
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: Student Research Workshop, pages 112–118

August 5–6, 2021. ©2021 Association for Computational Linguistics

112

How do different factors Impact the Inter-language Similarity? A Case
Study on Indian languages

Sourav Kumar, Salil Aggarwal, Dipti Misra Sharma, Radhika Mamidi
LTRC, IIIT-Hyderabad

{sourav.kumar, salil.aggarwal}@research.iiit.ac.in
{dipti, radhika.mamidi}@iiit.ac.in

Abstract
India is one of the most linguistically diverse
nations of the world and is culturally very rich.
Most of these languages are somewhat similar
to each other on account of sharing a common
ancestry or being in contact for a long period
of time (Bhattacharyya et al., 2016). Nowa-
days, researchers are constantly putting efforts
in utilizing the language relatedness to im-
prove the performance of various NLP systems
such as cross lingual semantic search, machine
translation (Kunchukuttan and Bhattacharyya,
2020), sentiment analysis systems, etc. So
in this paper, we performed an extensive case
study on similarity involving languages of the
Indian subcontinent. Language similarity pre-
diction is defined as the task of measuring
how similar the two languages are on the ba-
sis of their lexical, morphological and syntac-
tic features. In this study, we concentrate only
on the approach to calculate lexical similarity
between Indian languages by looking at vari-
ous factors such as size and type of corpus,
similarity algorithms, subword segmentation,
etc. The main takeaways from our work are:
(i) Relative order of the language similarities
largely remain the same, regardless of the fac-
tors mentioned above, (ii) Similarity within
the same language family is higher, (iii) Lan-
guages share more lexical features at the sub-
word level.

1 Introduction

Recently, there has been an explosion in informa-
tion (Wang et al., 2007) and a massive amount of
natural language data is added daily on the Internet.
Moreover, the human literature in different cultures
is digitalized and became available in digital
libraries (Farouk, 2019). A very large amount of
this data is formatted in natural language. This
makes NLP techniques crucial to make the use of
this high amount of data. Since most of the NLP
techniques either require linguistic knowledge

that can only be developed by experts and native
speakers of that language or they require a lot
of labelled data which is again expensive to
generate, NLP tasks become challenging for low
resource languages like Indian languages. India
is a multicultural country, a country with highly
religious and ethnically diverse people. People of
different races and classes live in different parts of
the country, and they speak a variety of languages.
Most of the Indian languages are divided into two
main language families namely Indo-Aryan1 and
Dravidian2. Underlying the vast diversity in Indian
languages are many commonalities. Because
of contact over thousands of years, most of the
Indian languages have undergone convergence to
a large extent (Shridhar et al., 2020). Therefore,
exploiting language relatedness becomes very
crucial in NLP related tasks for Indian languages.
Kunchukuttan and Bhattacharyya (2020) also
presents an impressive case study for utilizing
language relatedness for Machine translation but
that study was more inclined toward exploring
statistical approaches to MT. Prasanna (2018) in
his work has explored efficient ways of exploiting
relatedness in multilingualism and transfer learning
for low resource machine translation.

But no such large scale study has been done on ex-
ploring different factors that may affect the process
of calculating similarity among Indian languages.
This could really help the future researchers in
getting the clear picture while exploiting related
languages in NLP related tasks. So, in this work,
we performed an extensive case study on the
language relatedness involving languages of the
Indian subcontinent. This case study provides

1Indo Aryan languages - Hindi, Urdu, Punjabi, Gujarati,
Marathi, Bangla, Oriya, Konkani

2Dravidian languages - Tamil, Telugu, Kannada, Malay-
alam

113

Figure 1: Pipeline for calculating similarity

the reader with valuable information about the
different methodologies in measuring relatedness
between Indian languages. In addition, it also
compares some popular techniques for measuring
sentence-to-sentence similarity. Moreover, datasets
from different domains and sizes have also been
used in comparing the similarity scores to enable
the reader to build a complete background in this
area. Also, these languages share a lot of cognates,
that’s why we have also compared the similarity
among language pairs at both word and subword
level.

