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Abstract

Sequence-to-sequence transduction is the core
problem in language processing applications
as diverse as semantic parsing, machine trans-
lation, and instruction following. The neural
network models that provide the dominant so-
lution to these problems are brittle, especially
in low-resource settings: they fail to generalize
correctly or systematically from small datasets.
Past work has shown that many failures of sys-
tematic generalization arise from neural mod-
els’ inability to disentangle lexical phenomena
from syntactic ones. To address this, we aug-
ment neural decoders with a lexical transla-
tion mechanism that generalizes existing copy
mechanisms to incorporate learned, decontex-
tualized, token-level translation rules. We de-
scribe how to initialize this mechanism using
a variety of lexicon learning algorithms, and
show that it improves systematic generaliza-
tion on a diverse set of sequence modeling
tasks drawn from cognitive science, formal se-
mantics, and machine translation.1

1 Introduction

Humans exhibit a set of structured and remarkably
consistent inductive biases when learning from lan-
guage data. For example, in both natural language
acquisition and toy language-learning problems
like the one depicted in Fig. 1, human learners
exhibit a preference for systematic and composi-
tional interpretation rules (Guasti 2017, Chapter 4;
Lake et al. 2019). These inductive biases in turn
support behaviors like one-shot learning of new
concepts (Carey and Bartlett, 1978). But in natural
language processing, recent work has found that
state-of-the-art neural models, while highly effec-
tive at in-domain prediction, fail to generalize in
human-like ways when faced with rare phenomena

1Our code is released under https://github.com/
ekinakyurek/lexical

Train Test
dax         lug         wif          zup zup fep 

zup blicket lug   ___? 
dax blicket zup  ___? 
zup kiki dax  ___? 
wif kiki zup  ___?

r gb y

b b b
r r r

b g b
g r g

g b
b r

y y y

lug fep 
dax fep 
lug blicket wif 
wif blicket dax 
lug kiki wif 
dax kiki lug

lexicon

Figure 1: A fragment of the Colors dataset from Lake
et al. (2019), a simple sequence-to-sequence translation
task. The output vocabulary is only the colored circles
r , g , b , y . Humans can reliably fill in the miss-

ing test labels on the basis of a small training set, but
standard neural models cannot. This paper describes a
neural sequence model that obtains improved general-
ization via a learned lexicon of token translation rules.

and small datasets (Lake and Baroni, 2018), pos-
ing a fundamental challenge for NLP tools in the
low-data regime.

Pause for a moment to fill in the missing labels
in Fig. 1. While doing so, which training exam-
ples did you pay the most attention to? How many
times did you find yourself saying means or maps
to? Explicit representations of lexical items and
their meanings play a key role diverse models of
syntax and semantics (Joshi and Schabes, 1997;
Pollard and Sag, 1994; Bresnan et al., 2015). But
one of the main findings in existing work on gener-
alization in neural models is that they fail to cleanly
separate lexical phenomena from syntactic ones
(Lake and Baroni, 2018). Given a dataset like the
one depicted in Fig. 1, models conflate (lexical)
information about the correspondence between zup
and y with the (syntactic) fact that y appears
only in a sequence of length 1 at training time.
Longer input sequences containing the word zup
in new syntactic contexts cause models to output
tokens only seen in longer sequences (Section 5).

https://github.com/ekinakyurek/lexical
https://github.com/ekinakyurek/lexical


4935

In this paper, we describe a parameterization
for sequence decoders that facilitates (but does
not enforce) the learning of context-independent
word meanings. Specifically, we augment decoder
output layers with a lexical translation mecha-
nism which generalizes neural copy mechanisms
(e.g. See et al., 2017) and enables models to gen-
erate token-level translations purely attentionally.
While the lexical translation mechanism is quite
general, we focus here on its ability to improve
few-shot learning in sequence-to-sequence models.
On a suite of challenging tests of few-shot seman-
tic parsing and instruction following, our model
exhibits strong generalization, achieving the high-
est reported results for neural sequence models on
datasets as diverse as COGS (Kim and Linzen 2020,
with 24155 training examples) and Colors (Lake
et al. 2019, with 14). Our approach also generalizes
to real-world tests of few-shot learning, improving
BLEU scores (Papineni et al., 2002) by 1.2 on a
low-resource English–Chinese machine translation
task (2.2 on test sentences requiring one-shot word
learning).

In an additional set of experiments, we explore
effective procedures for initializing the lexical
translation mechanism using lexicon learning al-
gorithms derived from information theory, statis-
tical machine translation, and Bayesian cognitive
modeling. We find that both mutual-information-
and alignment- based lexicon initializers perform
well across tasks. Surprisingly, however, we show
that both approaches can be matched or outper-
formed by a rule-based initializer that identifies
high-precision word-level token translation pairs.
We then explore joint learning of the lexicon and
decoder, but find (again surprisingly) that this gives
only marginal improvements over a fixed initializa-
tion of the lexicon.

In summary, this work:

• Introduces a new, lexicon-based output mech-
anism for neural encoder–decoder models.

• Investigates and improves upon lexicon learn-
ing algorithms for initialising this mechanism.

