
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 61–70

August 1–6, 2021. ©2021 Association for Computational Linguistics

61

Are VQA Systems RAD?
Measuring Robustness to Augmented Data with Focused Interventions

Daniel Rosenberg and Itai Gat and Amir Feder and Roi Reichart
Technion - Israel Institute of Technology

daniel.rnberg@gmail.com | {itaigat@ | feder@campus. | roiri@}technion.ac.il

Abstract

Deep learning algorithms have shown promis-
ing results in visual question answering (VQA)
tasks, but a more careful look reveals that
they often do not understand the rich signal
they are being fed with. To understand and
better measure the generalization capabilities
of VQA systems, we look at their robustness
to counterfactually augmented data. Our pro-
posed augmentations are designed to make a
focused intervention on a specific property of
the question such that the answer changes. Us-
ing these augmentations, we propose a new ro-
bustness measure, Robustness to Augmented
Data (RAD), which measures the consistency
of model predictions between original and aug-
mented examples. Through extensive experi-
mentation, we show that RAD, unlike classical
accuracy measures, can quantify when state-
of-the-art systems are not robust to counterfac-
tuals. We find substantial failure cases which
reveal that current VQA systems are still brit-
tle. Finally, we connect between robustness
and generalization, demonstrating the predic-
tive power of RAD for performance on unseen
augmentations.1

1 Introduction

In the task of Visual Question Answering (VQA),
given an image and a natural language question
about the image, a system is required to answer the
question accurately (Antol et al., 2015). While the
accuracy of these systems appears to be constantly
improving (Fukui et al., 2016; Yang et al., 2016;
Lu et al., 2016), they are sensitive to small pertur-
bations in their input and seem overfitted to their
training data (Kafle et al., 2019).

To address the problem of overfitting, the VQA-
CP dataset was proposed (Agrawal et al., 2018). It
is a reshuffling of the original VQA dataset, such

1Our code and data are available at: https://danros
enberg.github.io/rad-measure/

Figure 1: Predictions and attention maps of a state-of-
the-art VQA-CP model over a VQA example (left) and
its augmentation (right). A robust model should use the
information it utilizes in the original example to cor-
rectly answer the augmented one.

that the distribution of answers per question type
(e.g., “what color”, “how many”) differs between
the train and test sets. Using VQA-CP, Kafle et al.
(2019) demonstrated the poor out-of-distribution
generalization of many VQA systems. While many
models were subsequently designed to deal with
the VQA-CP dataset (Cadene et al., 2019; Clark
et al., 2019; Chen et al., 2020; Gat et al., 2020), aim-
ing to solve the out-of-distribution generalization
problem in VQA, they were later demonstrated to
overfit the unique properties of this dataset (Teney
et al., 2020). Moreover, no measures for robustness
to distribution shifts have been proposed.

In this work we propose a consistency-based
measure that can indicate on the robustness of VQA
models to distribution shifts. Our robustness mea-
sure is based on counterfactual data augmentations
(CADs), which were shown useful for both training
(Kaushik et al., 2019) and evaluation (Garg et al.,
2019; Agarwal et al., 2020). CADs are aimed at
manipulating a specific property while preserving
all other information, allowing us to evaluate the
robustness of the model to changes to this property.

For example, consider transforming a “what
color” question to a “yes/no” question, as depicted
in Figure 1. The counterfactual reasoning for such
a transformation is: “what would be the question
if it had a yes/no answer?”. While VQA models

https://danrosenberg.github.io/rad-measure/
https://danrosenberg.github.io/rad-measure/

62

have seen many of both question types, their com-
bination (yes/no questions about color) has been
scarcely seen. If a model errs on such a combi-
nation, this suggests that to answer the original
question correctly, the model uses a spurious signal
such as the correlation between the appearance of
the word “color” in the question and a particular
color in the answer (e.g. here, color⇒ white). Fur-
ther, this example shows that some models cannot
even identify that they are being asked a “yes/no”
question, distracted by the word “color” in the aug-
mented question and answering “green”.

Our robustness measure is named RAD: Robust-
ness to (counterfactually) Augmented Data (Sec-
tion 2.1). RAD receives (image, question, answer)
triplets, each augmented with a triplet where the
question and answer were manipulated. It mea-
sures the consistency of model predictions when
changing a triplet to its augmentation, i.e., the ro-
bustness of the model to (counterfactual) augmen-
tations. We show that using RAD with focused in-
terventions may uncover substantial weaknesses to
specific phenomenon (Section 3.2), namely, users
are encouraged to precisely define their interven-
tions such that they create counterfactual augmen-
tations. As a result, pairing RAD values with accu-
racy gives a better description of model behavior.

