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Abstract

Pre-trained language models have achieved
human-level performance on many Machine
Reading Comprehension (MRC) tasks, but it
remains unclear whether these models truly un-
derstand language or answer questions by ex-
ploiting statistical biases in datasets. Here, we
demonstrate a simple yet effective method to
attack MRC models and reveal the statistical
biases in these models. We apply the method to
the RACE dataset, for which the answer to each
MRC question is selected from 4 options. It is
found that several pre-trained language mod-
els, including BERT, ALBERT, and RoBERTa,
show consistent preference to some options,
even when these options are irrelevant to the
question. When interfered by these irrelevant
options, the performance of MRC models can
be reduced from human-level performance to
the chance-level performance. Human readers,
however, are not clearly affected by these irrele-
vant options. Finally, we propose an augmented
training method that can greatly reduce models’
statistical biases.

1 Introduction

Reading comprehension tasks are useful to quan-
tify language ability of both humans and machines
(Richardson et al., 2013; Xie et al., 2018; Berzak
et al., 2020). Deep neural network (DNN) models
have achieved high performance on many MRC
tasks, but these models are not easily explainable
(Devlin et al., 2019; Brown et al., 2020). It is also
shown that DNN models are often sensitive to ad-
versarial attacks (Jia and Liang, 2017; Ribeiro et al.,
2018; Si et al., 2019, 2020). Furthermore, it has
been shown DNN models can solve MRC tasks
with relatively high accuracy when crucial infor-
mation is removed so that the tasks are no longer
solvable by humans (Gururangan et al., 2018; Si
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et al., 2019; Berzak et al., 2020). All such evi-
dence suggests that the high accuracy DNN models
achieve on MRC tasks does not solely rely on these
models’ language comprehension ability. At least
to some extent, the high accuracy reflects exploita-
tion of statistical biases in the datasets (Gururangan
et al., 2018; Si et al., 2019; Berzak et al., 2020).

Here, we propose a new model-independent
method to evaluate to what extent models solve
MRC tasks by exploiting statistical biases in the
dataset. As a case study, we only focus on the clas-
sic RACE dataset (Lai et al., 2017), which requires
MRC models to answer multiple-choice reading
comprehension questions based on a passage. The
advantage of multiple-choice questions is that its
performance can be objectively evaluated. At the
same time, it does not require the answer to be
within the passage, allowing to test, e.g., the sum-
marization or inference ability of models. Never-
theless, since models are trained to select the right
option from 4 options, which are designed by hu-
mans and may contain statistical biases, models
may learn statistical properties of the right option.
Consequently, models may tend to select options
with these statistical properties similar to the prop-
erties of the right option without referring to the
passage and question. Our method is designed to
reveal this kind of statistical bias.

The logic of our method is straightforward: For
each multiple-choice question, we gather a large
number of options that are irrelevant to the ques-
tion and passage. We ask the model to score how
likely each irrelevant option is the right option. If a
model is biased, it may always assign higher scores
to some irrelevant options than others, even if all
the options are irrelevant. If a model is so severely
biased, which turns out to be true for all models
tested here, it may assign higher scores to some ir-
relevant options than the true answer and select the
irrelevant option as the answer. Here, the irrelevant
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options that are often selected as the answer are
referred to as magnet options.

2 Dataset and Pre-trained Models

We used RACE dataset in our experiment (Lai et al.,
2017), which is a large-scale reading comprehen-
sion data set covering more than 28,000 passages
and nearly 100,000 questions. The task was to an-
swer multi-choice questions based on a passage.
Specifically, each question contained a triplet (pi,
qi, oi), where pi denoted a passage, qi denoted a
question, and oi denoted a candidate set of 4 op-
tions, i.e., oi = {oi,1, oi,2, oi,3, oi,4}. Only one
option was the correct answer, and the accuracy
was evaluated by the percent of questions being
correctly answered.

