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Abstract
Emotion Recognition in Conversations (ERC)
has gained increasing attention for develop-
ing empathetic machines. Recently, many ap-
proaches have been devoted to perceiving con-
versational context by deep learning models.
However, these approaches are insufficient in
understanding the context due to lacking the
ability to extract and integrate emotional clues.
In this work, we propose novel Contextual
Reasoning Networks (DialogueCRN) to fully
understand the conversational context from a
cognitive perspective. Inspired by the Cog-
nitive Theory of Emotion, we design multi-
turn reasoning modules to extract and integrate
emotional clues. The reasoning module itera-
tively performs an intuitive retrieving process
and a conscious reasoning process, which imi-
tates human unique cognitive thinking. Exten-
sive experiments on three public benchmark
datasets demonstrate the effectiveness and su-
periority of the proposed model.

1 Introduction

Emotion recognition in conversation (ERC) aims to
detect emotions expressed by the speakers in each
utterance of the conversation. The task is an im-
portant topic for developing empathetic machines
(Zhou et al., 2020) in a variety of areas including
social opinion mining (Kumar et al., 2015), intel-
ligent assistant (König et al., 2016), health care
(Pujol et al., 2019), and so on.

A conversation often contains contextual clues
(Poria et al., 2019) that trigger the current utter-
ance’s emotion, such as the cause or situation. Re-
cent context-based works (Poria et al., 2017; Haz-
arika et al., 2018b; Majumder et al., 2019) on ERC
have been devoted to perceiving situation-level
or speaker-level context by deep learning models.
However, these methods are insufficient in under-
standing the context that usually contains rich emo-
tional clues. We argue they mainly suffer from the

following challenges. 1) The extraction of emo-
tional clues. Most approaches (Hazarika et al.,
2018a,b; Jiao et al., 2020b) generally retrieve the
relevant context from a static memory, which lim-
its the ability to capture richer emotional clues. 2)
The integration of emotional clues. Many works
(Majumder et al., 2019; Ghosal et al., 2019; Lu
et al., 2020) usually use the attention mechanism to
integrate encoded emotional clues, ignoring their
intrinsic semantic order. It would lose logical re-
lationships between clues, making it difficult to
capture key factors that trigger emotions.

The Cognitive Theory of Emotion (Schachter
and Singer, 1962; Scherer et al., 2001) suggests
that cognitive factors are potently determined for
the formation of emotional states. These cognitive
factors can be captured by iteratively performing
the intuitive retrieving process and conscious rea-
soning process in our brains (Evans, 1984, 2003,
2008; Sloman, 1996). Motivated by them, this pa-
per attempts to model both critical processes to
reason emotional clues and sufficiently understand
the conversational context. By following the mech-
anism of working memory (Baddeley, 1992) in the
cognitive phase, we can iteratively perform both
cognitive processes to guide the extraction and in-
tegration of emotional clues, which imitates human
unique cognitive thinking.

In this work, we propose novel Contextual Rea-
soning Networks (DialogueCRN) to recognize the
utterance’s emotion by sufficiently understanding
the conversational context. The model introduces a
cognitive phase to extract and integrate emotional
clues from the context retrieved by the perceive
phase. Firstly, in the perceptive phase, we lever-
age Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) networks to capture
situation-level and speaker-level context. Based on
the above context, global memories can be obtained
to storage different contextual information. Sec-
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ondly, in the cognitive phase, we design multi-turn
reasoning modules to iteratively extract and inte-
grate the emotional clues. The reasoning module
performs two processes, i.e., an intuitive retrieving
process and a conscious reasoning process. The
former utilizes the attention mechanism to match
relevant contextual clues by retrieving static global
memories, which imitates the intuitive retrieving
process. The latter adopts LSTM networks to learn
intrinsic logical order and integrate contextual clues
by retaining and updating dynamic working mem-
ory, which imitates the conscious reasoning pro-
cess. It is slower but with human-unique rationality
(Baddeley, 1992). Finally, according to the above
contextual clues at situation-level and speaker-level,
an emotion classifier is used to predict the emotion
label of the utterance.

