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Abstract

Research on overlapped and discontinuous
named entity recognition (NER) has received
increasing attention. The majority of previ-
ous work focuses on either overlapped or dis-
continuous entities. In this paper, we pro-
pose a novel span-based model that can rec-
ognize both overlapped and discontinuous en-
tities jointly. The model includes two ma-
jor steps. First, entity fragments are recog-
nized by traversing over all possible text spans,
thus, overlapped entities can be recognized.
Second, we perform relation classification to
judge whether a given pair of entity fragments
to be overlapping or succession. In this way,
we can recognize not only discontinuous en-
tities, and meanwhile doubly check the over-
lapped entities. As a whole, our model can
be regarded as a relation extraction paradigm
essentially. Experimental results on multiple
benchmark datasets (i.e., CLEF, GENIA and
ACE05) show that our model is highly compet-
itive for overlapped and discontinuous NER.

1 Introduction

Named entity recognition (NER) (Sang and
De Meulder, 2003) is one fundamental task for
natural language processing (NLP), due to its wide
application in information extraction and data min-
ing (Lin et al., 2019b; Cao et al., 2019). Tradi-
tionally, NER is presented as a sequence labeling
problem and widely solved by conditional random
field (CRF) based models (Lafferty et al., 2001).
However, this framework is difficult to handle over-
lapped and discontinuous entities (Lu and Roth,
2015; Muis and Lu, 2016), which we illustrate us-
ing two examples as shown in Figure 1. The two
entities “Pennsylvania” and “Pennsylvania radio
station” are nested with each other,1 and the sec-

∗Corresponding author.
1 We consider “nested” as a special case of “overlapped”.

ond example shows a discontinuous entity “mitral
leaflets thickened” involving three fragments.

There have been several studies to investigate
overlapped or discontinuous entities (Finkel and
Manning, 2009; Lu and Roth, 2015; Muis and Lu,
2017; Katiyar and Cardie, 2018; Wang and Lu,
2018; Ju et al., 2018; Wang et al., 2018; Fisher
and Vlachos, 2019; Luan et al., 2019; Wang and
Lu, 2019). The majority of them focus on over-
lapped NER, with only several exceptions to the
best of our knowledge. Muis and Lu (2016) present
a hypergraph model that is capable of handling
both overlapped and discontinuous entities. Wang
and Lu (2019) extend the hypergraph model with
long short-term memories (LSTMs) (Hochreiter
and Schmidhuber, 1997). Dai et al. (2020) pro-
posed a transition-based neural model for discon-
tinuous NER. By using these models, NER could
be conducted universally without any assumption
to exclude overlapped or discontinuous entities,
which could be more practical in real applications.

The hypergraph (Muis and Lu, 2016; Wang and
Lu, 2019) and transition-based models (Dai et al.,
2020) are flexible to be adapted for different tasks,
achieving great successes for overlapped or dis-
continuous NER. However, these models need to
manually define graph nodes, edges and transition
actions. Moreover, these models build graphs or
generate transitions along the words in the sen-
tences gradually, which may lead to error propa-
gation (Zhang et al., 2016). In contrast, the span-
based scheme might be a good alternative, which
is much simpler including only span-level classifi-
cation. Thus, it needs less manual intervention and
meanwhile span-level classification can be fully
parallelized without error propagation. Recently,
Luan et al. (2019) utilized the span-based model
for information extraction effectively.

In this work, we propose a novel span-based
joint model to recognize overlapped and discon-
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At issue is the liability of a [[Pennsylvania]1 radio
station]2 under the federal wiretap statute.

Example 1

The [mitral]1 valve [leaflets]1 are mildly [thickened]1.
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Figure 1: Examples to illustrate the differences between the sequence labeling model and our span-based model.
On the left, word fragments marked with the same number belong the same entity. On the right, blue rectangles
denote the recognized entity fragments, and solid lines indicate the Succession or Overlapping relations
between them (the two relations are mutually exclusive).

tinuous entities simultaneously in an end-to-end
way. The model utilizes BERT (Devlin et al.,
2019) to produce deep contextualized word rep-
resentations, and then enumerates all candidate
text spans (Luan et al., 2019), classifying whether
they are entity fragments. Following, fragment
relations are predicted by another classifier to de-
termine whether two specific fragments involve a
certain relation. We define two relations for our
goal: Overlapping or Succession, which
are used for overlapped and discontinuous entities,
respectively. In essence, the joint model can be
regarded as one kind of relation extraction mod-
els, which is adapted for our goal. To enhance
our model, we utilize the syntax information as
well by using a dependency-guided graph convo-
lutional network (Kipf and Welling, 2017; Zhang
et al., 2018; Jie and Lu, 2019; Guo et al., 2019).

We evaluate our proposed model on sev-
eral benchmark datasets which includes both
overlapped and discontinuous entities (e.g.,
CLEF (Suominen et al., 2013)). The results
show that our model outperforms the hypergraph
(Muis and Lu, 2016; Wang and Lu, 2019) and
transition-based models (Dai et al., 2020). Be-
sides, we conduct experiments on two benchmark
datasets including only overlapped entities (i.e.,
GENIA (Kim et al., 2003) and ACE05). Experi-
mental results show that our model can also obtain
comparable performances with the state-of-the-art
models (Luan et al., 2019; Wadden et al., 2019;
Straková et al., 2019). In addition, we observe that
our approaches for model enhancement are effec-
tive in the benchmark datasets. Our code is avail-
able at https://github.com/foxlf823/sodner.

