
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 4458–4471

August 1–6, 2021. ©2021 Association for Computational Linguistics

4458

Dependency-driven Relation Extraction
with Attentive Graph Convolutional Networks

Yuanhe Tian�⇤, Guimin Chen}⇤, Yan Song�~†, Xiang Wan~

�University of Washington }QTrade
�The Chinese University of Hong Kong (Shenzhen)

~Shenzhen Research Institute of Big Data
�yhtian@uw.edu }chenguimin@foxmail.com
�songyan@cuhk.edu.cn ~wanxiang@sribd.cn

Abstract
Syntactic information, especially dependency
trees, has been widely used by existing stud-
ies to improve relation extraction with better
semantic guidance for analyzing the context
information associated with the given entities.
However, most existing studies suffer from the
noise in the dependency trees, especially when
they are automatically generated, so that in-
tensively leveraging dependency information
may introduce confusions to relation classifi-
cation and necessary pruning is of great impor-
tance in this task. In this paper, we propose
a dependency-driven approach for relation ex-
traction with attentive graph convolutional net-
works (A-GCN). In this approach, an atten-
tion mechanism upon graph convolutional net-
works is applied to different contextual words
in the dependency tree obtained from an off-
the-shelf dependency parser, to distinguish the
importance of different word dependencies.
Consider that dependency types among words
also contain important contextual guidance,
which is potentially helpful for relation extrac-
tion, we also include the type information in
A-GCN modeling. Experimental results on
two English benchmark datasets demonstrate
the effectiveness of our A-GCN, which outper-
forms previous studies and achieves state-of-
the-art performance on both datasets.1

1 Introduction

Relation extraction (RE), which aims to detect the
relationship between entity mentions from raw text,
is one of the most important tasks in information
extraction and retrieval, and plays a crucial role
in supporting many downstream natural language
processing (NLP) applications such as text mining
(Distiawan et al., 2019), sentiment analysis (Sun

*Equal contribution.
†Corresponding author.
1The code and models involved in this paper are released

at https://github.com/cuhksz-nlp/RE-AGCN.

Figure 1: An illustration of noises in the dependency
tree that can hurt relation extraction, where the word
dependency connected in between “pumpkin mixture”
and “bowl” (whose relation is content-container) may
introduce confusion to the system when the object is
to predict the relation between “milk” and “pumpkin
mixture” (whose relation is entity-destination).

et al., 2019), question answering (Xu et al., 2016a),
and summarization (Wang and Cardie, 2012).

Recently, neural RE methods (Zeng et al., 2014;
Zhang and Wang, 2015; Xu et al., 2015; dos Santos
et al., 2015; Zhang et al., 2015; Wang et al., 2016;
Zhou et al., 2016; Zhang et al., 2017) with powerful
encoders (such as CNN, RNN, and Transformers)
have significantly improved model performance
for RE without requiring any elaborately designed
systems or manually constructed features. These
methods are superior in capturing contextual in-
formation and thus enable RE systems to better
understand the text and identify relations between
entities in the given text. Adopting neural models
to help RE is not only straightforward and effec-
tive, but is also expected to incorporate more di-
verse and informative knowledge into RE systems.
Among all different knowledge sources, syntactic
information, especially the dependency trees, have
been demonstrated to be beneficial in many stud-
ies (Miwa and Bansal, 2016; Zhang et al., 2018;
Sun et al., 2020; Chen et al., 2021) because they
provide long-distance word connections between
useful words and thus accordingly guide the system
to better extract relations between entity pairs.

However, intensively leveraging dependency in-
formation may not always lead to good RE per-
formance, because the noise in the dependency
tree can potentially introduce confusions to rela-
tion classification (Xu et al., 2015; Yu et al., 2020),



4459

especially when those trees are automatically gen-
erated. For example, Figure 1 shows an example
sentence with its dependency tree, where the de-
pendency connection between “pumpkin mixture”
and “bowl” may introduce noise when the object is
to predict the relation between “milk” and “pump-
kin mixture”. Therefore, previous studies have al-
ways required necessary pruning strategies before
encoding the dependency information through a
particular model such as LSTM (Xu et al., 2015) or
graph convolutional networks (GCN) (Zhang et al.,
2018). Because fixed pruning strategies are not
guaranteed to result in a sub-tree with all important
contextual information included and with all noise
filtered out, it is necessary to design an appropriate
way for distinguishing the noise in the dependency
tree and modelling them accordingly.

In this paper, we propose a dependency-driven
neural approach for RE, where attentive graph neu-
ral network (A-GCN) is proposed to distinguish
the important contextual information for this task.
Furthermore, given that the dependency types (e.g.,
nominal subject) that associate with dependency
connections are also potentially useful for RE since
they contain the syntactic instruction among con-
nected words, we further improve A-GCN by in-
troducing type information into it. Specifically, we
first obtain the dependency tree of an input sen-
tence from an off-the-shelf toolkit, then build the
graph over the dependency tree, and assign differ-
ent weights to different labeled dependency con-
nections between any two words, with the weights
computed based on the connections and their de-
pendency types, lastly predict relations by the A-
GCN according to the learned weights. In doing
so, not only is A-GCN able to distinguish impor-
tant contextual information from dependency trees
and leverage them accordingly, such that reliance
on pruning strategies is unnecessary, but A-GCN
can also leverage the dependency type information
that is omitted by most previous studies (in particu-
lar, the studies that also use attention mechanism
(Guo et al., 2019)). Experimental results on two En-
glish benchmark datasets, i.e., ACE2005EN and Se-
mEval 2010 Task 8, demonstrate the effectiveness
of our approach to RE through A-GCN equipped
with dependency type information. State-of-the-art
performance is observed on both datasets.

2 The Proposed Approach
RE is conventionally performed as a typical classi-
fication task. Our approach follows this paradigm

by using A-GCN and incorporates dependency in-
formation to improve model performance, where
the overall architecture of our model is illustrated
in Figure 2. Specifically, given an unstructured in-
put sentence X = x1, · · · , xn with n words and let
E1 and E2 denote two entities in X , our approach
predicts the relation br between E1 and E2 by

br = argmax
r2R

p (r|A-GCN (X , TX )) (1)

where TX is the dependency tree of X obtained
from an off-the-shelf toolkit, R is the relation type
set; p computes the probability of a particular rela-
tion r 2 R given the two entities and br the output
of A-GCN, which takes X and TX as the input. Fol-
lowing texts start with a brief introduction of the
standard GCN model, then elaborate our proposed
A-GCN equipped with dependency type informa-
tion, and lastly illustrate the process of applying
A-GCN to the classification paradigm for RE.