This paper is further divided into 4 sections.
Section 2 elaborated the methodology behind the
different techniques and experiments. Section 3
elaborates the experimental details including the
dataset preparation and pre-processing. All the
results and analysis have been discussed in Section
4. Section 5 talks about conclusion and possible
future work.

2 Methodology

A universal characteristic of Indian languages is
their complex morphology and their unique char-
acteristics following default sentence structure as
subject object verb (SOV). Thus, we will be using
the parallel corpora for calculating the similarity
among them. But Indian languages are written in
different scripts, so in order to calculate the sim-
ilarity between two languages, one needs to first
map every language to a common surface form
i.e to a common script. To do so, we are using
a very well-known technique of ‘Unified Translit-
eration’. It is a string homomorphism technique
in which every character of the source is replaced
with the target language script. Following are the
steps for calculating the similarity between the two
languages:

• Collect parallel data of languages of which we
want to calculate similarity.

• Transliterate those languages to a common

script

• Calculate similarity of each sentence in source
with the corresponding transliterated sentence
in the target language using some string simi-
larity algorithm.

• Return the average score over all the sentences
in the parallel corpora.

The pipeline of the above discussed procedure is
shown in Figure 1. Also in computer science,
string similarity is an important family of algo-
rithms that try to find a place where one or several
strings (also called patterns) are found within a
larger string. Researchers have already put the ef-
forts and showed that these algorithms effectively
calculate the similarity between two strings (Leven-
shtein, 1965; Yujian and Bo, 2007; Masek and Pa-
terson, 1980; Larsen, 1992; Kondrak, 2005). Some
studies have also been done on calculating simi-
larity particularly for Indian languages (Singh and
Surana, 2007; Wagner and Fischer, 1974; Islam
and Inkpen, 2008; Akhtar et al., 2017; Sengupta
and Saha, 2015). In this work, we will consider
sentences as a string and use some of the above
algorithms for calculating the similarity between
two languages.

2.1 Token Overlap
This is the most general approach that works by
converting strings into sets of their tokens and then
counting the number of tokens which are shared
between the both sets. Similarity between two lan-
guages using token overlap is calculated as follows:

sim =

∑n
1

|Tokens1∩Tokens2|
max(|Tokens1|,|Tokens2|)

n
∗ 100

Here, n denotes the total number of sentences in the
parallel corpora, and s1 & s2 represent sentences
from language1 and language2 respectively. Major
disadvantage of this technique could be identifica-
tion of ”false friends” i.e words that look identi-
cal in two different languages, but actually mean

114

something completely different and don’t have a
common source.

2.2 Levenshtein Distance
The Levenshtein distance (LD) (Levenshtein, 1965)
between two strings is the minimum number of
single character edits (insertions, deletions, or sub-
stitutions) required to change one string into the
another. The algorithm considers one character of
the string at a time and it assigns cost to each of the
edit operations. The algorithm weights the cost of
each operation and chooses the operation with the
lowest cost and then moves on to the next character.
We can compute Levenshtein similarity between
two languages as follows:

simLevenshtein =

∑n
1 1−

LD(s1,s2)
max(|s1|,|s2|)
n

∗ 100

2.3 Longest Common Subsequence
The Longest Common Subsequence (LCS) (Larsen,
1992) is a string similarity measurement that is
based on the longest common substring in a given
string pair. The rationale is that, parts of the string
may be similar while their prefixes or suffixes differ.
This algorithm finds the longest common character
sequence, between a string pair. The characters in
the LCS do not necessarily need to be contiguous
in the original strings. We can compute similarity
using LCS between two languages as follows:

simLCS =

∑n
1

LCS(s1,s2)
max(|s1|,|s2|)

