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Abstract

Retrieval is a core component for open-domain
NLP tasks. In open-domain tasks, multiple en-
tities can share a name, making disambigua-
tion an inherent yet under-explored problem.
We propose an evaluation benchmark for as-
sessing the entity disambiguation capabilities
of these retrievers, which we call Ambiguous
Entity Retrieval (AmbER) sets. We define an
AmbER set as a collection of entities that share
a name along with queries about those entities.
By covering the set of entities for polysemous
names, AmbER sets act as a challenging test
of entity disambiguation. We create AmbER
sets for three popular open-domain tasks: fact
checking, slot filling, and question answering,
and evaluate a diverse set of retrievers. We find
that the retrievers exhibit popularity bias, sig-
nificantly under-performing on rarer entities
that share a name, e.g., they are twice as likely
to retrieve erroneous documents on queries for
the less popular entity under the same name.
These experiments on AmbER sets show their
utility as an evaluation tool and highlight the
weaknesses of popular retrieval systems.1

1 Introduction

Substantial progress in NLP has been made on
“closed” tasks, where queries are paired with rele-
vant documents (Rajpurkar et al., 2016; Dua et al.,
2019). However, there is growing interest in “open-
domain” tasks, where relevant documents need
to be retrieved from a knowledge source before
an NLP system can perform reasoning and pro-
duce an answer (Chen et al., 2017; Petroni et al.,
2021). The open-domain setting better reflects
real-world usage for tasks where relevant informa-
tion is generally not provided (e.g., fact checking).

∗Work started during an internship at Apple.
1The AmbER sets used in this paper and the code to

generate them are available at https://github.com/
anthonywchen/AmbER-Sets.

Q: Which battle did Abe Lincoln fight in?
A: World War II
Wikipedia Documents Ranked by BLINK:
1. Abraham Lincoln
2. Abraham Lincoln in the Black Hawk War
3. Abraham Lincoln (captain)
4. Benjamin Lincoln
5. Lincoln Nebraska
6. Lincoln England

Q: What musical instrument does Abe Lincoln play?
A: Trombone
Wikipedia Documents Ranked by BLINK:
1. Abraham Lincoln
2. John Wilkes Booth
3. Abe (musical)
4. Nebraska
5. Lincoln Nebraska
6. Abe Lincoln (musician)

Figure 1: Queries for two entities (president & mu-
sician) with the name “Abe Lincoln”. Retrieving the
gold document involves disambiguating which “Abe
Lincoln” each query is asking about. BLINK performs
sub-optimally on the second query, as it ranks the doc-
ument of the president over the gold document.

Because success hinges on finding relevant docu-
ments, open-domain progress has been closely tied
to improvements in retrieval systems2 (Lee et al.,
2019; Karpukhin et al., 2020; Lewis et al., 2020b).

A crucial challenge when interacting with a large
knowledge source (e.g., Wikipedia) is entity ambi-
guity, the phenomenon where a single name can
map to multiple entities. Resolving this ambiguity
is referred to as entity disambiguation and is an
important step for effective retrieval. For example,
given the query “What musical instrument does
Abe Lincoln play?”, documents about the musician
should rank higher than other entities with the same
name (Figure 1). Although entity disambiguation
has been extensively studied in entity linking (Hof-
fart et al., 2011; Rao et al., 2013; Sevgili et al.,

2For example, replacing the BM25 retriever with DPR on
Natural Questions increases exact match by 15 points.
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2020) and search (Balog et al., 2010, 2011), in
the context of open-domain NLP, it is unclear how
good retrieval systems are when faced with queries
with ambiguous entities. Evaluating entity ambigu-
ity is challenging because the popularity of entities
follows a long-tail (Figure 2) and rare entities are
seldom covered in naturally-occurring datasets.

In this paper we introduce AmbER sets, a bench-
mark for evaluating the entity disambiguation ca-
pabilities of retrievers across multiple NLP tasks.
Each AmbER set is a collection of Wikidata entities
that share a name, and their corresponding queries
for specific NLP tasks. For each set, we define the
head entity as the most popular entity and tail en-
tities as the less popular ones. By creating queries
for multiple entities that share a name, AmbER sets
provide an accurate test of entity disambiguation
capabilities of retrievers and help assess the role
of entity popularity in disambiguation. We show
examples of AmbER sets for the question answer-
ing task in Table 1. We automatically create Am-
bER sets by mining the Wikidata knowledge graph
(Vrandecic and Krötzsch, 2014) for relevant names
and entities, and leveraging task-specific templates
to generate inputs for three tasks: fact checking,
slot filling, and question answering (Figure 3). In
total, our AmbER sets contain 80k task-specific
queries which we align to the Wikipedia snapshot
from KILT (Petroni et al., 2021).