2.1 Standard Graph Convolutional Networks
Generally, a good text representation is a prereq-
uisite to achieve outstanding model performance
(Song et al., 2017; Bojanowski et al., 2017; Song
et al., 2018; Song and Shi, 2018; Hajdik et al.,
2019). To enhance the text representation and thus
obtain a good understanding of the running text,
many studies (Song et al., 2009, 2012; Song and
Xia, 2013; Xu et al., 2015; Miwa and Bansal, 2016;
Zhang et al., 2019; Mandya et al., 2020; Nie et al.,
2020) tried to leverage contextual features, such as
n-grams and syntactic information, through differ-
ent model architectures. Among all these architec-
ture choices, graph convolutional networks (GCN)
is a widely used architecture to encode the infor-
mation in a graph, where in each GCN layer, in-
formation in each node communicates to its neigh-
bors through the connections between them. The
effectiveness of GCN models to encode the contex-
tual information over a graph of an input sentence
has been demonstrated by many previous studies
(Zhang et al., 2018; Guo et al., 2019; Sun et al.,
2020; Chen et al., 2020; Yu et al., 2020; Mandya
et al., 2020; Tian et al., 2020c, 2021a). Normally,
the graph in the standard GCN model is built from
word dependencies and is represented by an ad-
jacency matrix A = (ai,j)n⇥n where ai,j = 1 if
i = j or there is a dependency connection2 (arc)
between two words xi and xj in the dependency
tree TX and ai,j = 0 otherwise. Based on A, for

2Normally the direction of the connection is ignored.



4460

Figure 2: The overall architecture of the proposed A-GCN for RE illustrated with an example input sentence (the
two entities “defamation” and “bishop” are highlighted in blue and red colors, respectively) and its dependency
tree. The left part shows our A-GCN model where the attention weights are applied to different connections to
model the dependency type-aware contextual information. The right part illustrates the adjacency matrix A for the
dependency graph and the process to compute the attention weights (i.e., p(l)i,j) for different connections.

each word xi 2 X , the l-th GCN layer gathers the
information carried by its context words in TX and
computes the output representation h(l)i for xi by:

h(l)
i = �

 
nX

j=1

ai,j

⇣
W(l) · h(l�1)

j +b(l)
⌘!

(2)

where h(l�1)
j denotes the output representation of

xj from the (l-1)-th GCN layer3, W(l) and b(l) are
trainable matrices and the bias for the l-th GCN
layer, respectively, and � is the ReLU activation.

2.2 A-GCN with Dependency Type
It is noted that in standard GCN (e.g., Eq. (2)),
the connections among words are treated equally
(i.e., ai,j is either 0 or 1). Therefore, GCN-based
models for RE are not able to distinguish the im-
portance of different connections and thus pruning
on them is of great importance for RE. Therefore,
we propose A-GCN for this task, which uses an
attention mechanism to compute the weights for
different connections so that the model is able to

3h(0)
j is the output of the encoder for xj .

leverage different dependency connections accord-
ingly. In addition, the standard GCN and most
previous studies omit the dependency types associ-
ated with the dependency connections, where those
types contain highly useful information for RE and
are introduced into A-GCN in this work. Specifi-
cally, we firstly represent dependency types in TX
by a type matrix T = (ti,j)n⇥n, where ti,j is the
dependency type (e.g., nsubj) associated with the
directed dependency connection4 between xi and
xj . Next, we map each type ti,j to its embedding
eti,j . Then, at the l-th GCN layer, the weight for
the connection between xi and xj is computed by

p(l)i,j =
ai,j · exp

⇣
s(l)i · s(l)j

⌘

Pn
j=1 ai,j · exp

⇣
s(l)i · s(l)j

⌘ (3)

where ai,j 2 A, “·” denotes inner production, and
s(l)i and s(l)i are two intermediate vectors for xi and

4It means ti,j and tj,i are represented in different depen-
dency types to model directions of connections between xi

and xj . For example, if ti,j is nsubj, then tj,i is #nsubj.



4461

xj , respectively, which are computed by

s(l)i = h(l�1)
i � et

i,j (4)

and
s(l)j = h(l�1)

j � et
i,j (5)

with “�” denoting the vector concatenation oper-
ation. Afterwards, we apply the weight p(l)i,j to the
associated dependency connection between xi and
xj and obtain the output representation of xi by

h(l)
i = �

 
nX

j=1

p(l)i,j

⇣
W(l) · eh(l�1)

j + b(l)
⌘!

(6)

with �, W(l), and b(l) following the same notations
in Eq. (2) for standard GCN, and eh(l�1)

j (a type-
enhanced representation for xj) computed by

eh(l�1)
j = h(l�1)

j +W(l)
T · et

i,j (7)

where W(l)
T maps the dependency type embedding

eti,j to the same dimension as h(l�1)
j .

Compared with standard GCN (i.e., Eq. (2)),
our approach uses numerical weighting (i.e., p(l)i,j 2
[0, 1]) rather than a binary choice for ai,j , to dis-
tinguish the importance of different connections
so as to leverage them accordingly. In addition,
we integrate the dependency type information into
both the computed weight (i.e., p(l)i,j) and the out-

put representation of xi (i.e., h(l)
i ), which is not

considered in most previous studies.

2.3 Relation Extraction with A-GCN

Before applying A-GCN for RE, we firstly encode
the input X into hidden vectors by BERT (Devlin
et al., 2019) with h(0)

i denoting the hidden vector
for xi. Next, we feed h(0)

i to our proposed A-GCN
model with L layers and obtain the correspond-
ing output h(L)

i . Then, we apply the max pooling
mechanism to two text spans: the first is on all h(L)

i
to obtain the global sentence representation hX by

hX = MaxPooling({h(L)
1 , · · · ,h(L)

n }) (8)

and the second is on h(L)
i of those words that be-

longs to an entity mention (i.e., Ek, k = 1, 2) to
compute the representation for entity hEk by

hEk = MaxPooling({h(L)
i |xi 2 Ek}) (9)

Afterwards, we concatenate the representations of
the sentence (i.e., hX ) and two entities (i.e., hE1

and hE2) and apply a trainable matrix WR to the

ACE05 SEMEVAL

# INSTANCES
TRAIN 48,198 8,000
DEV 11,854 -
TEST 10,097 2,717

Table 1: The number of unique instances (i.e., entity
pairs) of ACE05 and SemEval benchmark datasets.

computed vector to map it to the output space by

o = WR · (hX � hE1 � hE2) (10)

where o is a |R|-dimensional vector with each of
its value referring to a relation type in the relation
type set R. Finally, we apply a softmax function of
o to predict the relation br between E1 and E2 by

br = argmax
exp (ou)

P|R|
u=1 exp (o

u)
(11)

with ou representing the value at dimension u in o.

