-
picts the methodology we followed for performing
our experiments. Section 4 provides the dataset
descriptions. Section 5 provides the details from
our different settings, and finally Section 6 depict
our main conclusions and future work directions.

2 Related work

Machine Translation (Garg and Agarwal, 2018) is
a field in NLP that aims to translate natural lan-

1http://turing.iimas.unam.mx/
americasnlp/st.html

http://turing.iimas.unam.mx/americasnlp/st.html
http://turing.iimas.unam.mx/americasnlp/st.html
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guages. Particularly, the development of (MT)
systems for indigenous languages in both South
and North America, faces different challenges such
as a high morphological richness, agglutination,
polysynthesis, and orthographic variation (Mager
et al., 2018b; Llitjós et al., 2005). In general, MT
systems for these languages in the state-of-the-
art have been addressed by the sub-fields of ma-
chine translation: rule-based (Monson et al., 2006),
statistical (Mager Hois et al., 2016) and neural-
based approaches (Ortega et al., 2020; Le and Sa-
dat, 2020). Recently, NMT approaches (Stahlberg,
2020) have gained prominence; they commonly
are based on sequence-to-sequence models using
encoder-decoder architectures and attention mech-
anisms (Yang et al., 2020). From this perspective,
different morphological segmentation techniques
have been explored (Kann et al., 2018; Ortega et al.,
2020) for Indigenous American languages.

It is known that the NMT approaches are based
on big amounts of parallel corpora as source knowl-
edge. To date, important efforts toward creating
parallel corpora have been carried out for spe-
cific indigenous languages of America. For exam-
ple, for Spanish-Nahuatl (Gutierrez-Vasques et al.,
2016), Wixarika-Spanish (Mager et al., 2020) and
Quechua-Spanish (Llitjós et al., 2005) which in-
cludes morphological information. Also, the JHU
Bible Corpus, a parallel text, has been extended
by adding translations in more than 20 Indigenous
North American languages (Nicolai et al., 2021).
The usability of the corpus was demonstrated by
using multilingual NMT systems.

3 Methodology

Since the data sizes are small in most language
pairs as shown in Table 1, we used a statistical
machine translation model. We also used NMT
models. In the following sections, we describe the
details of each of these approaches.

3.1 Statistical MT

For statistical MT, we relied on an IBM model
2 (Brown et al., 1993) which comprises a lexical
translation model and an alignment model. In ad-
dition to the word-level translation probability, it
models the absolute distortion in the word posi-
tioning between source and the target languages
by introducing an alignment probability, which en-
ables to handle word reordering.

3.2 Neural MT
For NMT, we first tokenized the text using sen-
tence piece BPE tokenization (Kudo and Richard-
son, 2018).2 The translation model architecture we
used for NMT is the transformer model (Vaswani
et al., 2017). We trained the model in two different
setups as outlined below.

One-to-one: In this setup, we trained the model
using the data from one source language and one
target language only. In the AmericasNLP20213

shared task, the source language is always Span-
ish (es). We trained the transformer model using
Spanish as the source language and one of the in-
digenous languages as the target language.

One-to-many: Since the source language (Span-
ish) is constant for all the language pairs, we consid-
ered sharing the NMT parameters across language
pairs to obtain gains in translation performance as
shown in previous work (Dabre et al., 2020). For
this, we trained a one-to-many model by sharing
the decoder parameters across all the indigenous
languages. Since the model needs to generate the
translation in the intended target language, we pro-
vided that information as a target language tag in
the input (Lample and Conneau, 2019). The token
level representation is obtained by the sum of token
embedding, positional embedding, and language
embedding.

4 Dataset

For training and evaluating our different configu-
rations, we used the official datasets provided by
the organizers of the shared task. It is worth men-
tioning that we did not use additional datasets or
resources for our experiments.

A brief description of the dataset composition
is shown in Table 1. For all the language pairs,
the task was to translate from Spanish to some of
the following indigenous languages: Hñähñu (oto),
Wixarika (wix), Nahuatl (nah), Guaraní (gn), Bribri
(bzd), Rarámuri (tar), Quechua (quy), Aymara
(aym), Shipibo-Konibo (shp), Asháninka (cni). For
the sake of brevity, we do not provide all the char-
acteristics of every pair of languages. The inter-
ested reader is referred to (Gutierrez-Vasques et al.,

2We also compared the BPE subword tokenization to word-
level tokenization using Moses tokenizer and character level
tokenization. We found that the best results were obtained
using the BPE subword tokenization.