We use AmbER sets to conduct a systematic
study of various retrieval systems that operate un-
der different principles, such as token overlap and
dense embedding similarity. Retrievers perform
very differently on AmbER sets in terms of ab-
solute retrieval numbers, with Bootleg (Orr et al.,
2020), an entity-linking-based retriever, perform-
ing best. Despite these differences, all retrievers
exhibit a large degree of popularity bias, under-
performing on inputs concerning tail entities. TF-
IDF, a token-based retriever, performs about four
times worse on tail entity inputs compared to head
entity inputs. Even with Bootleg, the best perform-
ing retriever, performance on tail entities is still
1.5 times lower than on head entities. Our results
on AmbER sets demonstrate that there is signifi-
cant work to be done on making retrievers robust
in handling entity disambiguation.

2 AmbER Sets

Retrieving relevant documents from large knowl-
edge sources such as Wikipedia is an important

Figure 2: The Long Tail of Entity Popularity: Graph
of the Wikipedia pageviews (in October 2019) for each
Wikidata entity, ranked by popularity. Gray are 100k
randomly sampled entities, while red/blue are entities
with the name “Abe Lincoln”.

first step in the open-domain pipeline. An inher-
ent problem in working with such sources is entity
disambiguation: resolving a name (mention) to
an entity in the knowledge source. Entity disam-
biguation can be challenging because many entities
share a name, and the popularity of entities follows
a long-tail distribution (Figure 2). Despite the im-
portance of entity disambiguation, it remains an
understudied problem for open-domain NLP. We
introduce AmbER sets for evaluating entity disam-
biguation capabilities of retrievers and analyze the
role of entity popularity in disambiguation.

2.1 What is an AmbER Set?

We first provide an intuition for an AmbER set be-
fore concretely defining one. Consider two entities,
a president and a musician, both of which have the
name “Abe Lincoln” (Figure 1). Now, consider
the query “Which battle did Abe Lincoln fight in?”
and assume a retriever correctly returns the article
about the president for this query. Simply because
the correct document was retrieved does not mean
a retriever has the ability to disambiguate between
the president and the musician, as the president is
much more popular. We should only be confident
in its ability to disambiguate entities if we also
pose a query about the less popular musician and
the retriever again returns the correct document (as
opposed to the document about the president).

Based on this intuition, we define an AmbER set
as a collection of queries that satisfy the following:
• Criteria 1: Polysemous Name: The queries in

an AmbER set are all about entities that share a
common name (e.g., Abe Lincoln).
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QID Input Answer Gold Document

AmbER-H

Q517 What wars did Napoleon participate in? Napoleon Wars Napoleon
Q3335909 What sport does Napoleon play? Rugby Napolioni Nalaga
Q3335909 Which team does Napoleon play for? Fiji National Napolioni Nalaga

Q117012 What movement did Yoko Ono participate in? Fluxus Yoko Ono
Q16264827 Which sport does Yoko Ono participate in? Judo Yoko Ono (judoka)

AmbER-N

Q312 Which industry is Apple in? Electronics Apple Inc.
Q532100 What is the record label of Apple? Page One Apple (band)
Q7714007 Who acted in Apple? Ray Shell The Apple (1980 film)

Q788822 Who is a cast member on Her? Steve Zissis Her (film)
Q788822 Who is Her’s screenwriter? Spike Jonze Her (film)
Q28441308 Who performed Her? Aaron Tippin Her (song)

Table 1: Examples of QA AmbER sets. An AmbER set is a collection of entities that share a name, with
instantiated queries for each entity. In this work, we use Wikidata to collect entities (QID). We also create queries
for two more tasks, fact checking and slot filling (omitted from this table).

• Criteria 2: Disparity in Popularity: An Am-
bER set contains queries about both the most
popular entity for a name (the head entity), e.g.,
the president, and the less popular entities (the
tail entities), e.g., the musician.

• Criteria 3: Resolvable Ambiguity: The con-
tent of the query should be sufficient to resolve
to the correct entity. The query “Which battle did
Abe Lincoln fight in?” satisfies this criteria, be-
cause there is only one Abe Lincoln that fought
in a war, while “Where was Abe Lincoln born?”
does not since it applies to all Abe Lincolns.

We provide examples of AmbER sets for the task
of question answering in Table 1.

2.2 Open-Domain Tasks

In this work, we create AmbER sets for three tasks:
fact checking, slot filling, and question answering
(Table 2). We consider these three tasks for three
reasons. First, these three set of tasks are diverse
in nature. In this work, slot filling is a generation
task, question answering is a span selection task,
and fact checking is a classification task. Second,
the training sets available for each task are quite
disparate. The largest fact checking training set,
FEVER (Thorne et al., 2018), has 80k instances,
while the slot filling dataset, T-REx (Elsahar et al.,
2018), has over 2 million instances. The final rea-
son we study these three tasks is that their inputs
are short and easy to create.

3 Creating AmbER Sets

While AmbER sets can be manually created, doing
so can be time-consuming, requiring a human to
manually scour a knowledge base for polysemous

Task Input Instance Output

FC John Mayer plays music. True
SF Nike [SEP] country USA
QA Whose face is on $100 bill? Benjamin Franklin

Table 2: Examples for each open-domain NLP task.

names and related entities before manually writing
queries for those entities. Instead, we present a
pipeline for automatically creating AmbER sets us-
ing the Wikidata knowledge graph (Vrandecic and
Krötzsch, 2014). In this section, we describe two
different collections of AmbER sets, and discuss
our automatic pipeline for creating AmbER sets.

