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Abstract

Named entity recognition (NER) is well stud-
ied for the general domain, and recent sys-
tems have achieved human-level performance
for identifying common entity types. However,
the NER performance is still moderate for spe-
cialized domains that tend to feature compli-
cated contexts and jargonistic entity types. To
address these challenges, we propose explic-
itly connecting entity mentions based on both
global coreference relations and local depen-
dency relations for building better entity men-
tion representations. In our experiments, we
incorporate entity mention relations by Graph
Neural Networks and show that our system
noticeably improves the NER performance on
two datasets from different domains. We fur-
ther show that the proposed lightweight sys-
tem can effectively elevate the NER perfor-
mance to a higher level even when only a tiny
amount of labeled data is available, which is
desirable for domain-specific NER.1

1 Introduction

Named entity recognition (NER) has been well
studied for the general domain, and recent systems
have achieved close to human-level performance
for identifying a small number of common NER
types, such as Person and Organization, mainly
benefiting from the use of Neural Network mod-
els (Ma and Hovy, 2016; Yang and Zhang, 2018)
and pretrained Language Models (LMs) (Akbik
et al., 2018; Devlin et al., 2019). However, the
performance is still moderate for specialized do-
mains that tend to feature diverse and complicated
contexts as well as a richer set of semantically re-
lated entity types (e.g., Cell, Tissue, Organ etc. for
the biomedical domain). With these challenges
in view, we hypothesize that being aware of the

1The code for the system is available here: https://
github.com/brickee/EnRel-G

re-occurrences of the same entity as well as se-
mantically related entities will lead to better NER
performance for specific domains.

Therefore, we propose to explicitly connect en-
tity mentions in a document that are coreferential
or in a tight semantic relation to better learn en-
tity mention representations. Precisely, as shown
in Figure 1, we first connect repeated mentions of
the same entity even if they are sentences away.
For example, the named entity “tumor vasculature”
appears both in the Title and sentence S6 but in
quite different contexts. Connecting the repeated
mentions in a document enables the integration of
contextual cues as well as enables consistent pre-
dictions of their entity types.

Second, we also connect entity mentions based
on sentence-level dependency relations to effec-
tively identify semantically related entities. For
example, the two entities in sentence S3, “bone
marrow” of the type Multi-tissue Structure and “en-
dothelial progenitors” of the type Cell, are the sub-
ject and object of the predicate “contains” respec-
tively in the dependency tree. If the system can
reliably predict the type of one entity, we can infer
the type of the other entity more easily, knowing
that they are closely related on the dependency tree.

We incorporate both relations by using Graph
Neural Networks (GNNs), specifically, we use
the Graph Attention Networks (GATs) (Velickovic
et al., 2018) that have been shown effective for
a range of tasks (Sui et al., 2019; Linmei et al.,
2019). Empirical results show that our lightweight
method can learn better word representations for
sequence tagging models and further improve the
NER performance over strong LMs-based base-
lines on two datasets, the AnatEM (Pyysalo and
Ananiadou, 2014) dataset from the biomedical do-
main and the Mars (Wagstaff et al., 2018) dataset
from the planetary science domain. In addition,
considering the lack of annotations challenge for

https://github.com/brickee/EnRel-G
https://github.com/brickee/EnRel-G
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Figure 1: An example of NER with both discourse-level and sentence-level entity relations.

domain-specific NER, we plot learning curves and
show that leveraging relations between entity men-
tions can effectively and consistently improve the
NER performance when limited annotations are
available.

2 Related Work

NER research has a long history and recent ap-
proaches (Yang and Zhang, 2018; Jiang et al., 2019;
Jie and Lu, 2019; Li et al., 2020) using Neural Net-
work models like BiLSTM-CNN-CRF (Ma and
Hovy, 2016) and contextual embeddings such as
BERT (Devlin et al., 2019) and FLAIR (Akbik
et al., 2018) have improved the NER performance
in the general domain to the human-level. However,
the NER performance for specific domains is still
moderate due to the challenges of limited annota-
tions and dealing with complicated domain-specific
contexts.

We aim to further improve NER performance
by considering coreference relations and seman-
tic relations between entity mentions. This is in
contrast to the usual way of thinking about NER
as an up-stream task conducted before coreference
resolution or entity relation extraction. The idea
aligns with recent works that conduct joint infer-
ences among multiple information extraction tasks
(Miwa and Bansal, 2016; Li et al., 2017; Bekoulis
et al., 2018; Luan et al., 2019; Sui et al., 2020;
Yuan et al., 2020), including NER, coreference
resolution and relation extraction, by mining de-
pendencies among the extractions. However, joint
inference approaches require annotations for all the
target tasks and aim to improve performance for all
the tasks as well, while our lightweight approach
aims to improve the performance of the basic NER

task requiring no additional annotations (usually
unavailable for specific domains).

