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Abstract

Pre-trained text-to-text transformers such as

BART have achieved impressive performance

across a range of NLP tasks. Recent study fur-

ther shows that they can learn to generalize to

novel tasks, by including task descriptions as

part of the source sequence and training the

model with (source, target) examples. At test

time, these fine-tuned models can make infer-

ences on new tasks using the new task descrip-

tions as part of the input. However, this ap-

proach has potential limitations, as the model

learns to solve individual (source, target) ex-

amples (i.e., at the instance level), instead of

learning to solve tasks by taking all examples

within a task as a whole (i.e., at the task level).

To this end, we introduce HYPTER, a frame-

work that improves text-to-text transformer’s

generalization ability to unseen tasks by train-

ing a hypernetwork to generate task-specific,

light-weight adapters from task descriptions.

Experiments on ZEST dataset and a synthetic

SQuAD dataset demonstrate that HYPTER im-

proves upon fine-tuning baselines. Notably,

when using BART-Large as the main network,

HYPTER brings 11.3% comparative improve-

ment on ZEST dataset.1

1 Introduction

Pre-trained text-to-text models (Raffel et al., 2020;

Lewis et al., 2020) provide a unified formulation

and off-the-shelf weights for a variety of NLP tasks,

such as question answering (Khashabi et al., 2020)

and commonsense reasoning (Bosselut et al., 2019).

In addition to their strong performance, text-to-

text models naturally support generalizing to novel

tasks, by incorporating task description as part of

the source sequence and fine-tuning the model with

(source, target) examples (Weller et al., 2020). At

inference time, the model is required to perform

1Code and data can be found at https://github.com/
INK-USC/hypter.
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Figure 1: Instead of learning from (source, target) ex-

amples, in this paper we study the problem of learn-

ing from task descriptions (Weller et al., 2020). The

train set contains M tasks, and the i-th task contains

Ni examples of (s, t) pairs in text format. During test

time, the learned model is required to directly make in-

ferences on a new task given a task description.

unseen tasks with the source sequence containing

new task descriptions.

While this initial attempt shows positive results,

there are two potential limitations for the direct fine-

tuning approach. (1) Predictions can be sensitive to

the task descriptions (or “prompts”) that are heuris-

tically designed (Jiang et al., 2020). Paraphrasing

the task description may lead to performance down-

grade. (2) The model still learns from individual

(source, target) examples, instead of learning to

solve tasks at a higher level, by explicitly taking

multiple examples within a task as a whole (see

Fig. 1). Meanwhile, applying existing zero-shot

learning methods that supports task-level learning

to text-to-text transformers is non-trivial. Methods

designed specifically for classification problems,

such as prototypical networks (Snell et al., 2017),

cannot be directly applied to text-to-text models.

Moreover, given the large size of text-to-text mod-

els, generating parameters for a whole model from

the task description (Jin et al., 2020) is infeasible.

In this work, we follow the settings in (Weller

et al., 2020) and aim to improve a model’s gener-

alization ability to unseen tasks by better incorpo-

rating task descriptions and using a task-level train-

ing procedure. We introduce HYPTER, a frame-

https://github.com/INK-USC/hypter
https://github.com/INK-USC/hypter
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Figure 2: Illustration of HYPTER Framework. Left: A hypernetwork generates parameter φi for

task-specific adapter i that is plugged to transformer layer i in the text-to-text model. Right: The adapted main

network is evaluated on a task (d,D). The final cross entropy loss is back-propagated to update the hypernetwork.

work that employs a hypernetwork (Ha et al., 2017)

to dynamically generate task-specific parameters

(i.e., adapters) from task descriptions. Adapters

(Houlsby et al., 2019) are light-weight modules

that can be inserted into transformer layers for

parameter-efficient adaptation. Such formulation

also effectively enables learning at the task level,

by learning to generate appropriate parameters for

a task, and examine the model’s competence on

each task using multiple examples within that task.

This is in contrast to learning at the instance level,

by learning to generate the correct output for one

specific input sequence.

