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Abstract

Pre-trained language models (PLMs) have
achieved great success in natural language pro-
cessing. Most of PLMs follow the default set-
ting of architecture hyper-parameters (e.g., the
hidden dimension is a quarter of the intermedi-
ate dimension in feed-forward sub-networks) in
BERT (Devlin et al., 2019). Few studies have
been conducted to explore the design of archi-
tecture hyper-parameters in BERT, especially
for the more efficient PLMs with tiny sizes,
which are essential for practical deployment
on resource-constrained devices. In this pa-
per, we adopt the one-shot Neural Architecture
Search (NAS) to automatically search architec-
ture hyper-parameters. Specifically, we care-
fully design the techniques of one-shot learn-
ing and the search space to provide an adaptive
and efficient development way of tiny PLMs
for various latency constraints. We name our
method AutoTinyBERT! and evaluate its ef-
fectiveness on the GLUE and SQuAD bench-
marks. The extensive experiments show that
our method outperforms both the SOTA search-
based baseline (NAS-BERT) and the SOTA
distillation-based methods (such as DistilBERT,
TinyBERT, MiniLM and MobileBERT). In ad-
dition, based on the obtained architectures, we
propose a more efficient development method
that is even faster than the development of a
single PLM.

1 Introduction

Pre-trained language models, such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
XLNet (Yang et al., 2019), have become prevalent
in natural language processing. To improve model
performance, most PLMs (e.g. ELECTRA (Clark
et al., 2019) and GPT-2/3 (Radford et al., 2019;

*Contribution during internship at Noah’s Ark Lab.

'Our code implementation and pre-trained models are
available at https://github.com/huawei-noah/
Pretrained-Language—Model.
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Figure 1: Inference speedup vs. GLUE scores. Under
the same speedup constraint, our method outperforms
both the default hyper-parameter setting of BERT (De-
vlin et al., 2019), PF (Turc et al., 2019)) and NAS-
BERT (Xu et al., 2021). More details are in the Sec-
tion 4.2.

Brown et al., 2020)) follow the default rule of
hyper-parameter setting® in BERT to scale up their
model sizes. Due to its simplicity, this rule has
been widely used and can help large PLMs obtain
promising results (Brown et al., 2020).

In many industrial scenarios, we need to deploy
PLMs on resource-constrained devices, such as
smartphones and servers with limited computation
power. Due to the expensive computation and slow
inference speed, it is usually difficult to deploy
PLMs such as BERT (12/24 layers, 110M/340M
parameters) and GPT-2 (48 layers, 1.5B parame-
ters) at their original scales. Therefore, there is an
urgent need to develop PLMs with smaller sizes
which have lower computation cost and inference
latency. In this work, we focus on a specific type of
efficient PLMSs, which we define to have inference
time less than 1/4 of BERT-base.?

’The default rule is d™ = d?*IV = 1/4d*, which means
the dimension of hidden vector d" is equal to the dimen-
sions of query/key/value vector d?/*'* and a quarter of the
intermediate size d’ in feed-forward networks.

3We empirically find that being at least 4x faster is a basic
requirement in practical deployment environment.
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Although, there have been quite a few work
using knowledge distillation to build small
PLMs (Sanh et al., 2019; Jiao et al., 2020b; Sun
et al., 2019, 2020), all of them focus on the ap-
plication of distillation techniques (Hinton et al.,
2015; Romero et al., 2014) and do not study the
effect of architecture hyper-parameter settings on
model performance. Recently, neural architecture
search and hyper-parameter optimization (Tan and
Le, 2019; Han et al., 2020) have been widely ex-
plored in machine learning, mostly in computer
vision, and have been proven to find better designs
than heuristic ones. Inspired by this research, one
problem that naturally arises is can we find better
settings of hyper-parameters® for efficient PLMs?

In this paper, we argue that the conventional
hyper-parameter setting is not best for efficient
PLMs (as shown in Figure 1) and introduce a
method to automatically search for the optimal
hyper-parameters for specific latency constraints.
Pre-training efficient PLMs is inevitably resource-
consuming (Turc et al., 2019). Therefore, it is infea-
sible to directly evaluate millions of architectures.
To tackle this challenge, we introduce the one-shot
Neural Architecture Search (NAS) (Brock et al.,
2018; Cai et al., 2018; Yu et al., 2020) to perform
the automatic hyper-parameter optimization on ef-
ficient PLMs, named as AutoTinyBERT. Specifi-
cally, we first use the one-shot learning to obtain
a big SuperPLM, which can act as proxies for all
potential sub-architectures. Proxy means that when
evaluating an architecture, we only need to extract
the corresponding sub-model from the SuperPLM,
instead of training the model from scratch. Super-
PLM helps avoid the time-consuming pre-training
process and makes the search process efficient. To
make SuperPLM more effective, we propose prac-
tical techniques including the head sub-matrix ex-
traction and efficient batch-wise training, and par-
ticularly limit the search space to the models with
identical layer structure. Furthermore, by using
SuperPLM, we leverage search algorithm (Xie and
Yuille, 2017; Wang et al., 2020a) to find hyper-
parameters for various latency constraints.