n
∗ 100

2.4 Shingle (qgram) Similarity
This works by converting strings into sets of
qgrams (sequences of q characters, also sometimes
called k-shingles) Kondrak (2005). The similar-
ity or distance between the two strings is then the
similarity or distance between the sets. Here we
are using Jaccard index as our similarity technique
which is a special case of shingle based algorithms.
We can compute similarity using Jaccard between
two languages as follows:

simqgram =

∑n
1 qgram(s1, s2)

n
∗ 100

3 Experiments

For our case study, we are performing all the exper-
iments using the ILCI (Indian Language Corpora
Initiative) Jha (2010) and PMI (Prime Minister of

India) Haddow and Kirefu (2020) multi parallel cor-
pora for Indian languages. ILCI contains 50k sen-
tences of health and tourism domain covering all
the major languages of India like Hindi, Urdu, Pun-
jabi, Gujarati, Marathi, Bangla, Konkani, Telugu,
Tamil, Malayalam. PMI contains 30k sentences of
news domain in every language mentioned above
including Oriya and Kannada except Konkani.

3.1 Data Preprocessing
For transliterating the Urdu and Konkani to a com-
mon script, we used the Indic Trans library (Bhat
et al., 2014), and for the others, we used Indic
NLP library (Kunchukuttan, 2020) (as Urdu and
Konkani not supported). In addition, there is an
exception with Urdu because it follows a right to
left writing system and all other Indian languages
follow left to right writing order. Hence, in the pro-
cessing step, we also changed the order of Urdu to
maintain consistency among all languages, and do-
ing this also made our string similarity algorithms
work more efficiently.

3.2 Different scenarios
In the real world scenario there can be multiple
possible cases that one can think of. But here, we
are trying to cover the important cases according
to our knowledge. Details of each use case is
described below and for calculating the similarity
among language pairs we are using the procedure
mentioned in section 2.

Case 1: In this case, we are evaluating the
effect of algorithm used for calculating sentence
similarity on the similarity among the language
pairs. We are computing the similarity for every
language pair present in our ILCI corpora using
each algorithm mentioned in subsections 2. Also,
as per the requirement of our pipeline, we are also
mapping each language to Devanagari script to
share the same surface form.

Case 2: Here, we are performing the exper-
iments to confirm whether the choice of script
selection matters in transliteration step of our
pipeline for calculating similarity. To do so, we
are mapping every language to Abugida instead
Devanagari script and then compared results of
both the cases. For this, we are only performing
experiments using LCS and K-shingle algorithm
on ILCI dataset.

115

(a) Token Overlap (b) Levenshtein

(c) Longest Common Subsequence (d) Shingle Q-gram

Figure 2: Similarity Matrix calculated using different algorithms

(a) Similarity using 2k Sentences (b) Similarity using 10k Sentences

(c) Similarity using 20k Sentences (d) Similarity using 50k Sentences

Figure 3: Similarity V/s No. of Parallel Sentences

116

(a) LCS similarity (b) Shingle Q-gram similarity

Figure 4: Effect of Script on Similarity; In this case we are converting every language to Abugida

(a) PMI imilarity (b) ILCI similarity

Figure 5: Effect of Dataset on Similarity

(a) Word level similarity (b) Sub-word level similarity

Figure 6: Effect of word segmentation on Similarity

Case3: In this scenario, we trying to figure
out that after how many parallel sentences, the
similarity score curve stabilizes itself. This will
give us a rough idea of required size of parallel
corpora for calculating similarity. To minimize our
efforts, we are only performing experiments for
Hindi-Urdu of ILCI corpora using the K-shingle
algorithm.

Case 4: Here, we will be evaluating the im-
portant factor whether the type/domain of the
dataset chosen effects the similarity among the
different language pairs. For this case, we are
calculating and comparing the results of similarity
for every language pair on both ILCI and PMI
dataset using the K-shingle algorithm.