We apply HYPTER to two datasets: ZEST

(Weller et al., 2020) and a synthetic version of

SQuAD (Rajpurkar et al., 2016). We demonstrate

that HYPTER improves upon direct fine-tuning

baselines. Notably, training with HYPTER achieves

0.45% absolute improvement (11.3% comparative

improvement) in Competence@90 metric on ZEST,

when BART-Large is used as the main network.

2 Problem Definition

We study the problem of learning from task de-

scription (Weller et al., 2020), and aim to improve

models’ competence on unseen tasks at the infer-

ence time. Formally, a task is denoted as a tuple of

(d,D), where d is the natural language description

of the task, and D = {(s1, t1), ..., (sn, tn)} con-

tains (source, target) examples of this task (See Fig.

1). In our text-to-text formulation, both si and ti
are text sequences. At train time, both d and D are

available, while at test time, an unseen description

d is given, and the model is expected to predict the

correct t given input s without further training.

For instance, in the ZEST dataset (Weller et al.,

2020), a train task description can be “Are moun-

tain bikes allowed at this national park?”, while D
contains twenty paragraphs for different national

parks and twenty corresponding answers. During

test time, a novel task may be “Are there fish in this

national park that live in caves?”, and the model is

asked to directly make inferences.

3 Background: Adapters

Our work is built on adapters (Houlsby et al., 2019),

light-weight modules that can be placed into trans-

former layers for parameter-efficient transfer learn-

ing. In the original paper, the main model is frozen

during training, while only layer norm and adapter

parameters are learnable. In this paper, we adopt

a simplified design compared to the original pa-

per (see Fig. 2 (Left)) – In each transformer layer,

exactly one adapter module will be added after

the multi-headed attention. One adapter module

contains two linear layers separated by an non-

linearity activation layer. We use (Wid,bid) to de-

note the down-projection parameters for the adapter

in transformer layer i, and (Wiu,biu) for the up-

projection parameters.

4 Method

Overview. Fig. 2 provides an illustration of our

HYPTER framework. HYPTER has two major parts:

(1) A main network, which is a pre-trained text-to-

text model. We instantiate the main network with

BART-Base/Large (Lewis et al., 2020). (2) A hyper-
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network, which generates adapters to be plugged

into the main network. Fig. 2 (Left) contains a

detailed illustration of how adapter parameters are

generated and how adapter layers are incorporated

into one transformer layer.

Hypernetwork. The hypernetwork consists of

an encoder and multiple decoders. The encoder

maps the task description d to a latent represen-

tation h0, while the decoders use h0 to generate

adapter parameters φ. In our work we instanti-

ated the encoder with a RoBERTa-Base model (Liu

et al., 2019), i.e., h0 = RoBERTa(d). For a text-

to-text model with n transformer layers, the hyper-

network contains n decoders. Decoder i uses h0 as

input, and outputs adapter parameters φi for trans-

former layer i, i.e., hi,1 = ReLU(Wi,1h0 + bi,1),
φi = Wi,2hi,1 + bi,2. Here Wi,1,bi,1,Wi,2,bi,2

are trainable parameters. The generated parameters

φi are sliced and reshaped to become parameters

[Wid,bid,Wiu,biu] used in the adapter i.

Model Training. We adopt a training schedule

where we first train the main network, then train

the hypernetwork while the main network is frozen.

Conceptually, the first stage ensures that the main

network captures the general ability across different

tasks; the second stage allows the hypernetwork

to learn to adapt the main network to a specific

task. During the first stage the text-to-text model

is fine-tuned with all (Concat(d, s), t) examples

in the training set. Here Concat(d, s) means the

concatenation of task description d and input s. The

learned main network from this stage also serves

as the baseline method.

