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Abstract

We present a text representation approach that
can combine different views (representations)
of the same input through effective data fusion
and attention strategies for ranking purposes.
We apply our model to the problem of differ-
ential diagnosis, which aims to find the most
probable diseases that match with clinical de-
scriptions of patients, using data from the Un-
diagnosed Diseases Network. Our model out-
performs several ranking approaches (includ-
ing a commercially-supported system) by ef-
fectively prioritizing and combining represen-
tations obtained from traditional and recent
text representation techniques. We elaborate
on several aspects of our model and shed light
on its improved performance.

1 Introduction

Electronic Health Records (EHRs) (Dick et al.,
1997) contain a wealth of documented information
and insights about patients health and well-being.
However, it is difficult to effectively process such
data due to complex terminology, missing informa-
tion, and imprecise clinical descriptions (Friedman
et al., 2013; Rajkomar et al., 2019). In addition, an
especially challenging class of diseases are orphan
or rare diseases (Kodra et al., 2012; Walley et al.,
2018), which are diverse in symptoms and affect a
smaller percentage of the population.

In this paper, we investigate how well Natural
Language Processing (NLP) algorithms could re-
produce the performance of clinical experts in the
task of differential diagnosis–the process of dis-
tinguishing a particular disease from others that
present similar clinical features, given medical his-
tories (descriptions) of individual patients. We for-
mulate this task as a ranking problem where the aim
is to find the most probable diseases given medical
histories of patients (Dragusin et al., 2013).

We develop a novel pairwise ranking algorithm
that combines different views of patient and disease
descriptions, and prioritizes effective views through
an Attentive Multiview Neural Model (AMNM).
We research this problem using data from the Un-
diagnosed Diseases Network (UDN) (Gahl et al.,
2015; Ramoni et al., 2017)1, which includes con-
cise medical history of patients and their corre-
sponding diseases in the Online Mendelian Inher-
itance in Man (OMIM) dataset (Amberger et al.,
2015).2 All diagnoses–mappings between each pa-
tient and corresponding diseases–are provided by a
team of expert clinicians from the UDN.

The contributions of this paper are as follows:
• illustrating the impact of NLP in detecting the

nature of illness (diagnosis) in patients with
rare diseases in a real-world setting, and

• a novel neural approach that effectively com-
bines and prioritizes different views (represen-
tations) of inputs for ranking purposes.

Our Attentive Multiview Neural Model employs
traditional and recent representation learning tech-
niques and outperforms current pairwise neural
ranking approaches through effective data fusion
and attention strategies. We conduct several exper-
iments to illustrate the utility of different fusion
techniques for combining patient (query) and dis-
ease (document) representations.3

2 Method

In many domains, entities can be represented from
multiple views. For example, a patient can be rep-
resented by demographic data, medical history, di-
agnosis codes, radiology images, etc. We propose
a neural model to effectively prioritize important
views and combine them for ranking purposes.

1https://undiagnosed.hms.harvard.edu/
2https://www.omim.org/
3code: https://clu.cs.uml.edu/tools.html

https://undiagnosed.hms.harvard.edu/
https://www.omim.org/
https://clu.cs.uml.edu/tools.html
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Figure 1 shows our model, which comprises of
three major components: (a): an attention network
that estimates and weights the contribution of each
view in the ranking process, (b): a fusion network
the utilizes intra-view feature interactions to ef-
fectively combine query-document representations,
and (c): a softmax layer at the end that estimates
the query-document relevance scores given their
combined representations. We first formulate the
problem and then explain these components.

2.1 Problem Statement
Let (q′, d′) and (q′′, d′′) denote two different views
of the same query and document (throughout the
paper, we think of queries and documents as clin-
ical descriptions of patients and diseases respec-
tively).4 These views can be obtained using tradi-
tional (Robertson and Walker, 1994) or recent (De-
vlin et al., 2019) representation learning techniques
applied to textual descriptions or codified data of
queries and documents. For example, q′ and d′

can indicate representations of the texts of a query
and a document, and q′′ and d′′ can indicate rep-
resentations of the medical concepts and codes
associated with the same query and document. Our
task is to determine a relevance score between each
given query and document. Toward this goal, we
effectively prioritize and combine these represen-
tations through Attention and Fusion neural net-
works, which are described blow.

