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Abstract
Semi-Supervised Text Classification (SSTC)
mainly works under the spirit of self-training.
They initialize the deep classifier by training
over labeled texts; and then alternatively pre-
dict unlabeled texts as their pseudo-labels and
train the deep classifier over the mixture of
labeled and pseudo-labeled texts. Naturally,
their performance is largely affected by the
accuracy of pseudo-labels for unlabeled texts.
Unfortunately, they often suffer from low ac-
curacy because of the margin bias problem
caused by the large difference between repre-
sentation distributions of labels in SSTC. To
alleviate this problem, we apply the angular
margin loss, and perform Gaussian linear trans-
formation to achieve balanced label angle vari-
ances, i.e., the variance of label angles of texts
within the same label. More accuracy of pre-
dicted pseudo-labels can be achieved by con-
straining all label angle variances balanced,
where they are estimated over both labeled and
pseudo-labeled texts during self-training loops.
With this insight, we propose a novel SSTC
method, namely Semi-Supervised Text Clas-
sification with Balanced Deep representation
Distributions (S2TC-BDD). To evaluate S2TC-
BDD, we compare it against the state-of-the-
art SSTC methods. Empirical results demon-
strate the effectiveness of S2TC-BDD, espe-
cially when the labeled texts are scarce.

1 Introduction

Semi-Supervised Learning (SSL) refers to the
paradigm of learning with labeled as well as un-
labeled data to perform certain applications (van
Engelen and Hoos, 2020). Especially, developing
effective SSL models for classifying text data has
long been a goal for the studies of natural language
processing, because labeled texts are difficult to col-
lect in many real-world scenarios. Formally, this
∗ Contributing equally with the first author.
† Corresponding author.

Figure 1: The average difference of label angle vari-
ances (Avg.DLAV) computed in semi-supervised and
supervised manners across AG News, respectively.

research topic is termed as Semi-Supervised Text
Classification (SSTC), which nowadays draws
much attention from the community (Clark et al.,
2018; Gururangan et al., 2019; Chen et al., 2020).

To our knowledge, the most recent SSTC meth-
ods mainly borrow ideas from the successful pat-
terns of supervised deep learning, such as pre-
training and fine-tuning (Dai and Le, 2015; Howard
and Ruder, 2018; Peters et al., 2018; Gururangan
et al., 2019; Devlin et al., 2019). Generally, those
methods perform deep representation learning on
unlabeled texts followed by supervised learning on
labeled texts. However, a drawback is that they
separately learn from the labeled and unlabeled
texts, where, specifically, the deep representations
are trained without using the labeling information,
resulting in potentially less discriminative represen-
tations as well as worse performance.

To avoid this problem, other SSTC methods com-
bine the traditional spirit of self-training with deep
learning, which jointly learn the deep representa-
tion and classifier using both labeled and unlabeled
texts in a unified framework (Miyato et al., 2017,
2019; Sachan et al., 2019; Xie et al., 2020; Chen
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et al., 2020). To be specific, this kind of meth-
ods initializes a deep classifier, e.g., BERT (Devlin
et al., 2019) with Angular Margin (AM) loss (Wang
et al., 2018), by training over labeled texts only;
and then it alternatively predicts unlabeled texts
as their pseudo-labels and trains the deep classi-
fier over the mixture of labeled and pseudo-labeled
texts. Accordingly, both labeled and unlabeled
texts can directly contribute to the deep classifier
training.

Generally speaking, for deep self-training meth-
ods, one significant factor of performance is the
accuracy of pseudo-labels for unlabeled texts. Un-
fortunately, they often suffer from low accuracy,
where one major reason is the margin bias prob-
lem. To interpret this problem, we look around
the AM loss with respect to the label angle, i.e.,
the angles between deep representations of texts
and weight vectors of labels. For unlabeled texts,
the pseudo-labels are predicted by only ranking the
label angles, but neglecting the difference between
label angle variances, i.e., the variance of label
angles of texts within the same label, which might
be much large in SSL as illustrated in Fig.1. In
this context, the boundary of AM loss is actually
not the optimal one, potentially resulting in lower
accuracy for pseudo-labels (see Fig.2(a)).

