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Abstract

Visual Question Answering (VQA) methods
aim at leveraging visual input to answer ques-
tions that may require complex reasoning over
entities. Current models are trained on la-
belled data that may be insufficient to learn
complex knowledge representations. In this
paper, we propose a new method to enhance
the reasoning capabilities of a multi-modal
pretrained model (Vision+Language BERT)
by integrating facts extracted from an ex-
ternal knowledge base. Evaluation on the
KVQA dataset benchmark demonstrates that
our method outperforms competitive baselines
by 19%, achieving new state-of-the-art results.
We also perform an extensive analysis high-
lighting the limitations of our best performing
model through an ablation study.

1 Introduction

Visual Question Answering (VQA) is a popular
multi-modal task of answering a question about
an image. It tracks both inter-modal interactions
and reasoning capabilities of models (Wang et al.,
2017; Marino et al., 2019). Recent studies have
tested compositional reasoning (Johnson et al.,
2016; Hudson and Manning, 2019) and the inte-
gration of external knowledge (Wang et al., 2017,
2016; Shah et al., 2019; Marino et al., 2019) for
VQA. In this paper, we address Knowledge-aware
VQA (KVQA) (Shah et al., 2019)1 , defined as a
VQA task where it is not reasonable to expect a
model without access to a knowledge base to be
able to answer the questions in the test set.

In a uni-modal textual context, both synthetic
dataset (Kassner et al., 2020) and task-driven (Ding
et al., 2020) studies of neural models have shown
significant competence at symbolic reasoning. This
is encouraging, as neural pretrained Language
Models such as BERT (Devlin et al., 2019) achieve

1For data, examples, and licence information, please see
https://malllabiisc.github.io/resources/kvqa/

state-of-the-art results in a wide range of natural
language inference tasks and benchmarks such as
Natural Language Inference (Bowman et al., 2015).
(Rajani et al., 2019) uses pretraining on a domain-
specific dataset to improve CommonsenseQA by
10% absolute accuracy. Tamborrino et al. (2020)
develop an improved training objective to improve
COPA by 10% absolute accuracy.

Bouraoui et al. (2020) find that BERT is capable
of relational induction, whilst Broscheit (2019);
Petroni et al. (2020) find that BERT stores non-
trivial world-knowledge.

Previous work has argued that restriction to a
uni-modal context may itself impair reasoning per-
formance (Barsalou, 2008; Li et al., 2020). In a bi-
modal Vision + Language (V+L) context, datasets
such as CLEVR and GQA allow for the evaluation
of both model reasoning and language grounding.
Within this setting, Ding et al. (2020) and Lu et al.
(2020) show that appropriate neural models trained
on large quantities of data can exhibit accurate rea-
soning.

In this paper, we propose a new method of ap-
plying a massively pretrained V+L BERT model
(Chen et al., 2020) to the KVQA task (Shah et al.,
2019). Our method is able to learn a set of rea-
soning types (confirming findings in Ding et al.
(2020)) but can increase performance even more by
incorporating external factual information. KVQA
answers require attending to a knowledge base,
allowing us to quantify the contribution of both
explicit and implicit knowledge extracted from su-
pervised training data. We also quantify the degree
to which corpus bias makes certain question types
harder, and outline how future datasets may be bet-
ter balanced.

Our contributions are as follows:

• We perform factual integration into a V+L
BERT-based model architecture VQA, leading
to 19.1% accuracy improvement over previous
baselines on KVQA.

https://malllabiisc.github.io/resources/kvqa/
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• We evaluate our model’s reasoning capabili-
ties through an ablation study, proposing ex-
planations for poor performance on certain
question types as well as highlighting our
model’s strong preference for text and facts
over the image modality.

• We conduct a bias study of the KVQA dataset,
revealing both strengths and potential im-
provements for future VQA datasets.

