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Abstract

Abductive reasoning aims at inferring the
most plausible explanation for observed events,
which would play critical roles in various NLP
applications, such as reading comprehension
and question answering. To facilitate this task,
a narrative text based abductive reasoning task
αNLI is proposed, together with explorations
about building reasoning framework using pre-
trained language models. However, abundant
event commonsense knowledge is not well ex-
ploited for this task. To fill this gap, we pro-
pose a variational autoencoder based model
ege-RoBERTa, which employs a latent variable
to capture the necessary commonsense knowl-
edge from event graph for guiding the abduc-
tive reasoning task. Experimental results show
that through learning the external event graph
knowledge, our approach outperforms the base-
line methods on the αNLI task.

1 Introduction

Abductive reasoning aims at seeking for the best ex-
planations for incomplete observations (Bhagavat-
ula et al., 2019). For example, given observations
Forgot to close window when leaving home and The
room was in a mess, human beings can generate
a reasonable hypothesis for explaining the obser-
vations, such as A thief entered the room based on
commonsense knowledge in their mind. However,
due to the lack of commonsense knowledge and
effective reasoning mechanism, this is still a chal-
lenging problem for today’s cognitive intelligent
systems (Charniak and Shimony, 1990; Oh et al.,
2013; Kruengkrai et al., 2017).

Most previous works focus on conducting ab-
ductive reasoning based on formal logic (Eshghi
et al., 1988; Levesque, 1989; Ng et al., 1990; Paul,
1993). However, the rigidity of formal logic lim-
its the application of abductive reasoning in NLP

∗Corresponding author

Figure 1: (a) An example of abductive reasoning. (b)
Additional commonsense knowledge (such as event I1
and I2) is necessary for inferring the correct hypothe-
sis. Such knowledge could be described using an event
graph. (c) A latent variable z is employed to learn the
commonsense knowledge from event graph.

tasks, as it is hard to express the complex semantics
of natural language in a formal logic system. To
facilitate this, Bhagavatula et al. (2019) proposed
a natural language based abductive reasoning task
αNLI. As shown in Figure 1 (a), given two ob-
served events O1 and O2, the αNLI task requires
the prediction model to choose a more reasonable
explanation from two candidate hypothesis events
H1 and H2. Both observed events and hypothe-
sis events are daily-life events, and are described
in natural language. Together with the αNLI task,
Bhagavatula et al. (2019) also explored conducting
such reasoning using pretrained language models
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019).

However, despite pretrained language models
could capture rich linguistic knowledge benefit for
understanding the semantics of events, additional
commonsense knowledge is still necessary for the
abductive reasoning. For example, as illustrated
in Figure 1 (b), given observations O1 and O2, to
choose the more likely explanation H1 : A thief
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entered the room and exclude H2 : A breeze blew
in the window, prediction model should have the
commonsense knowledge that it is hardly possible
for a breeze to mess up the room, whereas a thief
may enter the room from the open window (I1),
then rummage through the room (I2) and lead to
a mess. These intermediary events (I1 and I2) can
serve as necessary commonsense knowledge for
understanding the relationship between observed
events and hypothesis events.

We notice that the observed events, hypothesis
events, intermediary events and their relationships
could be described using an event graph, which
can be constructed based on an auxiliary dataset.
The challenge is how to learn such commonsense
knowledge from the constructed event graph.

To address this issue, we propose an Event Graph
Enhanced RoBERTa (ege-RoBERTa) model, and
a two-stage training procedure. Specifically, as
shown in Figure 1 (c), on the basis of the RoBERTa
framework, we additionally introduce a latent vari-
able z to model the information about the intermedi-
ary events. In the pretraining stage, ege-RoBERTa
is trained upon an event-graph-based pseudo in-
stance set to capture the commonsense knowledge
using the latent variable z. In the finetuning stage,
model adapts the commonsense knowledge cap-
tured by z to conduct the abductive reasoning.

Experimental results show that ege-RoBERTa
could effectively learn the commonsense knowl-
edge from a well-designed event graph, and im-
prove the model performance on the αNLI task
compared to the baseline methods. The code is
released at https://github.com/sjcfr/ege-RoBERTa.