We tested 3 pre-trained language models, i.e.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and ALBERT (Lan et al., 2019). For each
model, we separately tested the base version and
large version. We built our models based on pre-
trained transformer models in the Huggingface
(Wolf et al., 2020). We fine-tuned pre-trained mod-
els based on the RACE dataset and the parameters
we used for fine-tuning were shown in Appendix
A.1.

The passage, question, and an option were con-
catenated as the input to models, i.e., [CLS, pi,
SEP , qi, oi,j , SEP ]. The 4 options were sepa-
rately encoded. The concatenated sequence was
encoded through the models and the output embed-
ding of CLS was denoted as Ci,j . We used a linear
transformation to convert vector Ci,j into a scalar
S(oi,j), i.e., S(oi,j) = WCi,j . The scalar S(oi,j)
was referred to as the score of the option oi,j . A
score was calculated for each option, and the an-
swer to a question was determined as the option
with the highest score, i.e., argmaxjS(oi,j).

3 Adversarial Method

3.1 Screen Potential Magnet Options
We evaluated potential statistical biases in a
model by giving it a large number of irrelevant
options. For each question, we augmented
the options using a set of irrelevant options,
i.e., OA = {oa1, oa2, ..., oaN}. OA was ran-
domly selected from the RACE dataset with
2 constraints. First, the options belonged to
questions that were not targeted at passage
pi. Second, none of the options in OA was
identical to any of the original options in

oi. The augmented question was denoted as
(pi, qi, {oi,1, oi,2, oi,3, oi,4, oa1, ..., oaj , ..., oaN}).
A score was independently computed for each
option using the procedure mentioned above.
Since the options in OA were irrelevant, an ideal
model should never select them as answers. If
maxjS(oi,j) < S(oak) for any k, however, the
model would select the kth irrelevant option as the
answer. We define an interference score Tk using
the following equation.

Tk =
1

N

N∑
i=1

Ti,k, where

Ti,k =

{
1, if maxjS(oi,j) < S(oak)

0, otherwise

For an ideal model, Ti,k should always be 0.
For a model that makes mistakes but shows no
consistent bias, the interference score should be
comparable for all oak. If the model is biased, the
interference score may be always high for some
options so that the model always selects them as
the answer whether they are relevant to the question
or not.

3.2 Adversarial Attack

We constructed an adversary attack to the MRC
models using one magnet option. For each ques-
tion, we replaced a wrong option with a magnet
option, i.e., oak. The replaced option set was
{oi,1, oi,2, oi,3, oak}. The passage and the question
were not modified, and the answer did not change.
An example was shown in Figure 1. If the model
chooses the original answer even when a magnet
option is introduced, it is stable, not sensitive to the
attack. In contrast, if it chooses the magnet option,
i.e., oak, as the answer, it is successfully attacked.

4 Results and Analyses

4.1 Experiments Setup

To screen potential magnet options, we constructed
a large set of irrelevant options, i.e., OA, by ran-
domly selecting 300 passages from the RACE test
set, which were associated with 1064 questions.
Furthermore, to test whether options in the train-
ing set can cause stronger interference, we also
randomly selected 300 passages from the RACE
training set, which had 1029 questions. The op-
tions from the test and training set were pooled to
create OA, which had 8372 options in total.
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Figure 1: An example of the task and adversarial attack. The option in bold is the true answer, and the option in red
indicates the irrelevant option that was used for attack.

Figure 2: Interference score evaluated based on a sub-
set of questions.

For such a large number of irrelevant options,
it was computationally challenging to evaluate the
interference score of each option based on each
question in the RACE test set. Therefore, as a
screening procedure, we first randomly selected
100 passages from the RACE test set, which have a
total of 346 questions. The interference score for
each of the 8372 irrelevant options was evaluated
based on the 346 questions.

After potential magnet options were determined
by the screening procedure, the interference score
of magnet options were further evaluated using all
questions in RACE test set. For RACE test set,
the accuracy of the models ranged between about
0.6 and 0.85, with RoBERTa-large achieving the
highest performance (Table 1).