Our approach is also related to several recent neu-
ral approaches for NER that encourage label depen-
dencies among entity mentions. The Pooled FLAIR
model (Akbik et al., 2019) proposed a global pool-
ing mechanism to learn word representations. Dai
et al. (2019) used a coreference layer with a regu-
larizer to harmonize word representations. Closely
related to our work, Qian et al. (2019) used graph
neural nets to capture repetitions of the same word
as well, but in a denser graph that includes edges
between adjacent words and is meant to completely
overlay the lower encoding layers. Memory net-
works (Gui et al., 2020; Luo et al., 2020) were
also used to store and refine predictions of a base
model by considering repetitions or co-occurrences
of words. In addition, dependency relations have
been commonly used to connect entities for rela-
tion extraction (Zhang et al., 2018; Bunescu and
Mooney, 2005), but we aim to better infer the type
of an entity by associating it with other closely
related entities in a sentence.

3 Model Architecture

Our system with Entity Relation Graphs (EnRel-
G) mainly contains 5 layers as in Figure 2: an
embedding layer, an encoding layer, a GNNs layer,
a fusion layer, and a decoding layer.

3.1 Embedding Layer

We choose the BERT-base LM as our embed-
ding layer. For domain-specific datasets, we use
BioBERT (Lee et al., 2020) for the biomedical do-
main and SciBERT (Beltagy et al., 2019) for the
planetary science domain. Specifically, for an input
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Figure 2: Overall Architecture of the EnRel-G system

document D = [w1, w2, ..., wn] with n words, the
BERT model will output a contextual word embed-
dings matrix E = [w1,w2, ...,wn] ∈ Rn×d1 with
a d1 dimension vector for each word.

3.2 Encoding Layer

To capture the sequential context information, we
use a BiLSTM layer to encode the word embed-
dings from the BERT model. We concatenate the
forward and backward LSTM hidden states as the
encoded representations and then obtain embed-
ding matrix Elstm = BiLSTM(E) ∈ Rn×d2

with a d2 dimension vector for each word.

3.3 Graph Neural Networks Layer

For the GNNs layer, we first introduce how to build
Entity Relation Graphs using global coreference
relations (coreference graph, C-graph) and local
dependency relations (dependency graph, D-graph)
between entities, and then describe how the GNNs
model incorporates them into the word representa-
tions.

Coreference Relation Graph For each docu-
ment, we build a graph GC = (V,AC) based on
coreference relations, in which V is a set of nodes
denoting all the words in a document and AC is
the adjacency matrix. Specifically, we approximate
the entity coreference relations using 3 syntactic
coreference clues as in Figure 1: (1) Exact Match,
two nouns are connected if they are the same, e.g.,
“tumor vasculature” in both the Title and S6; (2)
Lemma Match, two nouns are linked together if
they have the same lemma, e.g., “progenitors” and
“progenitor” in the S3 and S6; (3) Acronym Match,
the acronym word is connected to all full expres-
sion words, e.g., “VEGF” and “vascular endothelial
growth factor” in the S6. For each connected node

pair (i, j), we set AC
i,j = 1. We also add a self-

connection to each node (AC
i,i = 1) to maintain the

words’ original semantic information.
Dependency Relation Graph We build a De-

pendency Relation Graphs GD = (V,AD) for
each document based on sentence-level depen-
dency relations. We first parse each sentence using
the scispaCy2 tool and then connect the following
word pairs in the dependency tree: (1) subject head
word & object head word & their predicate, we
connect them to enhance the interactions between
the entities from the subject and object. e.g., “mar-
row” and “progenitors” with the predicate “con-
tains” in the S3; (2) compound & head word, we
connect the compounds with their head words be-
cause they often both exist in an entity. e.g., the
“bone” and “marrow” in the S3. Same as before,
We set AD

i,j = 1 for each connect pair (i, j), and
also add self-connection (AD

i,i = 1) for each node.
Then we update the encoded word embeddings

with the entity relations graphs based on GNNs,
particularly the GATs. Since nodes represent the
words in a document, we initialize the node repre-
sentations in the graphs from the encoding layer
as Elstm = [wlstm

