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Abstract

A principal barrier to training temporal rela-
tion extraction models in new domains is the
lack of varied, high quality examples and the
challenge of collecting more. We present a
method of automatically collecting distantly-
supervised examples of temporal relations. We
scrape and automatically label event pairs
where the temporal relations are made explicit
in text, then mask out those explicit cues, forc-
ing a model trained on this data to learn other
signals. We demonstrate that a pre-trained
Transformer model is able to transfer from
the automatically labeled examples to human-
annotated benchmarks in both zero-shot and
few-shot settings, and that the masking scheme
is important in improving generalization.1

1 Introduction

Temporal relation extraction has largely focused on
identifying pairwise relationships between events
in text. Past work on annotating temporal relations
has struggled to devise annotations schemes which
are both comprehensive and easy to judge (Puste-
jovsky et al., 2003; Cassidy et al., 2014). How-
ever, even simplified annotation schemes designed
for crowdsourcing (Ning et al., 2018b; Vashishtha
et al., 2019) can struggle to acquire high-accuracy
judgments about nebulous phenomena, leading to
a scarcity of high-quality labeled data. Compared
to tasks like syntactic parsing (Bies et al., 2012) or
natural language inference (Williams et al., 2018),
there are thus fewer resources for temporal relation
extraction in other domains.

In this work, we present a method of automati-
cally gathering distantly-labeled temporal relation
examples. Unlike traditional distant supervision
methods (Mintz et al., 2009), we do not rely on a
knowledge base, but instead on heuristic cues that

1Code and datasets available at: https://github.
com/xyz-zy/distant-temprel

we will then mask out, forcing the model to make
inferences from the remaining context. We explore
two types of cues, but focus primarily on events
that are anchored to orderable timexes (Goyal and
Durrett, 2019). These examples can be collected
and labeled using an automatic system (Chambers
et al., 2014). By then masking the explicit temporal
indicators, a model trained on these examples can
no longer learn trivial timex-based rules, but must
instead attend to more general temporal context
cues. We show that a pre-trained model fine-tuned
on this data learns general, implicit cues that trans-
fer more broadly to human-annotated benchmarks.
This observation follows a trend of recent work
showing pre-trained models’ ability to generalize
from synthetic data to natural data (Xu et al., 2020;
Marzoev et al., 2020).

We implement our approach with pre-trained
Transformer models (Devlin et al., 2019; Liu et al.,
2019; Clark et al., 2020) similar to a state-of-the-
art temporal relation extraction model from the
literature (Han et al., 2019). Our model is able to
effectively transfer from a distantly-labeled dataset
to the MATRES benchmark (Ning et al., 2018b)
when used to supplement a small number of in-
domain or out-of-domain samples.

2 Classification Model

Our base classification model consists of a pre-
trained Transformer (Vaswani et al., 2017) model
with an appended linear classification layer, rep-
resented in Figure 1. For the majority of our ex-
periments, we use RoBERTa (Liu et al., 2019),
which we found to work better than BERT (Devlin
et al., 2019) and ELECTRA (Clark et al., 2020) for
domain transfer. We chose a single set of hyper-
parameters by tuning to match the performance of
Han et al. (2019); for details see Appendix A.

A single example consists of an event pair

https://github.com/xyz-zy/distant-temprel
https://github.com/xyz-zy/distant-temprel
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Figure 1: Classification model consisting of a pre-
trained transformer model and a linear layer. Event to-
kens are represented by ti, tj and correspond to output
embeddings ei, ej , which are used by the linear classi-
fier to produce a distribution over labels.

in context, which may be a single sentence or
two sentences, and a label from {AFTER, BE-
FORE, EQUALS, VAGUE}, following the annotation
scheme in MATRES. Each example is tokenized
to yield input tokens T = [t1, t2, ..., tn], with event
tokens ti, tj ∈ T . For events consisting of multiple
sub-word tokens, we track only the first token po-
sition. We use the convention of passing events in
text order, where 1 ≤ i < j ≤ n.