3.1 Two Collections of AmbER Sets

A natural question is “How do retrievers handle
entity ambiguity when two entities have the same
entity type as opposed when they have different
types?”. To answer this question, we create two
collections of AmbER sets. The first is AmbER-
H, a collection of AmbER sets where all entities
are humans. The choice to restrict AmbER-H to
humans is motivated by the fact that humans have
properties that help distinguish themselves from
other humans, generally based on occupation. The
second is AmbER-N, a collection of AmbER sets
where all entities contained are non-humans, and
disambiguation of a name is between non-human
entities with different entity types. This is because
a non-human entity, like a movie, does not gener-
ally have a single distinguishing property to distin-
guish from other movies. This makes it natural to
compare non-human entities to other non-human
entities with different types. We specify the entity
types in each collection in Table 3.
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“Davy Jones”

Name

David Bowie*
Popularity: 4.09

Wikidata Entities

Davy Jones
(racing driver)

Popularity: 2.49

Davy Jones
(baseball)
Popularity: 1.93

Gender: Male

Birthplace: Brixton

Gender: Male

Sport: Baseball

Gender: Male

Sport: Auto Racing

Movement: New Wave

Wikidata Properties

Sports Team: Chicago White Sox

Task Specific Inputs 

QA: Which movement is Davy Jones associated with?

SF: Davy Jones [SEP] movement

FC: Davy Jones participated in the new wave movement. TRUE
       Davy Jones participated in the baroque music movement. FALSE

QA: Which team does Davy Jones play for?

SF: Davy Jones [SEP] member of sports team

FC: Davy Jones plays for the Chicago White Sox. TRUE
       Davy Jones plays for the Philadelphia Phillies. FALSE

*born Davy Jones

Q5383

Q1178405

Q5242203

Figure 3: Automated creation of AmbER sets for three tasks. We collect sets of entities from Wikipedia that
share a name, where the most popular entity is the head entity (in red) and others are tail entities (in blue), along
with their properties and associated values. We filter out properties that do not help distinguish entities in the set
(gray-ed out), and remove entities that do not have any properties remaining. From the remaining properties, we
instantiate queries via templates for three tasks: question answering (QA), slot filling (SF), and fact checking (FC).

3.2 Automatic Creation of AmbER Sets
We now describe a pipeline to automatically create
AmbER sets for three tasks: fact checking, slot
filling, and question answering. We provide a visu-
alization of the pipeline in Figure 3.

Collecting Names and Entities We begin by
collecting all entity aliases3 in Wikidata. From
these aliases, we filter for those that are shared by
multiple Wikidata entities. Each entity in Wikidata
is represented by a unique QID. The entities must
have an entity type from Table 3 depending on the
collection we are collecting AmbER sets for. Each
alias and associated entities form the basis for an
AmbER set. Within each set, we define the head
and tail entities based on the number of Wikipedia
page views for the month of October 2019. We
filter out AmbER sets where the percentage gap in
popularity between the head entity and the most
popular tail entity is less than 10% to account for
noise in the monthly page views.

Collecting Distinguishing Properties We
gather properties and associated values for each
entity from Wikidata. We only retain properties
that are in a specified list (Table 3), as they are
useful for resolving ambiguity (Criteria 3). We
also filter a property if two entities within an
AmbER set have that property, ensuring that the
remaining properties can be used to disambiguate
between entities with the same name. These
properties are used to instantiate the queries.

Aligning Entities to Wikipedia We use the
KILT Wikipedia snapshot (Petroni et al., 2021) as

3Aliases are all possible names for an entity.

Entity Type Property (PID) Percent

A
m

bE
R

-H

Human

instrument (P1303) 17.01
movement (P135) 2.04
appears in (P1441) 0.08
killed by (P157) 0.19
PhD student (P185) 0.42
military branch (P241) 12.22
sports position (P413) 12.82
sports team (P54) 17.25
battles or wars (P607) 12.29
sport (P641) 25.68

A
m

bE
R

-N

Album
performer (P175) 16.57
record label (P264) 7.11
tracklist (P658) 0.21

Business industry (P452) 0.65
City population (P1082) 0.24

Film cast member (P161) 27.14
screenwriter (P58) 18.28

Literary Work author (P50) 11.13
Musical Group record label (P264) 2.1

Song performer (P175) 4.42
record label (P264) 0.62

TV Series
cast member (P161) 2.01
# seasons (P2437) 1.85
screenwriter (P58) 0.21

Written Work author (P50) 7.43

Table 3: Distinguishing Properties selected to create
queries based on whether they are sufficient to resolve
ambiguity. We provide the percent breakdown of how
often each property occurs in each AmbER collection.