2 Background

2.1 Problem Formalization

As shown in Figure 1 (a), αNLI can be defined as
a multiple-choice task. Given two observed events
O1 and O2 happened in a sequential order, one
needs to choose a more reasonable hypothesis event
from two candidates H1 and H2 for explaining
the observations. Therefore, we formalize the ab-
ductive reasoning task as a conditional distribu-
tion p(Y |O1, Hi, O2), where Hi ∈ {H1, H2}, and
Y ∈ [0, 1] is a relatedness score measuring the
reasonableness of Hi.

In the αNLI dataset, Hi is set to be an expla-
nation event happens intermediate to O1 and O2

(Bhagavatula et al., 2019). Hence, O1, O2 and Hi

form an event temporal sequence O1, Hi, O2. For

brevity, we denote the event sequence as X =
(O1, Hi, O2). Therefore, taking the event order into
consideration, we further characterize the abduc-
tive reasoning task as p(Y |X).

2.2 Event Graph

Formally, an event graph could be denoted as G =
{V,R}, where V is the node set, and R is the edge
set. Each node Vi ∈ V corresponds to an event,
while Rij ∈ R is a directed edge Vi → Vj along
with a weight Wij , which denotes the probability
that Vj is the subsequent event of Vi.

Given observed events and a certain hypoth-
esis event, from the event graph we could ac-
quire additional commonsense knowledge about:
(1) the intermediary events, (2) the relation-
ships between events. As Figure 1 (b) shows,
the observed events, hypothesis event and inter-
mediary events compose another event sequence
(O1, I1, Hi, I2, O2). For clarity, we define such event
sequence as posterior event sequence X ′, where
X ′ = (O1, I1, Hi, I2, O2). The relationship between
events within X ′ could be described by an adja-
cency matrix A ∈ R5×5, with each element initial-
ized using the edge weights of the event graph:

Ajk =

{
Wjk, if Vj → Vk ∈ R,
0, others.

(1)

The matrix A could describe the adjacency rela-
tionship between arbitrary two events in X ′.

3 Ege-RoBERTa as a Conditional
Variational Autoencoder Based
Reasoning Framework

In this paper, rather than directly predicts the re-
latedness score Y based on the event sequence X ,
we propose to predict Y based on both X and ad-
ditional commonsense knowledge (i.e. posterior
event sequence X ′ and adjacency matrix A). To
this end, we introduce a latent variable z to learn
such knowledge from an event graph through a two
stage training procedure. To effectively capture the
event graph knowledge through z and conduct the
abductive reasoning task based on z, we frame the
ege-RoBERTa model as a conditional variational
autoencoder (CVAE) (Sohn et al., 2015).

Specifically, with regard to the latent variable
z, ege-RoBERTa characterizes the conditional dis-
tribution P (Y |X) using three neural networks:
a prior network pθ(z|X), a recognition network
qφ(z|X ′, A) and a neural likelihood pθ(Y |X, z),
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Figure 2: Illustration of the pretraining, finetuning and
prediction process of ege-RoBERTa. The grey color in
circle denotes the availability of corresponding informa-
tion. For example, in the pretraining stage conducted on
the pseudo instance set, X , Y and additional common-
sense knowledge X ′ and A are available. While in the
finetuning stage on αNLI, X ′ and A are absent.

where θ and φ denote the parameters of networks.
Moreover, instead of directly maximize P (Y |X),
following CVAE (Sohn et al., 2015), ege-RoBERTa
proposes to maximize the evidence lower bound
(ELBO) of P (Y |X) :

LELBO(θ, φ) =Eqφ(z|X′,A)log(pθ(Y |X, z))

−KL(qφ(z|X ′, A)||pθ(z|X))

≤ logp(Y |X)

(2)

Note that, in the recognition network, the latent
variable z is directly conditioned on X ′ and A,
where X ′ = {O1, I1, Hi, I2, O2} is the posterior event
sequence, A is an adjacency matrix describing the
relationship between events within X ′. This en-
ables z to capture the event graph knowledge from
X ′ and A. Through minimizing the KL term of
ELBO, we can teach the prior network pθ(z|X) to
learn the event graph knowledge from the recog-
nition network as much as possible. Then in the
neural likelihood pθ(Y |X, z) the relatedness score
Y could be predicted based on X and z, which
captures the event graph knowledge.

