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Abstract

Pre-trained Language Models (PLMs) have
shown superior performance on various down-
stream Natural Language Processing (NLP)
tasks. However, conventional pre-training ob-
jectives do not explicitly model relational facts
in text, which are crucial for textual under-
standing. To address this issue, we propose a
novel contrastive learning framework ERICA
to obtain a deep understanding of the entities
and their relations in text. Specifically, we de-
fine two novel pre-training tasks to better un-
derstand entities and relations: (1) the entity
discrimination task to distinguish which tail
entity can be inferred by the given head en-
tity and relation; (2) the relation discrimination
task to distinguish whether two relations are
close or not semantically, which involves com-
plex relational reasoning. Experimental results
demonstrate that ERICA can improve typical
PLMs (BERT and RoBERTa) on several lan-
guage understanding tasks, including relation
extraction, entity typing and question answer-
ing, especially under low-resource settings.1

1 Introduction

Pre-trained Language Models (PLMs) (Devlin
et al., 2018; Yang et al., 2019; Liu et al., 2019) have
shown superior performance on various Natural
Language Processing (NLP) tasks such as text clas-
sification (Wang et al., 2018), named entity recog-
nition (Sang and De Meulder, 2003), and question
answering (Talmor and Berant, 2019). Benefiting
from designing various effective self-supervised
learning objectives, such as masked language mod-
eling (Devlin et al., 2018), PLMs can effectively
capture the syntax and semantics in text to gener-
ate informative language representations for down-
stream NLP tasks.
∗Corresponding author.
1Our code and data are publicly available at https://

github.com/thunlp/ERICA.

[1] Culiacán is a city in northwestern Mexico. [2] Culiacán is
the capital of the state of Sinaloa. [3] Culiacán is also the seat
of Culiacán Municipality. [4] It had an urban population of
785,800 in 2015 while 905,660 lived in the entire municipality.
[5] While Culiacán Municipality has a total area of 4,758 k!!,
Culiacán itself is considerably smaller, measuring only. [6]
Culiacán is a rail junction and is located on the Panamerican
Highway that runs south to Guadalajara and Mexico City. [7]
Culiacán is connected to the north with Los Mochis, and to the
south with Mazatlán, Tepic.
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Figure 1: An example for a document “Culiacán”, in
which all entities are underlined. We show entities and
their relations as a relational graph, and highlight the
important entities and relations to find out “where is
Guadalajara”.

However, conventional pre-training objectives
do not explicitly model relational facts, which fre-
quently distribute in text and are crucial for under-
standing the whole text. To address this issue, some
recent studies attempt to improve PLMs to better
understand relations between entities (Soares et al.,
2019; Peng et al., 2020). However, they mainly
focus on within-sentence relations in isolation, ig-
noring the understanding of entities, and the inter-
actions among multiple entities at document level,
whose relation understanding involves complex rea-
soning patterns. According to the statistics on a
human-annotated corpus sampled from Wikipedia
documents by Yao et al. (2019), at least 40.7% re-
lational facts require to be extracted from multiple
sentences. Specifically, we show an example in Fig-
ure 1, to understand that “Guadalajara is located in
Mexico”, we need to consider the following clues
jointly: (i) “Mexico” is the country of “Culiacán”
from sentence 1; (ii) “Culiacán” is a rail junction lo-

https://github.com/thunlp/ERICA
https://github.com/thunlp/ERICA
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cated on “Panamerican Highway” from sentence 6;
(iii) “Panamerican Highway” connects to “Guadala-
jara” from sentence 6. From the example, we can
see that there are two main challenges to capture
the in-text relational facts:

1. To understand an entity, we should consider
its relations to other entities comprehensively. In
the example, the entity “Culiacán”, occurring in
sentence 1, 2, 3, 5, 6 and 7, plays an important
role in finding out the answer. To understand “Culi-
acán”, we should consider all its connected entities
and diverse relations among them.

2. To understand a relation, we should consider
the complex reasoning patterns in text. For exam-
ple, to understand the complex inference chain in
the example, we need to perform multi-hop reason-
ing, i.e., inferring that “Panamerican Highway” is
located in “Mexico” through the first two clues.

In this paper, we propose ERICA, a novel frame-
work to improve PLMs’ capability of Entity and
RelatIon understanding via ContrAstive learning,
aiming to better capture in-text relational facts by
considering the interactions among entities and re-
lations comprehensively. Specifically, we define
two novel pre-training tasks: (1) the entity discrim-
ination task to distinguish which tail entity can
be inferred by the given head entity and relation.
It improves the understanding of each entity via
considering its relations to other entities in text;
(2) the relation discrimination task to distinguish
whether two relations are close or not semantically.
Through constructing entity pairs with document-
level distant supervision, it takes complex relational
reasoning chains into consideration in an implicit
way and thus improves relation understanding.

We conduct experiments on a suite of language
understanding tasks, including relation extraction,
entity typing and question answering. The experi-
mental results show that ERICA improves the per-
formance of typical PLMs (BERT and RoBERTa)
and outperforms baselines, especially under low-
resource settings, which demonstrates that ERICA
effectively improves PLMs’ entity and relation un-
derstanding and captures the in-text relational facts.