2 Related Work

VQA tasks explicitly encourage grounded reason-
ing (Antol et al., 2015), with emphasis on a variety
of sub-domains, such as commonsense (Zellers
et al., 2019), compositionality and grounding (Suhr
et al., 2020), factual reasoning (Wang et al., 2017)
or external knowledge reasoning (Wang et al.,
2016; Marino et al., 2019; Shah et al., 2019).

State-of-the-art systems for external knowledge
VQA are based on Memory networks (MemNet,
(Weston et al., 2014)). In Shah et al. (2019), the
facts are extracted from the Knowledge Graph (KG)
by considering the visual (from image) and eventu-
ally textual (from Wikipedia caption) entities. They
are then embedded using a Bi-LSTM encoder and
fed into the memory. After the question is embed-
ded in a similar way, the resulting representation is
used to query the memory by soft attention. Sev-
eral stacked memory layers are used to better model
multi-hop facts.

Wang et al. (2016, 2017) introduce two datasets,
KB-VQA and FVQA respectively, and address the
task with systems that perform searches in a visual
knowledge graph formed from the image and a KB.
The question is first mapped to a query of the form
〈visual object, relationship, answer source〉, which
is then used to extract the supporting facts from the
KB. They report improved results when compared
to systems using LSTM, SVM and hierarchical
co-attention (Lu et al., 2016).

In Marino et al. (2019), the OK-VQA is pre-
sented with some baseline results obtained with
MUTAN (Ben-younes et al., 2017), a multimodal
tensor-based Tucker decomposition which models
interactions between visual (from CNN) and tex-
tual (from RNN) representations. Those systems
exhibit rather low performance compared to those
obtained on standard VQA, demonstrating that the
corpus requires external knowledge to be solved
correctly.

Recent work has introduced methods to incorpo-
rate visual information to create Vision+Language
BERT models through joint multimodal embed-
dings (Chen et al., 2020; Su et al., 2019; Lu et al.,
2019). First, image and text are embedded into the
same space, and then Transformer networks are ap-
plied as in the standard BERT model (Devlin et al.,
2019).

Our work is most similar to that of Shah et al.
(2019) since the same preprocessing pipeline is
used. However, our system does not use a memory
network, and instead relies on on a BERT-based
model (UNITER, see section 3) to model the rela-
tionship between question, facts, and image with
self-attention layers.

3 Methodology

To answer KVQA with Neural models, we first take
the V+L BERT model UNITER (Chen et al., 2020)
with the highest score on the commonsense VQA
task, VCR (Zellers et al., 2019).

In order to allow UNITER to accept external KG
facts, we cast these facts to a textual form ‘Entity1
Relation Entity2’. To keep the input facts count
small, we perform a conditional search of the KG.
The KVQA task consists in finding a∗:

a∗ = argmax
a∈A

p(a|q, i,K) ≈ argmax
a∈A

p(a|q, i, ki,q) (1)

where a∗ is the correct answer out of candidate
set A; and q, i, and K are a question, image and
knowledge base, respectively. As shown, we may
reduce the KG through a conditional search to find
the relevant subset of facts ki,q.

To define the subset ki,q, we follow Shah et al.
(2019) in extracting all facts from the knowledge
base that are up to two hops from any entities de-
tected by the textual entity linking or the face de-
tection.



470

Figure 1: Our Model

Our model, as presented in section 2 consists
of two stages: preprocessing, which implements
relevant fact extraction, and reasoning, which se-
lects an answer from the question, facts, and image
features.

3.1 Preprocessing Stage

For preprocessing and fact acquisition, we broadly
reproduce the fact and feature extraction process
used in Shah et al. (2019). We perform object
detection with the Faster R-CNN network (Ren
et al., 2017). A seven-dimensional normalised size
and location vector is concatenated with the Faster
R-CNN features.