3http://turing.iimas.unam.mx/
americasnlp/

http://turing.iimas.unam.mx/americasnlp/
http://turing.iimas.unam.mx/americasnlp/
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Language-pair
Train(#Tokens) Dev(#Tokens) Test(#Tokens)

#Sentences Source Target #Sentences Source Target #Sentences Source

es-aym 6531 128154 97276 996 11129 7080 1003 10044
es-bzd 7508 46820 41141 996 11129 12974 1003 10044
es-cni 3883 48752 26096 883 9605 6070 1003 10044
es-gn 26032 604841 405984 995 11129 7191 1003 10044
es-hch 8966 68683 48919 994 11129 10296 1003 10044
es-nah 16145 470003 351580 672 6329 4300 1003 10044
es-oto 4889 68226 72280 599 5115 5069 1003 10044
es-quy 125008 1898377 1169644 996 11129 7406 1003 10044
es-shp 14592 88447 62850 996 11129 9138 1003 10044
es-tar 14720 141526 103745 995 11129 10377 1003 10044

Table 1: Statistics of the official dataset. The statistics include the number of sentences and tokens (train/dev/test)
for each language pair.

Task
Baseline Tamalli Best Competitor

BLEU CharF Submission# BLEU CharF BLEU CharF

es-aym 0.01 0.157 4 0.03 0.202 2.29 0.283
es-bzd 0.01 0.068 3 1.09 0.132 2.39 0.165
es-cni 0.01 0.102 1 0.01 0.253 3.05 0.258
es-gn 0.12 0.193 5 1.9 0.207 6.13 0.336
es-hch 2.2 0.126 1 0.01 0.214 9.63 0.304
es-nah 0.01 0.157 1 0.03 0.218 2.38 0.266
es-oto 0 0.054 1 0.01 0.118 1.69 0.147
es-quy 0.05 0.304 5 0.96 0.273 2.91 0.346
es-shp 0.01 0.121 1 0.06 0.204 5.43 0.329
es-tar 0 0.039 1 0.04 0.155 1.07 0.184

Table 2: Evaluation Results. All results are from the “Track2: Development Set Not Used for Training". For all
the tasks, the source language is Spanish. The table contains the best results of our team against the best score by
the competitor in its track.

2016; Mager et al., 2018a; Chiruzzo et al., 2020;
Feldman and Coto-Solano, 2020; Agić and Vulić,
2019; Prokopidis et al., 2016; Galarreta et al., 2017;
Ebrahimi et al., 2021) for knowing these details.

5 Experimental results

We used 5 settings for all the 10 pair translations.
The output of each set is named as version [1-5]
and submitted for evaluation (shown under column
Submission# in Table 2). Among the 5 versions,
version [1] is based on statistical MT, and version
[2-5] is based on NMT with different model con-
figurations. For model evaluation, organizers pro-
vided a script that uses the metrics BLEU and ChrF
for machine translation evaluation. The versions
and their configuration details are explained be-
low. We included the best results only from all the

versions [1-5] in Table 2.

Version 1: Version 1 uses the statistical MT. The
source and target language text were first tok-
enized using Moses tokenizer setting the language
to Spanish. Then we trained the IBM transla-
tion model 2 (Brown et al., 1993) implemented
in nltk.translate api. After obtaining the
translation target tokens, the detokenization was
carried out using the Moses Spanish detokenizer.

Version 2: This version uses the one-to-one
NMT model. First, we learned sentence piece BPE
tokenization (Kudo and Richardson, 2018) by com-
bining the source and target language text. We set
the maximum vocabulary size to {8k, 16k, 32k}
in different runs and we considered the run that
produced the best BLEU score on the dev set. The
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transformer model (Vaswani et al., 2017) was im-
plemented using PyTorch (Paszke et al., 2019). The
number of encoder and decoder layers was set to 3
each and the number of heads in those layers was
set to 8. The hidden dimension of the self-attention
layer was set to 128 and the position-wise feed-
forward layer’s dimension was set to 256. We used
a dropout of 0.1 in both the encoder and the de-
coder. The encoder and decoder embedding layers
were not tied. We trained the model using early
stopping with a patience of 5 epochs, that is, we
stop training if the validation loss does not improve
for 5 consecutive epochs. We used greedy decod-
ing for generating the translations during inference.
The training and translation were done using one
GPU.