1 ,wlstm
2 , ...,wlstm

n ]. The graph
attention mechanism updates the initial represen-
tation of node wlstm

i to wgnn
i by aggregating its

neighbors’ representations with their correspond-
ing normalized attention scores.

wgnn
i =

K

‖
k=1

σ

∑
j∈Ni

αk
ijW

kwlstm
j

 (1)

As in equation (1), and we have K attention
heads and concatenate (‖) them as the final repre-
sentation. For head k, we weighted all the adjacent
nodes (Ni, obtained from the adjacent matrix A) by
W k and and then aggregate them with the attention
score αk

ij . σ is the activation function LeakyReLU.
The attention score αk

ij is obtained as followed (aT

is a weight vector):

αk
ij =

exp
(
σ
(
aT
(
W kwlstm

i ‖W kwlstm
j

)))∑
z∈N i exp

(
σ
(
aT
(
W kwlstm

i ‖W kwlstm
z

)))
(2)

For each of the two relation graphs, we use an
independent graph attention layer. The output word
representations from the two GATs are denoted as:
GC = [w

gnn(C)
1 ,w

gnn(C)
2 , ...,w

gnn(C)
n ] ∈ Rn×d3

and GD = [w
gnn(D)
1 ,w

gnn(D)
2 , ...,w

gnn(D)
n ] ∈

Rn×d3 , with d3 dimension for each word.

2https://allenai.github.io/scispacy/

https://allenai.github.io/scispacy/


738

Methods Datasets

AnatEM Mars

Wagstaff et al. (2018) – 94.5 / 77.7 / 85.3
NCRF++ 83.40±0.34 / 76.96±0.46 / 80.05±0.12 91.28±1.08 / 80.57±0.55 / 85.59±0.23
FLAIR 81.07±0.29 / 75.28±0.57 / 78.06±0.39 90.67±1.02 / 81.45±1.41 / 85.81±0.62
Pooled FLAIR 82.11±0.50 / 77.55±0.40 / 79.76±0.34 87.79±1.31 / 86.57±1.10 / 87.17±0.17
Tuning Bio/SciBERT 83.94±0.40 / 83.12±0.30 / 83.53±0.32 90.93±0.66 / 88.99±1.61 / 89.95±0.64

EnRel-G (C) 84.65±0.67 / 83.69±0.31 / 84.17±0.41 91.21±1.05 / 89.35±1.76 / 90.27±0.45
EnRel-G (D) 84.98±0.83 / 83.50±0.45 / 84.23±0.54 92.66±1.16 / 88.03±1.46 / 90.29±0.53
EnRel-G (CD) 84.86±0.50 / 83.96±0.32 / 84.41±0.24 92.57±1.00 / 88.65±1.50 / 90.57±0.47

Table 1: Test results of baselines and our system (Average Precision/Recall/F1 Scores±standard deviation,%)3

3.4 Fusion Layer
Similar to Sui et al. (2019), we also use a fusion
layer to blend the encoded word embeddings and
the GNNs updated word embeddings. We first
project these embeddings into the same hidden
space using liner transformation and then add them,
as in F =WNElstm +WCG

C +WDG
D, where

WN ,WC ,WD are trainable weights. Then we will
have a feature matrix F ∈ Rn×d4 for the n words
blended with both the sequential context informa-
tion and global entity relations.

3.5 Decoding Layer
Finally, a Conditional Random Field (CRF) (Laf-
ferty et al., 2001) layer is used to decode the en-
riched embeddings F = [f1,f2, ...,fn] into a se-
quence of labels y = {y1, y2, ..., yn}. In the train-
ing phrase, we optimize the whole model by mini-
mizing the negative log-likelihood loss with respect
to gold labels.

4 Experiments4

We test our model on two domain-specific datasets:
the AnatEM (Pyysalo and Ananiadou, 2014) from
the biomedical domain and the Mars (Wagstaff
et al., 2018) from the planetary science domain.
The AnatEM has annotated 12 types of entities in
1,212 documents with 13,701 entity mentions; the
Mars has 117 longer documents with 4,458 entity
mentions containing 3 types.

4.1 Baselines
NCRF++ (Yang and Zhang, 2018) is an open-
source Neural Sequence Labelling Toolkit. We use

3Previous systems on the AnatEM dataset either evaluate
the NER performance by head match or only evaluate the
performance on span identification; therefore, so we do not
include their results here.