the knowledge source for AmbER sets for better
reproducibility. Each Wikipedia document in KILT
has an associated QID. For each entity, we find
all Wikipedia documents with that associated QID.
After this alignment, we apply a round of filtering
on the tuples. For each tuple, we check that the
value of the tuple is within the first 350 tokens of
the aligned Wikipedia article. If not, we remove
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AmbER-H AmbER-N

# AmbER Sets 2,093 5,237

Averages per AmbER Set
. . . # entities 2.98 2.42
. . . # entities w/ properties 2.03 2.06
. . . # properties 2.84 2.64

# Input Queries 23,768 55,216
. . . Question Answering (QA) 5,942 13,804
. . . Slot Filling (SF) 5,942 13,804
. . . Fact checking (FC) 11,884 27,608

Table 4: Statistics of AmbER collections.

the tuple.4 Aligned Wikipedia articles that contain
the tuple value serve as gold documents.

Instantiating AmbER Instances Recall that
our goal was to create AmbER sets for three tasks:
fact checking, slot filling, and question answering.
We are able to create queries for all three tasks si-
multaneously using the collected Wikidata tuples.
For question answering and fact checking, we use
templates based on properties to instantiate inputs.
Three of the authors wrote a template each for each
property for the two tasks. Duplicate templates
are removed, resulting in an average of 3 ques-
tion answering templates per property and 2.7 fact
checking templates per property. See Appendix B
for the complete list of templates.

For slot filling, we create a single input from
each Wikidata tuple by concatenating the AmbER
set name with the property name, and using the
value of the tuple as the answer. For question an-
swering, we also create a single input for each tuple
by filling in the template with the AmbER set name
and using the value of the tuple as the answer. For
fact checking, we create two inputs for each tuple,
one claim that is true using the tuple value and one
claim that is false. The false claim is created by
finding the most popular value for the tuple prop-
erty that does not match the tuple value5.

3.3 Dataset Statistics

We provide statistics for AmbER sets in Table 4.
On average, each AmbER set has about three en-
tities that share the same name. Of these three
entities, on average, only two have properties after
filtering. In total, our AmbER sets contain about
80k task-specific input queries.

4This reduces the number of tuples for AmbER-H from
17,079 to 5,942 and for AmbER-N from 22,219 to 13,804.

5 The most popular instrument in Wikidata is piano. There-
fore, given the true claim “Abe Lincoln played the trombone.”,
the false claim would be “Abe Lincoln played the piano.”.

3.4 Limitations

Since our pipeline is automated and relies on
Wikipedia and Wikidata, there are a few limitations
worth noting. AmbER sets will be affected by in-
completeness of the knowledge source, sometimes
resulting ambiguous queries if a property is miss-
ing from Wikidata, but answerable from Wikipedia
text. For this reason, we only select a few proper-
ties for each type (Table 3). Second, even though
we author multiple templates for each property, the
reliance on these templates limits the syntactic di-
versity in the queries (not a critical concern, since
we are only evaluating existing models). Also, we
use Wikipedia page views as a proxy for real-world
popularity of entities. Defining popularity in this
way may be problematic, as page views for an
entity can fluctuate, and may make our pipeline
difficult to generalize to other knowledge sources,
where this information may not be available.

Several design choices in creating AmbER sets
are worth further investigation. We limit AmbER
sets to a pre-specified list of entity types and prop-
erties to ensure that entities in an AmbER set are
distinguishable. This precludes other properties
that may be useful in distinguishing entities, reduc-
ing the diversity in AmbER sets. Another design
choice is we allow any alias in Wikidata to form an
AmbER sets, however, not all aliases are canonical
ways to refer to the entity. For instance, Shaquille
O’Neal has the unusual alias “The Big Cactus”,
potentially leading to a somewhat unrealistic query

“What sport did The Big Cactus play?”. We plan to
revisit the these design choices in future work.

4 Evaluation Setup

Retrieval Systems The primary focus of this
work is to evaluate entity ambiguity of retrieval
systems. We consider four retrievers based on
different retrieval paradigms. The first three are
TF-IDF, a token-based retriever using sparse em-
beddings, DPR (Karpukhin et al., 2020), a dense
embedding based retriever, and BLINK (Wu et al.,
2020), a linker-based retriever which ranks docu-
ments based on input entities. These three retriev-
ers have been thoroughly evaluated on a number of
open-domain tasks in Petroni et al. (2021) with no
obvious winner across tasks. Encouraged by the
disambiguation success on rare entities by Orr et al.
(2020), we also evaluate a retriever based on Boot-
leg, another entity linker. We provide additional
details about these retrievers in Appendix D.
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Collection Retriever Fact Checking (FC) Slot Filling (SF) Question Answering (QA)

All Head Tail ∀ All Head Tail ∀ All Head Tail ∀

AmbER-H

TF-IDF 17.3 28.5 8.2 0.0 18.8 31.9 8.1 0.0 16.7 28.2 7.3 0.1
DPR 18.1 23.9 13.3 0.1 8.0 11.6 5.1 0.3 13.1 19.6 7.9 1.1
BLINK 55.9 64.4 49.0 5.6 38.2 57.0 22.9 11.5 31.7 40.5 24.6 6.6
Bootleg 34.8 43.0 28.2 0.7 56.5 63.9 50.6 25.3 67.2 77.1 59.1 36.1