However, the event graph knowledge is absent
in the αNLI dataset. To learn such knowledge, we
design the following two-stage training procedure:

Pre-training Stage: Learning Event Graph
Knowledge from a Pseudo Instance Set In this
stage, ege-RoBERTa is pretrained on a prebuilt
event-graph-based pseudo instance set, which con-
tains rich information about the intermediary events
and the events relationships. As shown in Fig-
ure 2 (a), the latent variable z is directly condi-
tioned on X ′ and A. Therefore, z could be em-
ployed to learn the event graph knowledge.

Finetuning Stage: Adapt Event Graph
Knowledge to the Abductive Reasoning Task
As Figure 2 (b) shows, at the finetuning stage,
ege-RoBERTa is trained on the αNLI dataset

Figure 3: Architecture of ege-RoBERTa.

without the additional information X ′ and A. In
this stage model learns to adapt the captured event
graph knowledge to the abductive reasoning task.
Then as Figure 2 (c) shows, after the two-stage
training process, ege-RoBERTa could predict the
relatedness score Y based on the latent variable z.

4 Architecture of ege-RoBERTa

We introduce the specific implementation of
ege-RoBERTa. As illustrated in Figure 3, ege-
RoBERTa introduces four modules in addition to
the RoBERTa framework: (1) an aggregator provid-
ing representation for any event within X and X ′;
(2) an attention-based prior network for modeling
pθ(z|X); (3) a graph neural network based recog-
nition network for modeling qφ(z|X ′, A); (4) a
merger to merge the latent variable z into RoBERTa
frame for downstream abductive reasoning task.

4.1 Event Representation Aggregator
The event representation aggregator provides dis-
tributed representation for events in both the event
sequence X and the posterior event sequence X ′.
To this end, the aggregator employs attention mech-
anism to aggregate token representations of the
event sequence from hidden states of RoBERTa.

Given an event sequence X composed of to-
kens [[CLS], (x11,. . . ,x1l1 ),. . . ,(x31,. . . ,x3l3 )] (where [CLS]

is the special classification token (Devlin et al.,
2019), and xjk is the kth token within the jth event),
the M th transformer layer of RoBERTa encodes
these tokens into contextualized distributed repre-
sentations H(M) = [h[CLS], (h1

1,. . . ,h1
l1

),. . . ,(h3
1,. . . ,h3

l3
)],

where hjk ∈ R1×d is the distributed representation
of the kth token within the jth event. Then for the
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jth event, the distributed representation is initial-
ized as qj = 1

lj

∑
hjlj . Multi-head attention mech-

anism (MultiAttn) (Vaswani et al., 2017) is em-
ployed to softly select information from H(M) and
get the representation of each event:

ej = MultiAttn(qj , H
(M)). (3)

For brevity, we denote the vector representa-
tion of all events in X using a matrix EX , where
EX = {e1, e2, e3} ∈ R3×d. Note that, through the
embedding layer of RoBERTa, position informa-
tion has been injected into the token representations.
Therefore, EX derived from token representations
carries event order information. In addition, since
EX is obtained from the hidden states of RoBERTa,
rich linguistic knowledge within RoBERTa could
be utilized to enhance the comprehension of event
semantics. By the same way, the representation of
events within X ′ could be calculated, which we
denote as EX′ .

4.2 Recognition Network
The recognition network models qφ(z|X ′, A)
based on EX′ and A, where EX′ is the represen-
tations of events within X ′. Following traditional
VAE, qφ(z|X ′, A) is assumed to be a multivariate
Gaussian distribution:

qφ(z|X ′, A) ∼ N(µ′(X ′, A), D), (4)

where D denotes the identity matrix.
To obtain µ(X ′, A), we first combine EX′ and

adjacency matrix A using a GNN (Kipf et al.,
2016):

E(U)′ = σ(AEX′W (u)). (5)

where σ(·) is the sigmoid function;W (u) ∈ Rd×d is a
weight matrix and E(U)′ are relational information
updated event representations.