• Uses it to solve challenging tests of generaliza-
tion in instruction following, semantic parsing
and machine translation.

A great deal of past work has suggested that
neural models come equipped with an inductive
bias that makes them fundamentally ill-suited to

human-like generalization about language data, es-
pecially in the low-data regime (e.g. Fodor et al.,
1988; Marcus, 2018). Our results suggest that the
situation is more complicated: by offloading the
easier lexicon learning problem to simpler models,
neural sequence models are actually quite effec-
tive at modeling (and generalizing about) about
syntax in synthetic tests of generalization and real
translation tasks.

2 Related Work

Systematic generalization in neural sequence
models The desired inductive biases noted above
are usually grouped together as “systematicity” but
in fact involve a variety of phenomena: one-shot
learning of new concepts and composition rules
(Lake and Baroni, 2018), zero-shot interpretation
of novel words from context cues (Gandhi and
Lake, 2020), and interpretation of known concepts
in novel syntactic configurations (Keysers et al.,
2020; Kim and Linzen, 2020). What they share is a
common expectation that learners should associate
specific production or transformation rules with
specific input tokens (or phrases), and generalize
to use of these tokens in new contexts.

Recent years have seen tremendous amount of
modeling work aimed at encouraging these gener-
alizations in neural models, primarily by equipping
them with symbolic scaffolding in the form of pro-
gram synthesis engines (Nye et al., 2020), stack ma-
chines (Grefenstette et al., 2015; Liu et al., 2020),
or symbolic data transformation rules (Gordon
et al., 2019; Andreas, 2020). A parallel line of work
has investigated the role of continuous representa-
tions in systematic generalization, proposing im-
proved methods for pretraining (Furrer et al., 2020)
and procedures for removing irrelevant contex-
tual information from word representations (Arthur
et al., 2016; Russin et al., 2019; Thrush, 2020). The
latter two approaches proceed from similar intu-
ition to ours, aiming to disentangle word meanings
from syntax in encoder representations via alterna-
tive attention mechanisms and adversarial training.
Our approach instead focuses on providing an ex-
plicit lexicon to the decoder; as discussed below,
this appears to be considerably more effective.

Copying and lexicon learning In neural
encoder–decoder models, the clearest example
of benefits from special treatment of word-level
production rules is the copy mechanism. A great
deal of past work has found that neural models
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Inputs Outputs Lexicon Entries

A crocodile blessed William .
William needed to walk .

crocodile(x_1) AND bless.agent (x_2, x_1) AND bless.theme (x_2, William)
need.agent (x_1 , William) AND need.xcomp(x_1, x_3) AND walk.agent (x_3, William)

blessed 7→ bless
needed 7→ need
William 7→ William

Many moons orbit around Saturn
Earth is a planet .

許多 衛星 繞著 土星 運行.
地球 是 一個 行星.

saturn 7→土星
earth 7→地球
moon 7→衛星

walk around left
turn right
turn left
jump
jump opposite right after look left

LTURN IWALK LTURN IWALK LTURN IWALK LTURN IWALK
RTURN
LTURN
IJUMP
LTURN ILOOK RTRUN IJUMP RTURN IJUMP

walk 7→ IWALK
jump 7→ IJUMP
right 7→ RTURN
left 7→ LTURN
look 7→ ILOOK

Table 1: We present example (input,output) pairs from COGS, English-to-Chinese machine translation and SCAN
datasets. We also present some of the lexicon entries which can be learned by proposed lexicon learning methods
and that are helpful to make generalizations required in each of the datasets.

benefit from learning a structural copy operation
that selects output tokens directly from the input
sequence without requiring token identity to be
carried through all neural computation in the
encoder and the decoder. These mechanisms
are described in detail in Section 3, and are
widely used in models for language generation,
summarization and semantic parsing. Our work
generalizes these models to structural operations
on the input that replace copying with general
context-independent token-level translation.

As will be discussed, the core of our approach
is a (non-contextual) lexicon that maps individual
input tokens to individual output tokens. Learn-
ing lexicons like this is of interest in a number
of communities in NLP and language science
more broadly. A pair of representative approaches
(Brown et al., 1993; Frank et al., 2007) will be dis-
cussed in detail below; other work on lexicon learn-
ing for semantics and translation includes Liang
et al. (2009); Goldwater (2007); Haghighi et al.
(2008) among numerous others.

Finally, and closest to the modeling contribution
in this work, several previous papers have proposed
alternative generalized copy mechanisms for tasks
other than semantic lexicon learning. Concurrent
work by Prabhu and Kann (2020) introduces a sim-
ilar approach for grapheme-to-phoneme translation
(with a fixed functional lexicon rather than a train-
able parameter matrix), and Nguyen and Chiang
(2018) and Gū et al. (2019) describe less expres-
sive mechanisms that cannot smoothly interpolate
between lexical translation and ordinary decoding
at the token level. Pham et al. (2018) incorpo-
rate lexicon entries by rewriting input sequences
prior to ordinary sequence-to-sequence translation.
Akyürek et al. (2021) describe a model in which
a copy mechanism is combined with a retrieval-

based generative model; like the present work, that
model effectively disentangles syntactic and lexical
information by using training examples as implicit
representations of lexical correspondences.