AmbER-N

TF-IDF 9.4 13.6 4.9 0.0 13.4 21.0 5.2 0.2 13.9 21.7 5.4 0.3
DPR 36.9 48.0 24.8 4.4 29.9 40.9 18.0 6.0 36.2 49.2 22.2 9.3
BLINK 11.7 13.9 9.4 0.0 5.7 7.3 3.9 0.7 35.2 44.7 24.9 10.1
Bootleg 3.5 4.6 2.4 0.0 52.3 61.3 42.5 22.4 59.8 69.5 49.3 29.0

Table 5: Top-1 retrieval results on each collection of AmbER sets. We report accuracy@1 results on all instances
as well as results on instances about head entities and instances about tail entities. We also report a set-level metric,
all correct (∀), the percentage of AmbER sets where all inputs had the correct document retrieved.

FC SF QA
Head Tail Head Tail Head Tail

H*

TF-IDF 19.5 67.5 28.2 75.7 27.9 76.1
DPR 1.2 10.0 2.3 23.8 2.6 27.0
BLINK 9.8 32.2 14.0 58.2 4.4 27.6
Bootleg 6.2 24.7 9.3 30.5 3.7 28.7

N*

TF-IDF 10.1 49.9 22.0 76.9 23.0 76.8
DPR 6.2 32.2 9.1 48.3 8.7 44.0
BLINK 5.8 22.8 5.1 32.2 5.5 31.9
Bootleg 7.7 26.1 16.1 36.2 7.8 31.6

* H represents AmbER-H and N represents AmbER-N.

Table 6: Entity confusion measures the % of queries
the gold document ranks worse (lower) than a docu-
ment for another entity with the same name (i.e., an-
other entity in the AmbER set). Retrievers are four
times as likely to exhibit this when dealing tail queries.

Downstream Models The dominant approach to
open-domain tasks is a two-stage process where a
retriever first finds relevant documents, followed
by a downstream model that processes these doc-
uments to produce an answer. We evaluate the
end-to-end performance on AmbER sets by train-
ing downstream NLP models on our tasks of in-
terest. For fact checking, we fine-tune a BERT
classifier (Devlin et al., 2019) on FEVER (Thorne
et al., 2018). For question answering, we fine-tune
a RoBERTa model (Liu et al., 2019) on Natural
Questions (Kwiatkowski et al., 2019). For slot
filling, a generation task, we fine-tune a BART
model (Lewis et al., 2020a) on T-Rex (Elsahar et al.,
2018). We provide example training instances in
Table 2 and additional details on the models in Ap-
pendix E. We use the AllenNLP and HuggingFace
Transformers library to finetune our downstream
models (Gardner et al., 2018; Wolf et al., 2020).

5 Results

In this section, we evaluate existing open-domain
NLP pipelines using AmbER sets. We also conduct

Figure 4: Popularity Gap vs Retrieval Gap. We bin
QA queries of pairs of head and tail entities based on
the popularity gap between the entities. For each bin,
we calculate the retrieval accuracy@1 difference on the
head and tail queries. Larger popularity gaps tend to
lead to a wider gaps in retrieval performance. The red
line is retrievers’ performance gaps between head and
tail queries on the entire collection.

a user study to evaluate the quality of the queries
in the AmbER sets.

Top Document Retrieval We report retrieval
performance in Table 5 in terms of retriever ac-
curacy@1 (the % of instances where the first re-
trieved document is the gold document). For each
task, we report values on the entire AmbER set
(“All”), as well as instances corresponding only
to “Head” entities or to “Tail” entities. We also
report a metric we call all correct (∀), the fraction
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Task System Results
All Head Tail

H

FC BERT (Oracle) 77.7 73.6 80.3
BERT + BLINK 59.8 60.1 57.7

SF BART (Oracle) 83.9 85.0 83.5
BART + BLINK 34.4 38.2 32.6

QA BERT (Oracle) 71.4 77.7 83.0
BERT + BLINK 27.5 33.8 22.3

N

FC BERT (Oracle) 66.6 63.9 69.5
BERT + DPR 60.9 61.4 60.4

SF BART (Oracle) 82.1 80.1 84.3
BART + DPR 18.6 18.6 18.6

QA BERT (Oracle) 83.5 85.1 81.8
BERT + DPR 26.0 31.3 20.4

Table 7: End-to-end performance on AmbER sets.
We evaluate systems in an oracle setting, where the
gold document is provided, and a retrieval setting,
where 20 documents are provided from a retriever.

of AmbER sets in which all queries had the cor-
rect document retrieved. All retrievers do better
on head entities compared to tail entities. Since
BLINK, Bootleg, and DPR are initialized using
pre-trained language models, they may have a pre-
disposition towards being biased to more popular
entities. However, we find TF-IDF also does bet-
ter on head entities, perhaps because more popular
entities have longer Wikipedia pages, possibly in-
creasing term-frequency scores. Second, there are
large discrepancies between a retriever’s perfor-
mance on different tasks for an AmbER collection.
For instance, DPR does substantially worse on slot
filling compared to its performance on question
answering. This is surprising since queries for all
tasks are created from the same set of Wikidata
tuples. Finally, we find that retrievers are mostly
incorrect on getting all the queries in a set correct,
with some receiving a ∀ score of 0 on some tasks.
Overall, we find that the Bootleg retriever on av-
erage does the best across tasks, however there is
significant scope for improvement.