In the experiments, in addition to the pre-training
setting (Devlin et al., 2019), we also consider the
setting of task-agnostic BERT distillation (Sun
et al., 2020) that pre-trains with the loss of knowl-
edge distillation, to build efficient PLMs. Exten-

“We abbreviate the phrase architecture hyper-parameter
as hyper-parameter in the paper.

sive results show that in pre-training setting, Au-
toTinyBERT not only consistently outperforms the
BERT with conventional hyper-parameters under
different latency constraints, but also outperforms
NAS-BERT based on neural architecture search. In
task-agnostic BERT distillation, AutoTinyBERT
outperforms a series of existing SOTA methods of
DistilBERT, TinyBERT and MobileBERT.

Our contributions are three-fold: (1) we explore
the problem of how to design hyper-parameters for
efficient PLMs and introduce an effective and ef-
ficient method: AutoTinyBERT; (2) we conduct
extensive experiments in both scenarios of pre-
training and knowledge distillation, and the results
show our method consistently outperforms base-
lines under different latency constraints; (3) we
summarize a fast rule and it develops an AutoTiny-
BERT for a specific constraint with even about 50%
of the training time of a conventional PLM.

2 Preliminary

Before presenting our method, we first provide
some details about the Transformer layer (Vaswani
et al., 2017) to introduce the conventional hyper-
parameter setting. Transformer layer includes two
sub-structures: the multi-head attention (MHA)
and the feed-forward network (FFN).

For clarity, we show the MHA as a decompos-
able structure, where the MHA includes A indi-
vidual and parallel self-attention modules (called
heads). The output of MHA is obtained by sum-
ming the output of all heads. Specifically, each
head is represented by four main matrices W €
RA™ xd"/h. Wk e Rdmxdk/h’ WY e RA™xd" /h
and W7 € R /7% "and takes the hidden states
H e R of the previous layer as input. The
output of MHA is given by the following formulas:

Qi K;,V,= HW! HW} HW}
Q. K"

ATTN(Q;, K;, V;) = softmax( dQ\k/h)Vg
Hi = ATTN(QU Kia W)Wfio
h
MHA(H) = > Hj,
i=1
(1)

where Q; € RIXd/h K Rlek/h, V, €
R/ are obtained by the linear transformations
of W, WF, W} respectively. ATTN(-) is the

SWe omitted the batch size for simplicity.
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Figure 2: Overview of AutoTinyBERT. We first train an effective SuperPLM with one-shot learning, where the
objectives of pre-training or task-agnostic BERT distillation are used. Then, given a specific latency constraint,
we perform an evolutionary algorithm on the SuperPLM to search optimal architectures. Finally, we extract the
corresponding sub-models based on the optimal architectures and further train these models.

scaled dot-product attention operation. Then out-
put of each head is transformed to H; € R4 by
W¢. Finally, outputs of all heads are summed as
the output of MHA. In addition, residual connec-
tion and layer normalization are added on top of
MHA to get the final output:

HMPA — LayerNorm(H + MHA(H)). (2)

In the conventional setting of the hyper-parameters
in BERT, all dimensions of matrices are the same
as the dimension of the hidden vector, namely,
dalklvlo=g™  Tn fact, there are only two require-
ments of d?=d* and d°=d™ that must be satisfied
because of the dot-product attention operation in
MHA and the residual connection.

Transformer layer also contains an FFN that is
stacked on the MHA, that is:

H™N = max (0, HMIAW! 4 b)) W2 +bs, (3)

where W € RY™*4 w2 ¢ R¥/xd" ¢ RY
and by € R, Similarly, there are modules of
residual connection and layer normalization on
top of FFN. In the original Transformer, df=4d™
is assumed. Thus, we conclude that the conven-

tional hyper-parameter setting follows the rule of
{ddlkllo=gm qf=4dm}.

3 Methodology
3.1 Problem Statement

Given a constraint of inference time, our goal is to
find an optimal configuration of architecture hyper-
parameters a°P? built with which PLM can achieve
the best performances on downstream tasks. This
optimization problem is formulated as:

°P' — arg max Perf(a, 6%),

ac A (4)
s.t. 0, =argmin L,(0), Lat(a) < T,
G

a

where T is a specific time constraint, A refers to
the set of all possible architectures (i.e., combi-
nation of hyper-parameters), Lat(-) is a latency
evaluator, L, (-) denotes the loss function of PLMs
with the hyper-parameter «, and 6 is the corre-
sponding model parameters. We aim to search an
optimal architecture for efficient PLM (Lat(a) <
1/4 x Lat(BERT base))-

3.2 Overview

A straightforward way to get the optimal archi-
tecture is to enumerate all possible architectures.
Howeyver, it is infeasible because each trial involves
a time-consuming pre-training process. Therefore,
we introduce one-shot NAS to search a°Pt, as
shown in the Figure 2. The proposed method in-
cludes three stages: (1) the one-shot learning to
obtain SuperPLM that can be used as the proxy for
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Figure 3: MHA sub-matrix extraction. (a) means that
the original matrix operation where we take four heads
and three hidden vectors as an example. White boxes
refer to the un-extracted parameters. (b) means that we
extract heads while keeping the dimension per head. (c)
means that we extract parameters from each head while
keeping the head number as the original matrix.

various architectures; (2) the search process for the
optimal hyper-parameters; (3) the further training
with the optimal architectures and corresponding
sub-models. In the following sections, we first in-
troduce the search space, which is the basis for
the one-shot learning and search process. Then we
present the three stages respectively.