In general, to effectively choose a model in com-
plex tasks, complementary measures are required
(D’Amour et al., 2020). Thus, it is important to
have interpretable measures that are widely appli-
cable. Note that in this work we manipulate only
textual inputs - questions and answers, but RAD
can be applied to any dataset for which augmenta-
tions are available. In particular, exploring visual
augmentations would be beneficial for the analy-
sis of VQA systems. Further, representation-level
counterfactual augmentations are also valid, which
is useful when generating meaningful counterfac-
tual text is difficult (Feder et al., 2020).

Our augmentations (CADs) are generated semi-
automatically (Section 2.2), allowing us to directly
intervene on a property of choice through sim-
ple templates. As in the above example, our aug-
mentations are based on compositions of two fre-
quent properties in the data (e.g., “what color”
and “yes/no” questions), while their combination
is scarce. Intuitively, we would expect a model
with good generalization capacities to properly han-
dle such augmentations. While this approach can
promise coverage of only a subset of the examples

in the VQA and VQA-CP datasets, it allows us to
control the sources of the model’s prediction errors.

We conduct extensive experiments and report
three key findings. First, for three datasets, VQA,
VQA-CP, and VisDial (Das et al., 2017), models
with seemingly similar accuracy are very different
in terms of robustness, when considering RAD with
our CADs (Section 3). Second, we show that RAD
with alternative augmentation methods, which pri-
oritize coverage over focused intervention, cannot
reveal the robustness differences. Finally, we show
that measuring robustness using RAD with our
CADs predicts the accuracy of VQA models on
unseen augmentations, establishing the connection
between robustness to our controlled augmenta-
tions and generalization (Section 4).

2 Robustness to Counterfactuals

In this section, we first present RAD (Section 2.1),
which measures model consistency on question-
answer pairs and their augmented modifications.
Then, we describe our template-based CAD gener-
ation approach (Section 2.2), designed to provide
control over the augmentation process.

2.1 Model Robustness
We denote a VQA dataset with U =
{(xv, xq, y) ∈ V ×Q× Y}, where xv is an
image, xq is a question and y is an answer.
We consider a subset D ⊆ U for which we
can generate augmentations. For an example
(xv, xq, y) ∈ D, we denote an augmented example
as (xv, x

′
q, y

′) ∈ D′. In this paper we generate
a single augmentation for each example in D,
resulting in a one-to-one correspondence between
D and the dataset of modified examples D′. We
further define J(D; f) as the set of example
indices for which a model f correctly predicts y
given xv and xq.

RAD assesses the proportion of correctly an-
swered modified questions, among correctly an-
swered original questions, and is defined as,

RAD(D,D′; f) =
|J(D; f) ∩ J(D′; f)|

|J(D; f)|
. (1)

Note that RAD is in [0, 1] and the higher the RAD
of f is, the more robust f is.

As original examples and their augmentations
may differ in terms of their difficulty to the model,
it is important to maintain symmetry between D
and D′. We hence also consider the backward view

63

of RAD, defined as RAD(D′,D; f). For exam-
ple, “yes/no” VQA questions are easier to answer
compared to “what color” questions, as the former
have two possible answers while the latter have as
many as eight. Indeed, state-of-the-art VQA mod-
els are much more accurate on yes/no questions
compared to other question types (Yu et al., 2019).
Hence, if “what color” questions are augmented
with “yes/no” counterfactuals, we would not expect
RAD(D′,D; f) = 1 as generalizing from “yes/no”
questions (D′) to “what color” questions (D) re-
quires additional reasoning capabilities.

RAD is not dependant on the accuracy of the
model on the test set. A model may perform poorly
overall but be very consistent on questions that it
has answered correctly. Conversely, a model that
demonstrates seemingly high performance may be
achieving this by exploiting many dataset biases
and be very inconsistent on similar questions.

2.2 Counterfactual Augmentations

In the VQA dataset there are three answer types:
“yes/no”, “number” (e.g., ‘2’, ‘0’) and “other” (e.g.,
‘red‘, ‘tennis’), and 65 question types (e.g., “what
color”, “how many”, “what sport”). In our aug-
mentations, we generate “yes/no” questions from
“number” and “other” questions.