During the second stage, we sample a task (d,D)
from the training set and sample a mini-batch of

(s, t) examples from D. Given a description d, the

hypernetwork generates adapter parameters φi. We

insert the resulting adapter layers into the main

network, and compute the cross entropy loss L of

generating t given input Concat(d, s). The loss is

end-to-end differentiable and is back-propagated to

update the hypernetwork, while the main network

is frozen. See Fig. 2 (Right) for illustration. This

second stage of training effectively enables learn-

ing at the task level. The loss L characterizes the

model’s competence in the task (d,D). Therefore,

by optimizing L, the model is trained to solve tasks.

Model Inference. At test time the model is given

an unseen task description d. The hypernetwork

generates description-dependent adapter parame-

ters, similar to the procedure during training. In

this way, we obtain a model that is capable of mak-

ing inferences for this new task.

5 Experiments

5.1 Experiment Setup

Datasets. We use two datasets that fit our setup.

The first one is Zero-shot Learning from Task De-

scriptions dataset (ZEST, Weller et al. 2020), which

formulates task descriptions as generalized ques-

tions, and provides multiple source-target exam-

ples for each question. The performance is evalu-

ated with a novel metric: “Competence@K”, along

with mean F1 score. Competence@K is the per-

centage of all tasks for which the model achieves

mean F1 score higher than K. For example, Com-

petence@90=5 suggests that 5% of all tasks can be

solved with mean F1 better than 90%. We report

dev set performance, and hidden test set perfor-

mance obtained from ZEST’s official leaderboard.

We construct the second dataset from SQuAD

v1 (Rajpurkar et al., 2016) to simulate the problem

setting in this paper. We refer to this dataset as

Synthetic SQuAD. Specifically, we construct tasks

from the original SQuAD train set according to

“question type”, the bi-gram containing the central

question word (e.g., what, when). For example,

“when does” questions are considered as a task, and

“what country” questions are considered as another

task. These bi-grams are used as “task descrip-

tions”. We select the 100 most frequent question

types in SQuAD train set, and randomly subsam-

ple 64 examples from each type to formulate our

dataset. We then randomly split the 100 types into

80/10/10 for train/dev/test. In addition, we select

examples that fall into the 10 test question types

from Natural Questions (Kwiatkowski et al., 2019)

and NewsQA (Trischler et al., 2017), and use these

as out-of-domain test examples. Performance is

evaluated with mean F1. We include the list of

question types and more details about this dataset

in Appendix A.

Baseline. To demonstrate the efficacy of the

HYPTER framework, we compare it to just its first

half – the main text-to-text transformer model that

we obtain after the first stage of training. This

is identical to the fine-tuning baseline method in

(Weller et al., 2020), and there are no other appli-

cable baselines to the best of our knowledge.
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Model Mean-F1 C@75 C@90

Bart-Base 28.44 (±1.58) 5.76 (±2.10) 0.74 (±0.00)

+ HYPTER 28.96 (±1.15) 6.32 (±2.02)* 1.08 (±0.62)

Bart-Large (reported) 40 13 8

Bart-Large 41.17 (±1.16) 15.74 (±2.16) 7.17 (±1.66)

+ HYPTER 41.65 (±1.34) 16.41 (±2.15)* 7.62 (±1.66)*

Table 1: Performance on ZEST Dev Set. “C@75/90”

refers to Competence@75/90 metric. We report mean

and standard deviation over 7 runs. ∗ indicates statisti-

cal significance in a two-tailed paired t-test (p < 0.05).

Model Mean-F1 C@75 C@90

Bart-Base 31.97 7.03 2.23

+ HYPTER 32.32 6.72 2.53

Bart-Large (reported) 37.93 11.19 3.96

Bart-Large 40.13 10.91 3.98

+ HYPTER 40.41 11.35 4.43

Table 2: Performance on ZEST Test Set. Perfor-

mance obtained from ZEST official leaderboard2.

Training Details. For each method, we train the

model 7 times using different random seeds, and we

report average and standard deviation. We discuss

other training details, including hyperparameters,

in Appendix B. Notably, we ensure all baseline

models will not benefit from additional training,

by tuning the number of epochs and using early

stopping based on dev performance. This ensures

the improvement brought by HYPTER is not due to

additional training.