2.2 Attention Model
We develop an attention sub-network to explicitly
capture the varying importance of views by assign-
ing attentive weights to them. Specifically, given
the embedding vectors of a query qi ∈ Rl and a
document di ∈ Rm in the ith view, we use a Feed-
forward network, i.e. function f(.) in Figure 1, to
estimate the vector a that captures attention weights
across views as follows:

f(qi,di) = ϕ(Wqqi + bq)> · ϕ(Wddi + bd),

a = softmax([f(qi,di),∀i]),
(1)

where Wq ∈ Rn×l and Wd ∈ Rn×m are weight
matrices to transform the query and document rep-
resentations into the same underlying space of di-
mension n, bq ∈ Rn and bd ∈ Rn are the train-
able bias vectors for the query and document re-
spectively and ϕ(.) is the ReLU function. The

4Our model can incorporate any number of views; we only
illustrate two views here for simplicity.
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Figure 1: The architecture of our Attentive Multiview
Neural Model (AMNM). For simplicity, we illustrate
two views only, e.g. (q′, d′) indicates representations
of the texts of a query and a document, and (q′′, d′′)
indicates representations of the medical codes and con-
cepts associated with the same query and document.
f(.) and g(.) indicate attention and fusion functions re-
spectively, and ai indicates the attentive weight of the
ith view estimated by the attention sub-network.

softmax activation function transforms the at-
tention weights to [0, 1] range. Assuming that the
query-document pair of the more influential view
are more similar in the underlying shared space (es-
timated by dot product in (1)), a captures attention
weights of different views.

2.3 Fusion Model

Previous learning to rank approaches often con-
catenate query and document representations to
combine their corresponding features (dos Santos
et al., 2015; Amiri et al., 2016). There are a few
approaches that explicitly capture feature interac-
tions between queries and documents (Severyn and
Moschitti, 2015; Echihabi and Marcu, 2003). We
extend these fusion techniques and compare them.

Given the attention weights from (1), we develop
a fusion sub-network, function g(.) in Figure 1,
to capture the intra-view feature interactions for
query and document representations of each view.
Our fusion network takes as input the attentive
embeddings of each view, i.e. (α× q, α× d), and
combines them through one of the following tensor
fusion operations:

gdot(αq, αd) =α2 × ϕ(Wqq+ bq)>·
ϕ(Wdd+ bd),

gouter(αq, αd) =α2 × q⊗ d,

gconv(αq, αd) =α2 × Conv1d(q⊗ d),

(2)
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where gdot, gouter, and gconv denote the dot prod-
uct, outer product, and one-dimensional (1D) con-
volution with average pooling. In contrast to gdot,
gouter and gconv are considerably more expensive
operations but may better encode feature interac-
tions. The output of function g is flattened and
considered as the intra-view embedding.

Finally, we obtain the overall fused representa-
tion for each view by concatenating its intra-view
and attentive embeddings. The representations of
all views are then fed into a softmax to estimate
the relevance between queries and documents.

3 Experiments

Data: Our data includes medical histories of 257
patients provided by the the Undiagnosed Diseases
Network (UDN5) (Gahl et al., 2015; Ramoni et al.,
2017), as well as general descriptions (including
clinical features) of more than 9K diseases avail-
able in the Online Mendelian Inheritance in Man
(OMIM) dataset (Amberger et al., 2015). The UDN
is a nationwide program that improves the level of
diagnosis for individual patients (with severe clin-
ical conditions) whose signs and symptoms have
been intractable to diagnosis (Kobren et al., 2021;
Amiri et al., 2021). To the best of our knowl-
edge, this dataset is the largest available dataset
for investigation on rare disease patients. The rel-
evance judgment between patients and diseases is
provided by a team of expert clinicians at the UDN.
The total number of positive patient-disease pairs
is 4, 746, where the number of unique diseases
among these pairs is 1, 131; note that different pa-
tients can match with the same disease. We split
the patients into training (80%), validation (10%),
and test (10%) sets. In addition, for each positive
pair in the training set, we create a negative pair
for the same patient through random sampling of
diseases. At test time, we create all the possible
patient-disease pair combinations (more than 218K
pairs) and use the estimated confidence scores of
the classifier to rank all diseases against each test
patient. In terms of views, we consider the texts of
medical histories and diseases as the first view, and
medical concepts and codes extracted from histo-
ries by QuickUMLS (Soldaini and Goharian, 2016)
as the second view.