To alleviate the aforementioned problem, we pro-
pose a novel SSTC method built on BERT with AM
loss, namely Semi-Supervised Text Classification
with Balanced Deep representation Distributions
(S2TC-BDD). Most specifically, in S2TC-BDD, we
suppose that the label angles are drawn from each
label-specific Gaussian distribution. Therefore, for
each text we can apply linear transformation opera-
tions to balance the label angle variances. This is
equivalent to moving the boundary to the optimal
one, so as to eliminate the margin bias (see exam-
ples in Fig.2(b)). We can estimate each label angle
variance over both labeled and pseudo-labeled texts
during the self-training loops. We evaluate the pro-
posed S2TC-BDD method by comparing the most
recent deep SSTC methods. Experimental results
indicate the superior performance of S2TC-BDD

even with very few labeled texts.

2 Related Work

The pre-training and fine-tuning framework has
lately shown impressive effectiveness on a variety
of tasks (Dai and Le, 2015; Radford et al., 2019a;
Howard and Ruder, 2018; Peters et al., 2018; De-

Figure 2: Let solid circle and triangle denote labeled
positive and negative texts, and hollow ones denote cor-
responding unlabeled texts. (a) The large difference be-
tween label angle variances results in the margin bias.
Many unlabeled texts (in red) can be misclassified. (b)
Balancing the label angle variances can eliminate the
margin bias. Best viewed in color.

vlin et al., 2019; Yang et al., 2019; Chen et al.,
2019; Akbik et al., 2019; Radford et al., 2019b;
Brown et al., 2020; Chen et al., 2020). They mainly
perform deep representation learning on generic
data, followed by supervised learning for down-
stream tasks. Several SSTC methods are built
on this framework (Dai and Le, 2015; Howard
and Ruder, 2018; Peters et al., 2018; Gururangan
et al., 2019; Devlin et al., 2019). For instance, the
VAriational Methods for Pretraining In Resource-
limited Environments (VAMPIRE) (Gururangan
et al., 2019) first pre-trains a Variational Auto-
Encoder (VAE) model on unlabeled texts, and then
trains a classifier on the augmentation representa-
tions of labeled texts computed by the pre-trained
VAE. However, the VAE model is trained without
using the labeling information, resulting in poten-
tially less discriminative representations for labeled
texts.

Recent works on SSTC mainly focus on deep
self-training (Miyato et al., 2017; Clark et al., 2018;
Sachan et al., 2019; Miyato et al., 2019; Xie et al.,
2020; Chen et al., 2020), which can jointly learn
deep representation and classifier using both la-
beled and unlabeled texts in a unified framework.
It is implemented by performing an alternative pro-
cess, in which the pseudo-labels of unlabeled texts
are updated by the current deep classifier, and then
the deep classifier is retrained over both labeled
and pseudo-labeled texts. For example, the Virtual
Adversarial Training (VAT) method (Miyato et al.,
2017, 2019) follows the philosophy of making the
classifier robust against random and local pertur-
bation. It first generates the predictions of original
texts with the current deep classifier and then trains
the deep classifier by utilizing a consistency loss
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between the original predictions and the outputs of
deep classifier over noise texts by applying local
perturbations to the embeddings of original texts.
Further, the work in (Sachan et al., 2019) combines
maximum likelihood, adversarial training, virtual
adversarial training, and entropy minimization in a
unified objective. Furthermore, rather than apply-
ing local perturbations, Unsupervised Data Aug-
mentation (UDA) (Xie et al., 2020) employs con-
sistency loss between the predictions of unlabeled
texts and corresponding augmented texts by data
augmentation techniques such as back translations
and tf-idf word replacements. The work (Clark
et al., 2018) exploits cross-view training by match-
ing the predictions of auxiliary prediction modules
over the restricted views of unlabeled texts (e.g.,
only part of sentence) with ones of primary predic-
tion module over the corresponding full views.

Orthogonal to the aforementioned self-training
SSTC methods, our S2TC-BDD further considers
the margin bias problem by balancing the label an-
gle variances. This is beneficial for more accurate
pseudo-labels for unlabeled texts, so as to boost the
performance of SSTC tasks.

3 The Proposed S2TC-BDD Method

In this section, we describe the proposed deep self-
training SSTC method, namely Semi-Supervised
Text Classification with Balanced Deep represen-
tation Distributions (S2TC-BDD).