5.2 Results

Main Results. We present the results for ZEST

in Table 1-2 and results for Synthetic SQuAD in

Table 3. On ZEST test set, we observe that the

Competence@90 metric is improved from 3.98 to

4.43 when using BART-Large, yielding an 11.3%

relative improvement. When BART-Base is used,

C@90 is improved from 2.23 to 2.53. This demon-

strates that by learning to solve tasks with HYPTER,

the model’s generalization ability to unseen tasks

is improved. On Synthetic SQuAD dataset, we

observe 0.74% improvement with BART-Base and

0.41% improvement with BART-Large. Addition-

ally, models trained with HYPTER achieves com-

parable or better performance on out-of-domain

test sets, suggesting the learned task-solving ability

is generalizable to new test distribution.3 It is a

known issue that evaluating zero-shot performance

can be tricky. We tried our best to reduce the ran-

2https://leaderboard.allenai.org/zest/submissions/public
3Unexpectedly, in Table 3 we observe that performance of

BART-Large on NewsQA is worse than that of BART-Base.
We suspect that BART-Large may have overfit the SQuAD
train set during the first stage of fine-tuning.

Model SQuAD NQ NewsQA

Bart-Base 74.79 (±0.91) 49.78 (±0.95) 56.37 (±0.90)

+ HYPTER 75.53 (±0.68)* 50.39 (±1.01)* 56.41 (±0.85)

Bart-Large 79.32 (±0.34) 59.21 (±0.89) 55.41 (±0.54)

+ HYPTER 79.73 (±0.50) 59.58 (±0.57) 55.60 (±0.90)

Table 3: Performance on Synthetic SQuAD dataset.

We report mean and standard deviation over 7 runs. NQ

and NewsQA serve as out-of-domain test data.
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Figure 3: Competence@75 Performance on ZEST Dev

when less training data is used.

domness and instability by using different random

seeds. In Table 1 and Table 3, we demonstrate that

performance improvement is significant (p<0.05)

in multiple settings, e.g., on ZEST dev set when

C@75 metric is used.

Model Behavior Analysis on ZEST. ZEST

dataset provides a comprehensive analysis protocol

by splitting tasks into different generalization types

(base, paraphrase, composition, semantic flips, and

output structure) and defining four error types (re-

call, precision, partial, and other). Compared to

the BART-Large fine-tuning baseline, our model

achieves better performance in “base” and “para-

phrase” categories in the ZEST official test set. We

also manually inspected dev set predictions pro-

duced by the baseline and our model. We found the

predictions corrected by our method span across

the four error types. In particular, the proposed

method flipped two “n/a” predictions into the cor-

rect answers in the task “Which royalty was this

dog breed popular with?” (“base” category), reduc-

ing the recall errors and improving the competence

metric. We do not observe more granular model

behavioral patterns beyond this point.

Study of Data Efficiency. We study whether

HYPTER is effective when trained with (1) fewer

tasks, while the number of examples per task is

unchanged; (2) fewer examples per task, while the

number of total tasks is kept constant. We experi-

ment with ZEST and BART-Large, and show the

performance in Fig. 3. We observe that HYPTER is

effective when trained with 75%/100% tasks, but

does not improve performance with fewer tasks.

This is reasonable since HYPTER learns at the task

https://leaderboard.allenai.org/zest/submissions/public
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level (taking one task as an “example”), and 50% of

the tasks may be insufficient. We also observe per-

formance improvement with 75%/100% examples

per task, but not with fewer examples. This sug-

gests sufficient number of examples per task is nec-

essary for HYPTER to generate effective adapters.