5Access to phenotypic and genomic UDN data can be
granted by submitting an online access request at dbGaP:
https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs001232.
v1.p1.

We note the concept and code view provides a
higher level and more general semantic distinctions
by grouping semantically-similar terms, while text
view encodes other elements of semantics such as
negation, hedging, etc.

Baselines: We consider the following baselines:
• BM25 (Robertson et al., 1995): An unsuper-

vised approach that effectively predicts relevance
based on term frequency, inverse document fre-
quency, and document length.
• SVMs (Cortes and Vapnik, 1995): We de-

velop TF/IDF weighted ngrams (n=[1–2]) as fea-
tures for the text and code/concept views, and con-
duct exhaustive search over hyperparameters for
best performance on validation data. Such features
were found effective on clinical texts by previous
work (Howes et al., 2012; Reuber et al., 2009).
• BERT (Devlin et al., 2019): An attentive bidi-

rectional language model that estimates the rele-
vance between queries and documents by generat-
ing contextual representations, jointly conditioned
on left and right contexts. We use BERT models
developed for clinical text (Alsentzer et al., 2019).6

• SVMrank (Joachims, 2002): An extension of
SVMs to ranking problems which adaptively sorts
documents based on their relevance to each query
through empirical risk minimization. As features,
we use relevance scores or probability predictions
generated by the above baselines as well as addi-
tional features (unigram overlap and IDF-weighted
unigram overlap) (Yu et al., 2014) to better estab-
lish the relevance between queries and documents.
• PhenoTips (Girdea et al., 2013): This com-

mercial tool is currently used at the UDN to assist
diagnostic efforts. It utilizes external sources such
as the Human Phenotype Ontology (Köhler et al.,
2017) and Orphanet data7 to rank candidate dis-
eases according to their ontology-based similarity
to phenotypic descriptions of patients. PhenoTips
employs advanced statistical modeling to differen-
tiate candidate diseases, accounts for disorder fre-
quencies in the general population according to Or-
phanet, supports negative phenotypes–symptoms
that were not observed in the patient–and utilizes
both code and text views.

6We input medical concepts to BERT by replacing them
with their “preferred” concept, determined by UMLS (Lind-
berg, 1990; Bodenreider, 2004), across all patient and disease
descriptions. For example, “diabetes mellitus type 1,” “type 1
diabetes,” “juvenile diabetes” and “IDDM” are all converted
to “juvenile diabetes” (as the preferred concept).

7http://www.orpha.net

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001232.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001232.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001232.v1.p1
http://www.orpha.net
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Settings: Initial representations for patient and
disease descriptions are obtained from clinical
BERT (Devlin et al., 2019; Alsentzer et al., 2019),
i.e. d1, d2 = 768. In (1) and (2), we set the di-
mension of the shared space between query and
document representations to n = 100. In addi-
tion, for the CNN fusion model, see (2), we use
250 filters and kernel size of 3. Further details are
provided in the supplementary materials.

Evaluation Metrics: We employ Mean Av-
erage Precision (MAP), Precision at rank K
(P@K), and Precision-Recall curve implemented in
trec eval8 to compare competing systems. We
use t-test for significance testing and asterisk mark
(*) to indicate significant difference at ρ = 0.01.