Formulation of SSTC Consider a training
dataset D consisting of a limited labeled text set
Dl = {(xli,yli)}

i=Nl
i=1 and a large unlabeled text set

Du = {xuj }
j=Nu

j=1 . Specifically, let xli and xuj de-
note the word sequences of labeled and unlabeled
texts, respectively; and let yli ∈ {0, 1}K denote the
corresponding one-hot label vector of xli, where
ylik = 1 if the text is associated with the k-th label,
or ylik = 0 otherwise. We declare that Nl, Nu, and
K denote the numbers of labeled texts, unlabeled
texts and category labels, respectively. In this pa-
per, we focus on the paradigm of inductive SSTC,
whose goal is to learn a classifier from the training
dataset D with both labeled and unlabeled texts.
The important notations are described in Table 1.

3.1 Overview of S2TC-BDD

Overall speaking, our S2TC-BDD performs a self-
training procedure for SSTC. Given a training
dataset, it first trains a fine-tuned deep classifier
based on the pre-trained BERT model (Devlin et al.,

Table 1: Summary of notations

Notation Description

Nl Number of labeled texts
Nu Number of unlabeled texts
K Number of category labels
Dl Labeled text set
Du Unlabeled text set
xl Word sequence of labeled text in Dl

xu Word sequence of unlabeled text in Du

yl ∈ {0, 1}K One-hot label vector of labeled text

2019) with AM loss (Wang et al., 2018). Dur-
ing the self-training loops, we employ the current
deep classifier to predict unlabeled texts as pseudo-
labels, and then update it over both labeled and
pseudo-labeled texts. In particular, we develop a
Balanced Deep representation Distribution (BDD)
loss, aiming at more accurate pseudo-labels for un-
labeled texts. The overall framework of S2TC-BDD

is shown in Fig.3. We now present the important
details of S2TC-BDD.

BDD Loss Formally, our BDD loss is extended
from the AM loss (Wang et al., 2018). For clarity,
we first describe the AM loss with respect to an-
gles. Given a training example (xi,yi), it can be
formulated below:

Lam(xi,yi;φ) =

−
K∑
k=1

yik log
es(cos(θik)−yikm)∑K
j=1 e

s(cos(θij)−yijm)
, (1)

where φ denotes the model parameters,

cos(θik) =
f>i Wk

‖fi‖2‖Wk‖2
,

‖·‖2 is the `2-norm of vectors; fi and Wk denote
the deep representation of text xi and the weight
vector of label k, respectively; θik is the angle be-
tween fi and Wk; s and m are the parameters used
to control the rescaled norm and magnitude of co-
sine margin, respectively.

Reviewing Eq.1, we observe that it directly
measures the loss by label angles of texts only.
We kindly argue that it corresponds to non-
optimal decision boundary in SSTC, where the
difference between label angle variances is much
larger than supervised learning. To alleviate this
problem, we suppose that the label angles are
drawn from each label-specific Gaussian distri-
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Figure 3: Overview the framework of S2TC-BDD. Best viewed in color.

bution {N (µk, σ
2
k)}k=K

k=1 . Thanks to the proper-
ties of Gaussian distribution, we can easily trans-
fer them into the ones with balanced variances
{N (µk, σ̂

2)}k=K
k=1 , σ̂

2 =
∑K

k=1 σ
2
k

K by performing
the following linear transformations to the angles:

ψk(θik) = akθik + bk, ∀k ∈ [K], (2)

where

ak =
σ̂

σk
, bk = (1− ak)µk. (3)

With these linear transformations {ψk(·)}k=K
k=1 , all

angles become the samples from balanced an-
gular distributions with the same variances, e.g.,
ψk(θik) ∼ N (µk, σ̂

2). Accordingly, the angular
loss of Eq.1 can be rewritten as the following BDD
loss:

Lbdd(xi,yi;φ) =

−
K∑
k=1

yik log
es(cos(ψk(θik))−yikm)∑K
j=1 e

s(cos(ψj(θij))−yijm)
.

(4)

Supervised Angular Loss Applying the BDD
loss Lbdd of Eq.4 to the labeled text set Dl =
{(xli,yli)}

i=Nl
i=1 , we can formulate the following su-

pervised angular loss:

Ll(Dl;φ) =
1

Nl

Nl∑
i=1

Lbdd(x
l
i,y

l
i;φ). (5)

Unsupervised Angular Loss Under the self-
training paradigm, we form the loss with unla-
beled texts and pseudo-labels. Specifically, we

denote the pseudo-label as the output probability of
the deep classifier. It is computed by normalizing
{cos(ψk(θik))}k=K

k=1 with the softmax function:

p(k|xi,φ) =
ecos(ψk(θik))∑K
j=1 e

cos(ψj(θij))
, yi, ∀k ∈ [K].