The language model then produces output em-
beddings [e1, e2, ..., en]. For classification, we se-
lect the embeddings ei, ej corresponding to the
event token positions, and combine them into a clas-
sification vector, c = [ei; ej ; ei�ej ; ei−ej ] where
� represents elementwise multiplication. Finally,
a linear classification layer produces a distribution
over the four relation labels. Training is done by
maximizing likelihood of labeled samples. We im-
plement this model using PyTorch (Paszke et al.,
2019) and pre-trained models from HuggingFace’s
Transformers library (Wolf et al., 2019).

We benchmark our classification model by train-
ing and evaluating on MATRES. We achieve an F1
of 79.8 with RoBERTa (Liu et al., 2019) and an F1
of 80.3 with ELECTRA (Clark et al., 2020), demon-
strating that our model replicates state-of-the-art
performance achieved by local models (only con-
sidering arcs in isolation), currently 80.3 F1 (Han
et al., 2019).

3 Learning from Distant Data

We aim to create a method of automatically gath-
ering high-quality data that can be applied to
unlabeled text. To this end, we focus on two
techniques identifying explicit temporal indicators.
First, we identify single-sentence examples where
event pairs are automatically labeled via explicit

discourse connectives. Second, we scrape occur-
rences of event pairs that are anchorable to timexes
which determine their relation. We will see that
this second technique is substantially better, and
analyze some factors contributing to the perfor-
mance delta. Although neither technique captures
the gamut of phenomena found in human-labeled
data, pre-trained models’ generalization capabili-
ties and a masking technique tailored for this set-
ting are two tools that enable effective transfer.

For both techniques, we scrape distant exam-
ples from English Gigaword Fifth Edition (Parker
et al., 2011). We extract samples from a balance
of the different news sources present in the dataset.
In both cases, we use the Stanford CoreNLP lexi-
calized parser (Manning et al., 2014) to generate
parse trees for the source text, which can be time-
consuming at scale. However, we can pre-filter
sentences based on the presence of timexes or tar-
get discourse connectives, and so in practice we
only rarely need to invoke the parser. Table 9 in
the Appendix shows collected data samples, and
we describe these two collection methods in more
detail below.

3.1 Temporal Connectives
Words like before, after, during, until, prior to, and
others can indicate the temporal status of events in
text explicitly. Past work has shown that complex
relations can be learned from discourse connec-
tives in non-temporal settings (Nie et al., 2019), so
such connectives can be powerful indicators. We
focus on before and after in this work, as these are
the most common and straightforward to map to a
temporal relation.

To identify connected event pairs, we use the
Stanford CoreNLP lexicalized parser (Manning
et al., 2014) to produce parse trees. We then search
for a related event pair by 1) identifying the con-
nective, 2) finding the closest parent verb phrase,
and 3) finding the closest child verb phrase. These
become the events for the example. When this
identifies modals or auxiliaries, we take the cor-
responding main verb. The label for the example
is simply determined by the before or after con-
nective. Examples are listed in Appendix E; on
inspection, we found this method to be reliable.

3.2 Events Anchored to Time Expressions
Beyond connectives, another cue is the explicit
presence of timexes. An example is shown in Fig-
ure 2: the years 1951 and 1961 determine the order-
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Figure 2: Process of identifying distantly labeled event-
event relations using CAEVO. First, events and timexes
are identified and two of CAEVO’s sieves are applied.
Then, using transitivity, event-event relation is inferred
from associated timexes.

ing of their associated events, assuming each event
can be appropriately linked to the timex.

We use CAEVO (Chambers et al., 2014) to de-
tect event pairs and link events to timexes, which
include explicit datetimes (January, 1961), relative
times (tomorrow) and other natural language indi-
cators (now, until recently). This approach, which
yields both single- and cross-sentence examples,
was explored by Goyal and Durrett (2019), who
noisily labeled data to evaluate their timex embed-
ding model.

First, the input document is annotated by
CAEVO with events and timexes using its parse
trees. Two of its sieves are then applied: the AD-
JACENTVERBTIMEX sieve identifies events that
are anchored to time expressions via a direct path
in the syntactic parse tree, then the TIMETIME-
SIEVE uses a small set of deterministic rules to
label relations between timexes. These two sieves
have high precisions, of 0.74 and 0.90, respectively
(Chambers et al., 2014). Figure 2 shows the re-
sult of applying both sieves. Finally, the system
is able to infer the relations between events that
are anchored to comparable timexes (i.e finished
before published), giving us event pairs usable for
training.