To evaluate the performance of the proposed
model, we conduct extensive experiments on three
public benchmark datasets, i.e., IEMOCAP, SE-
MAINE and MELD datasets. Results consistently
demonstrate that our proposed model significantly
outperforms comparison methods. Moreover, un-
derstanding emotional clues from a cognitive per-
spective can boost the performance of emotion
recognition.

The main contributions of this work are summa-
rized as follows:

• We propose novel Contextual Reasoning Net-
works (DialogueCRN) to fully understand the
conversational context from a cognitive per-
spective. To the best of our knowledge, this
is the first attempt to explore cognitive factors
for emotion recognition in conversations.

• We design multi-turn reasoning modules to
extract and integrate emotional clues by itera-
tively performing the intuitive retrieving pro-
cess and conscious reasoning process, which
imitates human unique cognitive thinking.

• We conduct extensive experiments on three
public benchmark datasets. The results con-
sistently demonstrate the effectiveness and su-
periority of the proposed model1.

2 Methodology

2.1 Problem Statement
Formally, let U = [u1, u2, ..., uN ] be a conversa-
tion, where N is the number of utterances. And

1The source code is available at https://github.
com/zerohd4869/DialogueCRN

there are M speakers/parties p1, p2, ..., pM (M ≥
2). Each utterance ui is spoken by the speaker
pφ(ui), where φ maps the index of the utterance
into that of the corresponding speaker. Moreover,
for each λ ∈ [1,M ], we define Uλ to represent
the set of utterances spoken by the speaker pλ, i.e.,
Uλ = {ui | ui ∈ U and ui spoken by pλ, ∀i ∈
[1, N ]}.

The task of emotion recognition in conversations
(ERC) aims to predict the emotion label yi for each
utterance ui from the pre-defined emotions Y .

2.2 Textual Features

Convolutional neural networks (CNNs) (Kim,
2014) are capable of capturing n-grams informa-
tion from an utterance. Following previous works
(Hazarika et al., 2018b; Majumder et al., 2019;
Ghosal et al., 2019), we leverage a CNN layer with
max-pooling to exact context-free textual features
from the transcript of each utterance. Concretely,
the input is the 300 dimensional pre-trained 840B
GloVe vectors (Pennington et al., 2014). We em-
ploy three filters of size 3, 4 and 5 with 50 feature
maps each. These feature maps are further pro-
cessed by max-pooling and ReLU activation (Nair
and Hinton, 2010). Then, these activation features
are concatenated and finally projected onto a dense
layer with dimension du = 100, whose output
forms the representation of an utterance. We de-
note {ui}Ni=1,ui ∈ Rdu as the representation for N
utterances.

2.3 Model

Then, we propose Contextual Reasoning Networks
(DialogueCRN) for emotion recognition in conver-
sations. DialogueCRN is comprised of three inte-
gral components, i.e., the perception phase (Section
2.3.1), the cognition phase (Section 2.3.2), and an
emotion classifier (Section 2.3.3). The overall ar-
chitecture is illustrated in Figure 1.

2.3.1 Perception Phase
In the perceptive phase, based on the input textual
features, we first generate the representation of con-
versational context at situation-level and speaker-
level. Then, global memories are obtained to stor-
age different contextual information.

Conversational Context Representation.
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) introduces the gating
mechanism into recurrent neural networks to

https://github.com/zerohd4869/DialogueCRN
https://github.com/zerohd4869/DialogueCRN
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Figure 1: The architecture of the proposed model DialogueCRN.

capture long-term dependencies from the input
sequences. In this part, two bi-directional LSTM
networks are leveraged to capture situation-
level and speaker-level context dependencies,
respectively.