We generalize and extend this previous work in a
number of ways, providing a new parameterization
of attentive token-level translation and a detailed
study of initialization and learning. But perhaps
the most important contribution of this work is the
observation that many of the hard problems stud-
ied as “compositional generalization” have direct
analogues in more conventional NLP problems, es-
pecially machine translation. Research on system-
aticity and generalization would benefit from closer
attention to the ingredients of effective translation
at scale.

3 Sequence-to-Sequence Models With
Lexical Translation Mechanisms

This paper focuses on sequence-to-sequence lan-
guage understanding problems like the ones de-
picted in Table 1, in which the goal is to map from
a natural language input x = [x1, x2, . . . , xn] to a
structured output y = [y1, y2, . . . , ym]—a logical
form, action sequence, or translation. We assume
input tokens xi are drawn from a input vocabu-
lary Vx, and output tokens from a corresponding
output vocabulary Vy.

Neural encoder–decoders Our approach builds
on the standard neural encoder–decoder model with
attention (Bahdanau et al., 2014). In this model, an
encoder represents the input sequence [x1, . . . , xn]
as a sequence of representations [e1, . . . , en]

e = encoder(x) (1)
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Next, a decoder generates a distribution over out-
put sequences y according to the sequentially:

log p(y | x) =
y∑

i=1

log p(yi | y<i, e, x) (2)

Here we specifically consider decoders with at-
tention.2 When predicting each output token yi,
we assign each input token an attention weight
αj
i as in Eq. (3). Then, we construct a context

representation ci as the weighted sum of encoder
representations ei:

αj
i ∝ exp(h>i Watt ej) (3)

ci =

|x|∑
j=1

αj
i ej (4)

The output distribution over Vy, which we denote
pwrite,i, is calculated by a final projection layer:

p(yi=w|x) = pwritei(w) ∝ exp(Wwrite[ci, hi])
(5)

Copying A popular extension of the model de-
scribed above is the copy mechanism, in which
output tokens can be copied from the input se-
quence in addition to being generated directly by
the decoder (Jia and Liang, 2016; See et al., 2017).
Using the decoder hidden state hi from above, the
model first computes a gate probability:

pgate = σ(w>gatehi) (6)

and then uses this probability to interpolate be-
tween the distribution in Eq. (5) and a copy dis-
tribution that assigns to each word in the output
vocabulary a probability proportional to that word’s
weight in the attention vector over the input:

pcopy(yi = w | x) =
|x|∑
j=1

1[xj = w] · αj
i (7)

p(yi = w | x) = pgate · pwrite(yi = w | x)
+ (1− pgate) · pcopy(yi = w | x) (8)

(note that this implies Vy ⊇ Vx).
Content-independent copying is particularly use-

ful in tasks like summarization and machine transla-
tion where rare words (like names) are often reused
between the input and output.

2All experiments in this paper use LSTM encoders and
decoders, but it could be easily integrated with CNNs or trans-
formers (Gehring et al. 2017; Vaswani et al. 2017). We only
assume access to a final layer hi, and final attention weights
αi; their implementation does not matter.

Figure 2: An encoder-decoder model with a lexical
translation mechanism applied to English-to-Chinese
translation. At decoder step t = 4, attention is focused
on the English token Saturn. The lexical translation
mechanism is activated by pgate, and the model outputs
the token土星 directly from the lexicon. 地球 means
Earth and appears much more frequently than Saturn
in the training set.

Our model: Lexical translation When the in-
put and output vocabularies are significantly dif-
ferent, copy mechanisms cannot provide further
improvements on a sequence-to-sequence model.
However, even for disjoint vocabularies as in Fig. 1,
there may be strict correspondences between indi-
vidual words on input and output vocabularies, e.g.
zup 7→ y in Fig. 1. Following this intuition, the
lexical translation mechanism we introduce in
this work extends the copy mechanism by intro-
ducing an additional layer of indirection between
the input sequence x and the output prediction yi
as shown in Fig. 2. Specifically, after selecting an
input token xj ∈ Vx, the decoder can “translate” it
to a context-independent output token ∈ Vy prior
to the final prediction. We equip the model with
an additional lexicon parameter L, a |Vx| × |Vy|
matrix in which

∑
w Lvw = 1, and finally define

plex(yi = w | x) =
|x|∑
j=1

Lxjw · α
j
i (9)

p(yi = w | x) = pgate · pwrite(yi = w | x)
+ (1− pgate) · plex(yi = w | x) (10)

The model is visualized in Fig. 2. Note that when
Vx = Vy and L = I is diagonal, this is iden-
tical to the original copy mechanism. However,
this approach can in general be used to produce a
larger set of tokens. As shown in Table 1, coher-
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ent token-level translation rules can be identified
for many tasks; the lexical translation mechanism
allows them to be stored explicitly, using param-
eters of the base sequence-to-sequence model to
record general structural behavior and more com-
plex, context-dependent translation rules.