For each unlabeled text xui the pseudo-label distri-
bution is given by p(k|xui , φ̃) , yui with the fixed
copy φ̃ of the current model parameter φ during
self-training loops. Besides, to avoid those pseudo-
label distributions {yui }

Nu
i=1 too uniform, we em-

ploy a sharpen function with a temperature T over
them:

yui = Sharpen(yui , T ) =
(yui )1/T

‖(yui )1/T ‖1
,∀i ∈ [Nu],

where ‖·‖1 is the `1-norm of vectors. When T → 0,
the pseudo-label distribution tends to be the one-
hot vector.

Applying the BDD loss of Eq.4 to the unlabeled
text set Du = {xuj }

j=Nu

j=1 and pseudo-label distri-
butions {yui }

Nu
i=1, we can formulate the following

unsupervised angular loss:

Lu(Du, {yui }Nu
i=1;φ) =

1

Nu

Nu∑
i=1

Lbdd(x
u
i ,y

u
i ;φ).

(6)

Entropy Regularization Further, we employ the
conditional entropy of p(y|xi,φ) as an additional
regularization term:

R(Dl,Du;φ) =

− 1

Nl +Nu

∑
xi∈Dl,Du

K∑
k=1

p(k|xi,φ) log p(k|xi,φ).

(7)
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This conditional entropy regularization is intro-
duced by (Grandvalet and Bengio, 2004), and also
utilized in (Sajjadi et al., 2016; Miyato et al., 2019;
Sachan et al., 2019). It also sharpens the output
probability of the deep classifier.

Full Objective of S2TC-BDD Combining the su-
pervised angular loss Eq.(5), unsupervised angular
loss Eq.(6), and entropy regularization Eq.(7), the
full objective of S2TC-BDD can be formulated be-
low:

L(Dl,Du;φ) = Ll(Dl;φ)

+ λ1Lu(Du, {yui }
Nu
i=1;φ) + λ2R(Dl,Du;φ),

(8)

where λ1 and λ2 are regularization parameters.

3.2 Implementations of Label Angle
Variances

In this section, we describe implementations of la-
bel angle variances. As mentioned before, what we
concern is the estimations of angular distributions
{N (µk, σ

2
k)}k=K

k=1 , where their draws are the angles
between deep representations of texts and label pro-
totypes denoted by {ck}k=K

k=1 . Both {(µk, σ2
k)}k=K

k=1

and {ck}k=K
k=1 are estimated over both labeled and

pseudo-labeled texts during self-training loops. In
the following, we describe their learning processes
in more detail.

Within the framework of stochastic optimization,
we update the {(µk, σ2

k)}k=K
k=1 and {ck}k=K

k=1 per-
epoch. For convenience, we denote Ω as the index
set of labeled and unlabeled texts in one epoch,
{fi}i∈Ω and {yi}i∈Ω as the deep representations
of texts and corresponding label or pseudo-label
vectors (i.e., yli or yui ) in the current epoch, respec-
tively.

Estimating Label Prototypes Given the current
{fi}i∈Ω and {yi}i∈Ω, we calculate the label proto-
types {ck}k=K

k=1 by the weighted average of {fi}i∈Ω,
formulated below:

ck =

∑
i∈Ω yikfi∑
i∈Ω yik

, ∀k ∈ [K]. (9)

To avoid the misleading affect of some mislabeled
texts, inspired by (Liu et al., 2020), we update
{ck}k=K

k=1 by employing the moving average with a
learning rate γ:

c
(t)
k ← (1− γ)c

(t)
k + γc

(t−1)
k .

Estimating Label Angle Variances Given
{fi}i∈Ω and {ck}k=K

k=1 , the angles between them
can be calculated by:

βik = arccos
( f>i ck
‖fi‖2‖ck‖2

)
, ∀i ∈ Ω, k ∈ [K].