3.3 Search Space

From the Section 2, we know that the conven-
tional hyper-parameter setting is: {dq|k|”‘0:dm,
d’=4d™}, which is widely-used in PLMs. The
architecture of a PLM is parameterized as: o =
{1t,d™,dd,d* d",df,d°}, which is subjected to
the constraints {d? = d*,d° = d™}. Let [’
denote the layer number and d* refer to differ-
ent dimensions in the Transformer layer. We de-
note the search space of I and d* as A; and
Ay~ respectively. The overall search space is:
A= Alt X Ad'rn|o X Adq|k X Adv X .Adf.

In this work, we only consider the case of identi-
cal structure for each Transformer layer, instead of
the non-identical Transformer (Wang et al., 2020a)
or other heterogeneous modules (Xu et al., 2021)
(such as convolution units). It has two advan-
tages: (1) it reduces an exponential search space
of O(I]|Ag|"!) to a linear search space of

O(IT|Agx||Aze]), greatly reducing the number of

pos;ible architectures in SuperPLM training and
the exploration space in the search process. It leads
to a more efficient search process. (2) An identical
and homogeneous structure is in fact more friendly
to hardware and software frameworks, e.g., Hug-
ging Face Transformer (Wolf et al., 2020). With a

Algorithm 1 Batch-wise training for SuperPLM

Input: All possible candidates .A; Training thread
(GPU) number N; Large-scale unsupervised
dataset D; Training epochs E. Sample times
M per batch. SuperPLM parameters ().

Output: Trained SuperPLM (6)

1. fort=1— Edo
2: for batch in D do

3: Divide batch into N sub_batches

4: Distribute sub_batches to N threads
5: Clear the gradients

6: form=1— Mdo

7: Sample N sub-models from .4

8: Distribute sub-models to threads
9: Calculate gradients in each thread
10: end for
11: Update the 6 with the average gradients
12: end for
13: end for

few changes, we can use the original code to use
AutoTinyBERT, as shown in Appendix A.

3.4 One-shot Learning for SuperPLM

We employ the one-shot learning (Brock et al.,
2018; Yu et al., 2020) to obtain a SuperPLM whose
sub-models can act as the proxy for PLMs trained
from scratch. The configurations of SuperPLM in
this work are ‘=8, d™l4kIvlo=768, and d/=3072.
In each step of the one-shot learning, we train
several sub-models randomly sampled from Su-
perPLM to make their performance close to the
models trained from scratch. Although the sam-
pling/search space has been reduced to linear com-
plexity, there are still more than 10M possible sub-
structures in SuperPLM (the details are shown in
the Appendix B). Therefore, we introduce an ef-
fective batch-wise training method to cover the
sub-models as much as possible. Specifically, in
parallel training, we first divide each batch into mul-
tiple sub-batches and distribute them to different
threads as parallel training data. Then, we sample
several sub-models on each thread for training and
merge the gradients of all threads to update the
SuperPLLM parameters. We illustrate the training
process in the Algorithm 1.

Given a specific hyper-parameter setting o =
{1t,d™,d4,d*, dv,df,d°}, we get a sub-model
from SuperPLM by the depth-wise and width-
wise extraction. Specifically, we first perform the
depth-wise extraction that extracts the first {* Trans-
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Model ‘ Speedup ‘ SQuAD SST-2 MNLI MRPC CoLA QNLI QQP STS-B RTE | Score Avg.
AutoTinyBERT-S1 7.2% 83.3 89.4 79.4 85.5 42.4 873 888 875 663 | 783 789
BERT-S1 7.1x 81.5 88.9 78.4 81.3 35.8 86.4 882 867 664 | 765 71.1
PF-4L512D% (Turc et al., 2019) 7.1x 81.7 89.4 78.5 82.8 35.2 870 886 874 657 | 768 714
PF-2L768D: (Turc et al., 2019) 7.0x 71.1 88.8 76.5 79.6 26.7 849  88.1 86.6 67.1 | 748 744
AutoTinyBERT-S2 15.7x 78.1 88.2 76.8 82.8 355 854 878 865 682 | 764 76.6
BERT-S2 14.8x 71.6 87.5 76.5 79.6 32.8 844 870 866 664 | 751 754
NAS-BERT ot (Xu et al., 2021) | 12.7x - 88.6 76.0 81.5 27.8 863 884 843 687 | 752 -