4 Initializing the Lexicon

The lexicon parameter L in the preceding section
can be viewed as an ordinary fully-connected layer
inside the copy mechanism, and trained end-to-end
with the rest of the network. As with other neu-
ral network parameters, however, our experiments
will show that the initialization of the parameter
L significantly impacts downstream model perfor-
mance, and specifically benefits from initialization
with a set of input–output mappings learned with
an offline lexicon learning step. Indeed, while not
widely used in neural sequence models (though c.f.
Section 2), lexicon-based initialization was a stan-
dard feature of many complex non-neural sequence
transduction models, including semantic parsers
(Kwiatkowski et al., 2011) and phrase-based ma-
chine translation systems (Koehn et al., 2003).

But an important distinction between our ap-
proach and these others is the fact that we can
handle outputs that are not (transparently) com-
positional. Not every fragment of an input will
correspond to a fragment of an output: for exam-
ple, thrice in SCAN has no corresponding output
token and instead describes a structural transforma-
tion. Moreover, the lexicon is not the only way to
generate: complex mappings can also be learned
by pwrite without going through the lexicon at all.

Thus, while most existing work on lexicon learn-
ing aims for complete coverage of all word mean-
ings, the model described in Section 3 benefits from
a lexicon with high-precision coverage of rare phe-
nomena that will be hard to learn in a normal neu-
ral model. Lexicon learning is widely studied in
language processing and cognitive modeling, and
several approaches with very different inductive
biases exist. To determine how to best initialize
L, we begin by reviewing three algorithms in Sec-
tion 4.1, and identify ways in which each of them
fail to satisfy the high precision criterion above.
In Section 4.2, we introduce a simple new lexicon
learning rule that addresses this shortcoming.

4.1 Existing Approaches to Lexicon Learning
Statistical alignment In the natural language
processing literature, the IBM translation models
(Brown et al., 1993) have served as some of the
most popular procedures for learning token-level
input–output mappings. While originally devel-
oped for machine translation, they have also been
used to initialize semantic lexicons for semantic
parsing (Kwiatkowski et al., 2011) and grapheme-
to-phoneme conversion (Rama et al., 2009). We
initialize the lexicon parameter L using Model 2.

Model 2 defines a generative process in which
source words yi are generated from target words
xj via latent alignments ai. Specifically, given a
(source, target) pair with n source words and m
target words, the probability that the target word i
is aligned to the source word j is:

p(ai = j) ∝ exp
(
−
∣∣∣ i
m
− j

n

∣∣∣) (11)

Finally, each target word is generated by its aligned
source word via a parameter θ: p(yi = w) =
θ(v, xai). Alignments ai and lexical parameters
θ can be jointly estimated using the expectation–
maximization algorithm (Dempster et al., 1977).

In neural models, rather than initializing lexi-
cal parameters L directly with corresponding IBM
model parameters θ, we run Model 2 in both the
forward and reverse directions, then extract counts
by intersecting these alignments and applying a
softmax with temperature τ :

Lvw ∝ exp
(
τ−1

∑
(x,y)

|y|∑
i=1

1[xai = v]1[yi = w]
)

(12)

For all lexicon methods discussed in this paper,
if an input v is not aligned to any output w, we
map it to itself if Vx ⊆ Vy. Otherwise we align it
uniformly to any unmapped output words (a mutual
exclusivity bias, Gandhi and Lake 2020).

Mutual information Another, even simpler pro-
cedure for building a lexicon is based on identi-
fying pairs that have high pointwise mutual infor-
mation. We estimate this quantity directly from
co-occurrence statistics in the training corpus:

pmi(v;w) = log
#(v, w)

#(v)#(w)
+ log |Dtrain| (13)

where #(w) is the number of times the word w
appears in the training corpus and #(w, v) is the
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number of times that w appears in the input and
v appears in the output. Finally, we populate the
parameter L via a softmax transformation: Lvw ∝
exp((1/τ) pmi (v;w)).

Bayesian lexicon learning Last, we explore the
Bayesian cognitive model of lexicon learning de-
scribed by Frank et al. (2007). Like IBM model
2, this model is defined by a generative process;
here, however, the lexicon itself is part of the gener-
ative model. A lexicon ` is an (unweighted, many-
to-many) map defined by a collection of pairs (x,
y) with a description length prior: p(`) ∝ e−|`|

(where |`| is the number of (input, output) pairs
in the lexicon). As in Model 2, given a meaning
y and a natural-language description x, each xi
is generated independently. We define the prob-
ability of a word being used non-referentially as
pNR(xi | `) ∝ 1 if xi 6∈ ` and κ otherwise. The
probability of being used referentially is: pR(xj |
yi, `) ∝ 1(xj ,yi)∈`. Finally,

p(xj | yi, `) = (1− γ)pNR(xj | `)

+ γ

|y|∑
i=1

pR(xj | yi, `) (14)

To produce a final lexical translation matrix L
for use in our experiments, we set Lvw ∝
exp((1/τ) p((v, w) ∈ `)): each entry in L is the
posterior probability that the given entry appears in
a lexicon under the generative model above. Param-
eters are estimated using the Metropolis–Hastings
algorithm, with details described in Appendix C.