2 Related Work

In the NLP domain, NER is usually considered as
a sequence labeling problem (Liu et al., 2018; Lin
et al., 2019b; Cao et al., 2019). With well-designed
features, CRF-based models have achieved the
leading performance (Lafferty et al., 2001; Finkel
et al., 2005; Liu et al., 2011). Recently, neural
network models have been exploited for feature
representations (Chen and Manning, 2014; Zhou
et al., 2015). Moreover, contextualized word rep-
resentations such as ELMo (Peters et al., 2018),
Flair (Akbik et al., 2018) and BERT (Devlin et al.,
2019) have also achieved great success. As for
NER, the end-to-end bi-directional LSTM CRF
models (Lample et al., 2016; Ma and Hovy, 2016;
Yang et al., 2018) is one representative architec-
ture. These models are only capable of recognizing
regular named entities.

For overlapped NER, the earliest model to our
knowledge is proposed by Finkel and Manning
(2009), where they convert overlapped NER as a
parsing task. Lu and Roth (2015) propose a hy-
pergraph model to recognize overlapped entities
and lead to a number of extensions (Muis and
Lu, 2017; Katiyar and Cardie, 2018; Wang and
Lu, 2018). Moreover, recurrent neural networks
(RNNs) are also used for overlapped NER (Ju et al.,
2018; Wang et al., 2018). Other approaches in-
clude multi-grained detection (Xia et al., 2019),
boundary detection (Zheng et al., 2019), anchor-
region network (Lin et al., 2019a) and machine
reading comprehension (Li et al., 2020). The state-
of-the-art models for overlapped NER include the
sequence-to-sequence (seq2seq) model (Straková
et al., 2019), where the decoder predicts multiple

https://github.com/foxlf823/sodner
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Figure 2: The architecture of our model. The input is “The [mitral]1 valve [leaflets]1 are mildly [thickened]1”. h1

denotes the original word representation and h′
1 denotes the syntax-enhanced word representation. s1,2 denotes

the span representation. α and β control the loss weights of two tasks, namely recognizing entity fragments from
text spans and predicting the relation between each pair of fragments.

labels for a word and move to next word until it out-
puts the “end of word” label, and the span-based
model (Luan et al., 2019; Wadden et al., 2019),
where overlapped entities are recognized by classi-
fication for enumerated spans.

Compared with the number of related work for
overlapped NER, there are no related studies for
only discontinuous NER, but several related stud-
ies for both overlapped and discontinuous NER.
Early studies addressed such problem by extending
the BIO label scheme (Tang et al., 2013; Metke-
Jimenez and Karimi, 2016). Muis and Lu (2016)
first proposed a hypergraph-based model for recog-
nizing overlapped and discontinuous entities, and
then Wang and Lu (2019) utilized deep neural net-
works to enhance the model. Very recently, Dai
et al. (2020) proposed a transition-based neural
model with manually-designed actions for both
overlapped and discontinuous NER. In this work,
we also aim to design a competitive model for
both overlapped and discontinuous NER. Our dif-
ferences are that our model is span-based (Luan
et al., 2019) and it is also enhanced by dependency-
guided graph convolutional network (GCN) (Zhang
et al., 2018; Guo et al., 2019).

To our knowledge, syntax information is com-
monly neglected in most previous work for over-
lapped or discontinuous NER, except Finkel and
Manning (2009). The work employs a constituency

parser to transform a sentence into a nested entity
tree, and syntax information is used naturally to
facilitate NER. By contrast, syntax information has
been utilized in some studies for traditional regu-
lar NER. Under the traditional statistical setting,
syntax information is used by manually-crafted fea-
tures (Hacioglu et al., 2005; Ling and Weld, 2012)
or auxiliary tasks (Florian et al., 2006) for NER.
Recently, Jie et al. (2017) build a semi-CRF model
based on dependency information to optimize the
research space of NER recognition. Jie and Lu
(2019) stack the dependency-guided graph convo-
lutional network (Zhang et al., 2018; Guo et al.,
2019) on top of the BiLSTM layer. These studies
have demonstrated that syntax information could
be an effective feature source for NER.

3 Method

The key idea of our model includes two mecha-
nisms. First, our model enumerates all possible
text spans in a sentence and then exploits a multi-
classification strategy to determine whether one
span is an entity fragment as well as the entity
type. Based on this mechanism, overlapped entities
could be recognized. Second, our model performs
pairwise relation classifications over all entity frag-
ments to recognize their relationships. We define
three kinds of relation types:
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• Succession, indicating that the two entity
fragments belong to one single named entity.
• Overlapping, indicating that the two en-

tity fragments have overlapped parts.
• Other, indicating that the two entity frag-

ments have other relations or no relations.