(10)
Accordingly, we can compute the estimations of
{µk}k=K

k=1 and {σ2
k}k=K
k=1 as follows:

µk =

∑
i∈Ω yikβik∑
i∈Ω yik

, (11)

σ2
k =

∑
i∈Ω yik(βik − µk)2∑

i∈Ω yik − 1
. (12)

Further, the moving average is also used to the
updates below:

µ
(t)
k ← (1− γ)µ

(t)
k + γµ

(t−1)
k ,

(σ2
k)

(t) ← (1− γ)(σ2
k)

(t) + γ(σ2
k)

(t−1).

4 Experiment

4.1 Experimental Settings
Datasets To conduct the experiments, we em-
ploy three widely used benchmark datasets for text
classification: AG News (Zhang et al., 2015), Yelp
(Zhang et al., 2015), and Yahoo (Chang et al., 2008).
For all datasets, we form the unlabeled training set
Du, labeled training set Dl and development set by
randomly drawing from the corresponding original
training datasets, and utilize the original test sets
for prediction evaluation. The dataset statistics and
split information are described in Table 2.

Baseline Models To evaluate the effectiveness
of S2TC-BDD, we choose five existing SSTC al-
gorithms for comparison. The details of baseline
methods are given below.

• NB+EM (Nigam et al., 2000): A semi-
supervised text classification method com-
bining a Naive Bayes classifier (NB) and
Expectation-Maximization (EM). In experi-
ments, we pre-process texts following (Gu-
rurangan et al., 2019) and use tf-idfs as the
representations of texts.

• BERT (Devlin et al., 2019): A supervised text
classification method built on the pre-trained
BERT-based-uncased model1 and fine-tuned
with the supervised softmax loss on labeled
texts.

1 https://pypi.org/project/
pytorch-transformers/

https://pypi.org/project/pytorch-transformers/
https://pypi.org/project/pytorch-transformers/
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• BERT+AM: A semi-supervised text classifi-
cation method built on the pre-trained BERT-
based-uncased1 and fine-tuned following the
self-training spirit with the AM loss on both
labeled and unlabeled texts.

• VAMPIRE (Gururangan et al., 2019): A
semi-supervised text classification method
based on variational pre-training. The code
is available on the net.2 In experiments, the
default parameters are utilized.

• VAT (Miyato et al., 2019): A semi-supervised
text classification method based on virtual ad-
versarial training. [parameter configuration:
perturbation size ε = 5.0, regularization co-
efficient α = 1.0, hyperparameter for finite
difference ξ = 0.1]

• UDA (Xie et al., 2020): A semi-supervised
text classification method based on unsuper-
vised data augmentation with back translation.
The code is available on the net.3 In experi-
ments, we utilize the default parameters, and
generate the augmented unlabeled data by us-
ing FairSeq4 with German as the intermediate
language.

For S2TC-BDD, BERT, BERT+AM, VAT and UDA,
we utilize BERT-based-uncased tokenizer to to-
kenize texts; average pooling over BERT-based-
uncased model as text encoder to encode texts; and
a two-layer MLP, whose hidden size and activation
function are 128 and tanh respectively, as the clas-
sifier to predict labels. We set the max sentence
length as 256 and remain the first 256 tokens for
texts exceeding the length limit. For optimization,
we utilize the Adam optimizer with learning rates
of 5e-6 for BERT encoder and 1e-3 for MLP classi-
fier. For BERT, we set the batch size of labeled tests
as 8. For S2TC-BDD, BERT+AM, VAT and UDA,
the batch sizes of labeled and unlabeled tests are 4
and 8, respectively. For all datasets, we iterate 20
epochs, where each one contains 200 inner loops.
All experiments are carried on a Linux server with
two NVIDIA GeForce RTX 2080Ti GPUs, Intel
Xeon E5-2640 v4 CPU and 64G memory.

Parameter Settings For S2TC-BDD, in our ex-
periments, its parameters are mostly set as: λ1 =

2 https://github.com/allenai/vampire
3 https://github.com/google-research/uda
4 https://github.com/pytorch/fairseq

Table 2: Statistics of datasets. #Class: the number of
class labels. #Labeled: the number of labeled training
texts. #Unlabeled: the number of unlabeled training
texts. #Dev: the number of development texts. #Test:
the number of texts for testing.

Dataset #Class #Labeled #Unlabeled #Dev #Test

AG News 4 10,000 20,000 8,000 7,600
Yelp 5 10,000 20,000 10,000 50,000

Yahoo 10 10,000 40,000 20,000 60,000

1.0, λ2 = 1.0, s = 1.0, m = 0.01. Specifically,
for Yelp we set m = 0.3. For the sharpening tem-
perature T , we set 0.5 for AG News and Yahoo, 0.3
for Yelp. The learning rate γ of label prototypes
and label angle variances is set to 0.1.