The resulting datasets are reasonably balanced
between BEFORE and AFTER, with sparse EQUAL

examples and no VAGUE examples. A more de-
tailed label breakdown is included in Appendix B.

3.3 Example Masking

These distant examples are gleaned from “trivial”
indicators in the text, which a model like BERT
(Devlin et al., 2019) will overfit to. We observe
that our RoBERTa classifier yields 99.8% accuracy
on a held out BeforeAfter dataset, and evaluating
with the same DistantTimex train/test split of Goyal
and Durrett (2019) results in 96.6% test accuracy.

In order to combat this, we mask the explicit tem-

poral cues identified by our weak labeling process.
Our goal is to induce the model to learn the label
from the remaining tokens, including the event in-
stances themselves and the broader context. Mask-
ing is performed prior to subword tokenization, so
each word or timex gets one mask token per word.
For our BeforeAfter examples, we simply mask the
temporal connective. For our DistantTimex exam-
ples, we use the timex tags generated by CAEVO
to mask all identified timexes present in the context.
This results in masking of not only explicit timexes
(e.g. dates, times), but also of natural language
timexes (e.g. previously, recently). This may occa-
sionally result in “sparse” training examples that
have a high proportion of mask tokens. Refer to
Tables 7-8 in Appendix E for concrete examples.

In spite of this masking, our model is able to
classify distantly-labeled timex examples with 85%
accuracy when evaluating on a held-out set, well
above a majority baseline. This indicates that there
are other temporal cues that the model can use to
determine the temporal relation.

4 Results

We evaluate our distant dataset on several axes.
(1) In zero-shot, few-shot, or transfer settings, to
what extent can this help existing models? (2) How
important is each facet of our distant extraction
setup? (3) What can we say about the distribution
of our data from these techniques? We focus our
evaluation on the English MATRES dataset (Ning
et al., 2018b), a four-class temporal relation dataset
of chiefly newswire data drawn from a number of
different sources.2

We found significant variance in model per-
formance in our transfer for small data settings,
so most results use average best performance or
majority-vote ensembled performance of three ran-
domly seeded models trained in the same setting.

Comparison of Distant Datasets To get the
clearest picture of the differences in our distant
setups, we first evaluate in a setting of zero-shot
adaptation to MATRES. We train on different dis-
tantly labeled dataset sizes in order to establish a

2We choose not to evaluate on the UDS-T dataset
(Vashishtha et al., 2019), treating it solely as a training source.
In our experiments, converting from real-valued time span
annotations into categorical event-pair labels required deal-
ing with significant disagreement among annotators. Despite
trying several resolution strategies, none of our in-domain
fine-tuned Transformer models performed much better than
a majority baseline, indicating high noise or an extremely
challenging setting.
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MATRES
Training Data Split P R F1

Majority Label Dev 52.6 60.2 56.1
Test 50.7 58.6 54.3

MATRES Dev 77.1 85.5 81.1
Test 75.1 84.8 79.6

DistantTimex

1k Dev 54.1 61.9 57.7
1k Test 50.8 58.7 54.5
5k Dev 60.4 69.1 64.5
5k Test 61.9 71.5 66.4
10k Dev 64.0 73.2 68.3
10k Test 61.5 71.1 66.0

BeforeAfter 10k Dev 53.4 61.1 57.0
10k Test 51.6 59.7 55.3

Table 1: Results on MATRES after training on distant
data, with explicit temporal cues masked. Results are
esembled from three models trained in the same setting.