Then a multi-head self-attention operation is per-
formed to promote the fusion of event semantic
information and relational information:

E(U)′ = MultiAttn(E(U)′, E(U)′). (6)

Finally, to estimate µ(X ′, A), we aggregate infor-
mation within E(U)′ using a readout function g(·):

µ′ = g(E(U)′). (7)

Following Zhou et al. (2019) and Zhong et al.
(2019), we set g(·) to be a mean-pooling operation.

Hence, by estimating µ′ based on the relational
information updated event representation E(U)′,
event graph knowledge about X ′ and A is involved
into the latent variable z.

4.3 Prior Network
The prior network models pθ(z|X) based on EX ,
where EX is the representation matrix of events in
X . The same as the recognition network, pθ(z|X)
also follows multivariate normal distribution, while
the parameters are different:

pθ(z|X) ∼ N(µ(X), D), (8)

where D denotes the identity matrix.
To obtain µ(X), different from the recognition

network, the prior network starts from updating
EX using a multi-head self-attention:

E(U) = MultiAttn(EX , EX). (9)

Then an additional multi-head self-attention op-
eration is performed to get deeper representations:

E(U) = MultiAttn(E(U), E(U)). (10)
Finally, µ(X) is estimated through aggregating

information from E(U):

µ = g(E(U)), (11)
where g(·) is a mean-pooling operation.

4.4 Merger
The merger module merges the latent variable z as
well as updated (deep) representation of events into
the N th transformer layer of RoBERTa frame for
predicting the relatedness score. To this end, we
employ multi-head attention mechanism to softly
select relevant information from z and E(U), and
then update the hidden state of the N th transformer
layer of RoBERTa.

Specifically, in the pretraining stage:

H(N)∗ = MultiAttn(H(N), [µ′;E(U)]), (12)

where H(N) is the hidden states of the N th trans-
former layer of RoBERTa, and H(N)∗ is the event
graph information updated hidden states.

While in the finetuning and prediction stage:

H(N)∗ = MultiAttn(H(N), [µ;E(U)]). (13)

Note that, given X , pθ(µ|X) achieves its max-
imum when z = µ. Hence, making predictions
based on µ could be regarded as finding the best
explanation based on the most likely common-
sense situation. Through integrating latent vari-
able z, H(N)∗ contains the event graph knowledge.
By taking H(N)∗ as the input of the subsequent
(N + 1)th transformer layers of RoBERTa for pre-
dicting the relatedness score, the abductive reason-
ing task is conducted based on the additional event
graph knowledge.
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4.5 Optimizing
The αNLI task requires model to choose a more
likely hypothesis event from two candidates. How-
ever, in the pre-training stage, the negative exam-
ples are absent in the pseudo instances. To address
this issue, following the method of Liu et al. (2019),
in the pre-training stage ege-RoBERTa is trained
to predict the masked tokens in the event sequence
X rather than the relatedness score. In addition, in
order to balance the masked token prediction loss
with the KL term, we introduce an additional hy-
perparameter λ. Hence, the objective function in
the pretraining stage is defined as follows:

LELBO(θ, φ) =Eq(z|X′,A)logLMLM (X, z; θ)

− λKL(qφ(z|X ′, A)||pθ(z|X)),
(14)

where logLMLM (X, z; θ) is the masked token predic-
tion loss. Intuitively, through minimizing the KL
term, we aim to transmit the event graph knowledge
from the recognition network to the prior network.