3 Experimental Settings

3.1 Datasets
In the experiments, we use two English benchmark
datasets for RE, namely, ACE2005EN (ACE05)5

and SemEval 2010 Task 8 (SemEval)6 (Hendrickx
et al., 2010). For ACE05, we use its English sec-
tion and follow previous studies (Miwa and Bansal,
2016; Christopoulou et al., 2018; Ye et al., 2019)
to pre-process it (two small subsets cts and un are
removed) and split the documents into training, de-
velopment, and test sets7. For SemEval, we use
its official train/test split8. The numbers of unique
relation types in ACE05 and SemEval are 7 and
19, respectively. We report the number of instances
(i.e., entity pairs), for train/dev/test sets of ACE05
and SemEval benchmark datasets in Table 1.

3.2 Dependency Graph Construction
To construct graphs for A-GCN, we use Standard
CoreNLP Toolkits (SCT)9 to obtain the dependency
tree TX for each input sentence X . Although our
approach is able to distinguish the importance of
different dependency connections through the atten-
tion mechanism, it is still beneficial if we can filter

5We obtain the official data (LDC2006T06) from https:
//catalog.ldc.upenn.edu/LDC2006T06.

6The data is downloaded from http://docs.google.
com/View?docid=dfvxd49s_36c28v9pmw.

7We follow the train/dev/test splits specified by Miwa
and Bansal (2016) at https://github.com/tticoin/
LSTM-ER/tree/master/data/ace2005/split

8SemEval only includes the training and test sets.
9We download the version 3.9.2 from https://

stanfordnlp.github.io/CoreNLP/.



4462

Figure 3: An illustration on the two (i.e., local and global) groups of dependency connections for an example
sentence (entities are highlighted in red color) with an adjacency matrix (on the right) built upon all connections
from the two groups. Local and global connections are represented in orange and blue colors, respectively,

out those dependency connections that bring con-
fusions to RE through particular pruning strategies.
Motivated by previous studies (Xu et al., 2015;
Zhang et al., 2018; Yu et al., 2020), in this paper,
we construct the graph for A-GCN by including
two groups of dependency connections, namely, the
local connections and the global connections. In
detail, local connections include all dependencies
that directly connect to the heads of two entities
and global connections include all dependencies
along the shortest dependency path (SDP) between
the head of two entities, where in many cases words
that do not directly connected to the two entities
are also involved. With an example sentence in-
cluding two entities (i.e., “company” and bench-
marking), Figure 3 illustrates the two groups of
dependency connections and the resulted adjacency
matrix, which is built with the connections from
the two groups10. It is worth noting that, when the
SDP is short, there might be more connections in
the local group than that in the global one.

3.3 Implementation
Following Soares et al. (2019), we insert four spe-
cial tokens (i.e., “<e1>”, “</e1>”, “<e2>”, and
“</e2>”) into the input sentence to mark the bound-
ary11 of the two entities to be investigated, which
allows the encoder to distinguish the position of en-
tities during encoding and thus improves model per-
formance. For the encoder, we try BERT (Devlin
et al., 2019), because it is a powerful pre-trained
language model which and whose variants have
achieved state-of-the-art performance in many NLP
tasks (Wu and He, 2019; Soares et al., 2019; Wu
et al., 2019; Diao et al., 2020; Song et al., 2020;

10We do not distinguish the two groups of connections in
A-GCN once they are represented by the adjacency matrix.

11For example, “<e1>” and “</e1>” are respectively in-
serted right before and after the entity E1 in the input X .

Antoun et al., 2020; Tian et al., 2020a,b,d, 2021b;
Qin et al., 2021; Song et al., 2021). Specifically,
we use the uncased version of BERT-base and
BERT-large12 following the default settings (e.g.,
for BERT-base, we use 12 layers of multi-head
attentions with 768-dimensional hidden vectors;
for BERT-large, we use 24 layers of multi-head
attentions with 1024-dimensional hidden vectors).
For A-GCN, we randomly initialize all trainable
parameters and the dependency type embeddings.
For evaluation, we follow previous studies to use
the standard micro-F1 scores13 for ACE05 and use
the macro-averaged F1 scores14 for SemEval. In
our experiments, we try different combinations of
hyper-parameters, and tune them on the dev set,
then evaluate on the test set by the model that
achieves the highest F1 score on the dev set.15

4 Results

4.1 Overall Results

In the experiments, we run our A-GCN models us-
ing BERT-base and BERT-large encoder on graphs
with and without applying dependency pruning
strategies, which correspond to the graph built upon
the combined local and global connections (“L +
G”), as well as the one constructed by the full de-
pendency graph (“Full”), respectively. We also run
baselines with standard GCN and standard graph
attentive networks (GAT) (Veličković et al., 2017)
with the same graph. For both standard GCN and A-
GCN, we try different numbers of layers (i.e. 1 to 3

12We download different BERT models from https://
github.com/huggingface/transformers.

13We use the evaluation script from sklearn framework.
14We use the official evaluation script downloaded from

http://semeval2.fbk.eu/scorers/task08/
SemEval2010_task8_scorer-v1.2.zip.

15We report the hyper-parameter settings of different mod-
els with their size and running speed in Appendix A and B.



4463

ID MODELS ACE05 SEMEVAL

1 BERT-BASE 75.31 87.87

2 + GAT (FULL) 76.16 88.39
3 + GAT (L + G) 75.79 88.53

4 + 1 GCN LAYER (FULL) 74.91 87.58
5 + 1 A-GCN LAYER (FULL) 76.63 88.34
6 + 1 GCN LAYER (L + G) 75.51 88.64
7 + 1 A-GCN LAYER (L + G) 77.10 89.03

8 + 2 GCN LAYERS (FULL) 75.09 88.66
9 + 2 A-GCN LAYERS (FULL) 77.25 88.70

10 + 2 GCN LAYERS (L + G) 76.11 88.62
11 + 2 A-GCN LAYERS (L + G) 77.30 89.16

12 + 3 GCN LAYERS (FULL) 75.69 88.54
13 + 3 A-GCN LAYERS (FULL) 76.26 88.63
14 + 3 GCN LAYERS (L + G) 76.85 88.33
15 + 3 A-GCN LAYERS (L + G) 76.36 88.70