With the Succession relation, we can rec-
ognize discontinuous entities. Through the
Overlapping relation, we aim to improve the
recognition of overlapped entities with double su-
pervision. The proposed model is essentially a
relation extraction model being adapted for our
task. The architecture of our model is illustrated
in Figure 2, where the main components include
the following parts: (1) word representation, (2)
graph convolutional network, (3) span representa-
tion, and (4) joint decoding, which are introduced
by the following subsections, respectively.

3.1 Word Representation

We exploit BERT (Devlin et al., 2019) as inputs
for our model, which has demonstrated effective
for a range of NLP tasks.2 Given an input sentence
x = {x1, x2, ..., xN}, we convert each word xi
into word pieces and then feed them into a pre-
trained BERT module. After the BERT calculation,
each sentential word may involve vectorial repre-
sentations of several pieces. Here we employ the
representation of the beginning word piece as the
final word representation following (Wadden et al.,
2019). For instance, if “fevers” is split into “fever”
and “##s”, the representation of “fever” is used as
the whole word representation. Therefore, all the
words in the sentence x correspond to a matrix H
= {h1, h2, ..., hN} ∈ RN×dh , where dh denotes
the dimension of hi.

3.2 Graph Convolutional Network

Dependency syntax information has been demon-
strated to be useful for NER previously (Jie and
Lu, 2019). In this work, we also exploit it to en-
hance our proposed model.3 Graph convolutional
network (GCN) (Kipf and Welling, 2017) is one
representative method to encode dependency-based
graphs, which has been shown effective in infor-
mation extraction (Zhang et al., 2018). Thus, we
choose it as one standard strategy to enhance our
word representations. Concretely, we utilize the

2We also investigate the effects of different word encoders
in the experiments. Please refer to Appendix A.

3Some cases are shown in Appendix B.
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Figure 3: The architecture of our graph convolu-
tional network. Graph Convolution: Equation 1. Self-
Attention: Equation 2.

attention-guided GCN (AGGCN) (Guo et al., 2019)
to reach our goal, as it can bring better performance
compared with the standard GCN.

In order to illustrate the network of AGGCN
(Figure 3), we start with the standard GCN module.
Given the word representations H = {h1, h2, ...,
hN}, the standard GCN uses the following equa-
tion to update them:

h
(l)
i = σ(

N∑
j=1

AijW
(l)h

(l−1)
j + b(l)), (1)

where W (l) and b(l) are the weight and bias of
the l-th layer. A ∈ RN×N is an adjacency matrix
obtained from the dependency graph, where Aij =
1 indicates there is an edge between the word i
and j in the dependency graph. Figure 2 offers an
example of the matrix which is produced by the
corresponding dependency syntax tree.

In fact, A can be considered as a form of hard
attention in GCN, while AGGCN (Guo et al., 2019)
aims to improve the method by using A in the
lower layers and updating A at the higher layers
via multi-head self-attention (Vaswani et al., 2017)
as below:

Ãt = softmax(
HtW t

Q × (HtW t
K)T

√
dhead

), (2)
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where W t
Q and W t

K are used to project the input
Ht ∈ RN×dhead (dhead = dh

Nhead
) of the t-th head

into a query and a key. Ãt ∈ RN×N is the updated
adjacency matrix for the t-th head.

For each head t, AGGCN uses Ãt and a densely
connected layer to update the word representations,
which is similar to the standard GCN as shown in
Equation 1. The output of the densely connected
layer is H̃t ∈ RN×dh . Then a linear combination
layer is used to merge the output of each head,
namely H̃ = [H̃1, · · · , H̃Nhead ]W1, where W1

∈ R(Nhead×dh)×dh is the weight and H̃ ∈ RN×dh

is the final output of AGGCN.
After that, H̃ is concatenated with the original

word representations H to form final word rep-
resentations H ′ ∈ RN×(dh+df ) = [H, H̃W2],
where W2 ∈ Rdh×df indicates a linear transfor-
mation for dimensionality reduction.4

3.3 Span Representation

We employ span enumeration (Luan et al., 2019)
to generate text spans. Take the sentence “The
mitral valve leaflets are mildly thickened” in Fig-
ure 2 as an example, the generated text spans will
be “The”, “The mitral”, “The mitral valve”, ...,
“mildly”, “mildly thickened” and “thickened”. To
represent a text span, we use the concatenation of
word representations of its startpoint and endpoint.
For example, given word representations H = {h1,
h2, ..., hN} ∈ RN×dh (or H ′ = {h′1, h′2, ..., h′N})
and a span (i, j) that starts at the position i and
ends at j, the span representation will be

si,j = [hi,hj ,w] or [h′i,h
′
j ,w], (3)

where w is a 20-dimensional embedding to repre-
sent the span width following previous work (Luan
et al., 2019; Wadden et al., 2019). Thus, the dimen-
sion ds of si,j is 2dh + 20 (or 2(dh + df ) + 20).

3.4 Decoding

Our decoding consists of two parts. First, we rec-
ognize all valid entity fragments, and then perform
pairwise classifications over the fragments to un-
cover their relationships.
Entity Fragment Recognition: Given a span
(i, j) represented as si,j , we utilize one MLP to

4We employ third-party tools to perform parsing for the
corpora that do not contain gold syntax annotations. Since
sometimes parsing may fail, dependency-guided GCN will be
noneffective. Concatenation can remedy such problem since
H still works even if H̃ is invalid.