In the finetuning stage, ege-RoBERTa is trained
to adapt the learned event graph knowledge to the
abductive reasoning task. Without the recogniton
network, we formulate the objective function as:

L(θ) = pθ(Y |z,X) = pθ(Y |z,X)pθ(z|X). (15)

4.6 Training Details
We implement two different sizes of ege-RoBERTa
model (i.e. ege-RoBERTa-base and ege-RoBERTa-
large) based on RoBERTa-base framework and
RoBERTa-large framework, respectively. For the
ege-RoBERTa-base model, in the aggregator, the
prior network, the recognition network and the
merger, the dimension of the attention mechanism d
is set as 768, and all multi-head attention layers con-
tain 12 heads. While for the ege-RoBERTa-large
model, d is equal to 1024 and all multi-head atten-
tion layers contain 16 heads. In the ege-RoBERTa-
base model, token representations are aggregated
from the 7th transformer layer of RoBERTa, and
the latent variable is merged to the 10th transformer
layer of RoBERTa. While for the ege-RoBERTa-
large model, the aggregator and merger layer are
set as the 14th and 20th layer, respectively. The
balance coefficient λ equals 0.01. More details are
provided in the Appendix.

5 Experiments

5.1 αNLI Dataset
The αNLI dataset (Bhagavatula et al., 2019) con-
sists of 169,654, 1,532 and 4,056 〈O1, O2, H1, H2〉

(Posterior) Event Sequence Story
Observed Event 1 (O1) 1© I was doing exercise in gym.
Intermediary Event 1 (I1) 2© I felt very hot.
Hypothesis Event (H1) 3© I got up to turn on the fan.
Intermediary Event 2 (I2) 4© The fan began to cool down my room.
Observed Event 2 (O2) 5© I felt much more comfortable.
A Pseudo Instance={X, X’, A}, where
X = (O1, H1, O2); X′ = (O1, I1, H1, I2, O2)
A is initialized from the event graph.

Table 1: An example for illustrating the construction of
pseudo instances used for pretraining ege-RoBERTa.

quadruples in training, development and test set,
respectively. The observation events are collected
from a short story corpus ROCstory (Mostafazadeh
et al., 2016), while all of hypothesis events are
independently generated through crowdsourcing.

5.2 Construction of Event Graph

The event graph serves as an external knowledge
base to provide information about the relation-
ship between observation events and intermediary
events. To this end, we build the event graph based
on an auxiliary dataset, which are composed of
two short story corpora independent to αNLI, i.e.,
VIST (Huang et al., 2016), and TimeTravel (Qin
et al., 2019). Both VIST and TimeTravel are com-
posed of five-sentences short stories. Totally there
are 121,326 stories in the auxiliary dataset.

To construct the event graph, we define each
sentence in the auxiliary dataset as a node in the
event graph. To get the edge weight Wij between
two nodes Vi and Vj (i.e., the probability that
Vj is the subsequent event of Vi), we finetune a
RoBERTa-large model through a next sentence pre-
diction task. Specifically, we define adjacent sen-
tence pairs in the story text (for example, [1st, 2nd]
sentence, [4th, 5th] sentence of a story) as posi-
tive instances, define nonadjacent sentence pairs
or sentences pairs in reverse order (such as [1st,
3rd] sentence, [5th, 4th] sentence of a story) as
negative instances. After that we sample 300,000
positive and 300,000 negative instances from the
auxiliary dataset. Then given an event pair (Vi, Vj),
the finetuned RoBERTa-large model would be able
to predict the probability that Vj is the subsequent
event of Vi.

Event Graph Based Pseudo Instance Set for
Pretraining ege-RoBERTa To effectively utilize
the event graph knowledge, we induce a set of
pseudo instances for pretraining the ege-RoBERTa
model. Specifically, given a five-sentence-story
within the auxiliary dataset, as Table 1 shows, we
define the 1st and 5th sentence of the story as two
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observed events, the 3rd sentence as the hypothesis
event, the 2nd and 4th sentence as intermediary
events, respectively. In this way, the posterior event
sequence X ′ and the event sequence X of a pseudo
instance could be obtained. In addition, given X ′,
we initialize the elements of the adjacency matrixA
using the edge weights of the event graph, and scale
A so that its row sums equal to 1. After the above
operations, each pseudo instance is composed of
an event sequence X , a posterior event sequence
X ′ which contains intermediary event information,
and an adjacency matrix A which describes rela-
tionships between events within X ′.