(a) BERT-base

ID MODELS ACE05 SEMEVAL

1 BERT-LARGE 76.79 89.02

2 + GAT (FULL) 78.25 89.39
3 + GAT (L + G) 78.71 89.44

4 + 1 GCN LAYER (FULL) 77.63 88.98
5 + 1 A-GCN LAYER (FULL) 78.53 89.54
6 + 1 GCN LAYER (L + G) 77.49 89.11
7 + 1 A-GCN LAYER (L + G) 78.48 89.69

8 + 2 GCN LAYERS (FULL) 78.67 89.43
9 + 2 A-GCN LAYERS (FULL) 78.91 89.70

10 + 2 GCN LAYERS (L + G) 78.82 89.42
11 + 2 A-GCN LAYERS (L + G) 79.05 89.85

12 + 3 GCN LAYERS (FULL) 78.08 89.62
13 + 3 A-GCN LAYERS (FULL) 78.45 89.46
14 + 3 GCN LAYERS (L + G) 78.64 89.19
15 + 3 A-GCN LAYERS (L + G) 78.83 89.56

(b) BERT-large

Table 2: F1 scores of our A-GCN models and the baselines (i.e., BERT-only, standard GAT, and standard GCN)
under different settings with BERT-base (a) and BERT-large (b) used. All graph-based models (i.e., GAT, GCN,
and A-GCN) are tested with two settings: the first is using the full graph (FULL) with all dependency connections
involved and the second is using the combination of local and global connections (L + G). We also run GCN and
A-GCN with different numbers of layers (i.e., 1 to 3 layers) for fair comparisons.

layers). In addition, we try BERT-base and BERT-
large baselines without using any dependency infor-
mation. Table 2 shows the F1 scores of our A-GCN
models and all the aforementioned baselines on the
test set of ACE05 and SemEval.16

There are several observations. First, A-GCN
functions well when using BERT-base or BERT-
large as encoder, where the consistent improvement
is observed over the BERT-only baselines (ID: 1)
across two benchmark datasets, even though the
BERT baselines have already achieve good perfor-
mance. Second, for both datasets, A-GCN outper-
forms GAT (ID: 2, 3) and standard GCN baselines
(ID: 4, 6, 8, 10, 12, 14) with the same graph (i.e.,
either “L + G” or “Full”) and equal number of lay-
ers. Particularly, when full dependency graph is
used, it is noted that, in some cases (e.g., ID: 8
for BERT-base on ACE05), standard GCN obtains
very limited improvements (or even worse results)
over the BERT-only baseline (ID: 1), whereas our
A-GCN models (e.g., ID: 9 for BERT-base) is able
to consistently outperform the BERT-only base-
line and achieve higher performance. We attribute
this observation to the attention mechanism used
to weigh different dependency connections, which
allows A-GCN to distinguish the noise in the graph
and thus leverage useful dependency information
accordingly. Third, among the models with dif-
ferent numbers of A-GCN layers, the ones (e.g.,
ID: 11 for BERT-base and ID: 11 for BERT-large)

16For the same group of models, we report the F1 scores
on the development sets in Appendix C and the mean and
standard deviation of their test set results in Appendix D.

with two A-GCN layers achieves the highest scores,
where similar tread is observed from the standard
GCN baselines. Besides, we find that our A-GCN
models (as well as the standard GCN baselines)
with the local and global connections (i.e., “L +
G”) consistently outperform the ones with full de-
pendency graph (i.e., “Full”). These observations
are relatively intuitive since the dependency infor-
mation may introduce more noise to RE when it is
leveraged in an intensive way (e.g., by using more
layers or the full dependency tree without pruning).

4.2 Comparison with Previous Studies
In addition, we compare our best models (with
“L + G” or “Full” graphs) using BERT-large en-
coder and two A-GCN layers (ID: 9 and 11) with
previous studies. The test results (F1 scores) are
reported in Table 3, where our model with both
local and global connections (i.e., “L + G”) out-
performs all previous studies and achieves state-of-
the-art performance on the two benchmark datasets.
Specifically, compared with Guo et al. (2019) who
proposed an graph-based approach with attentions
to leverage dependency connections, our approach
leverages both dependency connections and depen-
dency types among all input words and thus pro-
vides a better way to comprehensively leverage
the dependency information. In addition, although
Mandya et al. (2020) proposed an approach to lever-
age both dependency connections and dependency
types through attentions, they added the depen-
dency type directly to the input word embeddings
along with POS embeddings, and the attention in



4464

MODELS ACE05 SEMEVAL

XU ET AL. (2015) - 83.7
WANG ET AL. (2016) - 88.0
ZHANG ET AL. (2018) - 84.8
CHRISTOPOULOU ET AL. (2018) 64.2 -
YE ET AL. (2019) 68.9 -
WU AND HE (2019) (BERT) - 89.2
SOARES ET AL. (2019) (BERT) - 89.5
GUO ET AL. (2019) - 85.4
SUN ET AL. (2020) - 86.0
MANDYA ET AL. (2020) - 85.9
YU ET AL. (2020) - 86.4

A-GCN (BERT) (FULL) 78.91 89.70
A-GCN (BERT) (L + G) 79.05 89.85

Table 3: The comparison (F1 scores) between previous
studies and our best models using two A-GCN layers
and BERT-large encoder on ACE05 and SemEval.

their approach is a separate stand-alone module
which is added on the top of the GCN layer. On
the contrary, in our approach, the dependency type
is added to each A-GCN layer and the attention
mechanism is directly applied to each dependency
connection in the A-GCN layer. Therefore, com-
pared with Mandya et al. (2020), our A-GCN en-
codes the dependency connections and dependency
types in a more intensive manner and thus can bet-
ter leverage them to guide the process of predicting
the relations between the given entities.

5 Analyses

5.1 The Effect of A-GCN
Dependency information is supposed to be benefi-
cial for RE because it contains long-distance word-
word relations, which could be extremely useful
when the given two entities are far away from each
other in the input sentence. To explore the effect
of A-GCN in capturing such long-distance word-
word relations to help with RE, we split the test
instances into different groups according to their
entities’ distances (i.e., the number of words be-
tween the two entities) and run models on these
groups to test their performance. Figure 4 shows
the performance of our best performing A-GCN
model with BERT-large (ID: 11 in Table 2) and
its corresponding standard GCN and BERT-large
baselines on the three groups of test instances from
the test set of SemEval, where the category name
indicates the range of the entity distance.17 It is ob-
served that, A-GCN outperforms the two baselines
on all groups of test instances and the improvement
becomes larger when the entity distance increases.