Version 3: This version uses the one-to-many
NMT model. For tokenization, we learned sen-
tence piece BPE tokenization (Kudo and Richard-
son, 2018) by combining the source and target lan-
guage text from all the languages (11 languages in
total). We set the maximum shared vocabulary size
to {8k, 16k, 32k} in different runs and we consid-
ered the run that produced the best BLEU score on
the dev set. The transformer model’s hyperparame-
ters were the same as in version 2. The language
embedding dimension in the decoder was set to 128.
The encoder and decoder embedding layers were
not tied. We first trained the one-to-many model till
convergence using early stopping with the patience
of 5 epochs, considering the concatenation of the
dev data from all the language pairs. Then we
fine-tuned the best checkpoint using each language
pair’s data separately. The fine-tuning process was
also done using early stopping with patience of
5 epochs. Finally, we used greedy decoding for
generating the translations during inference. The
training and translation were done using one GPU.

Version 4: This version is based on one-to-one
NMT. We have used the Transformer model as
implemented in OpenNMT-py (PyTorch version)
(Klein et al., 2017).4. To train the model, we used
a single GPU and followed the standard “Noam”
learning rate decay,5 see (Vaswani et al., 2017;
Popel and Bojar, 2018) for more details. Our start-
ing learning rate was 0.2 and we used 8000 warm-
up steps. The model es-nah trained up to 100K
iterations and the model checkpoint at 35K was

4http://opennmt.net/
5https://nvidia.github.io/OpenSeq2Seq/

html/api-docs/optimizers.html

selected based on the evaluation score (BLEU) on
the development set.

Version 5: This version is based on One-to-One
NMT. We have used the Transformer model as im-
plemented in OpenNMT-tf (Tensorflow version)
(Klein et al., 2017). To train the model, we used
a single GPU and followed the standard “Noam”
learning rate decay,6 see (Vaswani et al., 2017;
Popel and Bojar, 2018) for more details. We used
8K shared vocab size for the models and the model
checkpoints were saved at an interval of 2500 steps.
The starting learning rate was 0.2 and 8000 warm-
up steps were used for model training. The early-
stopping criterion was ‘less than 0.01 improvement
in BLEU score’ for 5 consecutive saved model
checkpoints. The model es-gn was trained up to
37.5K iterations and the model checkpoint at 35K
was selected based on evaluation scores on the de-
velopment set. The model es-quy was trained up to
40K iterations and the model checkpoint at 32.5K
was selected based on evaluation scores on the de-
velopment set.

We report the official automatic evaluation re-
sults in Table 2. The machine translation evalu-
ation matrices BLEU (Papineni et al., 2002) and
ChrF (Popović, 2017) used by the organizers to
evaluate the submissions. Based on our observa-
tion, the statistical approach performed well as
compared to NMT for many language pairs as
shown in the Table 2 (Parida et al., 2019). Also,
among NMT model settings one-to-one and one-
to-many perform well based on the language pairs.

6 Conclusions

Our participation aimed at analyzing the perfor-
mance of recent NMT techniques on translating in-
digenous languages of the Americas, low-resource
languages. Our future work directions include: i)
investigating corpus filtering and iterative augmen-
tation for performance improvement (Dandapat and
Federmann, 2018), ii) review already existing ex-
tensive analyses of these low-resource languages
from a linguistic point of view and adapt our meth-
ods for each language accordingly, iii) exploring
transfer learning approach by training the model
on a high resource language and later transfer it to
a low resource language (Kocmi et al., 2018).

6https://nvidia.github.io/OpenSeq2Seq/
html/api-docs/optimizers.html

http://opennmt.net/
https://nvidia.github.io/OpenSeq2Seq/html/api-docs/optimizers.html
https://nvidia.github.io/OpenSeq2Seq/html/api-docs/optimizers.html
https://nvidia.github.io/OpenSeq2Seq/html/api-docs/optimizers.html
https://nvidia.github.io/OpenSeq2Seq/html/api-docs/optimizers.html
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