For example, consider the question-answer pair
“What color is the vehicle? Red”, this question-
answer pair can be easily transformed into “Is the
color of the vehicle red? Yes”. In general, “what
color” questions can be represented by the tem-
plate: “What color is the <Subj>? <Color>”. To
generate a new question, we first identify the sub-
ject (<Subj>) for every “what color” question, and
then integrate it into the template “Is the color of
the <Subj> <Color>? Yes”. As the model was ex-
posed to both “what color” and “yes/no“ questions,
we expect it to correctly answer the augmented
question given that it correctly answers the original.
Yet, this augmentation requires some generaliza-
tion capacity because the VQA dataset contains
very few yes/no questions about color.

Our templates are presented in Table 1 (see Ta-
ble 6 in the appendix for some realizations). The
augmentations are counterfactual since we inter-
vene on the question type, a prior that many VQA
systems exploit (Goyal et al., 2017), keeping every-
thing else equal. The generation process is semi-
automatic, as we had to first manually specify tem-
plates that would yield augmented questions that
we can expect the model to answer correctly given

Original Augmented

Y/N C What color is the
<S>? <C1>

Is the color of the <S>
<C2>? Yes/No

Y/N HM How many <S>?
<N1>

Are there <N2> <S>?
Yes/No

Y/N WK What kind of <S>
is this? <O1>

Is this <S> <O2>?
Yes/No

Table 1: Our proposed template-based augmentations.

that it succeeds on the original question.
To achieve this goal, we apply two criteria: (a)

The template should generate a grammatical En-
glish question; and (b) The generated question type
should be included in the dataset, but not in ques-
tions that address the same semantic property as the
original question. Indeed, yes/no questions are fre-
quent in the VQA datasets, but few of them address
color (first template), number of objects (second
template), and object types (third template). When
both criteria are fulfilled, it is reasonable to expect
the model to generalize from its training set to the
new question type.

Criterion (a) led us to focus on yes/no questions
since other transformations required manual verifi-
cation for output grammaticality. While we could
have employed augmentation templates from addi-
tional question types into yes/no questions, we be-
lieve that our three templates are sufficient for eval-
uating model robustness. Overall, our templates
cover 11% of the VQA examples (Section 3.1).

3 Robustness with RAD and CADs

In the following, we perform experiments to test
the robustness of VQA models to augmentations.
We describe the experimental setup, and evaluate
VQAv2, VQA-CPv2, VisDial models, each on our
augmentations and on other alternatives.2

3.1 Experimental Setup
Baseline Augmentations We compare our aug-
mentations to three alternatives: VQA-Rephrasings
(Reph, Shah et al., 2019), ConVQA (Ray et al.,
2019), and back-translation (BT, Sennrich et al.,
2016). VQA-Rephrasings is a manual generation
method, where annotators augment each valida-
tion question with three re-phrasings. ConVQA
is divided into the L-ConVQA and CS-ConVQA
subsets. In both subsets, original validation exam-
ples are augmented to create new question-answer
pairs. L-ConVQA is automatically generated based

2The URLs of the software and datasets, and the imple-
mentation details are all provided in Appendices C and D.

64

Dataset Model\D′ RAD(D,D′) (%) Acc.
Y/N C Y/N HM Y/N WK BT Reph L-ConVQA CS-ConVQA

VQA-CP
RUBi 64.92 57.15 62.59 85.57 77.73 78.02 65.93 46.66
LMH 1.01 22.82 50.10 83.68 75.04 64.54 50.65 53.72
CSS 0.94 11.73 39.95 77.54 68.89 10.67 38.64 58.47

VQA

BUTD 67.15 58.68 78.59 87.43 79.28 75.78 70.19 63.09
BAN 74.40 62.45 82.51 88.17 81.14 79.37 70.18 65.92
Pythia 65.00 60.61 81.60 88.42 82.86 77.02 69.45 64.56
VisualBERT 79.99 68.29 85.98 88.52 84.09 82.09 71.75 65.62

VisDial FGA 31.36 57.69 - 91.42 - - - 53.07
VisDialBERT 62.08 56.06 - 94.04 - - - 55.78

Table 2: RAD over our proposed augmentations (Y/N C, Y/N HM, Y/N WK) and alternatives (BT, Reph,
ConVQA). The rows correspond to state-of-the-art models on VQA-CP (top), VQA (middle) and Visual Dialog
(bottom). Reph and ConVQA were not created for VisDial, and it does not have “what kind” questions. The last
column corresponds to validation accuracy.