Algorithm 1 Decoding algorithm.
Input: An input sentence x = {x1, x2, ..., xN}
Output: The recognized results R
1: S = ENUMERATESPAN(x) where S = {s1,1, s1,2, ...}
2: for si,j in S do
3: if ISENTITYFRAGMENT(si,j) then
4: V ← si,j
5: for each pair si,j , sĩ,j̃ in V do
6: if ISSUCCESSION(si,j , sĩ,j̃) then
7: E← < si,j , sĩ,j̃ >

8: Graph G = {V,E}
9: for g in FINDCOMPLETESUBGRAPHS(G) do

10: R← g
11: return R

classify whether the span is an entity fragment and
what is the entity type, formalized as:

p1 = softmax(MLP1(si,j)), (4)

where p1 indicates the probabilities of entity types
such as Organization, Disease and None (i.e., not
an entity fragment).
Fragment Relation Prediction: Given two entity
fragments (i, j) and (̃i, j̃) represented as si,j and
sĩ,j̃ , we utilize another MLP to classify their rela-
tions:

p2 = softmax(MLP2([si,j , si,j ∗ sĩ,j̃ , sĩ,j̃ ])),
(5)

where p2 indicates the probabilities of three classes,
namely Succession, Overlapping and Other, and
the feature representations are mostly referred
from Luan et al. (2019) and Wadden et al. (2019).
Noticeably, although the overlapped entities can
be recognized at the first step, here we use the
Overlapping as one auxiliary strategy to fur-
ther enhance the model.

During decoding (Algorithm 1), our model rec-
ognizes entity fragments from text spans (lines 2-4)
in the input sentence and selects each pair of these
fragments to determine their relations (lines 5-7).
Therefore, the prediction results can be considered
as an entity fragment relation graph (line 8), where
a node denotes an entity fragment and an edge de-
notes the relation between two entity fragments.5

The decoding object is to find all the subgraphs
in which each node connects with any other node
(line 9). Thus, each of such subgraph composes an
entity (line 10). In particular, the entity fragment
that has no edge with others composes an entity by
itself.

5We only use the Succession relations during de-
coding while ignore the Overlapping relations. The
Overlapping relations are only used during training.
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CLEF CLEF-Dis CADEC GENIA ACE

# Documents or Sentences
Train 179 534 875 1,599 370
Dev 20 303 187 200 43
Test 99 430 188 200 51

% of Overlapped Entities
Train 6 29 15 18 40
Dev 7 38 14 18 37
Test 8 36 13 22 39

% of Discontinuous Entities
Train 11 54 11 0 0
Dev 13 55 10 0 0
Test 8 52 9 0 0

Table 1: Dataset statistics. For the CLEF, CLEF-Dis, CADEC, GENIA and ACE05 datasets, we follow the settings
of Dai et al. (2020), Wang and Lu (2019), Luan et al. (2019) and Lu and Roth (2015) respectively. The statistics of
CLEF-Dis are sentence numbers, others are document numbers.

3.5 Training
During training, we employ multi-task learn-
ing (Caruana, 1997; Liu et al., 2017) to jointly
train different parts of our model.6 The loss func-
tion is defined as the negative log-likelihood of the
two classification tasks, namely Entity Fragment
Recognition and Fragment Relation Prediction:

L = −
∑

α log p1(yent) + β log p2(yrel), (6)

where yent and yrel denote the corresponding gold-
standard labels for text spans and span pairs, α
and β are the weights to control the task impor-
tance. During training, we use the BertAdam algo-
rithm (Devlin et al., 2019) with the learning rate
5× 10−5 to finetune BERT and 1× 10−3 to fine-
tune other parts of our model. The training process
would terminate if the performance does not in-
crease by 15 epochs.

4 Experimental Setup

Datasets: To evaluate our model for simultane-
ously recognizing overlapped and discontinuous
entities, we follow prior work (Muis and Lu, 2016;
Wang and Lu, 2019; Dai et al., 2020) and employ
the data, called CLEF, from the ShARe/CLEF
eHealth Evaluation Lab 2013 (Suominen et al.,
2013), which consists of 199 and 99 clinical notes
for training and testing. Note that Dai et al. (2020)
used the full CLEF dataset in their experiments
(179 for training, 20 for development and 99 for
testing), while Muis and Lu (2016) and Wang and
Lu (2019) used a subset of the union of the CLEF
dataset and SemEval 2014 Task 7 (Pradhan et al.,

6Please refer to Appendix C for the effect of multi-task
learning.

2014). Concretely, they used the training set and
test set of the ShARe/CLEF eHealth Evaluation
Lab 2013 as the training and development set, and
they also used the development set of the SemEval
2014 Task 7 as the test set. In addition, they se-
lected only the sentences that contain at least one
discontinuous entity. Finally, the training, devel-
opment and test sets contain 534, 303 and 430
sentences, respectively. We call this dataset as
CLEF-Dis in this paper. Moreover, we also fol-
low Dai et al. (2020) to evaluate models using the
CADEC dataset proposed by Karimi et al. (2015).
We follow the setting of Dai et al. (2020) to split
the dataset and conduct experiments.