PF-2L512D% (Turc et al., 2019) 12.8% 69.2 87.1 74.7 76.9 23.2 844 870 86.0 649 | 73.0 726
PF-6L256Dz (Turc et al., 2019) 13.3x 71.0 87.6 76.4 80.3 332 857 867 8.0 649 | 751 753
AutoTinyBERT-S3 20.2x 75.8 86.8 76.4 80.4 332 850 876 8.7 664 | 753 754
BERT-S3 20.1x 73.7 86.4 75.0 81.3 31.2 84.0 87.1 858 638 | 743 743
AutoTinyBERT-S4 31.0x 71.9 86.5 74.2 81.9 17.6 846 865 8.9 667 | 73.0 729
BERT-S4 31.3x 69.5 85.5 73.9 76.9 15.9 839 89 8.3 610 71.0 709
NAS-BERT5t (Xu et al., 2021) 32.0x - 84.9 74.2 80.0 19.6 839 857 828 67.0| 723 -

PF-6L128D% (Turc et al., 2019) | 28.2x 63.6 84.6 72.3 78.6 0 833 838 845 657 | 69.1 685

Table 1: Comparison between AutoTinyBERT and baselines in pre-training setting. The results are evaluated on
the dev set of GLUE benchmark and SQuADv1.1. We use the metric of Matthews correlation for CoLLA, F1 for
SQuADv1.1, Pearson-Spearman correlation for STS-B, and accuracy for other tasks. We report the average score
excluding SQuAD (Score) in addition to the average score of all tasks (Avg.). The speedup is in terms of the
BERT},4s inference speed and evaluated on a single CPU with a single input of 128 length. PF-xLyD, the x and y
refer to the layer number and hidden dimension respectively. fdenotes that the results are taken from (Xu et al.,
2021) and tdenotes that the results are obtained by fine-tuning the released models.

former layers from SuperPLM, and then perform
the width-wise extraction that extracts bottom-left
sub-matrices from original matrices. For MHA, we
apply two strategies illustrated in Figure 3 : (1)
keep the dimension of each head same as Super-
PLM, and extract some of the heads; (2) keep the
head number same as SuperPLM, and extract sub-
dimensions from each head. The first strategy is
the standard one and we use it for pre-training and
the second strategy is used for task-agnostic distil-
lation because that attention-based distillation (Jiao
et al., 2020b) requires the student model to have
the same head number as the teacher model.

3.5 Search Process

In the search process, we adopt an evolutionary
algorithm (Xie and Yuille, 2017; Jiao et al., 2020a),
where Evolver and Evaluator interact with each
other to evolve better architectures. Our search
process is efficient, as shown in the Section 4.4.
Specifically, Evolver firstly samples a generation
of architectures from .A. Then Evaluator extracts
the corresponding sub-models from SuperPLM and
ranks them based on their performance on tasks of
SQuAD and MNLI. The architectures with the high
performance are chosen as the winning architec-
tures and Evolver performs the mutation Mut(-)
operation on the winning ones to produce a new
generation of architectures. This process is con-
ducted repeatedly. Finally, we choose several ar-
chitectures with the best performance for further

training. We use Lat(-) to predict the latency of
the candidates to filter out the candidates that do
not meet the latency constraint. Lat(-) is built with
the method by Wang et al. (2020a), which first sam-
ples about 10k architectures from A and collects
their inference time on target devices, and then uses
a feed-forward network to fit the data. For more
details of evolutionary algorithm, please refer to
Appendix C. Note that we can use different meth-
ods in search process, such as random search and
more advanced search, which is left as future work.

3.6 Further Training

The search process produces top several architec-
tures, with which we extract these corresponding
sub-models from SuperPLM and continue training
them using the pre-training or KD objectives.

4 Experiment

4.1 Experimental Setup

Dataset and Fine tuning. We conduct the experi-
ments on the GLUE benchmark (Wang et al., 2018)
and SQuADvl1.1 (Rajpurkar et al., 2016). For
GLUE, we set the batch size to 32, choose the learn-
ing rate from {le-5, 2e-5, 3e-5} and choose the
epoch number from {4, 5, 10}. For SQuADv1.1,
we set the batch size to 16, the learning rate to 3e-
5 and the epoch number to 4. The details for all
datasets are displayed in Appendix D.