For learning the context representation at the
situation level, we apply a bi-directional LSTM
network to capture sequential dependencies be-
tween adjacent utterances in a conversational situa-
tion. The input is each utterance’s textual features
ui ∈ Rdu . The situation-level context representa-
tion csi ∈ R2du can be computed as:

csi ,h
s
i =
←−−−→
LSTM

s
(ui,hsi−1), (1)

where hsi ∈ Rdu is the i-th hidden state of the
situation-level LSTM.

For learning the context representation at
the speaker level, we also employ another
bi-directional LSTM network to capture self-
dependencies between adjacent utterances of the
same speaker. Given textual features ui of each
utterance, the speaker-level context representation
cvi ∈ R2du is computed as:

cvi ,h
v
λ,j =

←−−−→
LSTMv(ui,hvλ,j−1), j ∈ [1, |Uλ|], (2)

where λ = φ(ui). Uλ refers to all utterances of the
speaker pλ. hvλ,j ∈ Rdu is the j-th hidden state of
speaker-level LSTM for the speaker pλ.

Global Memory Representation. Based on the
above conversational context representation, global
memories can be obtained to storage different con-
textual information via a linear layer. That is,
global memory representation of situation-level

global
memory

𝑮

𝒉 𝒕−1 𝒉 𝒕working
memory

Attention

Reasoning
Module

LSTM

𝒒 𝒕−1

𝒓 𝒕−𝟏

𝒒 𝒕−1

𝒒 𝒕

Figure 2: The detailed structure of reasoning module.

context Gs = [gs1, gs2, ..., gsN ] and that of speaker-
level context Gv = [gv1, gv2, ..., gvN ] can be com-
puted as:

gsi = Ws
gcsi + bsg, (3)

gvi = Wv
gcvi + bvg, (4)

where Ws
g,Wv

g ∈ R2du×2du , bsg,bvg ∈ R2du are
learnable parameters.

2.3.2 Cognition Phase
Inspired by the Cognitive Theory of Emotion
(Schachter and Singer, 1962; Scherer et al., 2001),
cognitive factors are potently determined for the
formation of emotional states. Therefore, in the
cognitive phase, we design multi-turn reasoning
modules to iteratively extract and integrate the emo-
tional clues. The architecture of a reasoning mod-
ule is depicted in Figure 2.

The reasoning module performs two processes,
the intuitive retrieving process, and the conscious
reasoning process. In the t-th turn, for the rea-
soning process, we adopt the LSTM network to
learn intrinsic logical order and integrate contextual
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clues in the working memory, which is slower but
with human-unique rationality (Baddeley, 1992).
That is,

q̃(t−1)
i ,h(t)

i =
−−−−→
LSTM(q(t−1)

i ,h(t−1)
i ), (5)

where q̃(t−1)
i ∈ R2du is the output vector. q(t)

i ∈
R4du is initialized by the context representation ci
of the current utterance, i.e., q(0)

i = Wqci + bq,
where Wq ∈ R4du×2du and bq ∈ R4du are learn-
able parameters. h(t)

i ∈ R2du refers to the working
memory, which can not only storage and update
the previous memory h(t−1)

i , but also guide the ex-
traction of clues in the next turn. During sequential
flowing of the working memory, we can learn im-
plicit logical order among clues, which resembles
the conscious thinking process of humans. h(t)

i is
initialized with zero. t is the index that indicates
how many “processing steps” are being carried to
compute the final state.

For the retrieving process, we utilize an atten-
tion mechanism to match relevant contextual clues
from the global memory. The detailed calculations
are as follows:

e(t−1)ij = f(gj , q̃
(t−1)
i ), (6)

α
(t−1)
ij =

exp(e(t−1)ij )∑N
j=1 exp(e

(t−1)
ij )

, (7)

r(t−1)i =

N∑
j=1

α
(t−1)
ij gj , (8)

where f is a function that computes a single scalar
from gj and q̃(t−1)

i (e.g., a dot product).
Then, we concatenate the output of reasoning

process q̃(t−1)
i with the resulting attention readout

r(t−1)i to form the next-turn query q(t)
i . That is,

q(t)
i = [q̃(t−1)

i ; r(t−1)i ]. (9)