4.2 A Simpler Lexicon Learning Rule

Example lexicons learned by the three models
above are depicted in Fig. 3 for the SCAN task
shown in Table 1. Lexicons learned for remain-
ing tasks can be found in Appendix B. It can be
seen that all three models produce errors: the PMI
and Bayesian lexicons contain too many entries (in
both cases, numbers are associated with the turn
right action and prepositions are associated with
the turn left action). For the IBM model, one of
the alignments is confident but wrong, because the
around preposition is associated with turn left
action. In order to understand these errors, and to
better characterize the difference between the de-
mands of lexical translation model initializers and
past lexicon learning schemes, we explore a sim-
ple logical procedure for extracting lexicon entries

and
thrice
twice

opposite
after

around
right
walk

run
left

look
jump

IBM Model-2 PMI

IRIGHT
IWALK

IRUN
ILEFT

ILOOK
IJU

MP

and
thrice
twice

opposite
after

around
right
walk

run
left

look
jump

Bayesian

IRIGHT
IWALK

IRUN
ILEFT

ILOOK
IJU

MP

Simple

Figure 3: Learned lexicons for the around right split
in SCAN (τ = 0.1). The rule-based lexicon learn-
ing procedure (Simple) produces correct alignments,
while other methods fail due to the correlation between
around and left in training data.

that, surprisingly, matchers or outperforms all three
baseline methods in most of our experiments.

What makes an effective, precise lexicon learn-
ing rule? As a first step, consider a maximally
restrictive criterion (which we’ll call C1) that ex-
tracts only pairs (v, w) for which the presence of v
in the input is a necessary and sufficient condition
for the presence of w in the output.

nec.(v, w) = ∀xy. (w ∈ y)→ (v ∈ x) (15)

suff.(v, w) = ∀xy. (v ∈ x)→ (w ∈ y) (16)

C1(v, w) = nec.(v, w) ∧ suff.(v, w) (17)

C1 is too restrictive: in many language understand-
ing problems, the mapping from surface forms to
meanings is many-to-one (in Table 1, both blessed
and bless are associated with the logical form
bless). Such mappings cannot be learned by the
algorithm described above. We can relax the neces-
sity condition slightly, requiring either that v is a
necessary condition for w, or is part of a group that
collectively explains all occurrences of w:

no-winner(w) = @v′. C1(v
′, w) (18)

C2(v, w) = suff.(v, w) ∧
(nec.(v, w) ∨ no-win.(w)) (19)

As a final refinement, we note that C2 is likely
to capture function words that are present in most
sentences, and exclude these by restricting the lexi-
con to words below a certain frequency threshold:

C3 = C2 ∧
∣∣{v′ : suff.(v′, w)}

∣∣ ≤ ε (20)
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The lexicon matrix L is computed by taking the
word co-occurrence matrix, zeroing out all entries
where C3 does not hold, then computing a soft-
max: Lvw ∝ C3(v, w) exp((1/τ) #(v, w)). Sur-
prisingly, as shown in Fig. 3 and and evaluated
below, this rule (which we label Simple) produces
the most effective lexicon initializer for three of
the four tasks we study. The simplicity (and ex-
treme conservativity) of this rule highlight the dif-
ferent demands on L made by our model and more
conventional (e.g. machine translation) approaches:
the lexical translation mechanism benefits from a
small number of precise mappings rather than a
large number of noisy ones.

5 Experiments

We investigate the effectiveness of the lexical trans-
lation mechanism on sequence-to-sequence mod-
els for four tasks, three focused on compositional
generalization and one on low-resource machine
translation. In all experiments, we use an LSTM
encoder–decoder with attention as the base predic-
tor. We compare our approach (and variants) with
two other baselines: GECA (Andreas 2020; a data
augmentation scheme) and SynAtt (Russin et al.
2019; an alternative seq2seq model parameteriza-
tion). Hyper-parameter selection details are given
in the Appendix C. Unless otherwise stated, we use
τ = 0 and do not fine-tune L after initialization.

5.1 Colors

Task The Colors sequence translation task (see
Appendix A for full dataset) was developed to
measure human inductive biases in sequence-to-
sequence learning problems. It poses an extreme
test of low-resource learning for neural sequence
models: it has only 14 training examples that com-
bine four named colors and three composition op-
erations that perform concatenation, repetition and
wrapping. Liu et al. (2020) solve this dataset with
a symbolic stack machine; to the best of our knowl-
edge, our approach is the first “pure” neural se-
quence model to obtain non-trivial accuracy.

Results Both the Simple and IBMM2 initializers
produce a lexicon that maps only color words to
colors. Both, combined with the lexical translation
mechanism, obtain an average test accuracy of 79%
across 16 runs, nearly matching the human accu-
racy of 81% reported by Lake et al. (2019). The

two test examples most frequently predicted incor-
rectly require generalization to longer sequences
than seen during training. More details (includ-
ing example-level model and human accuracies)
are presented in the appendix Appendix A). These
results show that LSTMs are quite effective at learn-
ing systematic sequence transformation rules from
≈ 3 examples per function word when equipped
with lexical translations. Generalization to longer
sequences remains as an important challenge for
future work.