Dataset Model\D′ Accuracy(D) (%)

Y/N C Y/N HM Y/N WK BT Reph L-ConVQA CS-ConVQA

VQA-CP
RUBi 65.85 17.35 44.14 45.80 46.51 72.14 66.67
LMH 68.87 44.24 50.58 52.35 53.78 65.07 61.76
CSS 72.87 63.16 51.83 56.37 58.81 49.84 56.12

VQA

BUTD 79.44 54.43 63.49 60.37 62.23 75.05 62.42
BAN 80.72 62.37 66.48 63.02 64.81 74.94 65.01
Pythia 81.62 57.49 64.42 61.69 63.88 74.55 63.79
VisualBERT 80.85 58.89 64.46 62.71 64.96 76.50 66.01

VisDial FGA 55.62 40.00 - 61.53 - - -
VisDialBERT 68.99 50.77 - 63.47 - - -

Table 3: Original accuracy over our proposed augmentations (Y/N C, Y/N HM, Y/N WK) and alternatives
(BT, Reph, ConVQA). The rows correspond to state-of-the-art models on VQA-CP (top), VQA (middle) and Visual
Dialog (bottom). Reph and ConVQA were not created for VisDial, and it does not have “what kind” questions.

on scene graphs attached to each image, and CS-
ConVQA is manually generated by annotators. Fi-
nally, back-translation, translating to another lan-
guage and back, is a high-coverage although low-
quality approach to text augmentation. It was used
during training and shown to improve NLP models
(Sennrich et al., 2016), but was not considered in
VQA. We use English-German translations.

Models The VQA-CP models we consider are
RUBi (Cadene et al., 2019), LMH (Clark et al.,
2019) and CSS (Chen et al., 2020). The VQA mod-
els we consider are BUTD (Anderson et al., 2018),
BAN (Kim et al., 2018), Pythia (Jiang et al., 2018)
and VisualBERT (Li et al., 2019). For VisDial
we use FGA (Schwartz et al., 2019) and VisDial-
BERT (Murahari et al., 2020). We trained all the
models using their official implementations.

3.2 Results

Table 2 presents our main results. RAD values for
all of our augmentations are substantially lower
than those of the alternatives, supporting the value

of our focused intervention approach for measur-
ing robustness. The high RAD values for BT and
Reph might indicate that VQA models are indeed
robust to linguistic variation, as long as the answer
does not change. Interestingly, our augmentations
also reveal that VQA-CP models are less robust
than VQA models. This suggests that despite the
attempt to design more robust models, VQA-CP
models still overfit their training data.

In VQA-CP, RUBi has the lowest accuracy per-
formance in terms of its validation accuracy, even
though it is more robust to augmentations com-
pared with LMH and CSS. For VQA models, in
contrast, BUTD has the lowest RAD scores on our
augmentations and the lowest accuracy. Visual-
BERT, the only model that utilizes contextual word
embeddings, demonstrates the highest robustness
among the VQA models.

Finally, while both VisDial models have simi-
lar accuracy, they have significantly different RAD
scores on our augmentations. Specifically, VisDi-
alBERT performs better than FGA on Y/N C

65

augmentations. This is another indication of the
value of our approach as it can help distinguish
between two seemingly very similar models.

Complementary to the RAD values in Table 2
we also provide accuracies on original questions in
Table 3. Note that across all the original questions,
except ConVQA questions, RUBi has the lowest
accuracy while CSS has the highest accuracy. This
trend is reversed when looking at RAD scores -
CSS has the lowest score while RUBi has the high-
est score. This emphasizes the importance of RAD
as a complementary metric, since considering only
accuracy in this case would be misleading. Namely,
RAD provides additional critical information for
model selection.

4 Measuring Generalization with RAD

To establish the connection between RAD and gen-
eralization, we design experiments to demonstrate
RAD’s added value in predicting model accuracy
on unseen modified examples. Concretely, we gen-
erate 45 BUTD (VQA) and LMH (VQA-CP) in-
stances, differing by the distribution of question
types observed during training (for each model in-
stance we drop between 10% and 99% of each of
the question types “what color”, “how many” and
“what kind” from its training data; see Appendix E
for exact implementation details). For each of the
above models we calculate RAD values and accu-
racies in the following manner.