5.3 Baselines
We compare ege-RoBERTa with:
• SVM uses features about length, overlap and sen-
timent to predict the more likely hypothesis event.
• Infersent (Conneau et al., 2017) represents sen-
tences using a Bi-LSTM, and predicts the related-
ness score using MLP.
• GPT (Radford et al., 2018) is a multilayer-
transformer based unidirectional pretrained lan-
guage model.
• BERT (Devlin et al., 2019) is a multilayer-
transformer based bi-directional pretrained lan-
guage model.
• RoBERTa (Liu et al., 2019) refers robustly opti-
mized BERT.
• ege-RoBERTau(npretrained) refers to the ege-
RoBERTa model without the pretraining stage.
• ege-RoBERTaλ=0 refers to setting the balance
coefficient to 0 in the pretraining stage. Note that
all pretrained-language-model-based baselines (i.e.,
GPT, BERT and RoBERTa) are finetuned on the
αNLI dataset as the method of Bhagavatula et al.
(2019) to adapt to the abductive reasoning task.

In addition, we also list two concurrent works:
(i) L2R (Zhu et al., 2020) learns to rank the can-
didate hypotheses with a novel scoring function.
(ii) RoBERTa-GPT-MHKA (Paul et al., 2020) en-
hances pretrained language model with social and
causal commonsense knowledge for αNLI task.

5.4 Quantitative Analysis
We list the prediction accuracy (%) in Table 2, and
observe that:

(1) Compared with SVM and Infersent, pre-
trained language model based methods: GPT,
BERT, RoBERTa and ege-RoBERTa show sig-
nificant better performances in abductive reason-
ing task. This is because through the pre-training

Methods Accu. (%)
SVM 50.6
Infersent (Conneau et al., 2017) 50.8
GPT (Radford et al., 2018) 63.1
BERT-base (Devlin et al., 2019) 63.3
RoBERTa-base (Liu et al., 2019) 71.5
BERT-large (Devlin et al., 2019) 68.9
RoBERTa-large (Liu et al., 2019) 83.9
Concurrent Methods
L2R (Zhu et al., 2020) 86.8
RoBERTa-GPT-MHKA (Paul et al., 2020) 87.1
This Work
ege-RoBERTa-largeu 83.8
ege-RoBERTa-largeλ=0 84.2
ege-RoBERTa-base 75.9
ege-RoBERTa-large 87.5
Human Performance 91.4

Table 2: Accuracy on the test set of αNLI.

stage language models could capture rich linguis-
tic knowledge that is helpful for understanding the
semantics of events.

(2) Comparison between ege-RoBERTa-largeu
with ege-RoBERTa-large shows that the pre-
training process can increase the accuracy of ab-
ductive reasoning. In addition, comparison be-
tween ege-RoBERTa-largeλ=0 with ege-RoBERTa-
large indicates that in the pre-training process, ege-
RoBERTa could capture the event graph knowledge
through the latent variable to enhance the abduc-
tive reasoning. Furthermore, the relative close per-
formance between ege-RoBERTa-largeu and ege-
RoBERTa-largeλ=0 suggest that the main improve-
ments of the performance is brought by the event
graph knowledge.

(3) Compared to RoBERTa, ege-RoBERTa
achieves higher prediction accuracy for both the
base and large sized model. This result confirms
our motivation that learning event graph knowledge
could be helpful for the abductive reasoning task.

(4) According to Bhagavatula et al. (2019), hu-
man performance on the test set of αNLI is 91.4%.
While the RoBERTa-large model has achieved an
accuracy of 83.9%. Therefore, further improve-
ments over RoBERTa-large could be challenging.
Through learning the event graph knowledge, our
proposed method ege-RoBERTa further improves
the relative accuracy.

(5) Our approach has comparable performance
with the SOTA concurrent work, which combines
RoBERTa with GPT, and incorporates social and
causal commonsense into model. The combination
of both methods would further increase the model
performance.
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Figure 4: Accuracy of ege-RoBERTa-base pretrained
with different balance coefficient λ.

Model Accuracy (%)
ege-RoBERTa-base 77.9
-w/ Ã 75.5
-w/ Ĩ1 and Ĩ2 76.0

Table 3: Prediction accuracy of the ege-RoBERTa-
base model pretrained with randomly initialized adja-
cency matrix Ã / randomly sampled intermediary events
{Ĩ1, Ĩ2}.