5.2 SCAN
Task SCAN (Lake and Baroni, 2018) is a larger
collection of tests of systematic generalization that
pair synthetic English commands (e.g. turn left
twice and jump) to action sequences (e.g. LTURN
LTURN IJUMP) as shown in Table 1. Following
previous work, we focus on the jump and around
right splits, each of which features roughly 15,000
training examples, and evaluate models’ ability to
perform 1-shot learning of new primitives (jump)
and zero-shot interpretation of composition rules
(around right). While these tasks are now solved by
a number of specialized approaches, they remain a
challenge for conventional neural sequence models,
and an important benchmark for new models.

Results In the jump split, all initializers improve
significantly over the base LSTM when combined
with lexical translation. Most methods achieve
99% accuracy at least once across seeds. These
results are slightly behind GECA (in which all runs
succeed) but ahead of SynAtt.3 Again, they show
that lexicon learning is effective for systematic gen-
eralization, and that simple initializers (PMI and
Simple) outperform complex ones.

5.3 COGS
Task COGS (Compositional Generalization for
Semantic Parsing; Kim and Linzen 2020) is an au-
tomatically generated English-language semantic
parsing dataset that tests systematic generalization
in learning language-to-logical-form mappings. It
includes 24155 training examples. Compared to
the Colors and SCAN datasets, it has a larger vo-
cabulary (876 tokens) and finer-grained inventory
of syntactic generalization tests (Table 3).

Results Notably, because some tokens appear
in both inputs and logical forms in the COGS

3SynAtt results here are lower than reported in the original
paper, which discarded runs with a test accuracy of 0%.



4941

Colors jump (SCAN) around right (SCAN) COGS

LSTM 0.00 ±0.00 0.00 ±0.00 0.09 ±0.05 0.51 ±0.05

GECA 0.41 ±0.11 1.00 ±0.00 0.98 ±0.02 0.48 ±0.05

SyntAtt 0.57 ±0.26 0.57 ±0.38 0.28 ±0.26 0.15 ±0.14

LSTM + copy - - - 0.66 ±0.03

LSTM + Lex.: Simple 0.79 ±0.02 0.92 ±0.17 0.95 ±0.01 0.82 ±0.01

LSTM + Lex.: PMI 0.41 ±0.19 0.95 ±0.08 0.02 ±0.04 0.82 ±0.00

LSTM + Lex.: IBMM2 0.79 ±0.02 0.79 ±0.27 0.00 ±0.00 0.82 ±0.00

LSTM + Lex.: Bayesian 0.51 ±0.21 0.82 ±0.21 0.02 ±0.04 0.70 ±0.04

Table 2: Exact match accuracy results for baselines and lexicon learning models on 4 different compositional
generalization splits. Errors are standard deviation among 16 different seeds for Colors, 10 seeds for COGS and
SCAN. Unbolded numbers are significantly(p < 0.01) worse than the best result in the column. Models with
lexical translation mechanisms and Simple initialization consistently improve over ordinary LSTMs.

Categories LSTM + copy + simple

primitive → {subj, obj, inf}
active → passive
obj PP → subj PP
passive → active
recursion
unacc → transitive
obj → subj proper
subj → obj common
PP dative ↔ obj dative

all

Table 3: COGS accuracy breakdown according to syn-
tactic generalization types for word usages. The label
a → b indicates that syntactic context a appears in the
training set and b in the test set.

task, even a standard sequence-to-sequence model
with copying significantly outperforms the baseline
models in the original work of Kim and Linzen
(2020), solving most tests of generalization over
syntactic roles for nouns (but performing worse at
generalizations over verbs, including passive and
dative alternations). As above, the lexical transla-
tion mechanism (with any of the proposed initial-
izers) provides further improvements, mostly for
verbs that baselines model incorrectly (Table 3).

5.4 Machine Translation

Task To demonstrate that this approach is useful
beyond synthetic tests of generalization, we eval-
uate it on a low-resource English–Chinese transla-
tion task (the Tatoeba4 dataset processed by Kelly
2021). For our experiments, we split the data ran-
domly into 19222 training and 2402 test pairs.

Results Results are shown in Table 4. Models
with a lexical translation mechanism obtain modest
improvements (up to 1.5 BLEU) over the baseline.
Notably, if we restrict evaluation to test sentences

4https://tatoeba.org/

ENG-CHN

full 1-shot
LSTM 24.18 ±0.37 17.47 ±0.64

LSTM + GECA 23.90 ±0.55 17.94 ±0.43

LSTM + Lex.: PMI 24.36 ±0.09 18.46 ±0.13

LSTM + Lex.: Simple 24.35 ±0.09 18.46 ±0.19

LSTM + Lex.: IBMM2 25.49 ±0.42 19.62 ±0.64

Table 4: BLEU scores for English-Chinese translation.
full shows results on the full test set, and 1-shot shows
results for text examples in which the English text con-
tains a token seen only once during training.

featuring English words that appeared only once
in the training set, BLEU improves by more than
2 points, demonstrating that this approach is par-
ticularly effective at one-shot word learning (or
fast mapping; Carey and Bartlett 1978). Fig. 2
shows an example from this dataset, in which the
model learns to reliably translate Saturn from a
single training example. GECA, which makes spe-
cific generative assumptions about data distribu-
tions, does not generalize to a more realistic low
resource MT problem. However, the lexical trans-
lation mechanism remains effective in natural tasks
with large vocabularies and complex grammars.