To show our model is comparable with the state-
of-the-art models for overlapped NER, we conduct
experiments on GENIA (Kim et al., 2003) and
ACE05. For the GENIA and ACE05 datasets, we
employ the same experimental setting in previous
works (Lu and Roth, 2015; Muis and Lu, 2017;
Wang and Lu, 2018; Luan et al., 2019), where 80%,
10% and 10% sentences in 1,999 GENIA docu-
ments, and the sentences in 370, 43 and 51 ACE05
documents are used for training, development and
test, respectively. The statistics of all the datasets
we use in this paper is shown in Table 1.

Evaluation Metrics: In terms of evaluation met-
rics, we follow prior work (Lu and Roth, 2015;
Muis and Lu, 2016; Wang and Lu, 2018, 2019) and
employ the precision (P), recall (R) and F1-score
(F1). A predicted entity is counted as true-positive
if its boundary and type match those of a gold en-
tity. For a discontinuous entity, each span should
match a span of the gold entity. All F1 scores re-
ported in Section 5 are the mean values from five
runs of the same setting.
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Related Work Method F1
Tang et al. (2013) CRF, BIOHD 75.0
Tang et al. (2015) CRF, BIOHD1234 78.3
Dai et al. (2020) Transition-based, ELMo7 77.7

Our Model

Span-based, BERT 83.2
0 – Dep-guided GCN 82.5
0 – Overlap Relation 82.2
0 – BERT 78.6

Table 2: Results on the CLEF dataset.

Related Work Method F1
Muis and Lu (2016) Hypergraph 52.8
Wang and Lu (2019) Hypergraph, RNN 56.1

Dai et al. (2020) Transition-based, ELMo 62.9

Our Model

Span-based, BERT 63.3
0 – Dep-guided GCN 62.9
0 – Overlap Relation 62.6
0 – BERT 56.4

Table 3: Results on the CLEF-Dis dataset.

Implementation Details: For hyper-parameters
and other details, please refer to Appendix D.

5 Results and Analyses

5.1 Results on CLEF

Table 2 shows the results on the CLEF dataset. As
seen, Tang et al. (2013) and Tang et al. (2015)
adapted the CRF model, which is usually used for
flat NER, to overlapped and discontinuous NER.
They modified the BIO label scheme to BIOHD and
BIOHD1234, which use “H” to label overlapped
entity segments and “D” to label discontinuous en-
tity segments. Surprisingly, the recently-proposed
transition-based model (Dai et al., 2020) does not
perform better than the CRF model (Tang et al.,
2015), which may be because Tang et al. (2015)
have conducted elaborate feature engineering for
their model. In contrast, our model outperforms all
the strong baselines with at least about 5% margin
in F1. Our model does not rely on feature engi-
neering or manually-designed transitions, which is
more suitable for modern end-to-end learning.

We further perform ablation studies to investi-
gate the effect of dependency-guided GCN and the
overlapping relation, which can be removed with-
out influencing our major goal. As shown in Ta-
ble 2, after removing either of them, the F1 scores

7Dai et al. (2020) found that BERT did not perform better
than ELMo in their experiments.

Related Work Method F1
Baseline (2016) CRF, BIOHD 60.2

Tang et al. (2018) LSTM-CRF, Multilabel 66.3
Dai et al. (2020) Transition-based, ELMo 69.0

Our Model

Span-based, BERT 69.5
0 – Dep-guided GCN 69.9
0 – Overlap Relation 69.9
0 – BERT 66.8

Table 4: Results on the CADEC dataset. “Baseline
(2016)” indicates Metke-Jimenez and Karimi (2016).

go down by 0.7% and 1.0%. The observation sug-
gests that both dependency-guided GCN and the
overlapping relation are effective for our model.
Moreover, after we replace BERT with the word
embeddings pretrained on PubMed (Chiu et al.,
2016), the F1 score goes down by 4.6%, which
demonstrates that BERT plays an important role in
our model.

5.2 Results on CLEF-Dis
Table 3 shows the results on the CLEF-Dis dataset.
As seen, our model outperforms the previous best
model (Dai et al., 2020) by 0.4% in F1, which
indicates that our model is very competitive, lead-
ing to a new state-of-the-art result on the dataset.
Similarly, we further perform ablation studies to
investigate the effect of dependency-guided GCN,
the overlapping relation and BERT on this dataset.
As shown, after removing either of the GCN or
overlapping relation, the F1 score decreases by
0.4% or 0.7%, which is consistent with the obser-
vations in Table 2. In addition, to fairly compare
with Wang and Lu (2019), we also replace BERT
with the word embeddings pretrained on PubMed
(Chiu et al., 2016). As we can see, our model also
outperforms their model by 0.3%.