We split the validation set into two parts: D
(features) and T (target). Consider a pool of four
original question sets that are taken from their cor-
responding modifications: Y/N C, Y/N HM,
Y/N WK, Reph. Then we have four possible
configurations in which D is three sets from the
pool and T is the remaining set. For each model
and for each configuration, we compute model ac-
curacy on D (Accuracy(D)) and on the modifi-
cations of questions in T (the predicted variable
y(T) = Accuracy(T ′)) which are modified with
the target augmentation of the experiment. We
also compute the RAD values of the model on the
modified questions in D which are generated us-
ing the other three augmentations (RAD(D,D′),
and RAD(D′,D)). Then, we train a linear regres-
sion model using Accuracy(D), RAD(D,D′),
and RAD(D′,D), trying to predict y(T). We per-
form this experiment four times, each using a differ-
ent configuration (different augmentation type as
our target), and average across the configurations.

Features\Model R2

LMH

Accuracy(D),
0.917± 0.117RAD(D,D′),

RAD(D′,D)

Accuracy(D) 0.829± 0.237

RAD(D,D′) 0.899± 0.133

RAD(D′,D) 0.849± 0.213

Table 4: Linear regression experiments, predicting ac-
curacy performance on unseen augmentation types.

Results Table 4 presents the average R2 values
and standard deviations over the four experiments.
RAD improves the R2 when used alongside the
validation accuracy. Interestingly, a model’s accu-
racy on one set of augmentations does not always
generalize to other, unseen augmentations. Only
when adding RAD to the regression model are we
able to identify a robust model. Notably, for LMH
the usefulness of RAD is significant, as it improves
the R2 by 11%. It also predicts performance bet-
ter than validation accuracy when used without it
in the regression. The standard deviations further
confirm that the above claims hold over all configu-
rations. These observations hold when running the
same experiment with respect to the BUTD model,
however, the improvements are smaller since the
regression task is much easier with respect to this
model (R2 of 0.995 with all features).

5 Conclusion

We proposed RAD, a new measure that penalizes
models for inconsistent predictions over data aug-
mentations. We used it to show that state-of-the-
art VQA models fail on CADs that we would ex-
pect them to properly address. Moreover, we have
demonstrated the value of our CADs by showing
that alternative augmentation methods cannot iden-
tify robustness differences as effectively. Finally,
we have shown that RAD is predictive of general-
ization to unseen augmentation types.

We believe that the RAD measure brings substan-
tial value to model evaluation and consequently to
model selection. It encourages the good practice
of testing on augmented data, which was shown to
uncover considerable model weaknesses in NLP
(Ribeiro et al., 2020). Further, given visual augmen-
tations, which we plan to explore in future work,
or linguistic augmentations, RAD is applicable to
any classification task, providing researchers with
meaningful indications of robustness.

66

References
Vedika Agarwal, Rakshith Shetty, and Mario Fritz.

2020. Towards causal vqa: Revealing and reducing
spurious correlations by invariant and covariant se-
mantic editing. In CVPR.

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don’t just assume;
look and answer: Overcoming priors for visual ques-
tion answering. In CVPR.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
CVPR.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In ICCV.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi
Parikh, et al. 2019. Rubi: Reducing unimodal biases
for visual question answering. In NeurIPS.

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shil-
iang Pu, and Yueting Zhuang. 2020. Counterfactual
samples synthesizing for robust visual question an-
swering. In CVPR.

Christopher Clark, Mark Yatskar, and Luke Zettle-
moyer. 2019. Don’t take the easy way out: En-
semble based methods for avoiding known dataset
biases. In EMNLP.

Alexander D’Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen, Jonathan Deaton, Jacob Eisen-
stein, Matthew D. Hoffman, Farhad Hormozdiari,
Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan
Karthikesalingam, Mario Lucic, Yian Ma, Cory
McLean, Diana Mincu, Akinori Mitani, Andrea
Montanari, Zachary Nado, Vivek Natarajan, Christo-
pher Nielson, Thomas F. Osborne, Rajiv Raman,
Kim Ramasamy, Rory Sayres, Jessica Schrouff, Mar-
tin Seneviratne, Shannon Sequeira, Harini Suresh,
Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kel-
lie Webster, Steve Yadlowsky, Taedong Yun, Xiao-
hua Zhai, and D. Sculley. 2020. Underspecification
presents challenges for credibility in modern ma-
chine learning. arXiv preprint arXiv:2011.03395.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José MF Moura, Devi Parikh,
and Dhruv Batra. 2017. Visual dialog. In CVPR.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart.
2020. Causalm: Causal model explanation through
counterfactual language models. arXiv preprint
arXiv:2005.13407.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna
Rohrbach, Trevor Darrell, and Marcus Rohrbach.

2016. Multimodal compact bilinear pooling for vi-
sual question answering and visual grounding. In
EMNLP.

Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur
Taly, Ed H Chi, and Alex Beutel. 2019. Counterfac-
tual fairness in text classification through robustness.
In AAAI.