The query q(t)
i will be updated under the guidance

of working memory h(t)
i , and more contextual clues

can be retrieved from the global memory.
To sum up, given context representation ci of

the utterance ui, global memory representation
G, and the number of turns T , the whole cog-
nitive phase (Eq.5-9) can be denoted as, qi =
Cognition(ci,G;T ). In this work, we design two
individual cognition phases to explore contextual

clues at situation-level and speaker-level, respec-
tively. The outputs are defined as:

qsi = Cognitions(csi ,G
s;T s), (10)

qvi = Cognitionv(cvi ,G
v;T v), (11)

where T s and T v are the number of turns in
situation-level and speaker-level cognitive phases,
respectively.

Based on the above output vectors, the final rep-
resentation o can be defined as a concatenation of
both vectors, i.e.,

oi = [qsi ;qvi ]. (12)

2.3.3 Emotion Classifier
Finally, according to the above contextual clues, an
emotion classifier is used to predict the emotion
label of the utterance.

ŷi = softmax(Wooi + bo), (13)

where Wo ∈ R8du×|Y| and bo ∈ R|Y| are trainable
parameters. |Y| is the number of emotion labels.

Cross entropy loss is used to train the model.
The loss function is defined as:

L = − 1∑L
l=1 τ(l)

L∑
i=1

τ(i)∑
k=1

yli,klog(ŷ
l
i,k), (14)

where L is the total number of conversa-
tions/samples in the training set. τ(i) is the number
of utterances in the sample i. yli,k and ŷli,k denote
the one-hot vector and probability vector for emo-
tion class k of utterance i of sample l, respectively.

3 Experimental Setups

3.1 Datasets

We evaluate our proposed model on following
benchmark datasets, IEMOCAP (Busso et al.,
2008), SEMAINE (McKeown et al., 2012), and
MELD (Poria et al., 2019) datasets. The statistics
are reported in Table 1. The above datasets are
multimodal datasets with textual, visual, and acous-
tic features. In this paper, we focus on emotion
recognition in textual conversations. Multimodal
emotion recognition in conversations is left as fu-
ture work.

IEMOCAP2: The dataset (Busso et al., 2008)
contains videos of two-way conversations of ten

2https://sail.usc.edu/iemocap/

https://sail.usc.edu/iemocap/
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Dataset # Dialogues # Utterances Avg. # Classestrain val test train val test Length
IEMOCAP 120 31 5,810 1,623 50 6
SEMAINE 63 32 4,368 1,430 72 4∗

MELD 1,039 114 280 9,989 1,109 2,610 10 7
∗ refers to the number of real valued attributes.

Table 1: The statistics of three datasets.

unique speakers, where only the first eight speak-
ers from session one to four belong to the training
set. The utterances are annotated with one of six
emotion labels, namely happy, sad, neutral, an-
gry, excited, and frustrated. Following previous
works (Hazarika et al., 2018a; Ghosal et al., 2019;
Jiao et al., 2020b), the validation set is extracted
from the randomly shuffled training set with the
ratio of 80:20 since no pre-defined train/val split is
provided in the IEMOCAP dataset.

SEMAINE3: The dataset (McKeown et al.,
2012) is a video database of human-agent inter-
actions. It is available at AVEC 2012’s fully con-
tinuous sub-challenge (Schuller et al., 2012) that
requires predictions of four continuous affective
attributes: Arousal, Expectancy, Power, and Va-
lence. The gold annotations are available for every
0:2 seconds in each video (Nicolle et al., 2012).
Following (Hazarika et al., 2018a; Ghosal et al.,
2019), the attributes are averaged over the span of
an utterance to obtain utterance-level annotations.
We utilize the standard both training and testing
splits provided in the sub-challenge.

MELD4: Multimodal Emotion Lines Dataset
(MELD) (Poria et al., 2019), a extension of the
EmotionLines (Hsu et al., 2018), is collected from
TV-series Friends containing more than 1400 multi-
party conversations and 13000 utterances. Each
utterance is annotated with one of seven emotion
labels (i.e., happy/joy, anger, fear, disgust, sad-
ness, surprise, and neutral). We use the pre-defined
train/val split provided in the MELD dataset.