Metrics We utilize two metrics of Micro-F1 and
Macro-F1, which are two different types of the
averaged F1 scores. In experiments, we employ the
implementation of Micro-F1 and Macro-F1 in the
public Scikit-Learn (Pedregosa et al., 2011) tool.5

4.2 Results

For all datasets, we perform each method with five
random seeds, and report the average scores.

4.2.1 Varying Number of Labeled Texts
We first evaluate the classification performance of
S2TC-BDD with different amounts of labeled texts.
For all methods, we conduct the experiments by
varying the number of labeled texts Nl over the
set {100, 1000, 10000} with the number of unla-
beled texts Nu = 20000 for AG News and Yelp,
and Nu = 40000 for Yahoo. The classification
results of both Micro-F1 and Macro-F1 over all
datasets are shown in Table 3, in which the best
scores among all comparing baselines are high-
lighted in boldface. Generally speaking, our pro-
posed S2TC-BDD outperforms the baselines in most
cases. Across all datasets and evaluation metrics,
S2TC-BDD ranks 1.1 in average. Several observa-
tions are made below.

• Comparing S2TC-BDD against baselines:
First, we can observe that S2TC-BDD consis-
tently dominates the pre-training methods (in-
cluding BERT and VAMPIRE) on both Micro-
F1 and Macro-F1 scores by a big margin, es-
pecially when labeled texts are scarce. For ex-
ample, when Nl = 100, the Macro-F1 scores

5 https://scikit-learn.org/stable/

https://github.com/allenai/vampire
https://github.com/google-research/uda
https://github.com/pytorch/fairseq
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Table 3: Experimental results of Micro-F1 and Macro-F1 varying the number of labeled texts Nl. The best results
are highlighted in boldface.

Metric Dataset Nl NB+EM BERT BERT+AM VAMPIRE VAT UDA S2TC-BDD

Micro-F1

AG News
100 0.834 0.839 0.856 0.705 0.868 0.855 0.872

1,000 0.855 0.878 0.879 0.833 0.886 0.883 0.889
10,000 0.874 0.905 0.901 0.876 0.898 0.906 0.907

Yelp
100 0.300 0.344 0.399 0.227 0.244 0.387 0.417

1,000 0.355 0.538 0.544 0.476 0.551 0.554 0.552
10,000 0.404 0.583 0.574 0.551 0.566 0.580 0.583

Yahoo
100 0.529 0.564 0.589 0.389 0.534 0.576 0.618

1,000 0.624 0.676 0.679 0.547 0.685 0.672 0.687
10,000 0.659 0.713 0.706 0.644 0.701 0.707 0.713

Macro-F1

AG News
100 0.833 0.840 0.856 0.698 0.867 0.855 0.872

1,000 0.855 0.878 0.879 0.833 0.886 0.883 0.889
10,000 0.873 0.905 0.900 0.876 0.897 0.906 0.907

Yelp
100 0.250 0.324 0.371 0.144 0.197 0.357 0.403

1,000 0.329 0.532 0.535 0.476 0.548 0.550 0.550
10,000 0.397 0.586 0.562 0.553 0.569 0.576 0.586

Yahoo
100 0.489 0.550 0.573 0.356 0.542 0.567 0.595

1,000 0.616 0.671 0.672 0.545 0.675 0.666 0.680
10,000 0.653 0.708 0.695 0.644 0.697 0.704 0.709

Average Rank 6.2 3.6 3.4 6.7 3.8 3.0 1.1

of S2TC-BDD are even about 0.17, 0.26 and
0.24 higher than VAMPIRE on the datasets of
AG News, Yelp and Yahoo, respectively. Sec-
ond, when labeled texts are very scarce (i.e.,
when Nl = 100), S2TC-BDD performs better
than other self-training baseline methods (i.e.,
NB+EM, BERT+AM, VAT and UDA) on all
datasets, e.g., for Micro-F1 about 0.08 higher
than VAT on Yahoo. Otherwise, when labeled
texts are large, S2TC-BDD can also achieve
the competitive performance, even perform
better across all datasets.