3.1 Experimental Results
We report the performance of single and multiview
models separately to ease comparison between
views. The overall MAP and P@K, ∀K ∈ {5, 10},
performance of baselines for each view are reported
in Table 1. The results show that BERT outper-
forms the other baselines across almost all mea-
sures. We attribute the poor performance of BM25
and SVMs to considerable difference in the under-
lying word/concept distribution in query and docu-
ment spaces which can’t be effectively addressed
through lexical features (Burgun and Bodenreider,
2001; Pedersen et al., 2007).9 In addition, BERT
(code view) shows lower performance than BERT
(text view). We conjecture that this results could be
explained through the following points: (a): BERT
is a strong language model and is robust in retriev-
ing noun hypernyms or in completions involving
shared category or role reversal (Ettinger, 2020),
and (b): replacing medical concepts in text with
their preferred concepts (see footnote 6) makes the
original text less coherent, which can adversely
affect the performance of BERT.

Table 2 shows the performance of SVMrank with
combined features across views, PhenoTips, and
our Attentive Multiview Neural Model (AMNM)
with different fusion functions. AMNM com-
bines traditional and recent representation learn-
ing techniques by using BERT representations for
text view, and BERT and SVMs representations
for code view. All model combinations except

8https://trec.nist.gov/trec_eval/
9For example, these models can’t effectively match a query

containing “congestive heart failure” to relevant documents
containing “cardiac decompensation,” “pulmonary edema,”
and “ischemic cardiomyopathy.”

Text View Code View
Model MAP P@5 P@10 MAP P@5 P@10
BM25 4.1 5.0 3.8 6.5 8.3 6.3
SVMs 8.8 8.3 8.3 7.7 8.3 8.8
BERT 15.5 12.5 11.7 10.8 13.3 10.8
SVMrank 12.1 9.2 12.5 8.5 8.3 8.6

Table 1: MAP, P@5 and P@10 performance of base-
lines (in percentages) on text and code views.

Model Fusion MAP P@5 P@10
SVMrank text & code 12.9 12.5 12.9
PhenoTips text & code 15.4 8.3 5.4
AMNMbert-bert gdot 18.9* 14.2 17.5
AMNMbert-bert gouter 18.0* 16.7 17.5
AMNMbert-bert gconv 16.0* 10.0 12.1
AMNMbert-svms gdot 18.4* 18.3 17.9
AMNMbert-svms gouter 17.1* 17.5 17.1
AMNMbert-svms gconv 11.4 14.2 13.9

Table 2: Model performance across different fusion
functions. The Model column shows the source of rep-
resentations for text and code views respectively. * indi-
cates significant improvement against best-performing
baseline reported in Table 1.

for AMNMbert-svms (gconv) lead to significant im-
provement against the best performing baseline–
BERT (text view) in Table 1. AMNMbert-bert (gdot)
improves the best baseline by 3.4, 1.7 and 5.8
points in MAP, P@5 and P@10 respectively; the
corresponding improvement for AMNMbert-svms

(gdot) is 2.9, 5.8 and 6.2 points respectively. We
note that AMNMbert-svms (gdot) leads to consider-
ably higher P@{5,10}, metrics that have a pivotal
role in practical use of search systems. In addition,
PhenoTips shows comparable MAP to BERT but
has considerably lower P@{5,10}.10

The fusion functions gdot (dot product) and
gouter (outer product) outperform the more expen-
sive fusion function gconv (one-dimensional con-
volution). The lower performance of gconv could
be attributed to average pooling, which assumes
different input dimensions equally contribute to the
final representation and relevance. As a result, it
may fail to eliminate noisy features or prioritize
important ones.