DistantTimex Examples
Labeled Set Eval None 1k 5k 10k

MATRES 1k

Avg. Dev F1 64.2 67.4 75.2 75.6
Avg. Test F1 60.9 66.1 73.6 73.7
Ens. Dev F1 70.2 74.5 76.7 76.6
Ens. Test F1 66.5 72.0 75.0 75.5

UDS-T 5k

Avg. Dev F1 68.7 62.8 72.0 70.8
Avg. Test F1 66.2 60.9 69.5 69.8
Ens. Dev F1 70.1 64.6 73.2 72.1
Ens. Test F1 68.2 62.3 70.7 71.8

Table 2: Evaluation results on MATRES when adding
automatically collected examples to small amounts of
human-annotated training data. Using more Distant-
Timex data is able to improve performance substan-
tially over not using any (None).

relationship between example quantity and gener-
alization performance. Our results presented in
Table 1 show that the DistantTimex data works sub-
stantially better than BeforeAfter: with the Distant-
Timex data, there is a correlation between adding
more distantly-labeled examples and increased per-
formance. While both of these rules target par-
ticular narrow slices of data, the set with explicit
timexes appears to be broader than that with be-
fore/after connectives, and hence BERT can learn
to generalize better.3

Using Fewer Labeled Examples In a more real-
istic setting, we assume access to small amounts
of pre-existing labeled data, using roughly 10%
of existing datasets. Table 2 shows results from

3One possible reason is that explicit indicators like before
and after may be used explicitly to communicate temporal
information where it cannot be otherwise inferred, but timexes
are often used to communicate more specific details about
events where the relation may already be clear.

MATRES Test
Training Data P R F1

Distant Timex No Mask 5k 57.9 67.0 62.1
Distant Timex Masked 5k 61.9 71.5 66.4
BeforeAfter No Mask 5k 51.5 59.5 55.2
BeforeAfter Masked 5k 51.6 59.7 55.3

Table 3: Transfer comparison for data with and with-
out masking. Results are ensembled from three models
trained in the same setting.

MATRES DistantTimex BeforeAfter UDST 5k

said 16.0% won 2.02% was 2.60% is 5.8%
killed 1.2% died 1.69% said 2.08% was 3.3%
found 1.0% said 1.67% came 1.70% have 2.9%
says 0.9% began 1.41% is 1.06% are 2.5%
told 0.8% joined 1.10% began0.99% be 2.2%
called 0.8% took 1.10% made 0.85% get 1.5%
reported 0.7% set 1.04% have 0.78% had 1.4%
saying 0.7% killed 1.04% left 0.77% know1.4%
say 0.7% born 0.96% had 0.77% do 1.1%
was 0.6% held 0.93% be 0.73% go 1.9%

Table 4: Top 10 events for each dataset as a percentage
of total event mentions.

evaluating on MATRES using small amounts of ei-
ther MATRES or UDS-T data in conjunction with
our distant data; three models are randomly initial-
ized and trained for each setting. In both settings,
adding distant data improves substantially over just
using the in-domain MATRES data, and the best
model performance is only around 4 F1 worse than
the in-domain MATRES results using the entire
train set. We also show that this data can stack with
data from UDS-T (Vashishtha et al., 2019) and im-
prove transfer over raw UDS-T. This is in spite of
very different event distributions between UDST
and MATRES and a complete lack of examples of
VAGUE relations during training.

Effect of Masking In Table 3, we test the ef-
fect of masking on model generalization. We train
our model on the collected distant examples with
and without masking, and report ensembled eval-
uation results on the MATRES test set. Our com-
parison shows that masking causes an increase in
generalization for DistantTimex examples, but lit-
tle change in BeforeAfter transfer, which still per-
forms similar to the majority baseline.

Understanding the data distribution We re-
port the most frequent events from each dataset
in Table 4. MATRES is highly focused on report-
ing verbs, but the distant data has a much flatter
distribution. BeforeAfter features more light verbs
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whereas DistantTimex features events with more
complex semantics; possibly the model can learn
more regular and meaningful patterns from such
data, or relevant cues from a more similar event dis-
tribution (than found in BeforeAfter). We present
event-label tuples in Appendix D.