3.2 Comparisons Methods
We compare the proposed model against the follow-
ing baseline methods. TextCNN (Kim, 2014) is a
convolutional neural network trained on context-
independent utterances. Memnet (Sukhbaatar
et al., 2015) is an end-to-end memory network
and update memories in a multi-hop fashion. bc-
LSTM+Att (Poria et al., 2017) adopts a bidirec-
tional LSTM network to capture the contextual con-
tent from the surrounding utterances. Additionally,

3https://semaine-db.eu
4https://github.com/SenticNet/MELD

an attention mechanism is adopted to re-weight
features and provide a more informative output.
CMN (Hazarika et al., 2018b) encodes conversa-
tional context from dialogue history by two dis-
tinct GRUs for two speakers. ICON (Hazarika
et al., 2018a) extends CMN by connecting outputs
of individual speaker GRUs using another GRU for
perceiving inter-speaker modeling. DialogueRNN
(Majumder et al., 2019) is a recurrent network that
consists of two GRUs to track speaker states and
context during the conversation. DialogueGCN
(Ghosal et al., 2019) a graph-based model where
nodes represent utterances and edges represent the
dependency between the speakers of the utterances.

3.3 Evaluation Metrics

Following previous works (Hazarika et al., 2018a;
Jiao et al., 2020b), for IEMOCAP and MELD
datasets, we choose the accuracy score (Acc.) to
measure the overall performance. We also re-
port the Weighted-average F1 score (Weighted-
F1) and Macro-averaged F1 score (Macro-F1)
to evaluate the model performance on both ma-
jority and minority classes, respectively. For the
SEMAINE dataset, we report Mean Absolute Er-
ror (MAE) for each attribute. The lower MAE, the
better the detection performance.

3.4 Implementation Details

We use the validation set to tune hyperparameters.
In the perceptive phase, we employ two-layer bi-
directional LSTM on IEMOCAP and SEMAINE
datasets and single-layer bi-directional LSTM on
the MELD dataset. In the cognitive phase, single-
layer LSTM is used on all datasets. The batch size
is set to 32. We adopt Adam (Kingma and Ba,
2015) as the optimizer with an initial learning rate
of {0.0001, 0.001, 0.001} and L2 weight decay
of {0.0002, 0.0005, 0.0005} for IEMOCAP, SE-
MAINE, MELD datasets, respectively. The dropout
rate is set to 0.2. We train all models for a max-
imum of 100 epochs and stop training if the val-
idation loss does not decrease for 20 consecutive
epochs.

For results of DialogueGCN and DialogueRNN,
we implement them according to the public code5

provided by Majumder et al. (2019); Ghosal et al.
(2019) under the same environment.

5https://github.com/declare-lab/
conv-emotion

https://semaine-db.eu
https://github.com/SenticNet/MELD
https://github.com/declare-lab/conv-emotion
https://github.com/declare-lab/conv-emotion
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IEMOCAP
Methods Acc. Weighted-F1 Macro-F1
TextCNN 49.35 49.21 48.13
Memnet 55.70 53.10 55.40
bc-LSTM+Att 56.32 56.19 54.84
CMN 56.56 56.13 54.30
ICON 59.09 58.54 56.52
DialogueRNN 63.03 62.50 60.66
DialogueGCN 64.02 63.65 63.43
DialogueCRN 66.05 66.20 66.38
Improve 3.2% 4.0% 4.7%

Table 2: Experimental results on the IEMOCAP
dataset.