Entity Confusion To explicitly evaluate whether
retrievers get confused by entities in the same Am-
bER set, we compute entity confusion for retrievers
defined as the percentage of queries where the re-
triever ranks a document for an incorrect entity
from the same AmbER set over the gold document
(Table 6). We find that across retrievers, tasks, and
AmbER collections, entity confusion is twice as
high for tail entity inputs. This result indicates that
the popularity of an entity for a given name plays a
significant role in retrieval performance.

Effect of Popularity Gap Since the difference
in popularity between the head and tail entities can
vary considerably, these results obfuscate the effect
of the size of the popularity gap. We explore how
the gap in popularity between head and tail enti-
ties translates to the gaps in performance on their
associated queries. For a head entity with popu-
larity ph and a tail entity with popularity pt from
the same AmbER set, we calculate popularity gap,
ph−pt
pt

, and bin associated head/tail inputs based on
the gap6. For each bin, we calculate the difference
in accuracy@1 between the head and tail entity
queries. Results for QA AmbER sets (Figure 4)
show that there is a strong correlation between the
popularity gap and the difference in performance.

End to End Results We evaluate end to end per-
formance in several evaluation settings with all
results provided in Table 7. The metrics used are
F1 for slot filling and question answering and accu-
racy for fact checking. In the “oracle” setting, we
directly provide the downstream NLP model the
gold document, and find that the gap between head
entities and tail entities is fairly small. This sug-
gests that in closed NLP settings, where the gold
document is known, entity disambiguation is not a
major concern.

In the regular retrieval setting, we provide the
model the top 20 documents as ranked by a re-
trieval system (BLINK and DPR), and find that
retrievers still perform better on head entity queries
(see Appendix A). The downstream systems that
use retrieved documents display a noticeable gap
in end-to-end performance between head and tail
entity inputs. This is expected, as retrieval systems
perform worse on tail entities.

User Study AmbER sets are created in a largely
automatic process, raising questions about data
quality. To address these questions, we conduct
a small user study on AmbER sets to evaluate
whether the queries are resolvable by humans. We
present a query from a QA AmbER set along with
three documents for the entities from the same Am-
bER set, one of which is the gold document. We
first ask the user to select the relevant document,
then we ask the user to select an answer span from
the selected document. In total, we asked 7 sub-
jects to examine about 120 queries across AmbER-
H and AmbER-N, and computed their accuracy in

6Bin width of 20%. Queries with a popularity gap higher
than 100% are binned into the highest bin.
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System AmbER-H AmbER-N
Doc Acc. EM Doc Acc. EM

TF-IDF 43.3 - 50.3 -
DPR 69.1 - 68.3 -
BLINK 69.1 - 74.1 -
Bootleg 79.6 - 73.1 -

BERT - 71.8 - 75.5

Human 100 78.8 97.9 77.5

Table 8: User study on AmbER QA. Humans are
nearly perfect in identifying the correct document for
each query (Doc Acc), while existing retrievers fre-
quently fail. When the gold document is provided to
downstream NLP models (BERT), they do almost as
well as humans in answering the question (EM).

selecting the correct document and answer (Table
8). We also compare retrievers for this task, i.e.
select from 3 documents for the same queries, and
find that humans perform very well on the docu-
ment selection task compared to retrievers on both
sets. We also compare the accuracy of answer se-
lection, and see that the closed domain NLP model
(fine-tuned BERT) is as almost accurate as humans
on the same set of queries7. This further confirms
that closed NLP models are not the source of bias
towards head entities, but the retrievers are.

6 Related Work

Entity Ambiguity As previously mentioned, en-
tity ambiguity is when a single name can match
multiple entities in a knowledge source. Entity
ambiguity has been most studied in the context of
entity linking (Rao et al., 2013). To improve dis-
ambiguation, entity linkers have included auxiliary
information such as entity types (Onoe and Durrett,
2020) and entity descriptions (Logeswaran et al.,
2019). A recent thread of work aims to study how
language models recall and leverage information
about names and entities. Prabhakaran et al. (2019)
shows that names can have a measurable effect
on the prediction of sentiment analysis systems.
Shwartz et al. (2020) demonstrates that pre-trained
language models implicitly resolve entity ambigu-
ity by grounding names to entities based on the pre-
training corpus. The problem of entity ambiguity
also appears implicitly in entity-centric tasks such
as determining the semantic relatedness between
entities (Hoffart et al., 2012) and entity-oriented

7The relatively low answer score is due to artifacts in
using EM for QA evaluation, and is consistent with human
performance on span selection (Rajpurkar et al., 2016)).

search (Balog et al., 2010, 2011). We draw inspira-
tion from these works by studying entity ambiguity
in the context of open-domain NLP.