5 Related Work

There is little direct prior work on using this kind
of distant supervision for temporal relation extrac-
tion. Past work has studied automatic extraction of
typical inter-event orderings (Chklovski and Pantel,
2004; Ning et al., 2018a; Yao and Huang, 2018)
to aid downstream temporal tasks, but these ap-
proaches represent events as single words (predi-
cates) taken out of context, so the knowledge they
can capture is limited. The commonsense acqui-
sition method of Zhou et al. (2020) learns more
sophisticated information, but more about unary
properties of events (typical time, duration) rather
than relational knowledge. Lin et al. (2020) achieve
a somewhat similar goal, but make a strong assump-
tion about narrative-structured corpora and do not
evaluate on in-context temporal relation extraction.

Our technique does not use a knowledge base
like classic distant supervision methods (Mintz
et al., 2009). However, because we eventually mask
out the explicit temporal indicators, we are still us-
ing temporal information “external” to the final
example to derive the label, hence why we invoke
this term. A related concept is the idea of label-
ing functions (Ratner et al., 2016; Hancock et al.,
2018), which are used to automatically construct
training data for new domains. However, to our
knowledge, these techniques have not been applied
to temporal relation extraction, nor used in conjunc-
tion with masking as we do.

6 Discussion

We use explicit temporal cues to automatically
identify examples of temporal relations between
events in text. By masking these trivial features,
a pre-trained Transformer model can learn from
the remaining context and generalize to human-
annotated benchmarks. Comparing performance
for two distant labeling methods–using discourse
connectives and linking events to time expressions–
indicates that richer temporal cues exist in the sec-
ond case. The scope of identified time expressions
encompasses both explicit datetimes and natural
language indicators (“now”, “recently”, etc.).

While datetimes may be more common in news
and historical articles, relative time expressions
are present in diverse domains such as literature
and colloquial texts. Where such indicators exist,
our approach may be used to automatically collect
distantly labeled temporal relations. More broadly,
we believe that this label-and-mask paradigm could
be used to collect targeted training data for a variety
of NLP tasks.

Acknowledgments

Thanks to the anonymous reviewers for their help-
ful comments. This material is also based on
research that is in part supported by the Air
Force Research Laboratory (AFRL), DARPA, for
the KAIROS program under agreement number
FA8750-19-2-1003. The U.S. Government is au-
thorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory
(AFRL), DARPA, or the U.S. Government.

References
Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.

2012. English Web Treebank. LDC2012T13. Lin-
guistic Data Consortium, Philadelphia, PA.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An Annotation Frame-
work for Dense Event Ordering. In Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 501–506, Baltimore, Maryland. Association
for Computational Linguistics.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense Event Ordering
with a Multi-Pass Architecture. Transactions of the
Association for Computational Linguistics, 2:273–
284.

Timothy Chklovski and Patrick Pantel. 2004. VerbO-
cean: Mining the web for fine-grained semantic verb
relations. In Proceedings of the 2004 Conference
on Empirical Methods in Natural Language Process-
ing, pages 33–40, Barcelona, Spain. Association for
Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

https://doi.org/10.3115/v1/P14-2082
https://doi.org/10.3115/v1/P14-2082
https://doi.org/10.1162/tacl_a_00182
https://doi.org/10.1162/tacl_a_00182
https://www.aclweb.org/anthology/W04-3205
https://www.aclweb.org/anthology/W04-3205
https://www.aclweb.org/anthology/W04-3205
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB


200

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Tanya Goyal and Greg Durrett. 2019. Embedding Time
Expressions for Deep Temporal Ordering Models.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4400–4406, Florence, Italy. Association for Compu-
tational Linguistics.

Rujun Han, Qiang Ning, and Nanyun Peng. 2019.
Joint Event and Temporal Relation Extraction with
Shared Representations and Structured Prediction.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, pages 434–444.

Braden Hancock, Paroma Varma, Stephanie Wang,
Martin Bringmann, Percy Liang, and Christopher
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A Model Implementation

As mentioned previously, we selected a set of hy-
perparameters by fine-tuning to approximate the
performance of recent state of the art on MATRES,
achieving an F1 of 79.8 with RoBERTa (base) and
80.3 with ELECTRA. Specifically, we arrived at
a learning rate of 2e-5 with a warmup proportion
of 0.1. Our batch size varied from 16-25 based on
hardware.