5.5 Ablation Study
All studies are conducted on the development set
of the αNLI using the ege-RoBERTa-base model.

Influence of the Balance Coefficient In the pre-
training stage, the balance coefficient λ controls the
trade off between event graph knowledge learning
and abductive reasoning. To investigate the specific
influence of the balance coefficient, we compare
the performance of ege-RoBERTa model pretrained
with different λ. As shown in Figure 4, the predic-
tion accuracy continues to increase as λ increases
from 0 to 0.01. This is because adequate event
graph knowledge can offer guidance for the abduc-
tive reasoning task. While when λ exceeds 0.05,
the accuracy start to decrease, as the over-emphasis
of event graph knowledge learning would in turn
undermine the model performance.

Influence of the External Commonsense
Knowledge We study the specific effect of the
event relational information and the intermediary
event information by controlling the generation of
pseudo instances. In specific, we eliminate the in-
fluence of the adjacency matrix A by replacing A
with a randomly initialized matrix Ã. Similarly, the
influence of the intermediary events I1 and I2 is
eliminated through substituting them by two ran-
domly sampled events Ĩ1 and Ĩ2. As Table 3 shows,
both the replacement of A and {I1, I2} lead to ob-
vious decrease of model performance. This demon-
strates that ege-RoBERTa can use both two kinds of
event graph knowledge for enhancing the abductive
reasoning task.

5.6 Sensitivity Analysis
To find out if the improvement of Ege-RoBERTa
is brought by a certain dataset, and the specific

Dataset -w/o TimeTravel -w/o VIST
Accuracy 76.6 75.7
#Pseudo Instances 40,000 60,000 80,000 100,000
Accuracy 74.3 75.4 76.2 77.0

Table 4: Sensitivity analysis about the source and num-
ber of pseudo instances on the dev set of αNLI.

Model Posterior event Sequence Accu.
RoBERTa —- 73.2

ege-RoBERTa

X ′ = {O1, I1, Hi, O2} 77.1
X ′ = {O1, Hi, I1, O2} 76.3
X ′ = {O1, I1, I2, Hi, O2} 76.6
X ′ = {O1, Hi, I1, I2, O2} 75.8
X ′ = {O1, I1, Hi, I2, O2} 77.9

Table 6: Prediction accuracy (%) of the ege-RoBERTa-
base model pretrained with different forms of posterior
event sequence.

relationship between the model performance with
the number of pseudo instances, we conduct fol-
lowing experiments: (1) excluding a certain dataset
when inducing pseudo instances; (2) pretraining
the ege-RoBERTa-base model with different num-
ber of pseudo instances. The corresponding results
on the dev set of αNLI is shown in Table 4.

We can find that, the elimination of both dataset
leads to decrease of model performances. This sug-
gests that the ege-RoBERTa model could capture
relevant event graph knowledge from both dataset.
While the prediction accuracy continues to increase
along with the number of pseudo instances used
for pretraining the ege-RoBERTa model. This is
because the accumulation of commonsense knowl-
edge is helpful for the abductive reasoning task.
In addition, it also indicates that the model perfor-
mance could be further improved if the auxiliary
dataset is even more enlarged.

5.7 Case study

Table 5 provides an example of model predic-
tion results. Given two observed events O1 “hates
Fall” and O2 “didn’t have to experience Fall in
Guam”, the hypothesis event H1 “moved to Guam”
is more likely to explain the two motivations of
observed events. However, H1 implicitly relies on
a precondition that in Guam, Fall could be eluded.
Correspondingly, in the auxiliary dataset, there
is information supporting the hypothesis event
H1 that there is no Fall in Guam. In this case,
ege-RoBERTa chooses the hypothesis event H1,
whereas RoBERTa chooses the wrong hypothesis
event H2. This indicates that ege-RoBERTa could
learn the event graph knowledge in the pretraining
process for improving the reasoning performance.
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Observed Events Hypothesis Events Model Commonsense Knowledge from EG.
O1: I hated Fall.
O2: I became happier because

I didn’t have to experience
Fall in Guam.