17For example, a test sentence whose distance in between
two entities is 7 will fall into the group (5, 10].

Figure 4: Performance (F1 scores) of different mod-
els (i.e., BERT-only, two layers of standard GCN, and
two layers of A-GCN) with the BERT-large encoder
on three groups of test instances from SemEval, where
each group is generated based on the distance (i.e.,
number of words) between two entities in an instance.

This observation confirms that our approach is able
to leverage dependency information and capture
long-distance word-word relations to improve RE.

5.2 The Effect of Graph Construction

In the main experiments, we try A-GCN with the
graph built upon the combined local and global
connections (“L + G”). To explore the effect of the
local connections and the global connections for A-
GCN, we run our approach using two A-GCN lay-
ers with the graph constructed by local connections
(“L”) or global connections (“G”) alone. Table
4 presents the experimental results (F1 scores) of
different models with BERT-base and BERT-large
encoders, where the results from BERT-only base-
lines, A-GCN (L + G), and A-GCN (Full) are also
copied from Table 2 for reference. Compared to
A-GCN (L + G), models with the graph constructed
by either local connections (i.e., A-GCN (L)) or
global connections (i.e., A-GCN (G)) achieve lower
performance, which complies with our intuition be-
cause both groups of connections contain important
contextual features for RE. Interestingly, it is found
that A-GCN (L) outperforms A-GCN (G) with both
BERT-base and BERT-large encoders. A possible
explanation could be the following. There are over-
laps between local and global connections (e.g.,
the connection between “range” and “restrictions”
in Figure 3). Therefore, A-GCN (L) can not only
leverage the contextual information associated with
the entities themselves, but is also partially18 bene-
fited from the overlapping connections on the SDP
between the two entities, which leads A-GCN (L)
to achieve a higher performance than A-GCN (G).

18When there is only one word on the shortest dependency
path between two entities, all global connections are included
in local ones, e.g., “defamation” and “bishop” in Figure 2.



4465

ID MODELS ACE2005 SEMEVAL

1 BERT-BASE 75.31 87.87

2 + A-GCN (L) 76.92 88.89
3 + A-GCN (G) 76.72 88.89
4 + A-GCN (L + G) 77.30 89.16
5 + A-GCN (FULL) 77.25 88.70

6 BERT-LARGE 76.79 89.02

7 + A-GCN (L) 78.61 89.70
8 + A-GCN (G) 78.40 89.38
9 + A-GCN (L + G) 79.05 89.85

10 + A-GCN (FULL) 78.91 89.70

Table 4: Performance of our models with two A-GCN
layers using the graphs built upon (1) only local connec-
tions (L), (2) only global connections (G), (3) the com-
bination of local and global connections (G + L) , and
(4) full dependency graph (FULL). The performance of
BERT-only baseline is also reported for reference.

5.3 Ablation Study

Compared with the standard GCN, A-GCN en-
hances it from two aspects: (1) using an attention
mechanism to weigh different dependency connec-
tions and (2) introducing dependency types to the
process to encode more detailed dependency infor-
mation. To better investigate the effect of each indi-
vidual enhancement (i.e., the attention mechanism
or the dependency type information), we conduct
an ablation study on our best model, i.e., two layers
of A-GCN (L + G) with BERT-base and BERT-
large encoder. Table 5 reports the experimental
results of different models, where the performance
of BERT-only baseline and the standard GCN base-
line (i.e., the one uses neither the attention mecha-
nism nor dependency types) are also reported for
reference. The results clearly indicate that, the
ablation of either enhancement (i.e., the attention
mechanism or the dependency type information)
could result in worse results (compared with full
A-GCN). Between the two enhancements, the abla-
tion of the attention mechanism hurts A-GCN more,
which indicates the ability of distinguishing impor-
tant connections and leveraging them accordingly
plays a more important role in RE.

5.4 Case Study

To explore in detail that how A-GCN leverages de-
pendency connections and types to improve RE,
we conduct a case study with our A-GCN models
with different dependency graphs (i.e., two layers
of A-GCN (Full) and A-GCN (L + G) with BERT-
large encoder) on an example sentence “A central
vacuum is a vacuum motor and filtration system

ATT. TYPE ACE2005 SEMEVAL

BERT-BASE

BASELINE 75.31 87.87
p p

77.30 89.16
⇥

p
77.00 88.07p

⇥ 76.27 88.50

GCN 76.11 88.62

BERT-LARGE

BASELINE 76.79 89.02
p p

79.05 89.85
⇥

p
78.92 89.26p

⇥ 78.22 89.37

GCN 77.92 89.13

Table 5: The ablation study on the attention mechanism
(ATT.) and dependency types (TYPE) in our best model,
i.e., two layers of A-GCN (L + G). “

p
” and “⇥” stand

for that whether a module is used. The F1 scores of
BERT-only and the standard two layers of GCN (L +
G) are also reported for references.

built inside a canister.”. Figure 5 shows the sen-
tence where both the two models correctly predict
the relation between “motor” (E1) and “canister”
(E2) (highlighted in the red color) to be “Content-
Container”, whereas the baseline GCN (Full) and
GCN (L + G) models fail to do so. We also vi-
sualize the attention weights assigned to different
dependency connections extracted from the last A-
GCN layer, with darker and thicker lines referring
to higher weights. In this example, for A-GCN
(Full), we observe that the connection between
“built” and “canister” along SDP and the connec-
tion between “inside” and “canister” receive the
highest weights, where this is valid because the
dependency type, i.e., obl (oblique nominal), as-
sociated with the connection (between “built” and
“canister”) reveals that “canister” could be the po-
sition where the action (i.e., build) takes place, and
is further confirmed by another dependency con-
nection and type (i.e., case) between “inside” and
“canister”. Therefore, it is proved that our model
learn from the contextual information carried by
such important connections and results in correct
RE prediction. Similarly, A-GCN (L + G) also cor-
rectly perform RE on this case by highlighting the
same dependency connections as those from the
A-GCN (Full) with much higher weights (because
many dependency connections are filtered out).

6 Related Work

Recently, neural networks with integrating exter-
nal knowledge or resources play important roles
in RE because of their superiority in better cap-
turing contextual information (Shen and Huang,



4466

Figure 5: Visualizations of weights assigned to differ-
ent dependency connections of A-GCN (Full) and A-
GCN (L + G) for an example input, where darker and
thicker lines refer to connections with higher weights.