4.2 Screening for Magnet Options

The interference score for 8372 options was inde-
pendently calculated for each model. Results were
shown in Figure 2, where the interference score
was sorted for each model. It is found that most of
the irrelevant options had a non-zero interference

score, and some irrelevant options yielded high
interference scores around 0.8, which meant the
models would choose those irrelevant options as
the answer for about 80% of the questions. Irrel-
evant options from the training and test sets had
similar interference scores (Appendix B.1).

It was found that the options with exception-
ally high interference scores around 0.8 were op-
tions that combined other options, such as “all the
above”, which were called the option-combination
series. However, not all the magnet options were
from the option-combination series. Normal state-
ments, e.g., “The passage doesn’t tell us the end of
the story of the movie”, could also reach an average
interference score around 0.34.

The correlation between the interference score
between models were shown in Appendix B.2. We
separately showed the results for options from the
option-combination series and the others. The cor-
relation coefficient between models had an average
value around 0.76, which proved that the interfer-
ence score was correlated across models. From
another perspective, it also implied that our method
could work as a model-insensitive adversarial at-
tack method.

4.3 Validate Magnet Options and Adversarial
Attack

We further evaluated the interference score of po-
tential magnet options based on all the questions
in the RACE test set. To construct a set of magnet
options for this analysis, we averaged the inter-
ference score across 3 models, i.e., BERT-large,
RoBERTa-large, and ALBERT-large. All options
in OA were sorted based on the average score, and
we selected 20 options with the highest interference
scores to construct the magnet option set, with the
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BERT ALBERT RoBERTa
Version base large base large base large

Original accuracy 0.614 0.681 0.683 0.752 0.738 0.846
Adversarial accuracy1 0.094 0.167 0.217 0.064 0.166 0.297
Adversarial accuracy2 0.381 0.524 0.334 0.506 0.656 0.798

Table 1: Model performance on the RACE test set and model performance after being attacked. The superscript 1
meant use “A, B and C” to attack, and the superscript 2 meant use “The passage doesn’t tell us the end of the story
of the movie” to attack.

Figure 3: Interference score evaluated based on the
whole RACE test set.

Figure 4: Interference score for the human experiment
and the corresponding interference scores for the mod-
els.

following constraint: Since options with the high-
est interference scores were often from the option-
combination series, to increase diversity, we only
included 3 options from the option-combination
series. We listed all the 20 magnet options in
Appendix A.2. The interference score calculated
based on the whole RACE test set was shown in
Figure 3, which was very similar to the results
based on the subset of 346 questions in Figure 2
(comparing average-whole and average-subset in
Figure 3).

Table 1 showed the accuracy of models when
attacked by 2 example magnet options. When at-
tacked, the model performance could drop by as

much as 0.68.

4.4 Human Evaluation
Next, we verified whether humans were also con-
fused by the magnet options. We randomly selected
20 questions and 10 magnet options. The 10 mag-
net options selected were listed in Appendix A.3.
Ten questions were not modified while the other 10
questions were attacked using the procedure shown
in Figure 1. Twenty human evaluators answered
these 20 questions online. The accuracy of humans
did not reduce under attack (0.90 in the original
samples and 0.94 in the adversarial samples). The
interference score for humans, also the correspond-
ing interference score for the models, was shown
in Figure 4. Humans were not confused by the
magnet options.

4.5 Training with Adversarial Examples
To reduce sensitivity to magnet options and to po-
tentially reduce the statistical biases of MRC mod-
els, we proposed an augmented training method
and tested the method using the base version of all
models. In the augmented training method, 400
options with the highest interference scores were
selected as the irrelevant option set. For each ques-
tion in the RACE training set, the option set was
augmented by adding an option randomly chosen
from the irrelevant option set. In other words, al-
though each original question has 4 options, during
the augmented training each question has 5 options,
including the 4 original options and a randomly
chosen irrelevant option. We fine-tuned pre-trained
models based on the training set with augmented
options.