Full implementation can be found at https://
github.com/xyz-zy/distant-temprel

B Label Composition Across Datasets

Table 5 compares the label distribution of our dis-
tant data against the human-annotated MATRES
dataset. In comparison, our datasets are lacking

BEFORE AFTER EQUAL VAGUE

MATRES 34.5% 50.2% 3.5% 11.8%
DistantTimex 67.4% 31.4% 1.3% –
BeforeAfter 50.7% 49.3% – –

Table 5: Training data label distribution. Both of our
distant datasets contain 10k examples; the MATRES
training set contains 9.7k examples.

MATRES −Vague
Training Data Split P R F1 Acc.

Majority Label Dev 52.6 60.2 56.1 –
Test 50.7 58.6 54.3 –

MATRES Dev 77.1 85.5 81.1 85.5
Test 75.1 84.8 79.6 84.8

DistantTimex

1k Dev 54.1 61.9 57.7 61.9
1k Test 50.8 58.7 54.5 58.7
5k Dev 60.4 69.1 64.5 69.1
5k Test 61.9 71.5 66.4 69.2
10k Dev 64.0 73.2 68.3 73.2
10k Test 61.5 71.1 66.0 71.1

BeforeAfter 10k Dev 53.4 61.1 57.0 61.1
10k Test 51.6 59.7 55.3 59.7

Table 6: Expanded view of results on MATRES, com-
paring performance on only on {BEFORE, AFTER,
EQUALS} examples (“− Vague”) versus the entire eval
set. Presented results are majority-vote ensembled
from three models trained in the same setting.

in VAGUE relations (which have the lowest IAA in
MATRES, and are particularly difficult to resolve)
but emphasize the two most prominent classes. In
few-shot settings, our model sees and trains on
VAGUE relations from MATRES.

C Performance without VAGUE
Examples

The VAGUE label is defined to express indetermi-
nacy and also has the lowest inter-annotator agree-
ment in the MATRES dataset. These examples
are also relatively more difficult for models to
learn. Tables 6 and 7 present an expanded view
of our results, adding the evaluation accuracy on
only {BEFORE, AFTER, EQUALS} examples. As
expected, we observe that model performance in-
creases across the board under this evaluation.

D Most Common Event-Label Tuples

Table 8 presents a comparison of the most com-
mon (event1, event2, label) tuples across datasets.
In MATRES, the most common tuples are largely
(event, “said”, BEFORE) events. The DistantTimex
data features many examples of same-verb pairs

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-main.31
https://www.aclweb.org/anthology/2020.emnlp-main.31
https://doi.org/10.18653/v1/P18-1050
https://doi.org/10.18653/v1/P18-1050
https://doi.org/10.18653/v1/P18-1050
https://doi.org/10.18653/v1/2020.acl-main.678
https://doi.org/10.18653/v1/2020.acl-main.678
https://github.com/xyz-zy/distant-temprel
https://github.com/xyz-zy/distant-temprel


202

Full Test Set −Vague
Labeled Set +Distant Acc. F1 Acc.

MATRES 1k
1k 67.0 72.0 77.5
5k 69.2 75.0 79.1
10k 70.1 75.5 80.8

UDS-T 5k
1k 58.1 62.3 67.1
5k 65.9 70.7 76.2
10k 67.9 71.8 78.5

Table 7: Comparison of majority-vote ensembled per-
formance on {BEFORE, AFTER, EQUALS} examples
(“−Vague”) versus performance on the entire test set.
Performance is higher without vague examples, and
increases with the number of DistantTimex examples
added.

MATRES

(‘said’, ‘said’, BEFORE) 1.69%
(‘said’, ‘said’, VAGUE) 0.67%
(‘said’, ‘said’, AFTER) 0.25%
(‘said’, ‘told’, BEFORE) 0.21%
(‘called’, ‘said’, BEFORE) 0.21%
(‘killed’, ‘said’, BEFORE) 0.16%
(‘found’, ‘said’, BEFORE) 0.15%
(‘added’, ‘said’, BEFORE) 0.15%
(‘found’, ‘said’, AFTER) 0.14%
(‘declined’, ‘said’, BEFORE) 0.14%