Itai Gat, Idan Schwartz, Alexander Schwing, and Tamir
Hazan. 2020. Removing bias in multi-modal classi-
fiers: Regularization by maximizing functional en-
tropies. In NeurIPS.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In CVPR.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus
Rohrbach, Dhruv Batra, and Devi Parikh. 2018.
Pythia v0. 1: the winning entry to the vqa challenge
2018. arXiv preprint arXiv:1807.09956.

Kushal Kafle, Robik Shrestha, and Christopher Kanan.
2019. Challenges and prospects in vision and lan-
guage research. Frontiers in Artificial Intelligence.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2019. Learning the difference that makes a dif-
ference with counterfactually-augmented data. In
ICLR.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In NeurIPS.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A
simple and performant baseline for vision and lan-
guage. arXiv preprint arXiv:1908.03557.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
2016. Hierarchical question-image co-attention for
visual question answering. In NeurIPS.

Vishvak Murahari, Dhruv Batra, Devi Parikh, and Ab-
hishek Das. 2020. Large-scale pretraining for visual
dialog: A simple state-of-the-art baseline. In ECCV.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In NuerIPS.

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

67

Arijit Ray, Karan Sikka, Ajay Divakaran, Stefan Lee,
and Giedrius Burachas. 2019. Sunny and dark out-
side?! improving answer consistency in vqa through
entailed question generation. In EMNLP.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of nlp models with checklist. In ACL.

Idan Schwartz, Seunghak Yu, Tamir Hazan, and
Alexander G Schwing. 2019. Factor graph attention.
In CVPR.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In ACL.

Meet Shah, Xinlei Chen, Marcus Rohrbach, and Devi
Parikh. 2019. Cycle-consistency for robust visual
question answering. In CVPR.

Amanpreet Singh, Vedanuj Goswami, Vivek Natara-
jan, Yu Jiang, Xinlei Chen, Meet Shah, Marcus
Rohrbach, Dhruv Batra, and Devi Parikh. 2020.
Mmf: A multimodal framework for vision and lan-
guage research. https://github.com/faceboo
kresearch/mmf.

Damien Teney, Kushal Kafle, Robik Shrestha, Ehsan
Abbasnejad, Christopher Kanan, and Anton van den
Hengel. 2020. On the value of out-of-distribution
testing: An example of goodhart’s law. NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In EMNLP.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng,
and Alex Smola. 2016. Stacked attention networks
for image question answering. In CVPR.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and
Qi Tian. 2019. Deep modular co-attention networks
for visual question answering. In CVPR.

https://github.com/facebookresearch/mmf
https://github.com/facebookresearch/mmf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

68

A Dataset Statistics

Please see Table 5 for the number of examples
in each dataset that we use (VQA, VQA-CP and
VisDial). We also report the number of augmenta-
tions we produce for each of our three augmenta-
tion types (Y/N C, Y/N HM and Y/N WK),
alongside previous augmentation approaches used
in our experiments (BT, Reph, L-ConVQA and
CS-ConVQA).

B Our Augmentations

We describe the manual steps required to meet the
desired standard for each augmentation type. For
Y/N C, we filter out questions that start with
“What color is the”. For Y/N HM, we use ques-
tions that starts with “How many”. For Y/N WK,
we consider questions that match the pattern “What
kind of <S> is this? <O1>”. Table 6 presents sev-
eral realizations of the templates we define (see
Section 2.2 for a discussion of these templates).

In Y/N HM, we ensure that when the answer
is ‘1’, we use “Is there ...” instead of “Are there ...”.
We also ensure that the subsequent word to “How
many” is a noun. We verify it is a noun using the
part-of-speech tagger available through the spaCy
library (Honnibal et al., 2020).

We allow the generation of both ‘yes’ and ‘no’
answers. Creating a modified question that is an-
swered with a ‘yes’ requires a simple permutation
of words in the original question-answer pair, e.g.,
for Y/N C, take “<C1>” = “<C2>” (see Table 1).
Similarly, to generate a question that should be an-
swered with a ‘no’, we repeat the above process and
change “<C2>”. In this case, we randomly pick an
answer and replace it with the original answer with
probability weighted with respect to the frequency
in the data, among the pool of possible answers for
the given augmentation type. When generating a
new question, we first randomly decide whether to
generate a ‘yes’ or ‘no’ question (with a probability
of 0.5 for each). Then, for example, if we choose
to generate a ‘no’, and “<C1>” = “red”, we have a
63% chance of having “<C2>” = “blue”.