The accuracy of models fine-tuned using aug-
mented options were shown in Table 2, comparable
to the original accuracy in Table 1. When attacked,
however, the accuracy of models fine-tuned using
augmented options were much higher than the ad-
versarial accuracy in Table 1.

The 1000 options with the highest interference
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base version BERT ALBERT RoBERTa
Original accuracy 0.601 0.689 0.723

Adversarial accuracy1 0.576 0.681 0.725
Adversarial accuracy2 0.670 0.740 0.778

Table 2: Model performance on the RACE test set based on augmented training.

Figure 5: Interference score of 1186 randomly chosen
options that are not used in augmented training.

scores were selected to evaluate the effect of aug-
mented training, as shown in Appendix C. Result
showed that the interference score dropped for both
the 400 options used for augmented training and
the other 600 options that were not used for train-
ing. Therefore, the effect of augmented training
could generalize to samples not used for augmented
training.

Another experiment was implemented to explore
the impact of irrelevant option set selection. We
separately used options with high and low inter-
ference scores for training and found that options
with higher interference score were more effective
at reducing statistical biases (Figure 5).

4.6 Interference Score Analysis
Did the statistical biases revealed in previous anal-
yses originate from the pre-training process or the
fine-tuning process? Without fine-tuning, the pre-
trained models performed poorly on RACE. How-
ever, results showed that such an imprecise model
could show strong biases (Appendix B.3). Inter-
estingly, the interference score was not correlated
between the pre-trained model and the fine-tuned
model, suggesting that fine-tuning overrode the bi-
ases caused by pre-training and introduced new
forms of biases.

5 Related Work

Our attack strategy distinguishes from previous
work in two ways. First, unlike, e.g., gradient-

based methods (Ebrahimi et al., 2018; Cheng et al.,
2020), our method does not require any knowl-
edge about the structure of DNN models. Second,
some methods manipulate the passage in a passage-
dependent way (Jia and Liang, 2017; Si et al., 2020;
Zhao et al., 2018), while our method manipulate
the options in a passage-independent way. Further-
more, we proposed a strategy to train more robust
models that are insensitive to our attack.

Here, we restricted our discussion to RACE, but
our method is applicable to other tasks in which
the answer is selected from a limited set of op-
tions. For example, for span extraction tasks, such
as SQuAD, the method will insert a large number
of irrelevant phrases into the passage and analyze
which phrases are often selected as the answer. In
this way, our method is similar to the trigger-based
attack methods (Wallace et al., 2019), but the dif-
ference is that our method test whether the inserted
irrelevant phrase is selected as the answer while
the trigger-based methods test whether the content
following the trigger phrase is selected.

6 Conclusion

In summary, we propose a new method to evaluate
the statistical biases in MRC models. It is found
that current MRC models have strong statistical
biases, and are therefore sensitive to adversarial
attack. When attacked using the method proposed
here, model performance can drop from human-
level performance to chance-level performance. To
alleviate sensitivity to such attacks, we provided
an augmented training procedure that effectively
enhances the robustness of models.
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BERT ALBERT RoBERTa
version base large base large base large

learning rate 1.00E-05 1.00E-05 2.00E-05 1.00E-05 1.00E-05 1.00E-05
train epochs 5 5 / / 4 4
train steps / / 12000 12000 / /

train batch size 16 24 32 32 16 16
warmup steps 0 0 1000 1000 1200 1200
weight decay 0 0 0 0 0.1 0.1

Table 3: Hyperparameters for fine-tuning on RACE. We adapted these hyperparamemers from Lan et al. (2019);
Liu et al. (2019); Ran et al. (2019); Zhang et al. (2020).

Figure 6: Interference score evaluated based on a subset
of questions.

A Experimental Details

A.1 Fine-tuning Parameters
The parameters we used in the process of fine-
tuning the pre-trained models were shown in Table
3.

A.2 Magnet Options for Validate
The 20 magnet options used for evaluating the in-
terference scores in Section 4.3 were shown as
following. The sentences selected from the RACE
training set were shown in bold.