Popularity Bias System’s that perform worse on
the long-tail suffer from what is known as popular-
ity bias. This problem has been studied extensively
in the recommendation systems literature, where
recommendation systems are known to often ignore
the long-tail of products and instead recommend
very popular items (Abdollahpouri et al., 2017;
Chen et al., 2020). This has the effect of unfairly
hurting users who would prefer these less-popular
items (Abdollahpouri et al., 2019; Ciampaglia et al.,
2018). We explore popularity bias from the angle
of retrieval as opposed to recommendation, and
find popularity bias exists in retrieval systems.

Open-Domain Ambiguity Ambiguity is an in-
herent problem when it comes to open-domain
reasoning. Min et al. (2020) showed that half of
instances sampled from Natural Questions are am-
biguous, with multiple correct answers. AmbER
sets are similar in that the ambiguity is in terms
of the entity in the query, however, in contrast to
Natural Questions, AmbER set inputs have been
constructed such that the ambiguity is resolvable.

Challenge Sets There have been many evalua-
tion sets specifically designed to assess a model’s
ability to handle a specific phenomenon (Naik
et al., 2018; Zhao et al., 2018; McCoy et al., 2019;
Warstadt et al., 2020; Richardson et al., 2020;
Jeretic et al., 2020; Ribeiro et al., 2019). Some
of these challenge sets, similar to AmbER sets, use
templates to generate a large amount of evalua-
tion data quickly (Richardson et al., 2020; McCoy
et al., 2019; Ribeiro et al., 2020). AmbER sets can
be viewed as a challenge set for assessing open-
domain systems’ ability to handle entity ambiguity.

7 Conclusion

Entity ambiguity is an inherent problem in retrieval,
as many entities can share a name. For evaluating
disambiguation capabilities of retrievers, we intro-
duce AmbER sets; an AmbER set is a collection
of task-specific queries about entities that share a
name, but the queries have sufficient content to re-
solve the correct entity. We create a broad range of
AmbER sets, covering many entity types, with in-
put queries for three open-domain NLP tasks: fact
checking, slot filling, and question answering. Our
experiments demonstrate the struggles of current
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retrievers in handling entity ambiguity. In partic-
ular, we find that the popularity of an entity in
relation to other entities that share a name plays
a significant role during disambiguation. For in-
stance, we find that all tested retrievers are about
twice as likely to retrieve erroneous documents
when dealing with less popular entities than the
most popular entity with the same name. Future
goals include improving entity disambiguation ca-
pabilities of retrievers, perhaps more directly in-
corporating ideas from entity linking and corefer-
ence resolution. The AmbER sets and the code
for the generation pipeline is available at https:
//github.com/anthonywchen/AmbER-Sets.
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Appendix

A Top-20 Retrieval Results

We provide results for top-20 retrieval in Table 9.
Top-20 retrieval is used for providing documents
in the end-to-end evaluation setting. In this set-
ting, retrieval accuracy measures whether a gold
document appears in one of the top-20 retrieved
documents. Similar to top-1 retrieval, retrievers
continue to perform better on head queries.

B Task Specific Templates

Table 10 contains the templates used to instantiate
the task-specific inputs. Templates were written
on a per-property basis. We note that many of the
properties share templates that are very similar.

C Computational Resources

All experiments (e.g., training baselines, generating
AmbER sets, etc.) were conducted on a machine
with 500 GB of RAM, 64 CPUs, and using an
NVIDIA TitanRTX with 24 GB of RAM. Retrieval
on a collection of AmbER sets takes about 12 hours
for the most time-consuming retriever, BLINK.
Training a downstream model takes roughly 5
hours and inference on a collection of AmbER sets
takes less than 30 minutes.

D Retriever Details

For BLINK, DPR, and TF-IDF, we use the retriever
code in the KILT repository released by Facebook8.
For Bootleg, we use the code provided by the Hazy
Research group9.

E Downstream Model Details

For question answering, we train a RoBERTa-Large
model on Natural Questions. We use the nega-
tive documents in Natural Questions to train a “no-
answer” classifier using the [CLS] token. During
inference, we take the highest-scoring span where
the answer is not classified as “no-answer”. For
slot filling, we train a BART-base model. For each
slot filling instance, we train with the top non-gold
document retrieved by TF-IDF as a negative doc-
ument. For this negative document, we train the
model to generate a “none” token, and during in-
ference, we take the highest scoring answer that is