10We note that, in case of rare and undiagnosed diseases,
any small improvement is crucial as it can lead to better di-
agnostic clues. Clinicians often look at the top K results
for clues and potential matches for each patient. Therefore,
compared to standard evaluation metrics, a more practical
evaluation metric for our task is Hit@K, which measures the
likelihood of observing “at least one” relevant disease in the
ranked list of top K diseases. The Hit@K (K = 20) perfor-
mance of our model is 0.49, while the corresponding value for
our best performing baseline is 0.37.

https://trec.nist.gov/trec_eval/


1016

3.2 Model Analysis

We discuss how and why AMNM achieves its im-
proved performance through the following experi-
ments; see supplementary materials for details:

Prediction Variance Across Views: The Pear-
son correlation between the Average Precision of
BERT (text view) and BERT (code view) on indi-
vidual test queries (patients) is 0.87, which indi-
cates less performance variation across views at
query level. This is while the corresponding corre-
lation between BERT (text view) and SVMs (code
view) is only 0.34. The lack of diversity in the
performance of BERT across these views could be
a source of improvement in AMNMbert-svms.

Attention Function: Given test examples (more
than 218K patient-disease pairs), our attention sub-
network is expected to assign a higher attentive
weight to the view that better estimates the corre-
sponding relevance score. To estimate the accu-
racy of this sub-network, we separately apply the
trained BERT (text view) and SVMs (code view)
models to generate their corresponding ranked lists
of diseases for test patients. Then, for each rele-
vant patient-disease pair, we evaluate our attention
function in AMNMbert-svms by measuring whether
it assigns a higher attentive weight to the better
view–the view that positions the relevant disease
at a higher rank compared to the other view. The
results show that (a): our attention sub-network
is 57.7% accurate in prioritizing better views, (b):
BERT (text view) outperforms SVMs (code view)
on 64.7% of relevant patient-disease pairs in terms
of relative ranks, and our attention network accu-
rately assigns higher weight to BERT on 88.6% of
these examples, and (c): on the remaining 35.3%
of examples that SVMs (code view) outperforms
BERT (text view) in terms of relative ranks, our at-
tention network assigns higher weight to SVMs in
only 0.9% of these examples. Improving this per-
centage could boost the performance of our model
and is the subject of our future work.

4 Related Work

The National Institutes of Health established the
Undiagnosed Diseases Network (UDN) (Gahl et al.,
2015; Ramoni et al., 2017) to facilitate research on
undiagnosed and rare diseases. The UDN is a net-
work of 12 clinical sites, and application to the
UDN is open to all individuals who complete the
application form and submit a referral letter from

a health care professional (Kobren et al., 2021). A
committee of experts in a review session reviews
each UDN application and makes admission de-
cisions. Walley et al. (2018) investigated major
factors that may determine application outcomes of
the UDN, which has been found effective in devel-
oping computational models for predicting admis-
sion outcomes (Amiri et al., 2021). In (Dragusin
et al., 2013), authors developed a search engine
for rare diseases, named FindZebra11, which was
based on information retrieval techniques available
in Indri search engine (Strohman et al., 2005). In
addition, previous work developed experimental
setup to evaluate and compare search engines such
as Google or Bing in predicting relevant diseases
to given phenotypes (Shenker, 2014), employed
medical anthologies and information content tech-
niques (Köhler et al., 2009), leveraged collabora-
tive filtering (Shen et al., 2017) and ensemble tech-
niques (Jia et al., 2018) for this purpose.

Our work departs from previous research by in-
vestigating a multiview approach to undiagnosed
patients, where we show effective attention and fu-
sion techniques lead to better pairwise ranking for
differential diagnosis.

5 Conclusion and Future Work

Given electronic health records of patients, we de-
velop an attentive multiview text representation
model to assist clinical experts by ranking the
most probable and relevant diseases. Accurate and
timely diagnosis is especially important for criti-
cally ill patients as it assists specialists to distin-
guish, prioritize, and accelerate treatment for such
patients. Our work can be improved by (a): enrich-
ing the feature space through patient- and disease-
specific information such patient demographic in-
formation and clinical synopsis of diseases, (b):
improving model’s attention mechanism, and (c):
tackling differences in word distributions across
patients (queries) and diseases (documents).

Acknowledgments

Research reported in this manuscript was supported
by the NIH Common Fund, through the Office of
Strategic Coordination/Office of the NIH Director
under Award Number U01HG007530. The content
is solely the responsibility of the authors and does
not necessarily represent the official views of the
National Institutes of Health.