1. A, B and C
2. all of A, B and C
3. All of the above.
4. Not all of it can be avoided.
5. It’s well beyond what the author could be re-

sponsible for.
6. The passage doesn’t tell us the end of the

story of the movie
7. didn’t give the real answer

Figure 7: The scatter matrix diagram of the interference
scores of the irrelevant options among models.

8. make us know it’s important to listen to
people who offer a different perspective
through his experience

9. give us a turning point in mind
10. not strictly stuck to
11. You should purposely go out and make these

mistakes so that you can learn from them and
not have them ruin your entire life.

12. what’s inside a person is much more important
than his/her appearance.

13. Not all of it is man-made Ming dynasty
structure.

14. introduce the topic of the passage
15. The central command didn’t exactly state

what had caused the crash.
16. one good turn deserves another.
17. the growing population is not the real cause

of the environment problem.,
18. misfortune may be an actual blessing.
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BERT-base Correlation coefficient accuracy Average interference score
Pre-trained model -0.023 0.315 0.0518

Partly fine-tuned model 0.069* 0.315 0.0214
Fine-tuned model 1 0.613 0.0713
RoBERTa-base Correlation coefficient accuracy Average interference score

Pre-trained model -0.021 0.225 0.3553
Partly fine-tuned model 0.088** 0.289 0.2282

Fine-tuned model 1 0.743 0.0569
ALBERT-base Correlation coefficient accuracy Average interference score

Pre-trained model -0.013 0.254 0.1483
Partly fine-tuned model 0.231** 0.39 0.1043

Fine-tuned model 1 0.702 0.0703

Table 4: Interference score of 1000 randomly selected irrelevant options for the same model architecture before and
after fine-tuning. Correlation coefficient was counted between the interference score before and after fine-tuning
(**P < 0.01, and *P < 0.05).

19. may meet with difficulties sometimes
20. good answers are always coming when we

think outside of the box

A.3 Magnet Options for Human Evaluation

The 10 magnet options used for human evaluating
in Section 4.4.

1. all the above
2. Both B and C
3. do all of the above
4. A and B
5. not strictly stuck to
6. The passage doesn’t tell us the end of the story

of the movie
7. It’s well beyond what the author could be re-

sponsible for.
8. You should purposely go out and make these

mistakes so that you can learn from them and
not have them ruin your entire life.

9. make us know it’s important to listen to people
who offer a different perspective through his
experience

10. Not all of it is man-made Ming dynasty struc-
ture.

B Study of Interference Score

B.1 Comparison of Irrelevant Options from
RACE Training and Test Set

Different models in Figure 2 were separately shown
in Figure 6. It denoted that irrelevant options from
the training and test sets had similar interference
score. Only in BERT-large and ALBERT-large
models, the interference scores of the irrelevant
options from the training set were higher than those

Figure 8: Interference score comparison of models
evaluated based on a subset of questions.
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from the test set in a certain range.

B.2 Comparison of Interference Scores Based
on Different Models

The scatter matrix diagram of the interference
scores of the irrelevant options among different
models was shown in Figure 7. The detailed exper-
imental process was described in Section 4.2. Here,
text in black showed the correlation coefficient of
all options; text in green showed the options of the
option-combination series; text in blue showed the
options except the option-combination series.

In general, the interference scores between mod-
els had high correlation coefficients. Models from
the same architecture were more likely to have sim-
ilar interference scores.

B.3 Comparison of Interference Scores
During Fine-tuning

For each model architecture, the pre-trained model,
partly fine-tuned model (fine-tuned the linear trans-
formation mentioned in Section 2), and fully fine-
tuned model were collected, and were used to eval-
uate the interference score of 1,000 randomly se-
lected irrelevant options. The results were shown
in Table 4. The subset of questions mentioned in
Section 4.1 were used to evaluate the interference
score.

C Augmented Training Result

The augmented training results were shown in Fig-
ure 8. In the figures, the left side of the red line
contains the irrelevant options that were used in
augmented training, and the right is the irrelevant
options that were not involved in augmented train-
ing.