8https://github.com/facebookresearch/
KILT

9https://github.com/HazyResearch/
bootleg

not “none”. For fact checking, we train a three-way
(i.e., SUPPORTS, REFUTES, NEUTRAL) BERT-
base classifier. Similar to slot filling, we train with
the top non-gold document retrieved by TF-IDF as
a negative document and train the model to classify
this negative document as NEUTRAL. During infer-
ence, we take the highest scoring prediction that
is not NEUTRAL. When training baselines models,
we do not tune over hyperparameters and train with
a batch size of 32 for 3 epochs.

https://github.com/facebookresearch/KILT
https://github.com/facebookresearch/KILT
https://github.com/HazyResearch/bootleg
https://github.com/HazyResearch/bootleg
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Collection Retriever Fact Checking Slot Filling Question Answering

All Head Tail ∀ All Head Tail ∀ All Head Tail ∀

AmbER-H
TF-IDF 65.8 78.5 55.4 26.7 72.0 83.5 62.5 55.6 72.6 82.0 64.8 55.9
DPR 39.8 51.0 30.6 4.1 26.6 37.0 18.1 6.8 36.1 49.3 25.3 9.6
BLINK 78.6 82.0 76.0 43.8 73.3 73.9 72.8 64.6 58.8 60.3 57.5 32.2
Bootleg 96.5 97.6 95.6 93.2 96.6 97.7 95.7 93.6 96.5 97.6 95.6 93.5

AmbER-N
TF-IDF 50.8 57.0 44.1 12.0 46.8 53.4 39.7 35.3 52.0 59.1 44.4 40.7
DPR 62.3 75.8 47.7 27.8 57.3 71.4 42.0 29.4 63.4 77.9 47.8 37.2
BLINK 33.5 38.7 27.9 1.3 18.2 21.5 14.6 5.8 74.7 80.6 68.3 53.0
Bootleg 79.3 80.2 78.4 61.5 89.6 91.9 87.1 85.3 83.8 83.6 84.1 71.1

Table 9: Top-20 retrieval results measuring retrieval accuracy and ∀.
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Property Question Answering Template Fact Checking Template
A

m
bE

R
-H

instrument Which musical instrument did $name play?
What musical instrument does $name play?
What instrument does $name play?

$name plays the $object.
$name plays the musical instrument $object.
The $object is played by $name.

movement What movement did $name participate in?
Which movement is $name associated with?
What movement is $name associated with?

$name was a member of the $object move-
ment.
$name participated in the $object movement.
$name was a part of the $object movement.

appears in What works does the fictional entity $name
appear in?
What work is the character $name present in?
Which work was the character $name in?

$name is a character in $object.
$name is a fictional character in $object.
$object features the fictional character $name.

doctoral student Who were the doctoral students of $name?
Who are $name’s doctoral students?
Who did $name advise?

$name has a doctoral student named $object.
$name’s doctoral student is $object.
$name advised their student $object.

military branch What branch of the military does $name be-
long to?
Which military branch does $name belong to?
What military branch is $name affiliated with?

$name is a member of the $object.
$name belongs to the military branch $object.
$name belongs to the $object branch of the
military.

sports position What is the position that $name plays?
What position does $name play?
Which position does $name play?

$name plays the $object position.
$name plays as a $object.

sports team $name plays for which team?
What team does $name play for?
Which team does $name play for?

$name is a player on the $object.
$name plays for the $object team.
$name plays for the $object.

battles or wars What were the wars that $name participated
in?
Which battle did $name fight in?
Which war did $name fight?

$name fought in the $object.
$name fought in $object.

sport Which sport does $name participate in?
Which sport does $name play?
What sport does $name play?

$name plays $object.
$name plays the sport $object.

A
m
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performer Who performs $name?
Who is the performer of $name?
Who performed $name?

$object performs in $name.
$object is the performer of $name .
$name was performed by $object.

record label What is the record label of $name.?
What is the record label for $name?
$name belongs to which record label?

$object is the record label for $name.
$name’s record label is $object.

tracklist What song appears in the album $name?
What song appears on $name?
What are the tracks in $name?

$name belongs to $object tracklist.
$object is on the release of $name .
$object is a song in the $name tracklist.

industry Which industry is $name in?
In what industry is $name?
What is $name’s industry?

$name is in the industry of $object.
The company $name is in the $object industry.
$name’s industry is $object.

population What is the total population of $name?
What is the population of $name?
How many people live in $name?

The population of $name is $object.
$name’s population is $object.
$name has a population of $object.

cast member Who acted in $name?
Who is a cast member on $name?
Who starred in $name?

$object was a cast member in $name.
$object appeared in $name.
$object acted in $name.

screenwriter Who was the screenwriter for $name?
Who was screenwriter for $name?
Who is $name’s screenwriter?

$name’s screenwriter is $object.
$object wrote the screenplay of $name.
$object screenwrote $name.

# seasons How many seasons are there in $name?
How many seasons does $name have?
How many seasons were there in $name?

There were $object seasons in $name.
$name has $object seasons.

author Who is the author of $name?
Who wrote $name?
Who authored $name?

$name wrote $object.
$name is written by $object.
$object authored $name.

Table 10: Templates used to instantiate the task-specific inputs.