Case 5: As Indian languages are morpho-

117

logical rich and share more common words at root
level due to same ancestry. So in this case, we are
evaluating the effect of using root word instead of
words while calculating similarity using the Token
overlap algorithm discussed in section 2.1 among
Indian languages on ILCI dataset.

4 Results & Analysis

In Case 1, we are evaluating the effect of different
algorithms on the similarity. Figure 2a shows the
results corresponding to every language pair using
the algorithm mentioned in section 2.1 (Token
Overlap). Similarly Figure 2b, 2c, 2d represent
the results corresponding to other algorithms
discussed in section 2.2, 2.3 and 2.4 respectively.
Here, we observed a small amount of variation
in similarity values with the different algorithms.
However, more importantly, relative values within
the similarity matrix remain almost constant
even in the different algorithms, e.g., Hindi-Urdu
has shown the most similarity in all algorithms.
Our results confirm that this also holds for other
language pairs.

For Case2, we evaluated whether common
script selection matters in calculating language
similarity or not. To do so, we also performed
experiments by calculating similarity for all
languages using the Abugida script. In these
experiments, it can be seen that the scripts do not
matter in calculating the similarity. We got similar
results with both the Devanagari and Abugida
scripts with a variation of 0.25%. This can be
seen by comparing Figure 4a with Figure 2c and
Figure 4b with Figure 2d.

Case 3 shows variation in similarity to the
number of sentences we are using for calculating
it. Figure 3a shows variation plots of similarity
v/s No. of sentences used. We used overall 2000
sentences and observed that the similarity value
gets stable by the end of the curve; in addition
to observing that, we also see that the value
does not vary much with larger sentences. We
also performed experiments with 10k, 20k, 50k
sentences; Figure 3b, 3c and 3d shows the plot
corresponding to each case respectively. It can be
seen there is not much fluctuation in the curve,
even with the introduction of more sentences after
2k. Thus, we can say for calculating similarity, a
small parallel data-set of 2k sentences is enough.

We can further see in Case 4 that the simi-
larity is not dependent on the nature of data,
and is thus independent of external factors such
as domain. Figure 5a and Figure 5b show the
results corresponding to ILCI and PMI corpus,
respectively. We observed that the similarity
values might vary with the change in data-set, but
the overall relative similarity matrix will remain
constant. More clearly, if the similarity value of
L1-L2 varies by a magnitude of k, then there will
be a approximate change of k in the magnitude for
the other language pairs. This can be confirmed by
observing the results from the above experiments.

In the last Case 5, we observe from Figure
6a and Figure 6b that similarity increases drasti-
cally for the lexemes of all languages pairs. That is,
if we ignore affixes and consider the root form of a
word, we can notice that the similarity increases.

Also from the above experiments, we can
conclude some general results as:

• Hindi and Urdu being the most similar and
Tamil and Punjabi being least similar among
Indian languages.

• Language similarity increases within the fam-
ily, and it grows even more, when geo-
graphical distance is less. For example,
Urdu-Punjabi’s similarity is more than Urdu-
Gujarati.

• Different Families also show some reasonable
amount of similarity due to contact between
them over a long time. For example, Tel-
ugu belongs to Dravidian family but it shows
considerable similarity with Indo-aryan lan-
guages like Hindi and Marathi.

• Telugu from Dravidian and Marathi from
the Indo-Aryan language family have more
cross-family similarity than the others because
they have geographical proximity thus exhibit
greater lexical convergence.

5 Conclusion & Future Work

In this paper, we did an extensive study on similar-
ity involving the languages of Indian subcontinent.
We explored different factors that may affect the
process of calculating similarity. Our results led to

118

some interesting conclusions, such as how the rela-
tive order of similarity among languages remains
same irrespective of the factors we considered, and
how the maximum similarity is observed within
pairs of the same language family and it increases
more with geographic proximity. Thus, this study
will help future research which focuses on exploit-
ing the language relatedness for NLP tasks. Future
work along these lines can focus on using semantic
similarity alongside lexical similarity to increase
accuracy.