H1: I moved to Guam. (
√

) ege-RoBERTa
I1: It reminded me of death.
H: I couldn’t stand Fall so I decided to move.

H2:I took a vacation
during the Fall. (×) RoBERTa

I2: I moved to Guam
where there was no Fall season.

Table 5: Example of abductive reasoning result made by RoBERTa and ege-RoBERTa, respectively.

6 Discussion

In this paper, to involve the event graph knowl-
edge, we formalize the posterior event sequence as
X ′ = {O1, I1, Hi, I2, O2}. While our approach
also allows other forms of posterior event se-
quences, such as X ′ = {O1, Hi, I1, O2}, X ′ =
{O1, I1, Hi, O2}, or X ′ = {O1, I1, I2, Hi, O2},
etc. We also pretrained ege-RoBERTa on pseudo-
instance sets derived by these manners. The re-
sults are shown in Table 6. We find that whatever
forms of posterior event sequences involved in
ege-RoBERTa, our approach can achieve consis-
tently better performance than the baseline method.
This confirms that our approach is sufficiently
generalizable to deal with various forms of exter-
nal event-sequence knowledge. Furthermore, ege-
RoBERTa can also be equipped with more types
of event graph knowledge, such as background
knowledge by: formalizing the posterior event
sequence as X ′ = {B1, . . . , Bm, E1, . . . , En},
where {B1, . . . , Bm} is a set of background events
for a given prior event sequence {E1, . . . , En}.
This demonstrates the potential of ege-RoBERTa in
learning different kinds of event graph knowledge
for different event inference tasks.

7 Related Work

7.1 Abductive Reasoning
Most previous studies focus on formal logic based
abductive reasoning (Eshghi et al., 1988; Levesque,
1989; Konolige, 1990; Paul, 1993). To infer the
most reasonable hypothesis, the abductive reason-
ing process could be divided into two steps: (1)
proposing reasonable hypotheses; (2) finding the
best explanation from the hypotheses (Levesque,
1989; Konolige, 1990; Paul, 1993).

However, the rigidity of formal logic limits its
application in NLP domain. To facilitate this, Bha-
gavatula et al. (2019) proposed a text based ab-
ductive reasoning task αNLI. To solve the this task,
Zhu et al. (2020) formalize αNLI as a rank learning
task, and propose a novel ranking function. While
Paul et al. (2020) enhances the reasoning model
with social commonsense and causal commonsense

knowledge. Compared to their works, for enhanc-
ing the abductive reasoning process, we propose
to incorporate event graph knowledge by a CVAE
based model ege-RoBERTa. In addition, we argue
that our approach can be easily extended to other
event inference tasks.

7.2 Event Graph Based Natural Language
Inference

Understanding events and their relationships are
crucial for various natural language inference (NLI)
tasks (Kruengkrai et al., 2017). Hence, a number
of previous studies explore conducting NLI tasks
based on event graphs.

For example, to predict the subsequent event for
a given event context, Li et al. (2018) build an event
evolutionary graph (EEG), and make prediction
using a scaled graph neural network. While Wu
et al. (2019) predict the propagation of news event
through combining an historical event propagation
graph with temporal point process. In addition to
the event prediction related tasks, Liu et al. (2017)
propose to enhance the news recommendation by
incorporating additional event graph information.
Liu et al. (2016) detect the textual contradiction by
using event graphs as additional evidence.

In this paper, we employ event graph knowledge
for guiding the abductive reasoning. To this end, we
propose a variational autoencoder based framework
ege-RoBERTa, which employs a latent variable
z to implicitly capture the necessary event graph
knowledge and enhance the pretrained language
model RoBERTa.

8 Conclusion

In this paper, we propose a variational autoen-
coder based framework ege-RoBERTa with a two-
stage training procedure for the abductive reason-
ing task. In the pretraining stage, ege-RoBERTa
is able to learn commonsense knowledge from an
event graph through the latent variable, then in
the following stage the learned event graph knowl-
edge can be adapted to the abductive reasoning task.
Experimental results show improvement over the
baselines on the αNLI task.
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