C URLs of Data and Code

Data We consider three VQA datasets:

• The VQAv2 dataset (Goyal et al., 2017): ht
tps://visualqa.org/.

• The VQA-CPv2 dataset (Agrawal et al.,
2018): https://www.cc.gatech.edu/gr

ads/a/aagrawal307/vqa-cp/.

• The VisDial dataset (Das et al., 2017): https:
//visualdialog.org/

We also consider three previous augmentation
methods:

• VQA-Rephrasings (Shah et al., 2019): https:
//facebookresearch.github.io/VQA-Rep

hrasings/.

• ConVQA (Ray et al., 2019): https://arij
itray1993.github.io/ConVQA/.

• Back-translations (Sennrich et al., 2016). We
have generated these utilizing the transformers
library (Wolf et al., 2020), https://github
.com/huggingface/transformers. Specifi-
cally, we used two pre-trained translation mod-
els, English to German, and German to En-
glish: https://huggingface.co/Helsink

i-NLP/opus-mt-en-de, https://huggingf
ace.co/Helsinki-NLP/opus-mt-de-en.

Models We consider nine models, where each
model’s code was taken from the official imple-
mentation. All implementations are via PyTorch
(Paszke et al., 2019).

The three VQA-CPv2 models:

• RUBi (Cadene et al., 2019): https://gith
ub.com/cdancette/rubi.bootstrap.pyto

rch.

• LMH (Clark et al., 2019): https://github
.com/chrisc36/bottom-up-attention-vq

a.

• CSS (Chen et al., 2020): https://github.c
om/yanxinzju/CSS-VQA.

The four VQAv2 models:

• BUTD (Anderson et al., 2018): https://gi
thub.com/hengyuan-hu/bottom-up-atten

tion-vqa.

• BAN (Kim et al., 2018): https://github.c
om/jnhwkim/ban-vqa.

• Pythia (Jiang et al., 2018): Using the imple-
mentation in the MMF library (Singh et al.,
2020), https://github.com/facebookres
earch/mmf.

• VisualBERT (Li et al., 2019): Using the im-
plementation in the MMF library.

And the two VisDial models:

https://visualqa.org/
https://visualqa.org/
https://www.cc.gatech.edu/grads/a/aagrawal307/vqa-cp/
https://www.cc.gatech.edu/grads/a/aagrawal307/vqa-cp/
https://visualdialog.org/
https://visualdialog.org/
https://facebookresearch.github.io/VQA-Rephrasings/
https://facebookresearch.github.io/VQA-Rephrasings/
https://facebookresearch.github.io/VQA-Rephrasings/
https://arijitray1993.github.io/ConVQA/
https://arijitray1993.github.io/ConVQA/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/Helsinki-NLP/opus-mt-de-en
https://huggingface.co/Helsinki-NLP/opus-mt-de-en
https://github.com/cdancette/rubi.bootstrap.pytorch
https://github.com/cdancette/rubi.bootstrap.pytorch
https://github.com/cdancette/rubi.bootstrap.pytorch
https://github.com/chrisc36/bottom-up-attention-vqa
https://github.com/chrisc36/bottom-up-attention-vqa
https://github.com/chrisc36/bottom-up-attention-vqa
https://github.com/yanxinzju/CSS-VQA
https://github.com/yanxinzju/CSS-VQA
https://github.com/hengyuan-hu/bottom-up-attention-vqa
https://github.com/hengyuan-hu/bottom-up-attention-vqa
https://github.com/hengyuan-hu/bottom-up-attention-vqa
https://github.com/jnhwkim/ban-vqa
https://github.com/jnhwkim/ban-vqa
https://github.com/facebookresearch/mmf
https://github.com/facebookresearch/mmf

69

Dataset Augmentation Count Validation
CountY/N C Y/N HM Y/N WK BT Reph L-ConVQA CS-ConVQA

VQA-CP 12,910 13,437 1,346 149,329 39,936 127,924 423 219,928
VQA 12,835 10,233 1,654 138,043 121,512 127,924 1,365 214,354
VisDial 516 130 - 1,136 - - - 20,640

Table 5: Number of examples in each of the datasets we use.