References
Syed Sarfaraz Akhtar, Arihant Gupta, Avijit Vajpayee,

Arjit Srivastava, and Manish Shrivastava. 2017.
Word similarity datasets for indian languages: An-
notation and baseline systems. In Proceedings of the
11th Linguistic Annotation Workshop, pages 91–94.

Irshad Ahmad Bhat, Vandan Mujadia, Aniruddha Tam-
mewar, Riyaz Ahmad Bhat, and Manish Shrivastava.
2014. Iiit-h system submission for fire2014 shared
task on transliterated search. In Proceedings of the
Forum for Information Retrieval Evaluation, pages
48–53.

Pushpak Bhattacharyya, Mitesh M Khapra, and Anoop
Kunchukuttan. 2016. Statistical machine translation
between related languages. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Tu-
torial Abstracts, pages 17–20.

Mamdouh Farouk. 2019. Measuring sentences similar-
ity: a survey. arXiv preprint arXiv:1910.03940.

Barry Haddow and Faheem Kirefu. 2020. PMIndia – A
Collection of Parallel Corpora of Languages of India.
arXiv e-prints, page arXiv:2001.09907.

Aminul Islam and Diana Inkpen. 2008. Semantic text
similarity using corpus-based word similarity and
string similarity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 2(2):1–25.

Girish Nath Jha. 2010. The tdil program and the indian
langauge corpora intitiative (ilci). In LREC.

Grzegorz Kondrak. 2005. N-gram similarity and dis-
tance. In International symposium on string pro-
cessing and information retrieval, pages 115–126.
Springer.

Anoop Kunchukuttan. 2020. The IndicNLP Library.
https://github.com/anoopkunchukuttan/
indic_nlp_library/blob/master/docs/
indicnlp.pdf.

Anoop Kunchukuttan and Pushpak Bhattacharyya.
2020. Utilizing language relatedness to im-
prove machine translation: A case study on lan-
guages of the indian subcontinent. arXiv preprint
arXiv:2003.08925.

Kim S Larsen. 1992. Length of maximal common sub-
sequences. Aarhus Universitet. Department of Com-
puter Science.

V Levenshtein. 1965. Levenshtein distance.

William J Masek and Michael S Paterson. 1980. A
faster algorithm computing string edit distances.
Journal of Computer and System sciences, 20(1):18–
31.

Raj Noel Dabre Prasanna. 2018. Exploiting multilin-
gualism and transfer learning for low resource ma-
chine translation.

Debapriya Sengupta and Goutam Saha. 2015. Study on
similarity among indian languages using language
verification framework. Advances in Artificial Intel-
ligence, 2015.

Kumar Shridhar, Harshil Jain, Akshat Agarwal, and De-
nis Kleyko. 2020. End to end binarized neural net-
works for text classification. In Proceedings of Sus-
taiNLP: Workshop on Simple and Efficient Natural
Language Processing, pages 29–34, Online. Associ-
ation for Computational Linguistics.

Anil Kumar Singh and Harshit Surana. 2007. Using
a single framework for computational modeling of
linguistic similarity for solving many nlp problems.
EUROLAN 2007 Summer School Alexandru Ioan
Cuza University of Iaşi, page 46.

Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168–173.

Mengqiu Wang, Noah A Smith, and Teruko Mita-
mura. 2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
22–32.

Li Yujian and Liu Bo. 2007. A normalized levenshtein
distance metric. IEEE transactions on pattern anal-
ysis and machine intelligence, 29(6):1091–1095.

http://arxiv.org/abs/2001.09907
http://arxiv.org/abs/2001.09907
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://doi.org/10.18653/v1/2020.sustainlp-1.4
https://doi.org/10.18653/v1/2020.sustainlp-1.4