For person detection, we use MTCNN (Zhang
et al., 2016) and Facenet (Schroff et al., 2015) mod-
els, pretrained on the MS-celeb-1M (Guo et al.,
2016) dataset, to generate 128-dimensional em-
beddings. We predict names by nearest-neighbour
comparison with the KVQA reference dataset. We
treat the name identification as a multi-class clas-
sification problem, achieving a Micro-F1 of 0.539.
Since this is lower than reported in Shah et al.
(2019), we follow them in applying a textual entity
linker (van Hulst et al., 2020) over supplied im-
age descriptions. This setup achieves a per-image

Micro-F1 of 0.686.
Normalised image location facts are generated

from these detections, such as ‘Barack Obama at 42
78’, which would indicate that the centre bounding
box for Barack Obama is at normalised (0-100) po-
sition x=42, y=78 of the image. We use the names
of identified entities to query Shah et al.’s 2019
reduced Wikidata graph (Vrandečić and Krötzsch,
2014) up to two hops. The extracted facts are fi-
nally cast to the form ‘subject relation object’.

3.2 Reasoning Stage

The neural model we use, UNITER, is pre-
trained on MS COCO (Lin et al., 2014), Visual
Genome (Krishna et al., 2016), Conceptual Cap-
tions (Sharma et al., 2018), and SBU Captions (Or-
donez et al., 2011). It is a multi-task system that
is trained on performing Masked Language Mod-
eling, Image-Text Matching, and Masked Region
Modeling (Chen et al., 2020).

4 Experimental Setup

We select the KVQA dataset for two reasons: to
our knowledge, it is the largest external knowledge
dataset (with 183k questions), and the questions
are annotated with their reasoning types. We use
accuracy as the evaluation metric and provide re-
sults over both the entire dataset and also for each
question type as provided in the KVQA dataset.

The baseline systems for KVQA are those pre-
sented in (Shah et al., 2019) and discussed in sec-
tion 2. The first baseline is a stacked BLSTM
encoder, operating over question and facts. This
system has an overall accuracy of 48.0% . The
second is the MemNet architecture and has the pre-
viously highest performing baseline accuracy at
50.2%.

We use the UNITER BASE pretrained model
available at the ChenRocks GitHub repository2

with custom classification layers (MLP +softmax
output layer). For task training, we merge retrieved
facts with the question, dividing each statement
with the ‘[SEP]’ token, following research that
indicates that this token induces partitioning and
pipelining of information across attention layers
(Clark et al., 2019). The textual input stream is to-
kenised with the HuggingFace ‘bert-base-uncased’
tokeniser (Wolf et al., 2020). We set the maximum
WordPiece sequences length to 412, the maximum
visual objects count to 100, the learning rate to

2https://github.com/ChenRocks/UNITER

https://github.com/ChenRocks/UNITER
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Model

Question Type MemNet UNITER Entropy
(Base 2)

1-Hop 61.0 65.7 7.8
1-Hop Counting - 78.0 1.4
1-Hop Subtraction - 28.6 4.3
Boolean 75.1 94.6 1.1
Comparison 50.5 90.4 2.1
Counting 49.5 79.4 2.3
Intersection 72.5 79.4 1.2
Multi-Entity 43.5 77.1 3.3
Multi-Hop 53.2 87.9 3.7
Multi-Relation 45.2 75.2 7.1
Spatial 48.1 21.2 11.5
Subtraction 40.5 34.4 6.0
Overall 50.2 69.3 7.6

Table 1: Results in terms of % accuracy of the consid-
ered systems break down into question types along with
the question types distribution (last column).

8× 10−5 and use AdamW (Loshchilov and Hutter,
2017) as optimizer. Once preprocessing is com-
pleted, we train the UNITER model with the cross-
entropy objective function for 80,000 iterations,
which we empirically found to guarantee conver-
gence.

5 Results

Table 1 shows the results of our system (UNITER),
using a question label break-down similar to Shah
et al. (2019). Overall, we observe that our system
outperforms the previous baseline MemNet setting
(see ‘World+WikiCap+ORG’ in Shah et al. (2019))
with an absolute improvement of 19%.