4More details about the datasets, data preprocessing, and
model settings can be found in the appendices.

the BiLSTM-CNN-CRF structrue as a baseline.
FLAIR (Akbik et al., 2018) is a character-level
pretrained LM based on BiLSTM, which has been
used in many NER systems (Jiang et al., 2019;
Wang et al., 2019). We use the embeddings from it
with a BiLSTM-CRF architecture as a baseline.
Pooled FLAIR (Akbik et al., 2019) is an extended
version of the FLAIR model with global memory
and pooling mechanism for the same word, which
helps consistent predictions of coreferential entity
mentions. We also use the embeddings from it with
a BiLSTM-CRF architecture as a baseline.
Tuning Bio/SciBERT We also use Bio/SciBERT
with a BiLSTM-CRF architecture as baselines for
the AnatEM/Mars datasets, which do not have the
GNNs layer or Fusion layer as compared with our
system.

4.2 Results

To alleviate random turbulence, we train all the
systems five times using different random seeds
and evaluate their average performance on the test
sets using the same script5, as in the Table 1.

We can see that our system with both the global
entity coreference and local dependency relations
performs the best among all the systems. It
improves the average F1 score by 0.88 points
(84.41% vs. 83.53%) compared to BioBERT on
the AnatEM, and 0.62 points (90.57% vs. 89.95%)
compared to SciBERT on the Mars. Further, both
the coreference and dependency relations help to
improve the NER performance. Specifically, our
model with either the coreference or dependency
relation graph improves the F1 scores by 0.64 point
or 0.7 point on the AnatEM dataset, and by 0.32
point or 0.34 point on the Mars dataset.

5https://github.com/sighsmile/
conlleval

https://github.com/sighsmile/conlleval
https://github.com/sighsmile/conlleval
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Methods Datasets

AnatEM Mars

Tuning Bio/SciBERT 83.94±0.40 / 83.12±0.30 / 83.53±0.32 90.93±0.66 / 88.99±1.61 / 89.95±0.64

EnRel-G (D) (Key Edges Only) 83.79±0.70 / 83.39±0.39 / 83.59±0.40 91.71±0.63 / 88.30±0.86 / 89.97±0.33
EnRel-G (D) (Compound + Key Edges) 84.98±0.83 / 83.50±0.45 / 84.23±0.54 92.66±1.16 / 88.03±1.46 / 90.29±0.53
EnRel-G (D) (All Modifiers + Key Edges) 84.38±0.72 / 83.83±0.31 / 84.10±0.40 91.06±1.94 / 89.19±1.07 / 90.11±0.55
EnRel-G (D) (All Dependency Edges) 84.32±0.36 / 83.52±0.44 / 83.92±0.30 90.71±2.85 / 89.62±1.87 / 90.16±1.23

Table 2: Edge Selection in the Dependency Graph (Average Precision/Recall/F1 Scores±standard deviation,%)

4.3 Learning Curves
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Figure 3: Learning Curves, each point shows the aver-
age performance of 5 system runs.

One main limitation of domain-specific NER
systems is the lack of annotations, therefore, it
is vital to make the best use of labeled data. The
learning curves (Figure 3) shows that leveraging the
relations between entity mentions can effectively
elevate the NER performance to a higher level even
when only a tiny amount of labeled data (a quarter
of training data) is available, and this is true on
both the AnatEM dataset and the Mars dataset.

4.4 Analysis of Computation Cost
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Figure 4: Comparison of Training Time

Although fine-tuning pretrained LMs has im-

proved the performance of many NLP tasks, one
limitation is the increase of training time. There-
fore, it is important to build computing efficient
models based on pretrained LMs. As shown in
Figure 4, our model with the GNNs layer does not
increase the time cost for fine-tuning the BERT
models. The training time of methods with or with-
out the GNNs layer is similar.

4.5 Edge selection in the Dependency Graph
To build the sentence-level dependency graph, we
selected only two types of dependency relations:
between the subject, object and their predicate (Key
Edges) and between a compound modifier and its
head word. As shown in the Table 2, we also tried
to connect all the modifiers with their head word
and found that this yields slightly worse perfor-
mance, and the reason may be that many modifiers
other than compounds are not entities themselves.
In addition, including all the dependency edges
also yields worse performance than using the two
selected types of dependency relations, probably
for the same reason that many of the nodes in a
dependency tree are not parts of entity mentions
and many dependency relations do not directly con-
tribute to capturing relations between entities.