5.5 Fine-Tuning the Lexicon

In all the experiments above, the lexicon was dis-
cretized (τ = 0) and frozen prior to training. In
this final section, we revisit that decision, eval-
uating whether the parameter L can be learned
from scratch, or effectively fine-tuned along with
decoder parameters. Experiments in this section
focus on the COGS dataset.

Offline initialization of the lexicon is crucial.
Rather than initializing L using any of the algo-
rithms described in Section 3, we initialized L to a
uniform distribution for each word and optimized

https://tatoeba.org/
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COGS

LSTM 0.51 ±0.06

Lex.: Uniform 0.56 ±0.07

Lex.: Simple 0.82 ±0.01

Soft 0.83 ±0.00

Learned 0.83 ±0.01

Table 5: Ablation experiments on the COGS dataset.
Uniform shows results for a lexicon initialized to a uni-
form distribution. Soft sets τ = 0.1 with the Sim-
ple lexicon learning rule (rather than 0 in previous ex-
periments). Learned shows results for a soft lexicon
fine-tuned during training. Soft lexicons with or with-
out learning improve significantly (p < 0.01) but very
slightly over fixed initialization.

it during training. This improves over the base
LSTM (Uniform in Table 5), but performs signifi-
cantly worse than pre-learned lexicons.

Benefits from fine-tuning are minimal. We first
increased the temperature parameter τ to 0.1 (pro-
viding a “soft” lexicon); this gave a 1% improve-
ment on COGS (Table 5. Soft). Finally, we updated
this soft initialization via gradient descent; this pro-
vided no further improvement (Table 5, Learned).
One important feature of COGS (and other tests
of compositional generalization) is perfect train-
ing accuracy is easily achieved; thus, there is little
pressure on models to learn generalizable lexicons.
This pressure must instead come from inductive
bias in the initializer.

6 Conclusion

We have described a lexical translation mecha-
nism for representing token-level translation rules
in neural sequence models. We have additionally
described a simple initialization scheme for this
lexicon that outperforms a variety of existing algo-
rithms. Together, lexical translation and proper ini-
tialization enable neural sequence models to solve
a diverse set of tasks—including semantic pars-
ing and machine translation—that require 1-shot
word learning and 0-shot compositional generaliza-
tion. Future work might focus on generalization
to longer sequences, learning of atomic but non-
concatenative translation rules, and online lexicon
learning in situated contexts.
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A Colors Dataset & Detailed Results

Here we present the full dataset in Table 6 from
Lake et al. (2019), and detailed comparisons of
each model with human results in Table 7.

TRAIN TEST

INPUT OUTPUT INPUT OUTPUT

dax r zup fep y y y
lug b zup kiki dax r y
wif g wif kiki zup y g
zup y zup blicket lug y b y
lug fep b b b dax blicket zup r y r
dax fep r r r wif kiki zup fep y y y g
lug blicket wif b g b zup fep kiki lug b y y y
wif blicket dax g r g lug kiki wif blicket zup g y g b
lug kiki wif g b zup blicket wif kiki dax fep r r r y g y
dax kiki lug b r zup blicket zup kiki zup fep y y y y y y
lug fep kiki wif g b b b
wif kiki dax blicket lug r b r g
lug kiki wif fep g g g b
wif blicket dax kiki lug b g r g

Table 6: Full Colors dataset with Train and Test exam-
ples (Lake et al., 2019)

Test Examples Simple/IBM-M2 Bayesian GECA SyntAtt Human

zup fep 1.0±0.00 0.88±0.33 1.0±0.00 0.7±0.5 0.88
zup kiki dax 1.0±0.00 0.88±0.33 1.0±0.00 0.7±0.5 0.86
wif kiki zup 1.0±0.00 0.8±0.4 1.0±0.00 0.8±0.4 0.86
dax blicket zup 1.0±0.00 0.88±0.33 1.0±0.00 0.8±0.4 0.88
zup blicket lug 0.94±0.24 0.8±0.4 1.0±0.00 0.8±0.4 0.79
wif kiki zup fep 1.0±0.00 0.3±0.5 0.0±0.00 0.4±0.00 5 0.85
zup fep kiki lug 1.0±0.00 0.2±0.4 0.0±0.00 0.8±0.4 0.85
lug kiki wif blicket zup 1.0±0.00 0.4±0.5 0.0±0.00 0.4±0.5 0.65
zup blicket wif kiki dax fep 0.0±0.00 0.0±0.00 0.0±0.00 0.0±0 0.70
zup blicket zup kiki zup fep 0.0±0.00 0.0±0.00 0.0±0.00 0.0±0.00 0.75

Table 7: Colors dataset exact match breakdown for
each individual test example. Human results are taken
from (Lake et al., 2019)Fig2.