SEMAINE

Methods MAE
Valence Arousal Expectancy Power

TextCNN 0.545 0.542 0.605 8.71
Memnet 0.202 0.211 0.216 8.97
bc-LSTM+Att 0.189 0.213 0.190 8.67
CMN 0.192 0.213 0.195 8.74
ICON 0.180 0.190 0.180 8.45
DialogueRNN 0.175 0.171 0.181 8.66
DialogueGCN 0.176 0.210 0.193 8.65
DialogueCRN 0.173 0.152 0.175 8.20
Improve 1.1% 11.1% 2.8% 2.9%

Table 3: Experimental results on the SEMAINE dataset.

4 Results and Analysis

4.1 Experimental Results

Table 2, 3 and 4 show the comparison results
for emotion recognition in textual conversations.
DialogueCRN consistently achieves better perfor-
mance than the comparison methods on all datasets,
while also being statistically significant under the
paired t-test (p<0.05).

IEMOCAP and SEMAINE. Both IEMOCAP
and SEMAINE datasets have long conversation
lengths and the average length is not less than
50. The fact implies that the two datasets con-
tain richer contextual information. TextCNN ig-
noring conversational context obtains the worst per-
formance. Memnet and bc-LSTM+Att perceive
the situation-level context of the current utterance.
CMN perceives the speaker-level context. Thereby,
Memnet, bc-LSTM+Att and CMN slightly out-
performs TextCNN. ICON, DialogueRNN, and
DialogueGCN consider both situation-level and
speaker-level context to model the perceptive phase
of context. They achieve better performance than
the above methods. Compared with baseline meth-
ods, DialogueCRN can extract and integrate rich

MELD
Methods Acc. Weighted-F1 Macro-F1
TextCNN 59.69 56.83 33.80
bc-LSTM+Att 57.50 55.90 34.84
CMN - 54.50 -
ICON - 54.60 -
DialogueRNN 59.54 56.39 32.93
DialogueGCN 59.46 56.77 34.05
DialogueCRN 60.73 58.39 35.51
Improve 2.0% 2.9% 1.9%

Table 4: Experimental results on the MELD dataset.

emotional clues by exploring cognitive factors. Ac-
cordingly, our model obtains more effective per-
formance. That is, as shown in Table 2 and 3, for
the IEMOCAP dataset, DialogueCRN gains 3.2%,
4.0%, 4.7% relative improvements over the previ-
ous best baselines in terms of Acc., Weighted-F1,
and Macro-F1, respectively. For the SEMAINE
dataset, DialogueCRN achieves a large margin of
11.1% MAE for the Arousal attribute.

MELD. From Table 1, the number of speakers of
each conversation in the MELD dataset is large (up
to 9), and the average length of conversations is
10. The shorter conversation length of the MELD
dataset indicates it contains less contextual infor-
mation. From the result in Table 4, interestingly,
TextCNN ignoring conversational context achieves
better results than most baselines. It indicates that
it is difficult to learn useful features from perceiv-
ing a limited and missing context. Besides, Dia-
logueGCN leverages graph structure to perceive
the interaction of multiple speakers, which is suffi-
cient to perceive the speaker-level context. Thereby,
the performance is slightly improved. Compared
with baselines, DialogueCRN enables to perform
sequential thinking of context and understand emo-
tional clues from a cognitive perspective. There-
fore, it achieves the best recognition results, e.g.,
2.9% improvements on Weighted-F1.

4.2 Ablation Study

To better understand the contribution of different
modules in DialogueCRN to the performance, we
conduct several ablation studies on both IEMOCAP
and SEMAINE datasets. Different modules that
model the situation-level and speaker-level con-
text in both perceptive and cognitive phases are
removed separately. The results are shown in Ta-
ble 5. When cognition and perception modules are
removed successively, the performance is greatly
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Cognition Perception IEMOCAP SEMAINE
Situation Speaker Situation Speaker

Acc. Weighted-F1 Macro-F1
MAE

Context Context Context Context Valence Arousal Expectancy Power
X X X X 66.05 66.20 66.38 0.173 0.152 0.175 8.201
X × X X 64.26 64.43 62.86 0.173 0.162 0.181 8.253
× X X X 63.28 63.8 63.31 0.174 0.165 0.179 8.201
× × X X 63.22 63.37 62.08 0.177 0.171 0.180 8.237
× × × X 63.50 63.68 62.40 0.192 0.213 0.195 8.740
× × X × 60.07 60.14 59.58 0.194 0.212 0.201 8.900
× × × × 49.35 49.21 48.13 0.545 0.542 0.605 8.710

Table 5: Experimental results of ablation studies on IEMOCAP and SEMAINE datasets.

declined. It indicates the importance of both the
perception and cognition phases for ERC.