6 Related Work

Zero-shot Learning with Transformers. Zero-

shot learning (ZSL) has been explored for various

NLP tasks, including text classification (Yin et al.,

2019), entity linking (Logeswaran et al., 2019) and

entity typing (Obeidat et al., 2019). Several works

study cross-task transfer by unifying the input-

output format, e.g., relation extraction as machine

reading comprehension (Levy et al., 2017), named

entity recognition as machine reading comprehen-

sion (Li et al., 2020). Such formulation allows

generalization to unseen relation or named entity

types at test time. Learning from task descriptions

(Weller et al., 2020) and instructions (Mishra et al.,

2021) can be considered as a sub-category in zero-

shot learning, with the goal of generalizing to un-

seen tasks during inference.

Adapters for Transformers. Houlsby et al.

(2019) proposed adapter layers for parameter-

efficient transfer learning in NLP. Adapter layers,

which adopt a bottleneck architecture with two lin-

ear layers, are added after each multi-headed at-

tention layer and each feed-foward layer in a pre-

trained transformer. Adapters have been recently

applied to multi-lingual settings, with successes in

NER, QA and commonsense reasoning (Pfeiffer

et al., 2020; Philip et al., 2020; Artetxe et al., 2020).

Hypernetworks and Contextual Parameter

Generators. Hypernetwork (Ha et al., 2017) is

a broad concept of “using one network to gener-

ate the weights for another network”. This con-

cept has been broadly applied to visual reasoning

(Perez et al., 2018), zero-shot image classification

(Jin et al., 2020), etc. Closely related to our work,

UDapter (Üstün et al., 2020) studies multilingual

dependency parsing by generating adapter param-

eters. Our work is more generalizable as we do

not restrict task format (dependency parsing v.s.

general text-to-text tasks) or relations between sub-

tasks (cross-lingual tasks v.s. tasks with text-form

descriptions).

7 Conclusion

In this paper, we introduced HYPTER, a framework

to improve text-to-text transformer’s generalization

ability to unseen tasks. HYPTER enhances task-

specific abilities by inserting adapters generated

with a hypernetwork, meanwhile it maintains the

model’s general task-solving ability by freezing

main model parameters. We demonstrated the ef-

fectiveness of HYPTER on two datasets. Future

work may explore teaching models with compo-

sitional instructions using HYPTER, or propose

robust fine-tuning methods that help the model

generalize to unseen data. It is also necessary to

construct a large dataset of diverse NLP tasks to

facilitate future research in this direction.
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Laurent Besacier. 2020. Monolingual adapters for
zero-shot neural machine translation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages

https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://openreview.net/forum?id=rkpACe1lx
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/2020.acl-main.625
https://doi.org/10.18653/v1/2020.acl-main.625
https://doi.org/10.18653/v1/2020.acl-main.625
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/P19-1335
https://doi.org/10.18653/v1/P19-1335
https://doi.org/10.18653/v1/N19-1087
https://doi.org/10.18653/v1/N19-1087
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16528
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16528
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.361
https://doi.org/10.18653/v1/2020.emnlp-main.361


652

4465–4470, Online. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Jake Snell, Kevin Swersky, and Richard S. Zemel.
2017. Prototypical networks for few-shot learning.
In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 4077–4087.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200, Vancouver, Canada. Association for Com-
putational Linguistics.
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A Dataset Details

ZEST. ZEST dataset is released at https:

//ai2-datasets.s3-us-west-2.amazonaws.com/zest/

zest.zip. ZEST leaderboard is hosted at https:

//leaderboard.allenai.org/zest/submissions/public.

Synthetic SQuAD. We build our synthetic

dataset from the processed version of SQuAD, Nat-

ural Questions and NewsQA in MRQA Shared

Task 2019 (Fisch et al., 2019) (https://mrqa.github.

io/2019/). We provide the script to reconstruct the

data we use in our released code. We list the bi-

grams we use to formulate synthetic tasks and their

train/dev/test partition in Listing 1.

Listing 1: Train/Dev/Test Partition in Synthetic

SQuAD dataset.