• Comparing S2TC-BDD against BERT+AM
and BERT: Our S2TC-BDD method consis-
tently outperforms BERT+AM and BERT
across all datasets and metrics. For example,
when Nl = 100 the Micro-F1 scores of S2TC-
BDD beat those of BERT+AM by 0.01 ∼ 0.03
and those of BERT by 0.03 ∼ 0.05 across all
datasets. That is because S2TC-BDD employs
both labeled and unlabeled texts for training
and can predict more accurate pseudo-labels
of unlabeled texts than BERT+AM, benefit-
ing for the classifier training. This result is
expected since S2TC-BDD performs a Gaus-
sian linear transformation to balance the label
angel variances, so as to eliminate the mar-
gin bias, leading to more accurate predicted
pseudo-labels of unlabeled texts. Besides,
these results empirically prove that unlabeled

texts are beneficial to the classification perfor-
mance.

• Comparing BERT based methods against
NB+EM and VAMPIRE: All BERT based
methods (i.e., BERT, BERT+AM, VAT, UDA
and S2TC-BDD) consistently dominate base-
lines based on small models (i.e., NB+EM,
VAMPIRE). For example, when Nl = 10000,
the Micro-F1 and Macro-F1 scores of BERT
are about 0.03, 0.18 and 0.05 higher than those
of NB+EM on the datasets of AG News, Yelp
and Yahoo, respectively. The observation is
expected because BERT is a bigger model,
hence can extract more discriminative repre-
sentations of texts than those from the VAE
model used in VAMPIRE and tf-idfs used in
NB+EM.

4.2.2 Varying Number of Unlabeled Texts
For NB+EM, BERT+AM, VAMPIRE, VAT, UDA
and S2TC-BDD, we also perform the experi-
ments with 100 labeled texts and varying the
number of unlabeled texts Nu over the set
{0, 200, 2000, 20000} for AG News and Yelp, and
{0, 400, 4000, 40000} for Yahoo. Note that VAM-
PIRE needs unlabeled texts for pre-training, thus
we omit the experiments for VAMPIRE with Nu =
0. The classification results are reported in Ta-
ble 4. Roughly, for all methods the classification
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Table 4: Experimental results of Micro-F1 and Macro-F1 varying the number of unlabeled texts Nu.

Metric Dataset Nu NB+EM BERT+AM VAMPIRE VAT UDA S2TC-BDD

Micro-F1

AG News

0 0.668 0.844 – 0.846 0.839 0.844
200 0.696 0.855 0.329 0.850 0.844 0.857

2,000 0.752 0.856 0.421 0.870 0.853 0.863
20,000 0.834 0.856 0.705 0.868 0.855 0.872

Yelp

0 0.317 0.381 – 0.341 0.344 0.395
200 0.307 0.385 0.238 0.299 0.397 0.403

2,000 0.302 0.393 0.211 0.294 0.379 0.417
20,000 0.300 0.399 0.227 0.244 0.387 0.417

Yahoo

0 0.312 0.581 – 0.557 0.564 0.590
400 0.318 0.582 0.162 0.519 0.508 0.593

4,000 0.442 0.584 0.221 0.523 0.559 0.598
40,000 0.529 0.589 0.389 0.534 0.576 0.618

Macro-F1

AG News

0 0.667 0.843 – 0.845 0.840 0.843
200 0.695 0.855 0.219 0.850 0.843 0.857

2,000 0.751 0.855 0.341 0.870 0.852 0.864
20,000 0.833 0.856 0.698 0.867 0.855 0.872

Yelp

0 0.316 0.368 – 0.256 0.324 0.385
200 0.279 0.370 0.161 0.278 0.344 0.372

2,000 0.286 0.379 0.124 0.287 0.362 0.380
20,000 0.250 0.371 0.144 0.197 0.357 0.403

Yahoo

0 0.303 0.567 – 0.562 0.550 0.585
400 0.301 0.571 0.074 0.521 0.500 0.586

4,000 0.420 0.574 0.175 0.524 0.550 0.590
40,000 0.489 0.573 0.356 0.542 0.567 0.595

Average Rank 4.8 2.2 6.0 3.4 3.4 1.2

Table 5: Classification performance on AG News with
100 labeled data and 20,000 unlabeled data after remov-
ing different parts of S2TC-BDD.