Effect of Cognitive Phase. When only remov-
ing cognition phase, as shown in the third block of
Table 5, the performance on the IEMOCAP dataset
decreases 4.3%, 4.3% and 6.5% in terms of Acc.,
Weighted-F1, and Macro-F1, respectively. And on
the SEMAINE dataset, the MAE scores of Valence,
Arousal, and Expectancy attributes are increased by
2.3%, 12.5% and 2.9%, respectively. These results
indicate the efficacy of the cognitive phase, which
can reason based on the perceived contextual infor-
mation consciously and sequentially. Besides, if re-
moving the cognitive phase for either speaker-level
or situation-level context, as shown in the second
block, the results decreased on both datasets. The
fact reflects both situational factors and speaker
factors are critical in the cognitive phase.

Effect of Perceptive Phase. As shown in the
last row, when removing the perception module,
the performance is dropped sharply. The inferior
results reveal the necessity of the perceptive phase
to unconsciously match relevant context based on
the current utterance.

Effect of Different Context. When removing
either situation-level or speaker-level context in
both cognitive and perceptive phases, respectively,
the performance has a certain degree of decline.
The phenomenon shows both situation-level and
speaker-level context play an effective role in the
perceptive and cognitive phases. Besides, the mar-
gin of dropped performance is different on both
datasets. This suggests speaker-level context plays
a greater role in the perception phase while more
complex situation-level context works well in the
cognitive phase. The explanation is that it is limited
to learn informative features from context by intu-
itive matching perception, but conscious cognitive
reasoning can boost better understanding.

Figure 3: Results against the number of turns. We re-
port the Weighted-F1 score on the IEMOCAP dataset
and MAE of Arousal attribute on the SEMAINE dataset.
The lighter the color, the better the performance.

4.3 Parameter Analysis

We investigate how our model performs w.r.t the
number of turns in the cognitive phase. From Fig-
ure 3, the best {T s, T v} is {2, 2} and {1, 3} on
IEMOCAP and SEMAINE datasets, which obtain
66.20% Weighted-F1 and 0.1522 MAE of Arousal
attribute, respectively. Note that the SEMAINE
dataset needs more turns for the speaker-level cog-
nitive phase. It implies speaker-level contextual
clues may be more vital in arousal emotion, espe-
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I realize this. But I have to ask you to 
move so I can help the next person.

What am I gonna do without anything 
for three weeks?

But fifty dollars isn’t going to get me 
anything.

It sounds like it’s no big deal what-
ever. It’s a big deal to me.

(Male) (Female)
1

2

3

5

6

8

4

7

1

2

7

8

…

compensation

compensation.

compensation 
Can I at least have my fifty dollars, 
please?

c

b

a

Figure 4: The case study.

cially empathetic clues that require complex rea-
soning.

Besides, if we solely consider either situation-
level or speaker-level context in the cognitive phase,
results on the two datasets are significantly im-
proved within a certain number of turns. The fact
indicates the effectiveness of using multi-turn rea-
soning modules to understand contextual clues.

4.4 Case Study
Figure 4 shows a conversation sampled from the
IEMOCAP dataset. The goal is to predict the emo-
tion label of utterance 8. Methods such as Dia-
logueRNN and DialogueGCN lack the ability to
consciously understand emotional clues, e.g., the
cause of the emotion (failed expectation). They are
easy to mistakenly identify the emotion as angry
or neutral.