2016; Soares et al., 2019). Particularly, as one
kind of such knowledge, dependency parses show
their effectiveness in supporting RE for its ability
in capturing long-distance word relations (Zhang
et al., 2018; Guo et al., 2019). However, inten-
sively leveraging dependency information could
introduce confusions to RE (Xu et al., 2016b; Yu
et al., 2020) so that necessary pruning is required
to alleviate this problem. E.g., Xu et al. (2015)
proposed to use the connections along the shortest
dependency path between the two entities and ap-
ply LSTM to model them; Miwa and Bansal (2016)
proposed to prune the original dependency tree
into the lowest common ancestor subtree. How-
ever, these pruning strategies are either too aggres-
sive or modest, so that the resulted graph might
lose some important contexts or filled with more
noise. Zhang et al. (2018) adopted GCN to model
the dependencies and proposed a trade-off prun-
ing strategy in between Xu et al. (2015) and Miwa
and Bansal (2016). Besides, there are other graph-
based models for RE that utilize layers of multi-
head attentions (Guo et al., 2019), dynamic pruning
(Yu et al., 2020), and additional attention layers
(Mandya et al., 2020) to encode dependency trees.
Compared with the aforementioned methods, espe-
cially the graph-based ones, our approach offers an
alternative to enhance RE with A-GCN by using
attention mechanism and dependency type, which
are effective and efficient improvement to standard
GCN without requiring complicated model design.

7 Conclusion

In this paper, we propose A-GCN to leverage
dependency information for relation extraction,
where an attention mechanism is applied to de-
pendency connections to applying weighting on
both connections and types so as to better distin-

guish the important dependency information and
leverage them accordingly. In doing so, A-GCN
is able to dynamically learn from different depen-
dency connections so that less-informative depen-
dencies are smartly pruned. Experimental results
and analyses on two English benchmark datasets
for relation extraction demonstrate the effective-
ness of our approach, especially for entities with
long word-sequence distances, where state-of-the-
art performance is obtained on both datasets.

Acknowledgements

This work is supported by Chinese Key-Area Re-
search and Development Program of Guangdong
Province (2020B0101350001) and NSFC under the
project “The Essential Algorithms and Technolo-
gies for Standardized Analytics of Clinical Texts”
(12026610). This work is also partially supported
by Shenzhen Institute of Artificial Intelligence and
Robotics for Society under the project “Automatic
Knowledge Enhanced Natural Language Under-
standing and Its Applications” (AC01202101001).
We also thank Mr. Peilin Zhou for providing the
first version of the model architecture figure.

References
Wissam Antoun, Fady Baly, and Hazem Hajj.

2020. AraBERT: Transformer-based Model for
Arabic Language Understanding. arXiv preprint
arXiv:2003.00104.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Guimin Chen, Yuanhe Tian, and Yan Song. 2020. Joint
Aspect Extraction and Sentiment Analysis with Di-
rectional Graph Convolutional Networks. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 272–279.

Guimin Chen, Yuanhe Tian, Yan Song, and Xiang Wan.
2021. Relation Extraction with Type-aware Map
Memories of Word Dependencies. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021.

Fenia Christopoulou, Makoto Miwa, and Sophia Anani-
adou. 2018. A Walk-based Model on Entity Graphs
for Relation Extraction. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
81–88.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of



4467

Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Shizhe Diao, Jiaxin Bai, Yan Song, Tong Zhang, and
Yonggang Wang. 2020. ZEN: Pre-training Chinese
Text Encoder Enhanced by N-gram Representations.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4729–4740.

Bayu Distiawan, Gerhard Weikum, Jianzhong Qi, and
Rui Zhang. 2019. Neural Relation Extraction for
Knowledge Base Enrichment. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 229–240.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention
Guided Graph Convolutional Networks for Relation
Extraction. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 241–251.

Valerie Hajdik, Jan Buys, Michael Wayne Goodman,
and Emily M. Bender. 2019. Neural Text Genera-
tion from Rich Semantic Representations. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2259–2266,
Minneapolis, Minnesota.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 Task 8:
Multi-Way Classification of Semantic Relations be-
tween Pairs of Nominals. In Proceedings of the
5th International Workshop on Semantic Evaluation,
pages 33–38.

Angrosh Mandya, Danushka Bollegala, and Frans Co-
enen. 2020. Graph Convolution over Multiple De-
pendency Sub-graphs for Relation Extraction. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 6424–6435.

Makoto Miwa and Mohit Bansal. 2016. End-to-End
Relation Extraction using LSTMs on Sequences and
Tree Structures. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1105–
1116.

Yuyang Nie, Yuanhe Tian, Yan Song, Xiang Ao, and
Xiang Wan. 2020. Improving Named Entity Recog-
nition with Attentive Ensemble of Syntactic Infor-
mation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4231–4245.

Han Qin, Guimin Chen, Yuanhe Tian, and Yan Song.
2021. Improving Arabic Diacritization with Regu-
larized Decoding and Adversarial Training. In Pro-
ceedings of the Joint Conference of the 59th Annual

Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing.

Cı́cero dos Santos, Bing Xiang, and Bowen Zhou.
2015. Classifying Relations by Ranking with Con-
volutional Neural Networks. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 626–634.

Yatian Shen and Xuanjing Huang. 2016. Attention-
based Convolutional Neural Network for Semantic
Relation Extraction. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 2526–
2536, Osaka, Japan.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching the
Blanks: Distributional Similarity for Relation Learn-
ing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2895–2905.

Yan Song, Chunyu Kit, and Xiao Chen. 2009. Translit-
eration of Name Entity via Improved Statistical
Translation on Character Sequences. In Proceedings
of the 2009 Named Entities Workshop: Shared Task
on Transliteration (NEWS 2009), pages 57–60.

Yan Song, Prescott Klassen, Fei Xia, and Chunyu Kit.
2012. Entropy-based Training Data Selection for
Domain Adaptation. In Proceedings of COLING
2012: Posters, pages 1191–1200.

Yan Song, Chia-Jung Lee, and Fei Xia. 2017. Learn-
ing Word Representations with Regularization from
Prior Knowledge. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 143–152.

Yan Song and Shuming Shi. 2018. Complementary
Learning of Word Embeddings. In Proceedings of
the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18, pages 4368–
4374.

Yan Song, Shuming Shi, and Jing Li. 2018. Joint
Learning Embeddings for Chinese Words and Their
Components via Ladder Structured Networks. In
Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence, pages 4375–4381.

Yan Song, Yuanhe Tian, Nan Wang, and Fei Xia. 2020.
Summarizing Medical Conversations via Identifying
Important Utterances. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 717–729.