AutoTinyBERT. Both the one-shot and further

5150



Model | Speedup | SQUAD SST-2 MNLI MRPCY CoLA QNLI QQPY STS-B RTE | Score Avg.
Dev results on GLUE and dev result on SQuAD

AutoTinyBERT-KD-S1 4.6x 87.6 91.4 82.3 88.5 47.3 89.7 89.9 89.0 71.1 | 81.2 819
BERT-KD-S1 4.9% 86.2 89.7 81.1 87.9 41.8 87.3 88.4 884 682 | 79.1 799
MobileBERT T,y (Sun et al., 2020) 3.6%x 88.6 91.6 82.0 86.7 - - - - - - -
AutoTinyBERT-KD-S2 9.0x 84.6 88.8 79.4 87.3 322 88.0 87.7 88.0 689 | 775 783
BERT-KD-S2 9.8x 82.5 87.8 779 86.5 31.5 86.9 87.6 874 664 | 765 772
MiniLM-4L312D7 (Wang et al., 2020b) 9.8%x 82.1 87.3 78.3 83.6 26.3 87.1 87.3 863 624 | 748 75.6
TinyBERT-4L312D+§ (Jiao et al., 2020b) 9.8%x 81.0 87.8 76.9 77.9 229 86.0 87.7 833 588 | 72.7 73.6

AutoTinyBERT-KD-S3 10.7x 83.3 88.3

78.2 85.8 29.1 87.4 87.4 86.7 664 | 762 77.0

BERT-KD-S3 11.7x 81.6 86.5 76.8 82.5 27.6 85.6 86.5 862 649 | 746 754
AutoTinyBERT-KD-S4 17.0x 78.7 86.8 76.0 81.4 20.4 85.5 86.9 86.0 649 | 735 741
BERT-KD-S4 17.0x 774 85.7 75.4 80.3 18.9 85.0 85.9 847 63.1| 724 729
Test results on GLUE and dev result on SQuAD

AutoTinyBERT-KD-S1 4.6x 87.6 90.6 81.2 88.9 44.7 87.4 70.5 851 648 | 767 779
BERT-3L-PKDi (Sun et al., 2019) 4.1x - 87.5 76.7 80.7 - 84.7 68.1 - 58.2 - -
DistilBERT-4L (Sanh et al., 2019) 3.0x 81.2 914 78.9 82.4 32.8 85.2 68.5 76.1 541 | 712 723

TinyBERT-4L516D7§ (Jiao et al., 2020b) | 4.9x 84.6 882
MiniLM-4L516D+ (Wang et al., 2020b) | 4.9x 855  90.0
MobileBERT 1y  (Sun et al., 2020) 3.6%x 88.6 917

80.0 86.3 279 856 69.1 83.0 615 | 727 740
80.2 87.2 39.1 86.5 70.0 834 637 | 750 762
81.5 87.9 46.7 89.5 68.9 80.1 65.1 | 764 778

Table 2: Comparison between AutoTinyBERT and baselines based on knowledge distillation. } denotes that
the results are taken from (Sun et al., 2020) and  means the models trained using the released code or the re-
implemented code with ELECTRA\,,. as the teacher model. 4 means these tasks use accuracy for dev set and F1
for test set respectively. § denotes the task-agnostic TinyBERT without task-specific distillation. * means that the
speedup is different from the (Sun et al., 2020), because it is evaluated on a Pixel phone and not on server CPUs. -
means that the results are missing in the original paper. Other information refer to the Table 1.

training use BooksCorpus (Zhu et al., 2015) and
English Wikipedia as training data. The settings for
one-shot training are: peak learning rate of le-5,
warmup rate of 0.1, batch size of 256 and 5 running
epochs. Further training follows the same setting
as the one-shot training except for the warmup rate
of 0. In the batch-wise training algorithm 1, the
thread number N is set to 16, the sample times
M per batch is set to 3, and epoch number E is
set to 5. We train the SuperPLM with an archi-
tecture of {I'=8, d"™alklvlo=768, d/=3072}. In the
search process, Evolver performs 4 iterations with a
population size of 25 and it chooses top three archi-
tectures for further training. For more details of the
sampling/search space and evolutionary algorithm,
please refer to Appendix B and C.

We train AutoTinyBERT in both ways of pre-
training (Devlin et al., 2019) and task-agnostic
BERT distillation (Sun et al., 2020). For task-
agnostic distillation, we follow the first stage of
TinyBERT (Jiao et al., 2020b) except that only the
last-layer loss is used, and ELECTRA},,5 (Clark
et al., 2019) is used as the teacher model.

Baselines. For the pre-training baselines, we in-
clude PF (Pre-training + Fine-tuning, proposed
by Turc et al. (2019)), BERT-S* (BERT under
several hyper-parameter configurations), and NAS-
BERT (Xu et al., 2021). Both PF and BERT-
S* follow the conventional setting rule of hyper-

parameters. BERT-S* uses the training setting:
peak learning rate of le-5, warmup rate of 0.1,
batch size of 256 and 10 running epochs. NAS-
BERT searches the architecture built on the non-
identical layer and heterogeneous modules. For
the distillation baselines, we compare some typical
methods, including DistilBERT, BERT-PKD, Tiny-
BERT, MinilLM, and MobileBERT. The first four
methods use the conventional architectures. Mo-
bileBERT is equipped with a bottleneck structure
and a carefully designed balance between MHA
and FFN. We also consider BERT-KD-S*, which
use the same training setting of BERT-S*, except
for the loss of knowledge distillation. BERT-KD-
S* also uses ELECTRA}. . as the teacher model.