Model Micro-F1 Macro-F1

S2TC-BDD 0.872 0.872
-entropy regularization 0.863 0.864

-BDD 0.856 0.856
-unlabeled texts 0.844 0.843

-all 0.839 0.840

performance becomes better as the amount of un-
labeled texts increasing. For instance, the Micro-
F1 scores of S2TC-BDD on all datasets gain about
0.3 improvement as the number of unlabeled texts
increasing. These results prove the effectiveness
of unlabeled texts in riching the limited supervi-
sion from scarce labeled texts and improving the
classification performance. Besides, an obvious
observation is that the self-training methods (i.e.,
NB+EM, BERT+AM, VAT, UDA and S2TC-BDD)
consistently outperform the pre-training method
(i.e., VAMPIRE), especially when unlabeled texts
are fewer. The possible reason is that the pre-
training methods need more unlabeled texts for
pre-training while the self-training methods do not
have the requirement.

4.3 Ablation Study

We perform ablation studies by stripping each com-
ponent each time to examine the effectiveness of
each component in S2TC-BDD. Here, we denote
BDD as balanced deep representation angular loss
Lbdd in Eq.4. Stripping BDD means that we replace
the proposed loss Lbdd with the AM loss Lam in
Eq.1. The results are displayed in Table 5. Over-
all, the classification performance will drop when
removing any component of S2TC-BDD, suggest-
ing that all parts make contributions to the final
performance of S2TC-BDD. Besides, removing un-
labeled texts brings the most significant drop of
the performance. This result is expected because
label angle variances approximated only with very
scarce labeled texts will have lower accuracy, result-
ing in worse performance. Further, in contrast to
entropy regularization, the performance after strip-
ping BDD decrease more. Note that the difference
between the proposed Lbdd and Lam is whether
constraining the label angle variances to be bal-
anced or not. This result indicates that the balanced
constraint of label angle variances brings a better
deep classifier as well as more accurate pseudo-
labels for unlabeled texts, especially when labeled
texts are limited, and also empirically prove the
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Table 6: Average per-epoch running time (second, s) of
BERT, BERT+AM and S2TC-BDD.

Dataset BERT BERT+AM S2TC-BDD

AG News 72.1 s 71.9 s 73.3 s
Yelp 73.4 s 73.8 s 73.8 s

Yahoo 74.1 s 75.1 s 75.1 s

effectiveness of our balanced label angle variances.

4.4 Efficiency Comparison

To evaluate the efficiency of our S2TC-BDD,
we perform efficiency comparisons over BERT,
BERT+AM and S2TC-BDD on all benchmark
datasets. To be fair, for all methods and datasets we
set the batch sizes of labeled and unlabeled texts to
4 and 8 respectively, and iterate 100 epochs, where
each one consists of 200 inner loops. The average
per-epoch running time results are shown in Ta-
ble 6. Generally speaking, the per-epoch running
time of our proposed S2TC-BDD is close to those
of BERT and BERT+AM. This result means that
Gaussian linear transformation and estimation of
label angle variances in our S2TC-BDD only intro-
duce very few computation costs. That is expected
since they merely require very few simple linear
operations, which are very efficient.

5 Conclusion

In this paper, we propose a novel self-training
SSTC method, namely S2TC-BDD. Our S2TC-BDD

addresses the margin bias problem in SSTC by
balancing the label angle variances, i.e., the vari-
ance of label angles of texts within the same label.
We estimate the label angle variances with both
labeled and unlabeled texts during the self-training
loops. To constrain the label angle variances to
be balanced, we design several Gaussian linear
transformations and incorporate them into a well
established AM loss. Our S2TC-BDD empirically
outperforms the existing SSTC baseline methods.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2227–2237.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2019a. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019b. Lan-
guage models are unsupervised multitask learners.

Devendra Singh Sachan, Manzil Zaheer, and Ruslan
Salakhutdinov. 2019. Revisiting LSTM networks
for semi-supervised text classification via mixed ob-
jective function. In AAAI Conference on Artificial
Intelligence, pages 6940–6948.

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tas-
dizen. 2016. Regularization with stochastic transfor-
mations and perturbations for deep semi-supervised
learning. In Neural Information Processing Systems,
pages 1171–1179.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Di-
hong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu.
2018. Cosface: Large margin cosine loss for deep
face recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 5265–5274.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. In Neural Information
Processing Systems.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Neural Information Pro-
cessing Systems, pages 5753–5763.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Neural Information Processing Sys-
tems, pages 649–657.