Yan Song and Fei Xia. 2013. A Common Case of
Jekyll and Hyde: The Synergistic Effect of Using Di-
vided Source Training Data for Feature Augmenta-
tion. In Proceedings of the Sixth International Joint
Conference on Natural Language Processing, pages
623–631.



4468

Yan Song, Tong Zhang, Yonggang Wang, and Kai-Fu
Lee. 2021. ZEN 2.0: Continue Training and Adap-
tion for N-gram Enhanced Text Encoders. arXiv
preprint arXiv:2105.01279.

Kai Sun, Richong Zhang, Yongyi Mao, Samuel Men-
sah, and Xudong Liu. 2020. Relation Extraction
with Convolutional Network over Learnable Syntax-
Transport Graph. In AAAI, pages 8928–8935.

Kai Sun, Richong Zhang, Samuel Mensah, Yongyi
Mao, and Xudong Liu. 2019. Aspect-level Sen-
timent Analysis via Convolution over Dependency
Tree. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5683–5692.

Yuanhe Tian, Guimin Chen, and Yan Song. 2021a.
Aspect-based Sentiment Analysis with Type-aware
Graph Convolutional Networks and Layer Ensemble.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2910–2922, Online.

Yuanhe Tian, Guimin Chen, and Yan Song. 2021b. En-
hancing Aspect-level Sentiment Analysis with Word
Dependencies. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
3726–3739, Online.

Yuanhe Tian, Wang Shen, Yan Song, Fei Xia, Min
He, and Kenli Li. 2020a. Improving Biomedical
Named Entity Recognition with Syntactic Informa-
tion. BMC Bioinformatics, 21:1471–2105.

Yuanhe Tian, Yan Song, and Fei Xia. 2020b. Joint Chi-
nese Word Segmentation and Part-of-speech Tag-
ging via Multi-channel Attention of Character N-
grams. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
2073–2084.

Yuanhe Tian, Yan Song, and Fei Xia. 2020c. Supertag-
ging Combinatory Categorial Grammar with Atten-
tive Graph Convolutional Networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6037–6044.

Yuanhe Tian, Yan Song, Fei Xia, and Tong Zhang.
2020d. Improving Constituency Parsing with Span
Attention. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 1691–
1703.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph Attention Networks. arXiv preprint
arXiv:1710.10903.

Linlin Wang, Zhu Cao, Gerard De Melo, and Zhiyuan
Liu. 2016. Relation Classification via Multi-Level
Attention CNNs. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1298–
1307.

Lu Wang and Claire Cardie. 2012. Focused Meeting
Summarization via Unsupervised Relation Extrac-
tion. In Proceedings of the 13th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 304–313.

Shanchan Wu and Yifan He. 2019. Enriching Pre-
trained Language Model with Entity Information for
Relation Classification. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 2361–2364.

Zhaofeng Wu, Yan Song, Sicong Huang, Yuanhe Tian,
and Fei Xia. 2019. WTMED at MEDIQA 2019: A
Hybrid Approach to Biomedical Natural Language
Inference. In Proceedings of the 18th BioNLP Work-
shop and Shared Task, pages 415–426, Florence,
Italy.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016a. Question Answering on
Freebase via Relation Extraction and Textual Evi-
dence. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2326–2336.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016b. Question answering on
Freebase via relation extraction and textual evidence.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers).

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying Relations via Long
Short Term Memory Networks Along Shortest De-
pendency Paths. In Proceedings of the 2015 con-
ference on empirical methods in natural language
processing, pages 1785–1794.

Wei Ye, Bo Li, Rui Xie, Zhonghao Sheng, Long Chen,
and Shikun Zhang. 2019. Exploiting Entity BIO Tag
Embeddings and Multi-task Learning for Relation
Extraction with Imbalanced Data. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1351–1360.

Bowen Yu, Mengge Xue, Zhenyu Zhang, Tingwen Liu,
Wang Yubin, and Bin Wang. 2020. Learning to
Prune Dependency Trees with Rethinking for Neu-
ral Relation Extraction. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 3842–3852, Barcelona, Spain (Online).

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation Classification via
Convolutional Deep Neural Network. In Proceed-
ings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical Pa-
pers, pages 2335–2344.



4469

Dongxu Zhang and Dong Wang. 2015. Relation Clas-
sification via Recurrent Neural Network. arXiv
preprint arXiv:1508.01006.

Hongming Zhang, Yan Song, and Yangqiu Song. 2019.
Incorporating Context and External Knowledge for
Pronoun Coreference Resolution. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 872–881.

Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming
Yang. 2015. Bidirectional Long Short-Term Mem-
ory Networks for Relation Classification. In Pro-
ceedings of the 29th Pacific Asia Conference on Lan-
guage, Information and Computation, pages 73–78.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph Convolution over Pruned Dependency
Trees Improves Relation Extraction. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2205–2215.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An-
geli, and Christopher D. Manning. 2017. Position-
aware Attention and Supervised Data Improve Slot
Filling. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 35–45.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li,
Hongwei Hao, and Bo Xu. 2016. Attention-Based
Bidirectional Long Short-Term Memory Networks
for Relation Classification. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
207–212.

Appendix A. Hyper-parameter Settings

Table 6 reports the hyper-parameters tested in train-
ing our models. We test all combinations of them
for each model and use the one achieving the high-
est F1 score in our final experiments. The best
hyper-parameter setting is highlighted in boldface.

Hyper-parameters Values

Learning Rate 5e� 6, 1e� 5, 2e� 5,3e� 5
Warmup Rate 0.06, 0.1
Dropout Rate 0.1
Batch Size 16,32, 64, 128

Table 6: The hyper-parameters tested in tuning our
models. The best ones used in our final experiments
are highlighted in boldface.

Appendix B. Model Size and Running
Speed

Table 7 reports the number of trainable parameters
and the inference speed (sentences per second) of

the baseline (i.e., BERT, BERT + GAT and BERT
+ GCN) and our models (i.e., BERT + A-GCN) on
ACE2005 and SemEval datasets. All models are
performed on an NVIDIA Tesla V100 GPU.

Appendix C. Experimental Results on the
Development Set

Table 8 reports the F1 scores of different models
on the development set of ACE2005.19

Appendix D. Mean and Deviation of the
Results

In the experiments, we test models with different
configurations. For each model, we train it with
the best hyper-parameter setting using five different
random seeds. We report the mean (µ) and standard
deviation (�) of the F1 scores on the test set of
ACE2005 and SemEval in Table 9.