4.2 Results and Analysis

The experiment is conducted under different la-
tency constraints that are from 4 x to 30x faster
than the inference of BERT},¢.. The results of pre-
training and task-agnostic distillation are shown in
the Table 1 and Table 2 respectively.

We observe that in the settings of the pre-training
and knowledge distillation, the performance gap of
different models with similar inference time is ob-
vious, which shows the necessity of architecture op-
timization for efficient PLMs. In the Table 1, some
observations are: (1) the architecture optimization
methods of AutoTinyBERT and NAS-BERT out-
perform both BERT and PF that use the default
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Figure 4: Ablation study of one-shot SuperPLM learning. Acc. means the average score on SQUAD and MNLI.

The dashed line represents the function of y=x.

Training SQuAD  MNLI | Pairwise
Method F1(%) Acc.(%) | Acc.(%)
Stand-alone | 712 763 | 100
Baseline (HAT) 50.1 72.7 90.0
ILS 52.9 73.4 91.6
ILS + SME 59.5 74.1 94.2
ILS + SME + EBL (Ours) 70.5 74.4 96.7

Table 3: Ablation Study of SuperPLM. ILS, SME and
EBL mean that the identical layer structure, MHA sub-
matrix extraction and effective batch-wise training.

architecture hyper-parameters; (2) our method out-
performs NAS-BERT that is built with the non-
identical layer and heterogeneous modules, which
shows that the proposed method is effective for the
architecture search of efficient PLMs. In the Ta-
ble 2, we observe that: (1) our method consistently
outperforms the conventional structure in all the
speedup constraints; (2) our method outperforms
the classical distillation methods (e.g., BERT-PKD,
DistilBERT, TinyBERT, and MiniLM) that use the
conventional architecture. Moreover, AutoTiny-
BERT achieves comparable results with Mobile-
BERT, and its inference speed is 1.5 x faster.

4.3 Ablation Study of One-shot Learning

We demonstrate the effectiveness of one-shot learn-
ing by comparing the performance of one-shot
model and stand-alone trained model on the given
architectures. We choose 16 architectures and their
corresponding PF models® as the evaluation bench-
mark. The pairwise accuracy is used as a metric to
indicate the ranking correction between the archi-
tectures under one-shot training and the ones under
stand-alone full training (Luo et al., 2019) and its
formula is described in Appendix E.

We do the ablation study to analyze the effect
of proposed identical layer structure (ILS), MHA
sub-matrix extraction (SME) and effective batch-
wise learning (EBL) on SuperPLM learning. More-

®The first 16 models https://github.com/
google—-research/bert from 2L128D to 8L768D.

Version | BERT AutoTinyBERT Speedup
Pre-training

S1 4-512-2048-8-512 | 5-564-1054-8-512 7.1/7.2%
S2 4-320-1280-5-320 | 4-396-624-6-384 14.8/15.7x
S3 4-256-1024-4-256 | 4-432-384-4-256 20.1/20.2%
S4 4-192-768-3-192 3-320-608-4-256 28.4/27.2x
Task-agnostic BERT Distillation

KD-S1 | 4-512-2048-12-516 | 5-564-1024-12-528 | 4.9/4.6x
KD-S27t | 4-312-1200-12-312 | 5-324-600-12-324 9.8/9.0x
KD-S3 | 4-264-1056-12-264 | 5-280-512-12-276 | 11.7/10.7x
KD-S4 | 4-192-768-12-192 | 4-256-480-12-192 | 17.0/17.0x

Table 4: BERT and AutoTinyBERT architectures un-
der the different speedup constraints. The architecture
is formatted as “I*-d™|°-df -h-d9/¥1V We assume that
d?% = d" in the experiment for the training and search
efficiency. T means that we use the structure of Tiny-
BERT and do not strictly follow the conventional rule.

over, we introduce HAT (Wang et al., 2020a), as a
baseline of one-shot learning. HAT focuses on the
search space of non-identical layer structures. The
results are displayed in Table 3 and Figure 4.

It can be seen from the figure that compared with
stand-alone trained models, the HAT baseline has
a significant performance gap, especially in small
sizes. Both ILS and SME benefit the one-shot learn-
ing for large and medium-sized models. When
further combined with EBL, SuperPLM can ob-
tain similar or even better results than stand-alone
trained models of small sizes and perform close to
stand-alone trained models of big sizes. The results
of the table show that: (1) the proposed techniques
have positive effects on SuperPLM learning, and
EBL brings a significant improvement on a chal-
lenging task of SQuAD; (2) SuperPLM achieves a
high pairwise accuracy of 96.7% which indicates
that the proposed SuperPLM can be a good proxy
model for the search process; (3) the performance
of SuperPLM is still a little worse than the stand-
alone trained model and we need to do the further
training to boost the performance.
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Search Cost | Training Cost

Method ‘ SPeedu | Gy Hours) | (GPU Hours) | &
BERTS5 9.9x 0 580 [ 761
AutoTinyBERT-S5 10.8x 150 870 | 779
AutoTinyBERT-Fast-S5 | 10.3x 12 29 | 776