5.3 Results on CADEC
As shown in Table 4, Metke-Jimenez and Karimi
(2016) employed the similar method in (Tang
et al., 2013) by expanding the BIO label scheme
to BIOHD. Tang et al. (2018) also experimented
the BIOHD label scheme, but they found that the
result of the BIOHD-based method was slightly
worse than that of the “Multilabel” method (65.5%
vs. 66.3% in F1). Compared with the method
in (Metke-Jimenez and Karimi, 2016), the perfor-
mance improvement might be mainly because they
used deep neural networks (e.g., LSTM) instead of
shallow non-neural models.
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Precision Recall F1

67.7

23.9

35.3

42.5

26.4

32.6

41.4

29.8

34.6

53.3

48.7
50.951.4 52.1 51.7

r(BiLSTM-CRF) r r+o r+d r+o+d

Figure 4: Result analysis based on entity types (i.e.,
(r)egular, (o)verlapped and (d)iscontinuous) on the
CLEF-Dis dataset, comparing with BiLSTM-CRF. 8

Compared with the above baselines, the
transition-based model Dai et al. (2020) is still
the best. Our full model slightly outperforms the
transition-based model by 0.5%. In this dataset,
we do not observe mutual benefit between the
dependency-guided GCN and overlapped relation
prediction modules, since our model achieves bet-
ter results when using them separately (69.9%) than
using them jointly (69.5%). However, when using
them separately, the F1 is still 0.6% higher than
the one using neither of them. Without BERT, the
performance of our model drops by about 3% but
it is still comparable with the performances of the
methods without contextualized representations.

5.4 Result Analysis based on Entity Types

Comparing with BiLSTM-CRF To show the
necessity of building one model to recognize reg-
ular, overlapped and discontinuous entities simul-
taneously, we analyze the predicted entities in the
CLEF-Dis dataset and classify them based on their
types, as shown in Figure 4. In addition, we com-
pare our model with BiLSTM-CRF (Lample et al.,
2016; Ma and Hovy, 2016; Yang et al., 2018), to
show our model does not influence the performance
of regular NER significantly. For a fair comparison,
we replace BERT with Glove (Pennington et al.,
2014) and keep the setting of our model the same
with the setting of the BiLSTM-CRF model used
in previous work (Yang et al., 2018).

As seen, if only considering regular entities, the

8Many discontinuous entities are also overlapped, but we
do not count them as overlapped entities in this figure.

r r+o r+d r+o+d

33.3

37.8

57.4

59.9

41.1

44.1

61.5
62.9

Figure 5: Result analysis based on entity types on the
CLEF-Dis dataset, comparing with Dai et al. (2020)
(blue).

BiLSTM-CRF model can achieve a better perfor-
mance compared with our model, especially the
precision value is much higher. One likely reason
might be that the BiLSTM-CRF model is capa-
ble of using the label dependence to detect entity
boundaries accurately, ensuring the correctness of
the recognized entities, which is closely related to
the precision. Nevertheless, our model can lead to
higher recall, which reduces the gap between the
two models.

If considering both regular and overlapped enti-
ties, the recall of our model is greatly boosted, and
thus the F1 increases concurrently. If both regular
and discontinuous entities are included, the perfor-
mance of our model rises significantly to 50.9% due
to the large scale of discontinuous entities. When
all types of entities are concerned, the F1 of our
model further increases by 0.8%, indicating the
effectiveness of our model in joint recognition of
overlapped, discontinuous and regular entities.

Comparing with the Transition-Based Model
As shown in Figure 5, we also compare our
model with the transition-based model (Dai et al.,
2020) based on entity types by analyzing the re-
sults from one run of experiments. Note that
since we do not tune the hyper-parameters of
the transition-based model elaborately, the per-
formance is not as good as the one that they
have reported. As seen, our model performs
better in all of the four groups, namely regular,
regular+overlapped, regular+discontinuous, regu-
lar+overlapped+discontinuous entity recognition.
However, based on the observation on the bars in
different groups, we find that the main superiority
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Related Work Method GENIA ACE05
Finkel and Manning (2009) Constituency parsing 70.3 –

Lu and Roth (2015) Hypergraph 70.3 58.7
Muis and Lu (2017) Hypergraph 70.8 61.3

Katiyar and Cardie (2018) Hypergraph, RNN 73.8 70.5
Wang et al. (2018) Transition-based parsing, RNN 73.9 73.0

Ju et al. (2018) Dynamically stacking, RNN 74.7 72.2
Zheng et al. (2019) Boundary detection, RNN 74.7 –
Lin et al. (2019a) Anchor-region detection, RNN, CNN 74.8 74.9

Wang and Lu (2018) Hypergraph, RNN 75.1 74.5
Xia et al. (2019) Multi-grained detection, RNN, ELMo – 78.2

Fisher and Vlachos (2019) Merge and label, BERT – 82.4
Luan et al. (2019) Span-based, ELMo, Coref 76.2 82.9

Wadden et al. (2019) Span-based, BERT, Coref 77.9 –
Straková et al. (2019) Seq2Seq, ELMo, BERT, Flair 78.3 84.3

Our Model
Span-based, BERT 77.8 83.0
0 – Dep-guided GCN 77.4 82.6
0 – Overlap Relation 77.4 82.7

Table 5: Comparisons with prior work on the GENIA and ACE05 datasets.

of our model comes from regular entity recogni-
tion. In recognizing overlapped entities, our model
is comparable with the transition-based model, but
in recognizing discontinuous entities, our model
performs slightly worse than the transition-based
model. This suggests that a combination of span-
based and transition-based models may be a poten-
tial method for future research.