Our results show that UNITER is learning to
perform reasoning more accurately than MemNet
in all but two cases. In the question types involv-
ing multiple entities (‘Multi-Entity’, ‘Multi-Hop’,
‘Multi-Relation’), the increase is the greatest, sug-
gesting that UNITER is able to robustly learn these
reasoning here. We speculate that stacked self-
attention layers in BERT are able to better attend
to the many involved entities than MemNet.

We now discuss the performance of our model
on its weakest categories, namely ‘Subtraction’ and
‘Spatial’. The poor performance on ‘Subtraction’
questions confirms previous results that BERT-like
models require specialised pretraining for numer-
ical reasoning tasks (Geva et al., 2020). In the
case of our model specifically, we note the lack of
numerical reasoning tasks in UNITER’s pretrain-
ing regime. ‘Spatial’ is the model’s least accurate
question type (21.4%) and the biggest absolute de-

Question Type Q+F+I Q+F Q+I F+I Q F I
1-Hop 65.7 65.7 32.4 3.9 32.4 3.8 4.5
1-Hop Counting 78.0 78.0 30.3 0.0 30.3 0.0 0.0
1-Hop Subtraction 28.9 28.6 28.8 0.8 30.3 0.6 6.5
Boolean 94.6 94.6 55.2 1.3 55.2 1.0 10.5
Comparison 90.4 90.4 38.7 1.0 38.7 0.9 10.7
Counting 79.4 79.4 66.1 0.6 65.9 0.4 1.4
Intersection 79.4 79.4 61.0 0.4 60.6 0.3 0.0
Multi-Entity 77.1 77.1 41.3 0.8 41.2 0.7 6.4
Multi-Hop 87.9 87.9 29.0 0.8 28.9 0.8 0.0
Multi-Relation 75.2 75.2 25.1 3.0 25.0 3.0 2.5
Spatial 21.2 21.2 0.0 13.0 0.0 13.0 0.0
Subtraction 34.4 34.4 1.3 1.0 0.9 0.7 0.0
Overall 69.3 69.3 31.6 3.1 31.5 3.0 3.6

Table 2: Ablation Study of Information. Q=Question,
I=Image, F=Facts. Image refers to the Image feature
stream. Results are expressed as % accuracy by ques-
tion type.

crease from MemNet (-26.7%). This question type
requires two-hop reasoning where the second hop is
a numerical operation of the form argmin

y
(xi−yi).

Both of these have been shown to be problematic
for BERT (Kassner et al., 2020; Geva et al., 2020).

6 Analysis

UNITER performs well at the reasoning tasks in
general, with the most surprising result being that it
apparently does better at multi-hop reasoning than
one-hop. We believe that this can be explained
by the presence of unbalanced distribution of an-
swer types in the dataset perturbing the results (see
Table 1). We discuss this in Section 6.1.

In order to better understand the reasoning ca-
pability of our model and the impact of each input
modality, we perform an inference time ablation
study, presented in Table 2.

Ablation of Image features (column ‘Q+F’) does
not change the performance, suggesting that the
model is not attending to image features. To con-
firm this hypothesis, we performed an experiment
with adversarial images, obtaining very similar re-
sults for each question type and the same overall
score (69.30%). We explain this behaviour by the
fact that the preprocessing pipeline extracts all the
required information as explicit facts which the
model prefers over the more ambiguous visual fea-
tures. We leave a deeper analysis for further work.