5 Conclusion

In this work, we explicitly capture the global coref-
erence and local dependency relations between en-
tity mentions, and use graph neural nets to incorpo-
rate the relations to improve domain-specific NER
tasks. Experimental results on two datasets show
the effectiveness of this lightweight approach. We
also find that the selection of entity relations is im-
portant to the system performance. Future work
may consider about using GNNs to incorporate
external knowledge for performance improvement.
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Appendices

Appendix A: Dataset Details

The AnatEM (Pyysalo and Ananiadou, 2014)
dataset is an extended Anatomical Entity Mention
corpus combining both the Anatomical Entity Men-
tion (AnEM) (Ohta et al., 2012) dataset and Multi-
level Event Extraction (MLEE) (Pyysalo et al.,
2012) corpus. All the documents are selected from
PubMed6 abstracts or full-text papers. AnatEM is
manually annotated by biological experts and it has
12 types of entities annotated, namely Anatomical
System, Cancer, Cell, Cellular Component, Devel-
oping Anatomical Structure, Immaterial Anatom-
ical Entity, Multi-tissue Structure, Organ, Organ-
ism Subdivision, Organism Substance, Pathologi-
cal Formation, Tissue. In total, this dataset consists
of 1,212 documents and 13,701 entities annotated.

6https://pubmed.ncbi.nlm.nih.gov/
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Datasets #Doc #Words #Entities #Words/Doc

AnatEM

Train 606 153,823 6,946 254
Dev 202 58,785 2,139 291
Test 404 99,976 4,616 247

Total 1,212 312,584 13,701 258

Mars

Train 62 99,952 2,431 1,612
Dev 20 33,743 906 1,687
Test 35 58,392 1,121 1,668

Total 117 192,087 4,458 1,642

Table 3: Statistics of the AnatEM and Mars datasets.7

Mars is from the scientific literature domain, and
it is about planetary science. All documents come
from the Lunar and Planetary Science Conference
(LPSC)8, and the entity mentions are annotated
manually. It has 3 types of entities: Element, Min-
eral, Target. The corpus consists of 117 documents.
62 of them are from LPSC 2015 and they are for
training and 55 of them are from LPSC 2016 for
evaluation. Same as previous work, we divide the
2016 documents into a validation set with 20 docu-
ments and a testing set with 35 documents.

Appendix B: Data Preprocessing

We want our model to take advantage of the
document-level information, but some of the docu-
ments are extremely too long. Moreover, the BERT
model also has a limitation of 512 subtokens for
input texts. So we need to split the long documents.
Besides, the BERT language model needs a big
enough batch size (e.g., 16 or 32) to be well fine-
tuned, which is also a burden for the GPU memory
consumption. In consideration of these restrictions,
we limit the max subtoken count of a split docu-
ment to 128 in the data preprocessing. Future work
with more computing resources may try longer in-
put documents.

Moreover, we also add the POS and Dependency
Tree information into the data using scispaCy for
constructing the Coreference Graph and the Depen-
dency Graph in our model.

Appendix C: Model Settings

For the NCRF++ baseline, we use one layer of
BiLSTM for word sequence representation with
300-dim Glove (Pennington et al., 2014) embed-
dings, four layers of CNN for character sequence

7We remove the redundantly annotated entities in the Mars.
8https://www.hou.usra.edu/meetings/

Methods Optimizer
Learning
Rate

Batch
Size

NCRF++ SGD 1e-2 10
(pooled) FLAIR Adam 2e-3 8
Tuning Bio/SciBERT Adam 5e-5 32

EnRel-G Adam 5e-5 32

Table 4: Model Settings

representation with 50-dim random initialized char-
acter embeddings, and a CRF layer for inference.

For the FLAIR and Pooled FLAIR baselines,
we use the PubMed version (pretrained on the
biomedical corpus) for the AnatEM dataset and the
general English version (pretrained on the English
news articles) for the Mars dataset. Particularly, for
the Pooled FLAIR model, we set the mean pooling
mechanism to calculate the average of embeddings
for multiple occurrences of a word, and then use it
as the representation for the word.

For the Tuning BERT baselines, we use
BioBERT-Base v1.1 for the AnatEM dataset and
SciBERT-scivocab-uncased for the Mars dataset.

For our EnRel-G system, we keep the embed-
dings layer the same as the Tuning BERT baselines.
As for the GNNs layer, we use one layer of the
graph attention mechanism with 4 heads, and each
head has a hidden dimension of 128.

For the optimization related parameters, as in
the Table 4, we mainly use the recommended set-
tings for the baseline models. For our EnRel-G
system, we keep the same parameters as in the
Tuning BERT baseline for fair comparison.

We train all the systems on a single Nvidia
GEFORCE GTX 2080Ti GPU. We set the max-
imum epoch as 100 and use the best-performed
model on the development set to evaluate the test
data.
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