DistantTimex

(‘won’, ‘won’, BEFORE) 0.44%
(‘died’, ‘died’, BEFORE) 0.26%
(‘annexed’, ‘seized’, BEFORE) 0.26%
(‘born’, ‘graduated’, BEFORE) 0.25%
(‘crashes’, ‘killed’, AFTER) 0.20%
(‘killed’, ‘torched’, AFTER) 0.19%
(‘crashed’, ‘crashed’, AFTER) 0.17%
(‘died’, ‘married’, BEFORE) 0.16%
(‘end’, ‘remove’, BEFORE) 0.14%
(‘died’, ‘killed’, BEFORE) 0.14%

Table 8: Top 10 event-event-relation tuples per dataset
as a percentage of total event mentions.

(won-won, died-died). These examples frequently
come from sentences or sentence pairs discussing
related events of the same type, using dates to con-
trast them.

E Distant Examples

Table 9 presents a sample of our distantly labeled
data. Examples (a-b) show that our BeforeAfter
parsing scheme can correctly identify linked events
across sentence spans. Examples (c-d) display a va-
riety in parsed syntactic structures that link events
to timexes.

Distant Example Masking Tables 10 and 11
present examples of our masking scheme on Be-
foreAfter and DistantTimex examples respectively.

Notably in Table 11, multi-word timexes result
in one mask token per word. All identified timexes
in the examples are masked, even if they are not
directly linked to the events in consideration.
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Example Text Heuristic Label

(a) A child prodigy, he studied music at the Julliard School of Music before turning to art. BeforeAfter BEFORE

(b) Hill’s support came only a few days after former Prime Minister Paul Keating made a
speech at the University of New South Wales in which he revived his campaign for a
republic.

BeforeAfter AFTER

(c) 1903: General Electric introduces the first light set for the public sale for $12, then the
average weekly wage of a typical American worker. 1962: General Electric designs the
National Christmas Tree for the first time.

DistantTimex BEFORE

(d) Batista’s EBX, the holding company for his five Rio-based companies, increased its
workforce fivefold since 2006 to 2,000 employees. State-run oil producer Petroleo
Brasilero... plans to add 6,000 more by 2013.

DistantTimex BEFORE

(e) It took until recently, the official said, for everyone to realize “it didn’t work.” DistantTimex BEFORE

Table 9: Weakly labeled data examples, with the identifying heuristics underlined. Examples (a-b) show different
instances of labeling based on “before/after” mentions. Examples (c-e) show instances of labeling event pairs
based on anchoring time expressions, which range from datetimes to natural language indicators (e.g. “recently”).
While other timexes are identified in the examples shown, only the anchoring expressions for the induced labels
are indicated.

Example Text Masked Label

(a) A child prodigy, he studied music at the Julliard
School of Music before turning to art.

A child prodigy, he studied music at the Julliard
School of Music [mask] turning to art.

BEFORE

(b) Hill’s support came only a few days after former
Prime Minister Paul Keating made a speech at
the University of New South Wales in which he
revived his campaign for a republic.

Hill’s support came only a few days [mask] for-
mer Prime Minister Paul Keating made a speech
at the University of New South Wales in which
he revived his campaign for a republic.

AFTER

Table 10: Masking of of weakly labeled data examples identified by before/after mentions.

Example Text Masked Label

(a) Batista’s EBX, the holding company for his five
Rio-based companies, increased its workforce
fivefold since 2006 to 2,000 employees. State-
run oil producer Petroleo Brasilero has hired
22,000 employees in the past six years, ... and
plans to add 6,000 more by 2013.

Batista’s EBX, the holding company for his
five Rio-based companies, increased its work-
force fivefold since [mask] to 2,000 employ-
ees. State-run oil producer Petroleo Brasilero
has hired 22,000 employees in [mask] [mask]
[mask] [mask], ... and plans to add 6,000 more
by [mask].

BEFORE

(b) It took until recently, the official said, for every-
one to realize “it didn’t work.”

It took until [mask], the official said, for every-
one to realize “it didn’t work.”

BEFORE

Table 11: Masking of of weakly labeled data examples identified by anchoring timexes.