B Learned Lexicons

Here we provide lexicons for each model and
dataset (see Fig. 2 and Fig. 3 for remaining
datasets). For COGS, we show a representative
subset of words.

and
thrice
twice

opposite
after

around
right
walk

run
left

look
jump

IBM Model-2 PMI

IRIGHT
IWALK

IRUN
ILEFT

ILOOK
IJU

MP

and
thrice
twice

opposite
after

around
right
walk

run
left

look
jump

Bayesian

IRIGHT
IWALK

IRUN
ILEFT

ILOOK
IJU

MP

Simple

Figure 4: Learned lexicons from SCAN datset jump
split with τ = 0.1

fep

blicket

kiki

dax

wif

zup

lug

IBM Model-2 PMI

RED
GREEN

YELLOW
BLUE

fep

blicket

kiki

dax

wif

zup

lug

Bayesian

RED
GREEN

YELLOW
BLUE

Simple

Figure 5: Learned lexicons from Colors datset with
τ = 0.1

noticed

baked

shattered

blessed

hoped

IBM Model-2 PMI

notice
bake

shatter
bless hope

noticed

baked

shattered

blessed

hoped

Bayesian

notice
bake

shatter
bless hope

Simple

Figure 6: Learned lexicons from COGS datset with
τ = 0.1. We only show important rare words resposi-
ble for our model’s improvements over the baseline.

C Hyper-parameter Settings

C.1 Neural Seq2Seq

Most of the datasets we evaluate do not come with
a out-of-distribution validation set, making prin-
cipled hyperparameter tuning difficult. We were
unable to reproduce the results of Kim and Linzen
(2020) with the hyperparameter settings reported
there with our base LSTM setup, and so adjusted
them until training was stabilized. Like the original
paper, we used a unidirectional 2-layer LSTM with
512 hidden units, an embedding size of 512, gradi-
ent clipping of 5.0, a Noam learning rate scheduler
with 4000 warm-up steps, and a batch size of 512.
Unlike the original paper, we found it necessary to
reduce learning rate to 1.0, increase dropout value
to 0.4, and the reduce maximum step size timeout
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to 8000.
We use same parameters for all COGS, SCAN,

and machine translation experiments. For SCAN
and Colors, we applied additional dropout (p=0.5)
in the last layer of pwrite.

Since Colors has 14 training examples, we need
a different batch size, set to 1/3 of the training
set size (= 5). Qualitative evaluation of gradi-
ents in training time revealed that stricter gradient
clipping was also needed (= 0.5). Similarly, we
decreased warm-up steps to 32 epochs. All other
hyper-parameters remain the same.

C.2 Lexicon Learning

Simple Lexicon The only parameter in the sim-
ple lexicon is ε, set to 3 in all experiments.

Bayesian The original work of Frank et al.
(2007) did not report hyperparemeter settings or
sampler details. We found α = 2, γ = 0.95 and
κ = 0.1 to be effective. The M–H proposal distri-
bution inserts or removes a word from the lexicon
with 50% probability. For deletions, an entry is
removed uniformly at random. For insertions, an
entry is added with probability proportional to the
empirical joint co-occurrence probability of the
input and output tokens. Results were averaged
across 5 runs, with a burn-in period of 1000 and a
sample drawn every 10 steps.

IBM Model 2 We used the FastAlign implemen-
tation (Dyer et al., 2013) and experimented with a
variety of hyperparameters in the alignment algo-
rithm itself (favoring diagonal alignment, optimiz-
ing tension, using dirichlet priors) and diagonaliza-
tion heuristics (grow-diag, grow-diag-final, grow-
diag-final-and, union). We found that optimizing
tension and using the “intersect” diagonalization
heuristic works the best overall.

D Baseline Results

D.1 GECA

We reported best results for SCAN dataset from
reproduced results in (Akyürek et al., 2021). For
other datasets (COGS and Colors), we performed
a hyperparameter search over augmentation ratios
of 0.1 and 0.3 and hidden sizes of {128, 256, 512}.
We report the best results for each dataset.

D.2 SyntAtt
We used the public GitHub repository of SyntAtt5

and reproduced reported results for the SCAN
dataset. For other datasets, we also explored ”syn-
tax action” option, in which both contextualized
context (syntax) and un-contextualized embeddings
(semantics) used in final layer Russin et al. (2019).
We additionally performed a search over hidden
layer sizes {128,256,512} and depths {1,2}. We
report the best results for each dataset.

E Datasets & Evaluation & Tokenization

E.1 Datasets and Sizes
around_right jump COGS Colors ENG-CHN

train 15225 14670 24155 14 19222
validation - - 3000 - 2402
test 4476 7706 21000 10 2402

E.2 Evaluation
We report exact match accuracies and BLEU scores.
In both evaluations we include punctuation. For
BLEU we use NLTK 6 library’s default implemen-
tation.

E.3 Tokenization
We use Moses library7 for English tokenization,
and jieba8 library for Chinese tokenization. In
other datasets, we use default space tokenization.

F Computing Infrastructure

Experiments were performed on a DGX-2 with
NVIDIA 32GB VOLTA-V100 GPUs. Experiments
take at most 2.5 hours on a single GPU.

5(https://github.com/jlrussin/syntactic_
attention)

6https://www.nltk.org/
7https://pypi.org/project/mosestokenizer/
8https://github.com/fxsjy/jieba

https://github.com/jlrussin/syntactic_attention
https://github.com/jlrussin/syntactic_attention
https://www.nltk.org/
https://pypi.org/project/mosestokenizer/
https://github.com/fxsjy/jieba