Table 5: Computation cost of different methods. AutoTiny-
BERT and AutoTinyBERT-Fast have 100 and 8 architectures
(x1.5 V100 GPU hour) respectively to be tested in the search
process. AutoTinyBERT performs further 5 epochs (x58
V100 GPU hours) training for top three architectures, BERT
is trained from scratch with 10 epochs, and AutoTinyBERT-
Fast does the further training for one architecture. We give
more information including the model architectures and de-

—— AutoTinyBERT-S5
—— AutoTinyBERT-S5-TFS

o

o

w

Pre-training loss
N

350k steps 700k steps

1

10 20 30 40 50 60 70 80
Training step (10k)

Figure 5: Learning curves of AutoTinyBERT and
the stand-alone trained model. TFS means the
model trained from scratch. AutoTinyBERT can
save 50% training time compared with the model

tailed scores of all tasks in the Appendix F.

4.4 Fast Development of Efficient PLM

In this section, we explore an effective setting rule
of hyper-parameters based on the obtained architec-
tures and also discuss the computation cost of the
development of efficient PLM. The conventional
and new architectures are displayed in Table 4. We
observe that AutoTinyBERT follows an obvious
rule (except the S3 model) in the speedup con-
straints that are from 4 x to 30x. The rule is sum-
marized as: {1.6d™ < df < 1.94™, 0.7d™ <
dalklv < 1.0d™}.

With the above rule, we propose a faster way to
build efficient PLM, denoted as AutoTinyBERT-
Fast. Specifically, we first obtain the candidates by
the rule, and then select a°P? from the candidates.
We observe the fact that the candidates of the same
layer number seem to have similar shapes and we
assume that they have similar performance. There-
fore, we only need to test one architecture at each
layer number and choose the best one as a°Pt.

To demonstrate the effectiveness of the pro-
posed method, we evaluate these methods at a
new speedup constraint of about 10x under the
pre-training setting. The results are shown in Ta-
ble 5. We find AutoTinyBERT is efficient and its
development time is twice that of the conventional
method (BERT) and the result is improved by about
1.8%. AutoTinyBERT-Fast achieves a competitive
score of 77.6 by only about 50% of BERT training
time. In addition to the proposed search method
and fast building rule, one reason for the high effi-
ciency of AutoTinyBERT is that the initialization
of SuperPLM helps the model to achieve 2x the
convergence speedup, as illustrated in Figure 5.

5 Related Work

Efficient PLMs with Tiny sizes. There are two
widely-used methods for building efficient PLMs:

trained from scratch.

pre-training and model compression. Knowledge
distillation (KD) (Hinton et al., 2015; Romero
et al., 2014) is the most widely studied technique
in PLM compression, which uses a teacher-student
framework. The typical distillation studies include
DistilBERT (Sanh et al., 2019), BERT-PKD (Sun
etal., 2019), MiniLM (Wang et al., 2020b), Mobile-
BERT (Sun et al., 2020), MiniBERT (Tsai et al.,
2019) and ETD (Chen et al., 2021). In addition to
KD, the techniques of pruning (Han et al., 2016;
Hou et al., 2020), quantization (Shen et al., 2020;
Zhang et al., 2020; Wang et al., 2020c) and pa-
rameter sharing (Lan et al., 2019) introduced for
PLM compression. Our method is orthogonal to
the building method of efficient PLM and is trained
under the settings of pre-training and task-agnostic
BERT distillation, which can be used by direct fine-
tuning.

NAS for NLP. NAS is extensively studied in com-
puter vision (Tan and Le, 2019; Tan et al., 2020),
but relatively little studied in the natural language
processing. Evolved Transformer (So et al., 2019)
and HAT (Wang et al., 2020a) search architec-
ture for Transformer-based neural machine transla-
tion. For BERT distillation, AdaBERT (Chen et al.,
2020) focuses on searching the architecture in the
fine-tuning stage and relies on data augmentation
to improve its performance. schuBERT (Khetan
and Karnin, 2020) obtains the optimal structures
of PLM by a pruning method. A work similar to
ours is NAS-BERT (Xu et al., 2021). It proposes
some techniques to tackle the challenging exponen-
tial search space of non-identical layer structure
and heterogeneous modules. Our method adopts a
linear search space and introduces several practical
techniques for SuperPLLM training. Moreover, our
method is efficient in terms of computation cost
and the obtained PLMs are easy to use.
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6 Conclusion

We propose an effective and efficient method Au-
toTinyBERT to search for the optimal architecture
hyper-parameters of efficient PLMs. We evaluate
the proposed method in the scenarios of both the
pre-training and task-agnostic BERT distillation.
The extensive experiments show that AutoTiny-
BERT can consistently outperform the baselines
under different latency constraints. Furthermore,
we develop a fast development rule for efficient
PLMs which can build an AutoTinyBERT model
even with less training time of a conventional one.
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A Code Modifications for
AutoTinyBERT.