Yes/No← Colors Yes/No← How Many Yes/No←What Kind

What color is the cat? White How many athletes are on the field? 5 What kind of food is this? Breakfast
Is the color of the cat white? Yes Are there five athletes on the field? Yes Is this food breakfast? Yes

What color is the court? Green How many dogs are in the picture? 3 What kind of event is this? Skiing
Is the color of the court green? Yes Are there two dogs in the picture? No Is this a skiing event? Yes

What color is the vase? Blue How many giraffes are walking around? 2 What kind of animal is this? Cow
Is the color of the vase red? No Are there four giraffes walking around? No Is this animal an elephant? No

What color is the man’s hat? Red How many cakes are on the table? 0 What kind of building is this? Church
Is the color of the man’s hat red? Yes Is there one cake on the table? No Is this building a church? Yes

What color is the sky? Blue How many dogs? 1 What kind of floor is this? Wood
Is the color of the sky blue? Yes Are there zero dogs? No Is this a wood floor? Yes

Table 6: Some realizations of our templates (defined in Table 1). The black text (top) is the original question-answer
pair and the blue text (bottom) is the corresponding augmented question-answer pair.

• FGA (Schwartz et al., 2019): https://gith
ub.com/idansc/fga.

• VisDialBERT (Murahari et al., 2020): https:
//github.com/vmurahari3/visdial-bert.

D Model Settings

We have trained the VQAv2 and the VQA-CPv2
models that we use, as pre-trained weights were
not available for our requirements. For our eval-
uations, we require a model that is trained solely
on the VQAv2 train set, such that we match the
VQA-CPv2 settings, where there are only two sets,
train and validation. In contrast, pre-trained models
that are built for VQAv2 are trained on the VQAv2
training set and on the VQAv2 validation set to-
gether, as the dataset contains a third development
set that is commonly used for validation.

We have trained six VQA models using the de-
fault hyper-parameters from their official imple-
mentations (URLs in Appendix C): RUBi, LMH,
CSS, BUTD, BAN and Pythia. We trained the
above models on a single Nvidia GeForce RTX
2080 Ti GPU, when the training time for each of
the models was less than 12 hours. In addition,
inference in this setting took less than an hour for
all models.

The VisualBERT model is more computationally
intensive, and we had to reduce the default batch
size from 480 to 54 to fit it on our resources. Us-
ing three Nvidia GeForce RTX 2080 Ti GPUs for

VisualBERT, training took 36 hours and inference
took 4 hours.

For the VisDial models, FGA, and VisDialBERT,
we have downloaded the pre-trained weights and
used them solely for inference. On a single Nvidia
GeForce RTX 2080 Ti GPU, inference took 15
minutes for FGA, and 8 hours for VisDialBERT.

All the models we consider have less than 200M
parameters.

When accuracies are reported on VQAv2 and
on VQA-CP (Tables 2 and 3) we use the VQA-
accuracy metric (Antol et al., 2015). For VisDial
we use the standard accuracy metric (denoted orig-
inally as R@1).

E Regression Experiments

We generate 45 BUTD (VQA) instances and 45
LMH (VQA-CP) instances. To generate different
model instances, we create 45 new training sets
by removing examples from the original train set.
For each of the three question types, “what color”,
“how many” and “what kind”, we remove the fol-
lowing 15 percentage values of examples from the
original train set: [10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, 92%, 95%, 96%, 97%, 98%,
99%], resulting in 45 new training sets. Then, each
model instance is created by training on one of the
45 training sets.

We split the validation set into two parts: D and
T . D is used to calculate the features in our linear

https://github.com/idansc/fga
https://github.com/idansc/fga
https://github.com/vmurahari3/visdial-bert
https://github.com/vmurahari3/visdial-bert

70

regression model. We denote with D′
1 the ques-

tions in D that can be modified using the Y/N C
augmentation, after these questions were modified.
Similarly, we define D′

2, D′
3, and D′

4 for Y/N
HM, Y/N WK, and Reph, respectively.

We average the R2 of four linear regression
experiments, when in each experiment we set a
different i (i ∈ {1, 2, 3, 4}) for which T = D′

i

and use the remaining three templates to calculate
our features. We denote the regression features
with x1 = Accuracy(D), x2 = RAD(D,D′),
and x3 = RAD(D′,D), where RAD(D,D′) and
RAD(D′,D) are computed with respect to the
three other templates (j ∈ {1, 2, 3, 4}, j 6= i). The
predicted label is y(T) = Accuracy(T).

Thus the equation for our regression is:

y(T) = b1x1 + b2x2 + b3x3 + ε .

We also perform three regression experiment for
each feature alone:

y(T) = bxk + ε, k = 1, 2, 3 ,

and compare the results of these experiments in
Table 4.