5.5 Results on GENIA and ACE05

Table 5 shows the results of the GENIA and ACE05
datasets, which include only regular and over-
lapped entities. Our final model achieves 77.8%
and 83.0% F1s in the GENIA and ACE05 datasets,
respectively. By removing the dependency-guided
GCN, the model shows an averaged decrease of
0.4%, indicating the usefulness of dependency syn-
tax information. The finding is consistent with that
of the CLEF dataset. Interestingly, we note that
the overlapping relation also brings a positive influ-
ence in this setting. Actually, the relation extraction
architecture is not necessary for only regular and
overlapped entities, because the decoding can be
finished after the first entity fragment recognition
step. The observation doubly demonstrates the ad-
vantage of our final model. We also compare our
results with several state-of-the-art results of the
previous work on the two datasets in Table 5. Only
the studies with the same training, development
and test divisions are listed. We can see that our
model can achieve very competitive performances

on both datasets. Note that Luan et al. (2019) and
Wadden et al. (2019) use extra coreference resolu-
tion information, and Straková et al. (2019) exploit
much richer word representations by a combination
of ELMo, BERT and Flair.

6 Conclusion

In this work, we proposed an efficient and effective
model to recognize both overlapped and discontin-
uous entities simultaneously, which can be applied
to any NER dataset theoretically, since no extra
assumption is required to limit the type of named
entities. First, we enumerate all spans in a given
sentence to determine whether they are valid en-
tity fragments, and then relation classifications are
performed to check the relationships between all
fragment pairs. The results show that our model
is highly competitive to the state-of-the-art mod-
els for overlapped or discontinuous NER. We have
conducted detailed studies to help comprehensive
understanding of our model.
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Method CLEF CLEF-Dis
Word2Vec 68.5 43.5
Word2Vec+BiLSTM 78.6 56.4
ELMo 74.2 48.1
ELMo+BiLSTM 77.1 55.8
BERT 82.5 59.0
BERT+BiLSTM 83.2 63.3

Table 6: Results using different word representation
methods.

A Comparing Different Settings in the
Word Representation Layer

The word representation layer addresses the prob-
lem that how to transform a word into a vector
for the usage of upper layers. In this paper, we
investigate several common word encoders in re-
cent NLP research to generate word representa-
tions, namely Word2Vec (Mikolov et al., 2013)
(or its variants such as Glove (Pennington et al.,
2014)), ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2019). Given an input sentence x = {x1,
x2, ..., xN}, we use different methods to represent
them as vectors based on which word encoders we
utilize:

• If Word2Vec is used, each word xi will be
directly transformed into a vector hi accord-
ing to the pretrained embedding lookup table.
Therefore, all the words in the sentence x cor-
respond to a matrix H = {h1, h2, ..., hN}
∈ RN×dh , where dh denotes the dimension of
hi.

• If ELMo is used, each word xi will first
be split into characters and then input into
character-level convolutional networks to ob-
tain character-level word representations. Fi-
nally, all word representations in the sen-
tence will be input into 3-layer BiLSTMs to
generate contextualized word representations,
which can also be denoted as H = {h1, h2,
..., hN}

• If BERT is used, each word xi will be con-
verted into word pieces and then fed into a pre-
trained BERT module. After the BERT calcu-
lation, each sentential word may involve vec-
torial representations of several pieces. Here
we employ the representation of the beginning
word piece as the final word representation fol-
lowing (Wadden et al., 2019). For instance,

if “fevers” is split into “fever” and “##s”, the
representation of “fever” is used as the whole
word representation. Therefore, all the words
in the sentence x can also be represented as a
matrix H = {h1, h2, ..., hN}

In addition, a bidirectional LSTM (BiLSTM) layer
can be stacked on word encoders to further cap-
ture contextual information in the sentence, which
is especially helpful for non-contextualized word
representations such as Word2Vec. Concretely, the
word representations H = {h1, h2, ..., hN} will be
input into the BiLSTM layer and consumed in the
forward and backward orders. Assuming that the
outputs of the forward and backward LSTMs are
−→
H = {

−→
h 1,
−→
h 2, ...,

−→
hN} and

←−
H = {

←−
h 1,
←−
h 2, ...,

←−
hN} respectively. Thus, they can be concatenated
(e.g., ĥi = [

−→
h i,
←−
h i]) to compose the final word

representations Ĥ = {ĥ1, ĥ2, ..., ĥN}.
We investigate the effects of different word en-

coders and the BiLSTM layer in the experiments.
As shown in Table 6, we compare the effects of
different word representation methods in the CLEF
and CLEF-Dis datasets, where the size of the for-
mer one is much bigger than that of the latter, in
order to also investigate the impact of the data size
on word representations. From the table, the first
observation is that BERT is the most effective word
representation method. Surprisingly, Word2Vec
is more effective than ELMo, which may be be-
cause ELMo is exclusively based on characters and
cannot effectively capture the whole meanings of
words. Therefore, this suggests that it is better to
use ELMo with Word2Vec.