19SemEval does not have an official dev set.



4470

Models
ACE2005 SemEval

Para. Speed Para. Speed

BERT-base 109M 27.7 109M 54.7

+ GAT (Full) 110M 26.2 110M 51.8
+ GAT (L + G) 110M 26.2 110M 51.8

+ 1 GCN layer (Full) 110M 26.4 110M 52.2
+ 1 A-GCN layer (Full) 110M 25.1 110M 50.4
+ 1 GCN layer (L + G) 110M 26.4 110M 52.2
+ 1 A-GCN layer (L + G) 110M 25.1 110M 50.4

+ 2 GCN layers (Full) 111M 24.8 111M 49.9
+ 2 A-GCN layers (Full) 111M 24.1 111M 48.7
+ 2 GCN layers (L + G) 111M 24.8 111M 49.9
+ 2 A-GCN layers (L + G) 111M 24.1 111M 48.7

+ 3 GCN layers (Full) 112M 23.1 112M 47.9
+ 3 A-GCN layers (Full) 112M 23.0 112M 47.2
+ 3 GCN layers (L + G) 112M 23.1 112M 47.9
+ 3 A-GCN layers (L + G) 112M 23.0 112M 47.2

(a) BERT-base

Models
ACE2005 SemEval

Para. Speed Para. Speed

BERT-large 335M 8.9 335M 17.1

+ GAT (Full) 337M 8.4 337M 16.7
+ GAT (L + G) 337M 8.4 337M 16.7

+ 1 GCN layer (Full) 337M 8.6 337M 16.9
+ 1 A-GCN layer (Full) 337M 8.1 337M 16.6
+ 1 GCN layer (L + G) 337M 8.6 337M 16.9
+ 1 A-GCN layer (L + G) 337M 8.1 337M 16.6

+ 2 GCN layers (Full) 338M 8.0 338M 16.3
+ 2 A-GCN layers (Full) 338M 7.8 338M 16.1
+ 2 GCN layers (L + G) 338M 8.0 338M 16.3
+ 2 A-GCN layers (L + G) 338M 7.8 338M 16.1

+ 3 GCN layers (Full) 339M 7.4 339M 15.8
+ 3 A-GCN layers (Full) 339M 7.2 339M 15.5
+ 3 GCN layers (L + G) 339M 7.4 339M 15.8
+ 3 A-GCN layers (L + G) 339M 7.2 339M 15.5

(b) BERT-large

Table 7: Numbers of trainable parameters (Para.) in different models and the inference speed (sentences per
second) of these models on the test sets of both datasets.

Models BERT-base BERT-Large

Baseline 75.03 76.11

GAT (Full) 75.33 76.87
GAT (L + G) 75.31 76.93

+ 1 GCN layer (Full) 74.97 76.13
+ 1 A-GCN layer (Full) 76.49 77.33
+ 1 GCN layer (L + G) 75.80 77.19
+ 1 A-GCN layer (L + G) 76.00 77.49

+ 2 GCN layers (Full) 75.36 77.35
+ 2 A-GCN layers (Full) 76.65 77.55
+ 2 GCN layers (L + G) 76.59 77.48
+ 2 A-GCN layers (L + G) 76.90 77.82

+ 3 GCN layers (Full) 75.61 77.33
+ 3 A-GCN layers (Full) 76.45 77.54
+ 3 GCN layers (L + G) 76.48 77.36
+ 3 A-GCN layers (L + G) 76.58 77.65

Table 8: F1 scores of our A-GCN models and the
baselines (i.e., BERT-only, standard GAT, and standard
GCN) under different settings with BERT-base and
BERT-large on the development set of ACE2005. All
graph-based models (i.e., GAT, GCN, and A-GCN) are
tested with two settings: the first is using the full graph
(FULL) with all dependency connections involved and
the second is using the combination of local and global
connections (L + G). We also run GCN and A-GCN
with different numbers of layers (i.e., 1 to 3 layers) for
fair comparisons.



4471

Models
ACE2005 SemEval
µ � µ �

BERT-base 75.22 0.31 87.39 0.26

+ GAT (Full) 75.87 0.23 88.16 0.44
+ GAT (L + G) 75.47 0.27 88.15 0.28

+ 1 GCN layer (Full) 74.51 0.13 87.34 0.29
+ 1 A-GCN layer (Full) 74.39 0.21 88.02 0.30
+ 1 GCN layer (L + G) 75.28 0.23 88.43 0.17
+ 1 A-GCN layer (L + G) 76.70 0.37 88.69 0.28

+ 2 GCN layers (Full) 74.73 0.24 88.13 0.31
+ 2 A-GCN layers (Full) 76.95 0.21 88.35 0.34
+ 2 GCN layers (L + G) 75.60 0.42 88.30 0.23
+ 2 A-GCN layers (L + G) 77.06 0.13 88.81 0.28

+ 3 GCN layers (Full) 75.37 0.15 88.26 0.21
+ 3 A-GCN layers (Full) 75.94 0.28 88.29 0.26
+ 3 GCN layers (L + G) 76.48 0.38 88.10 0.16
+ 3 A-GCN layers (L + G) 75.87 0.45 88.46 0.25

(a) BERT-base

Models
ACE2005 SemEval
µ � µ �

BERT-large 76.55 0.17 88.63 0.26

+ GAT (Full) 77.96 0.18 89.10 0.21
+ GAT (L + G) 78.33 0.38 89.13 0.31

+ 1 GCN layer (Full) 77.30 0.28 88.52 0.31
+ 1 A-GCN layer (Full) 78.15 0.37 89.05 0.49
+ 1 GCN layer (L + G) 76.98 0.49 88.80 0.28
+ 1 A-GCN layer (L + G) 78.04 0.32 89.32 0.22

+ 2 GCN layers (Full) 78.56 0.41 89.16 0.26
+ 2 A-GCN layers (Full) 78.68 0.22 89.34 0.33
+ 2 GCN layers (L + G) 78.40 0.33 89.22 0.17
+ 2 A-GCN layers (L + G) 78.83 0.21 89.41 0.44

+ 3 GCN layers (Full) 77.58 0.32 89.14 0.36
+ 3 A-GCN layers (Full) 78.03 0.32 89.16 0.17
+ 3 GCN layers (L + G) 78.64 0.27 88.93 0.26
+ 3 A-GCN layers (L + G) 78.55 0.45 89.20 0.33

(b) BERT-large

Table 9: The mean µ and standard deviation � of F1 scores of our A-GCN model and baselines on the test set of
ACE2005 and SemEval for relation extraction.