1 "train": ["why were", "what years", "who said", "

what percent", "when did", "where do", "who is"

, "how are", "what decade", "how does", "how

long", "where was", "what has", "which two", "

who was", "who were", "where are", "where does"

, "what did", "how far", "what organization", "

what does", "what group", "what would", "how

did", "who has", "who created", "how many", "

what name", "what types", "what two", "which

city", "who are", "how is", "what event", "what

are", "what century", "what area", "whom did",

"why was", "who wrote", "why are", "where is",

"how old", "when is", "what caused", "who did"

, "where did", "what happened", "what state", "

what kind", "what time", "what famous", "what’s

the", "what day", "what is", "what company", "

what were", "why do", "what new", "what date",

"what do", "what color", "which group", "what

country", "how can", "what have", "where can",

"what period", "which year", "when was", "what

other", "what happens", "was the", "what was",

"which of", "when were", "what sort", "what

city", "what year"],

2 "dev": ["what month", "why is", "what part", "what

term", "how was", "how were", "how do", "who

led", "which country", "when does"],

3 "test": ["where were", "what political", "what

religion", "why did", "what type", "what

language", "who had", "what percentage", "what

can", "how much"]

B Training Details

We use transformers (Wolf et al., 2020) for all our

experiments. All experiments are done with one

single GPU. We use NVIDIA Quadro RTX 8000,

NVIDIA Quadro RTX 6000, or NVIDIA GeForce

RTX 2080 Ti, depending on availability.

For text-to-text model fine-tuning, we select

learning rate from {1e-5, 3e-5, 5e-5}, and select

the total number of epochs from {5, 10, 15, 20, 30}
for ZEST and {10, 20, 30, 50, 100} for synthetic

SQuAD. We use a fixed batch size of 32.

For hypernetwork training, we train up to 100

epochs (one epoch here refers to an iteration over

all tasks). We update the hypernetwork every b

tasks, and we call b as task batch size. When

learning from one task, we sample b′ examples

within this task, and we call b′ as the example batch

size. We greedily and sequentially select adapter

width d from {4,8,16,32}, learning rate α from {3e-

6, 1e-5, 3e-5, 1e-4}, b from {4,8,16,32}, b′ from

{4,8,16,32}, based on dev set performance.

C Additional Baseline

Another reasonable baseline is to fine-tune a text-

to-text model together with randomly initialized

adapters plugged in it. We experiment with this

method using BART-Large and list the performance

in Table 4. We do not observe significant dif-

ferences between the two methods (p=0.8840 for

C@75, p=0.8118 for C@90 in two-tailed paired

t-test).

Model Mean-F1 C@75 C@90

Bart-Large 41.17 (±1.16) 15.74 (±2.16) 7.17 (±1.66)

Bart-Large with Adapters 39.76 (±1.26) 15.61 (±1.14) 6.96 (±1.15)

Table 4: Performance comparison when adapters are

plugged / not plugged during fine-tuning.

D Dev Set Performance of Models

Submitted to ZEST Leaderboard

In Table 5 we present the dev performance of mod-

els submitted to the leaderboard. The submitted

models are the “first-runs” in the 7-run series, as

we add the 7-run experiments and significance test

later on, following a reviewer’s suggestion.

Model Mean-F1 C@75 C@90

Bart-Base 29.72 7.87 4.05

+ HYPTER 29.81 8.67 4.05

Bart-Large (reported) 40 13 8

Bart-Large 42.10 16.72 8.85

+ HYPTER 43.50 17.46 9.64

Table 5: Dev set performance of models submitted to

ZEST leaderboard.

E Discussion

It is worth noting that the efficacy of HYPTER is at

the cost of introducing new parameters in the hy-

pernetwork. To generate adapter parameters, more

parameters are introduced and trained in the hyper-

network. One may achieve better generalization

ability to unseen tasks with larger pre-trained mod-

els with billions of parameters. In this case, we

consider HYPTER as an alternative by augmenting

a medium-sized pre-trained model with a hypernet-

work. Meanwhile, we highlight our contribution to

be the concept of generating task-specific adapters

from descriptions and HYPTER’s task-level training

procedure.
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