11https://www.findzebra.com/

https://www.findzebra.com/


1017

Ethics and Broader Impact Statement

This investigation included a small cohort of diag-
nosed patients in the Undiagnosed Diseases Net-
work (UDN). The UDN is a network of 12 clinical
sites, and application to the UDN is open to all
individuals who complete the application form and
submit a referral letter from a health care profes-
sional; a committee of experts in a review session
reviews each UDN application and makes admis-
sion decisions. We included all data with no exclu-
sions during the data analysis and manual review,
except for cases with missing data or formatting
issues. The population will therefore reflect the
gender, race, ethnicity, age, and health status of
the participating patients. In addition, all results
have been presented in aggregate and no attempt
have been made to identify individuals or facilities.
However, during the course of this research and be-
yond that, there is a potential risk of loss of patient
privacy and confidentiality. We have made and will
make every effort to protect human subject infor-
mation and minimize the likelihood of this risk (all
authors with access to the data have successfully
completed an education program in the protection
of human subjects and privacy protection). In addi-
tion, our work is transformational in nature and its
broader impacts are first and foremost the potential
to improve the well-being of individual patients
in the society (individuals who often find them-
selves on a protracted journey from one specialist
to another without diagnosis even in this era of ge-
nomic sequencing), and support clinicians in their
diagnostic efforts.

References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal bert embeddings. In Proceedings of the 2nd Clin-
ical Natural Language Processing Workshop, pages
72–78.

Joanna S Amberger, Carol A Bocchini, François
Schiettecatte, Alan F Scott, and Ada Hamosh.
2015. Omim. org: Online mendelian inheritance in
man (omim®), an online catalog of human genes
and genetic disorders. Nucleic acids research,
43(D1):D789–D798.

Hadi Amiri, Isaac S Kohane, et al. 2021. Machine
learning of patient characteristics to predict admis-
sion outcomes in the undiagnosed diseases network.
JAMA network open, 4(2):e2036220–e2036220.

Hadi Amiri, Philip Resnik, Jordan Boyd-Graber, and
Hal Daumé III. 2016. Learning text pair similarity
with context-sensitive autoencoders. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1882–1892.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl 1):D267–
D270.

Anita Burgun and Olivier Bodenreider. 2001. Compar-
ing terms, concepts and semantic classes in wordnet
and the unified medical language system. In Pro-
ceedings of the NAACL’2001 Workshop,“WordNet
and Other Lexical Resources: Applications, Exten-
sions and Customizations.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Richard S Dick, Elaine B Steen, Don E Detmer, et al.
1997. The computer-based patient record: an essen-
tial technology for health care. National Academies
Press.

Radu Dragusin, Paula Petcu, Christina Lioma, Birger
Larsen, Henrik L Jørgensen, Ingemar J Cox,
Lars Kai Hansen, Peter Ingwersen, and Ole Winther.
2013. Findzebra: a search engine for rare dis-
eases. International Journal of Medical Informatics,
82(6):528–538.

Abdessamad Echihabi and Daniel Marcu. 2003. A
noisy-channel approach to question answering. In
Proceedings of the 41st Annual Meeting on Associa-
tion for Computational Linguistics-Volume 1, pages
16–23. Association for Computational Linguistics.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Carol Friedman, Thomas C Rindflesch, and Milton
Corn. 2013. Natural language processing: state of
the art and prospects for significant progress, a work-
shop sponsored by the national library of medicine.
Journal of biomedical informatics, 46(5):765–773.

William A Gahl, Anastasia L Wise, and Euan A Ash-
ley. 2015. The undiagnosed diseases network of
the national institutes of health: a national extension.
Jama, 314(17):1797–1798.



1018

Marta Girdea, Sergiu Dumitriu, Marc Fiume, Sarah
Bowdin, Kym M Boycott, Sébastien Chénier, David
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Sebastian Köhler, Nicole A Vasilevsky, Mark En-
gelstad, Erin Foster, Julie McMurry, Ségolène
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