An interesting case is the ‘Spatial’ questions,
where facts alone are able to correctly answer 13%
of the questions. This is likely the result of the
answers to this question type being entities present
in the facts. Again, we observe that the model is
not able to learn this information from the visual
features.
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Train Ablation Adversarial Modality*
Question Type Q+I Q I F
1-Hop 47.09 38.5 65.9 31.3
1-Hop Counting 66.1 61.5 75.2 50.5
1-Hop Subtraction 29.4 29.7 28.1 26.2
Boolean 83.9 67.3 94.1 57.5
Comparison 83.4 60.3 90.6 47.8
Counting 75.4 75.2 78.9 70.2
Intersection 67.6 67.9 76.8 61.2
Multi-Entity 69.4 57.2 76.4 47.6
Multi-Hop 56.5 50.2 87.9 38.4
Multi-Relation 47.3 38.9 75.2 28.3
Spatial 3.3 1.2 21.1 0.0
Subtraction 2.1 2.6 39.2 1.6
Overall 47.0 40.8 69.3 32.8

Table 3: Further Ablation and Adversarial Studies.
*Adversarial Modality indicates that the sample from
that modality was randomly assigned from the entire
data split

6.1 Bias Studies

We briefly discuss the corpus bias, a well-known
concern in VQA (Goyal et al., 2019). We con-
sider question difficulty across three parameters:
reasoning difficulty, task design, and corpus bias.
Certain question types are inherently more com-
plex, as discussed in Section 5. Additionally, the
task may have different numbers of answer classes
per task, effectively weakening any priors mod-
els might form (see Entropy column in Table 1).
Finally, an unbalanced dataset may cause certain
reasoning types to be underrepresented, making it
harder for models to learn for them. ‘Spatial’ and
‘Substraction’ questions are among the least repre-
sented in the training dataset, which increase their
difficulty for the model.

Unseen answer classes are also an issue. For
‘Spatial’ questions, only 54.2% of the test answers
(output classes) are actually seen during training,
placing an upper bound on accuracy. We find
98.4% of ‘Spatial’ questions the model answered
correctly and 95.7% of ‘Spatial’ question the model
answered incorrectly were supplied with adequate
facts by the preprocessing pipeline.

Training time ablation and adversarial experi-
ments To further probe the task, we perform a
training time ablation with first facts, and then facts
and images removed (see Table 3). In this we seek
to exhibit the capability of our model to leverage
the available modalities and to compensate for the
missing ones.

Through comparing the training time and infer-
ence time ablations, we can better understand the

importance of a modality to solving the task.
Through comparing train and inference ablation

of facts (‘Q+I’ column of Table 3 and of Table 2)
we observe that when facts are unavailable at train
time, the model attends to images to obtain 47.0%
accuracy, which is 15.4% more than the 31.6% ob-
tained by the corresponding inference time ablation.
This indicates that the visual modality can provide
useful information for this task.

We observe a similar trend in the fact and im-
age ablation setting (‘Q’ column of Table 3 and
of Table 2) that the model is able to greater lever-
age questions to make accurate predictions when
additional modalities are never available.

We also perform adversarial checks, where ran-
dom images or facts from the data split are pre-
sented at inference time. These align closely with
the ablation study, with adversarial images (Col-
umn ‘I’ of Table 3) performing within 0.1% of
blanked images (Column ‘Q+F’ of Table 3) and
adversarial facts (Column ’F’ of Table 3) perform-
ing within 1% of blanked facts (Column ‘Q+I’ of
Table 3). These results confirm the importance of
factual data and the unimportance of raw image
features to a model trained on the full data.

7 Conclusion and Future Work

We evaluated our model and found that it improves
on the previous state of the art by a substantial
margin (19.1%). An ablation study revealed the
specific strengths and weaknesses of our model on
certain question categories when evaluated on the
KVQA dataset. We show that the UNITER model
is not actually using the visual input.

In the future, we seek to create a large exter-
nal knowledge dataset designed following KVQA
with more entities besides persons to encourage
grounded reasoning, and better calibration of an-
swer types. We will also consider pretraining our
model on closely related tasks. This will help to
form a model capable of learning robust reasoning
with a high degree of spatial specificity and entity
discrimination.
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