We modify the original code® to load AutoTiny-
BERT model and present the details of code mod-
ifications in the Figure B.1. We assume that
d4/% = d¥, and more complicated setting is that d”
can be different with d%/*, we can do correspond-
ing changes based on the given modifications.

B Search Space of Architecture
Hyper-parameters.

We has trained two SuperPLMs with a architec-
ture of {I*=8, d™/1/*/v=768, df=3072} to cover
the two scenarios of building efficient PLMs (pre-
training and task-agnostic BERT distillation). The
sampling space in the SuperPLM training is the
same as the search space in the search process, as
shown in the Table B.1. It can be inferred from
the table that the search spaces of the pre-training
setting and the knowledge distillation setting are
about 46M and 10M, respectively.

Variables ‘ Search Space

SuperPLM in Pre-training
It [1,2,3,4,5,6,7.8]

dam/o [128,132,...,4k,...,764,768]
dr [128,132,...,4k,...,3068,3072]
h [1,2,....k,...,11,12]
da/k/v 64h
SuperPLM in Knowledge Distillation
It [1,2,3,4,5,6,7,8]
dm/o [128,132,...,4k,...,764,768]

dr [128,132,...,4k,...,3068,3072]
h [12]
da/k/v [180,192....,12k,....,756,768]

Table B.1: The search space for architecture hyper-
parameters. We assume that d?/* = d¥ in the exper-
iment for the training and search efficiency.

C Evolutionary Algorithm.

We give a detailed description of evolutionary al-
gorithm in Algorithm 2.

D Hyper-parameters for Fine-Tuning.

Fine-tuning hyper-parameters of GLUE benchmark
and SQuAD are displayed in Table D.1. AutoTiny-

$https://github.com/huggingface/
transformers

BERT and baselines follow the same settings.

Batch Learning Epochs

Tasks
size rate

SQuAD 16 3e-5 4
SST-2 32 2e-5 4
MNLI 32 3e-5 4
MRPC 32 2e-5 10
CoLA 32 le-5 10
QNLI 32 2e-5 10
QQP 32 2e-5 5
STS-B 32 3e-5 10
RTE 32 2e-5 10

Table D.1: Hyper-parameters used for fine-tuning on
GLUE benchmark and SQuAD.

E Pairwise Accuracy.

We denote a set of architectures {1, a, ..., o, }
as Agyq and evaluate SuperPLM on this set. The
pairwise accuracy is formulated as bellow:

Dere Avpa, 02 € Aopa LF(@1)>f(02) Ls(a1)>s(az)
Zale Aevaa Qg € Aeva 1

)

(&)
where 1 is the 0-1 indicator function, f(x*) and s(x)
refer to the performance of one-shot model and
stand-alone trained model respectively.

F More details for Fast Development of
efficient PLM.

We present the detailed results and architecture
hyper-parameters for fast development of efficient
PLM in Table F.1.
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class BertSelfAttention (nn.Module) :
def __init__ (self, config):
### Before modifications:
self.attention_head_size = int (config.hidden_size /
config.num_attention_heads)
### After modifications:

try:
gkv_size = config.gkv_size
except:
gkv_size = config.hidden_size
self.attention_head_size = int (gkv_size / config.num_attention_heads)

class BertSelfOutput (nn.Module) :
def __init__ (self, config):
### Before modifications:
self.dense = nn.Linear (config.hidden_size, config.hidden_size)

### After modifications:

try:

gkv_size = config.gkv_size
except:

gkv_size = config.hidden_size

self.dense = nn.Linear (gkv_size, config.hidden_size)

Figure B.1: Code Modifications to load AutoTinyBERT.

Algorithm 2 The Evolutionary Algorithm

1: Input: the number of generations 1" = 4, the number of archtectures as in each generation S = 25,
the mutation Mut(*) probability p,, = 1/2, the exploration probability p. = 1/2.

2: Sample first generation G from .4, and Evoluator produces its performance V.
3: fort =2,3--- T do

4 Gt — {}

5 while |G| < S do

6: Sample one architecture:  with a Russian roulette process on G;_1 and V;_.
7 With probability p,,, do Mut(x) for .

8 With probability p., sample a new architecture from A.

9 Append the newly generated architectures into Gy.
10: end while
11: Evaluator obtains V; for G;.
12: end for

13: Output: Output the a°P! with best performance in the above process.

Model | Speedup | SQUAD SST-2 MNLI MRPC CoLA QNLI QQP STS-B RTE | Score
BERT-S5,4_384- 15366384 9.3x 785 861 768 831 355 846 875 869 657 76.0

AutoTinyBERT-S55_450—636—6—384 10.8x 79.7 89.1 78.3 84.6 39.0 859 882 874 687 | 778
AutoTinyBERT-Fast-S55_432_720—6-384 | 10.3x 80.0 88.2 71.9 84.6 37.7 86.1 88.0 873 68.7| 77.6

Table F.1: Detailed results for fast development of efficient PLM.
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