Second, we find that BiLSTM is helpful in all
cases, especially for Word2Vec. This may be be-
cause Word2Vec is a kind of non-contexualized
word representations, which particularly needs the
help of BiLSTM to capture contexual information.
In contrast, BERT is not very sensitive to the help
of BiLSTM as Word2Vec and ELMo, which may
be because the transformer in BERT has already
captured contexual information.

Third, we observe that the effect of BiLSTM is
more obvious for the CLEF-Dis dataset. Consid-
ering the data sizes of the CLEF and CLEF-Dis
datasets, it is more likely that small datasets need
the help of BiLSTM, while big datasets are less sen-
sitive to the BiLSTM and BERT is usually enough
for them to build word representations.
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Examples Dependency Graphs
This showed a mildly [displaced]1 and
[angulated]2 inferior manubrial [[fracture]1]2.

[[Tone]1]2 was [increased]1 in the left lower
extremity and [decreased]2 in the left upper
extremity.

Table 7: Case Studies. Bold words with the same number belong to the same entity.

Method P R F1
EFR 81.2 79.6 80.4
EFR(+FRP) 81.4 80.1 80.7

Table 8: Effect of joint training between entity frag-
ment recognition (EFR) and fragment relation predic-
tion (FRP) on the CLEF-Dis dataset. P, R and F1 are
the results for EFR.

B Case Studies

To understand how syntax information helps our
model to identify discontinuous or overlapped en-
tities, we offer two examples in the CLEF dataset
for illustration, as shown in Table 7. Both the two
examples are failed in the model without using
dependency information, but are correctly recog-
nized in our final model. In the first example, the
fragments “displaced” and “fracture” of the same
entity are far away from each other in the original
sentence, while they are directly connected in the
dependency graph. Similarly, in the second exam-
ple, the distance between “Tone” and “decreased”
is 9 in the sentence, while their dependency dis-
tance is only 1. These dependency connections can
be directly modeled in dependency-guided GCN,
thus, resulting in strong clues for the NER, which
makes our final model work.

C Effect of Joint Training

As mentioned in Section 3.5, we employ multi-task
learning to jointly train our model between two
tasks, namely entity fragment recognition and frag-
ment relation prediction. Therefore, it is interesting
to show the effect of joint training by observing
the performance changes of the entity fragment
recognition (EFR) task before and after adding the
fragment relation prediction (FRP) task. As seen
in Table 8, the F1 of entity fragment recognition
increases by 0.3% after adding the FRP task, which
shows that the FRP task could improve the EFR

CLEF CADEC GENIA ACE05
dh 400 400 768 768

Nhead 4 4 4 4
l 2 2 2 1
df 20 20 64 64
ds 860 860 1,684 1,684

MLP Layer 1 1 2 2
MLP Size 150 150 150 150

α 1.0 1.0 1.0 1.0
β 1.0 1.0 1.0 0.6

Table 9: Main hyper-parameter settings in our model
for all the datasets. dh–Section 3.1; Nhead, l and
df–Section 3.2; ds–Section 3.3; α and β–Section 3.5.
Note that the hyper-parameter settings in the CLEF-Dis
dataset is the same as those in the CLEF dataset.

task. This suggests that the interaction between
entity fragment recognition and fragment relation
prediction could benefit our model, which also in-
dicates that end-to-end modeling is more desirable.

D Implementation Details

Our model is implemented based on Al-
lenNLP (Gardner et al., 2018). The number of
parameters is about 117M plus BERT. We use one
GPU of NVIDIA Tesla V100 to train the model,
which occupies about 10GB memories. The train-
ing time for one epoch is between 2∼6 minutes on
different datasets.

Table 9 shows the main hyper-parameter values
in our model. We tune the hyper-parameters based
on the results of about 5 trials on development sets.
Below are the ranges tried for the hyper-parameters:
the GCN layer l (1, 2), the GCN head Nhead (2,
4), the GCN output size df (20, 48, 64), the MLP
layer (1, 2), the MLP size (100, 150, 200), the loss
weight α and β (0.6, 0.8, 1.0). Since we employ
the BERTBASE , the dimension dh of word repre-
sentations is 768 except in the CLEF and CADEC
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datasets, where we use a BiLSTM layer on top of
BERT to obtain word representations since we ob-
serve performance improvements. We try 200 and
400 hidden units for the BiLSTM layer.

Considering the domains of the datasets, we
employ clinical BERT1 (Alsentzer et al., 2019),
SciBERT2 (Beltagy et al., 2019) and Google
BERT3 (Devlin et al., 2019) for the CLEF (and
CADEC), GENIA and ACE05 datasets, respec-
tively. In addition, since our model needs syntax
information for dependency-guided GCN, but the
datasets do not contain gold syntax annotations,
we utilize the Stanford CoreNLP toolkit (Manning
et al., 2014) to perform dependency parsing.

1https://github.com/EmilyAlsentzer/clinicalBERT
2https://github.com/allenai/scibert
3https://github.com/google-research/bert