Our model DialogueCRN can understand the
conversational context from a cognitive perspec-
tive. In the cognitive phase, the following two
processes are performed iteratively: the intuitive
retrieving process of 8-7-2-1 (blue arrows) and the
conscious reasoning process of a-b-c (red arrows),
to extract and integrate emotional clues. We can
obtain that utterance 8 implied that more compen-
sation expected by female was not achieved. The
failed compensation leads to more negative of his
emotion and thus correctly identified as depression.

5 Related Work

5.1 Emotion Recognition
Emotion recognition (ER) has been drawing in-
creasing attention to natural language processing
(NLP) and artificial intelligence (AI). Existing
works generally regard the ER task as a classifi-
cation task based on context-free blocks of data,

such as individual reviews or documents. They
can roughly divided into two parts, i.e., feature-
engineering based (Devillers and Vidrascu, 2006),
and deep-learning based methods (Tang et al., 2016;
Wei et al., 2020).

5.2 Emotion Recognition in Conversations

Recently, the task of Emotion Recognition in Con-
versations (ERC) has received attention from re-
searchers. Different traditional emotion recogni-
tion, both situation-level and speaker-level context
plays a significant role in identifying the emotion
of an utterance in conversations (Li et al., 2020).
The neglect of them would lead to quite limited
performance (Bertero et al., 2016). Existing works
generally capture contextual characteristics for the
ERC task by deep learning methods, which can
be divided into sequence-based and graph-based
methods.

Sequence-based Methods. Many works cap-
ture contextual information in utterance sequences.
Poria et al. (2017) employed LSTM (Hochreiter
and Schmidhuber, 1997) to capture conversational
context features. Hazarika et al. (2018a,b) used
end-to-end memory networks (Sukhbaatar et al.,
2015) to capture contextual features that distin-
guish different speakers. Zhong et al. (2019); Li
et al. (2020) utilized the transformer (Vaswani et al.,
2017) to capture richer contextual features based on
the attention mechanism. Majumder et al. (2019)
introduced a speaker state and global state for each
conversation based on GRUs (Cho et al., 2014).
Moreover, Jiao et al. (2020a) introduced a conver-
sation completion task to learn from unsupervised
conversation data. Jiao et al. (2020b) proposed a
hierarchical memory network for real-time emo-
tion recognition without future context. Wang et al.
(2020) modeled ERC as sequence tagging to learn
the emotional consistency. Lu et al. (2020) pro-
posed an iterative emotion interaction network to
explicitly model the emotion interaction.

Graph-based Methods. Some works (Zhang
et al., 2019; Ghosal et al., 2019; Ishiwatari et al.,
2020; Lian et al., 2020) model the conversational
context by designing a specific graphical struc-
ture. They utilize graph neural networks (Kipf and
Welling, 2017; Velickovic et al., 2017) to capture
multiple dependencies in the conversation, which
have achieved appreciable performance.

Different from previous works, inspired by
the Cognitive Theory of Emotion (Schachter and
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Singer, 1962; Scherer et al., 2001), this paper
makes the first attempt to explore cognitive fac-
tors for emotion recognition in conversations. To
sufficiently understand the conversational context,
we propose a novel DialogueCRN to extract and
then integrate rich emotional clues in a cognitive
manner.

6 Conclusion

This paper has investigated cognitive factors for
the task of emotion recognition in conversations
(ERC). We propose novel contextual reasoning net-
works (DialogueCRN) to sufficiently understand
both situation-level and speaker-level context. Di-
alogueCRN introduces the cognitive phase to ex-
tract and integrate emotional clues from context
retrieved by the perceptive phase. In the cognitive
phase, we design multi-turn reasoning modules to
iteratively perform the intuitive retrieving process
and conscious reasoning process, which imitates
human unique cognitive thinking. Finally, emo-
tional clues that trigger the current emotion are
successfully obtained and used for better classifi-
cation. Experiments on three benchmark datasets
have proved the effectiveness and superiority of
the proposed model. The case study shows that
considering cognitive factors can better understand
emotional clues and boost the performance of ERC.
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