2 Related Work

Dai and Le (2015) and Howard and Ruder (2018)
propose to pre-train universal language representa-
tions on unlabeled text, and perform task-specific
fine-tuning. With the advance of computing power,
PLMs such as OpenAI GPT (Radford et al., 2018),

BERT (Devlin et al., 2018) and XLNet (Yang et al.,
2019) based on deep Transformer (Vaswani et al.,
2017) architecture demonstrate their superiority in
various downstream NLP tasks. Since then, nu-
merous PLM extensions have been proposed to
further explore the impacts of various model ar-
chitectures (Song et al., 2019; Raffel et al., 2020),
larger model size (Raffel et al., 2020; Lan et al.,
2020; Fedus et al., 2021), more pre-training cor-
pora (Liu et al., 2019), etc., to obtain better general
language understanding ability. Although achiev-
ing great success, these PLMs usually regard words
as basic units in textual understanding, ignoring the
informative entities and their relations, which are
crucial for understanding the whole text.

To improve the entity and relation understand-
ing of PLMs, a typical line of work is knowledge-
guided PLM, which incorporates external knowl-
edge such as Knowledge Graphs (KGs) into PLMs
to enhance the entity and relation understanding.
Some enforce PLMs to memorize information
about real-world entities and propose novel pre-
training objectives (Xiong et al., 2019; Wang et al.,
2019; Sun et al., 2020; Yamada et al., 2020). Oth-
ers modify the internal structures of PLMs to fuse
both textual and KG’s information (Zhang et al.,
2019; Peters et al., 2019; Wang et al., 2020; He
et al., 2020). Although knowledge-guided PLMs
introduce extra factual knowledge in KGs, these
methods ignore the intrinsic relational facts in text,
making it hard to understand out-of-KG entities or
knowledge in downstream tasks, let alone the errors
and incompleteness of KGs. This verifies the ne-
cessity of teaching PLMs to understand relational
facts from contexts.

Another line of work is to directly model entities
or relations in text in pre-training stage to break
the limitations of individual token representations.
Some focus on obtaining better span representa-
tions, including entity mentions, via span-based
pre-training (Sun et al., 2019; Joshi et al., 2020;
Kong et al., 2020; Ye et al., 2020). Others learn
to extract relation-aware semantics from text by
comparing the sentences that share the same entity
pair or distantly supervised relation in KGs (Soares
et al., 2019; Peng et al., 2020). However, these
methods only consider either individual entities or
within-sentence relations, which limits the perfor-
mance in dealing with multiple entities and rela-
tions at document level. In contrast, our ERICA
considers the interactions among multiple entities
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Figure 2: An example of Entity Discrimination task.
For an entity pair with its distantly supervised relation
in text, the ED task requires the ground-truth tail entity
to be closer to the head entity than other entities.

and relations comprehensively, achieving a better
understanding of in-text relational facts.

3 Methodology

In this section, we introduce the details of ERICA.
We first describe the notations and how to represent
entities and relations in documents. Then we detail
the two novel pre-training tasks: Entity Discrimi-
nation (ED) task and Relation Discrimination (RD)
task, followed by the overall training objective.

3.1 Notations

ERICA is trained on a large-scale unlabeled cor-
pus leveraging the distant supervision from an ex-
ternal KG K. Formally, let D = {di}|D|i=1 be a
batch of documents and Ei = {eij}|Ei|j=1 be all
named entities in di, where eij is the j-th entity
in di. For each document di, we enumerate all
entity pairs (eij , eik) and link them to their corre-
sponding relation rijk in K (if possible) and obtain
a tuple set Ti = {tijk = (di, eij , r

i
jk, eik)|j 6= k}.

We assign no_relation to those entity pairs with-
out relation annotation in K. Then we obtain the
overall tuple set T = T1

⋃
T2

⋃
...
⋃
T|D| for this

batch. The positive tuple set T + is constructed
by removing all tuples with no_relation from
T . Benefiting from document-level distant su-
pervision, T + includes both intra-sentence (rel-
atively simple cases) and inter-sentence entity pairs
(hard cases), whose relation understanding involves
cross-sentence, multi-hop, or coreferential reason-
ing, i.e., T + = T +

single

⋃
T +
cross.

3.2 Entity & Relation Representation

For each document di, we first use a PLM to
encode it and obtain a series of hidden states

{h1,h2, ...,h|di|}, then we apply mean pooling op-
eration over the consecutive tokens that mention eij
to obtain local entity representations. Note eij may
appear multiple times in di, the k-th occurrence of
eij , which contains the tokens from index nkstart to
nkend, is represented as:

mk
eij = MeanPool(hnk

start
, ...,hnk

end
). (1)

To aggregate all information about eij , we aver-
age2 all representations of each occurrence mk

eij
as the global entity representation eij . Follow-
ing Soares et al. (2019), we concatenate the final
representations of two entities eij1 and eij2 as their
relation representation, i.e., rij1j2 = [eij1 ; eij2 ].

3.3 Entity Discrimination Task
Entity Discrimination (ED) task aims at inferring
the tail entity in a document given a head entity
and a relation. By distinguishing the ground-truth
tail entity from other entities in the text, it teaches
PLMs to understand an entity via considering its
relations with other entities.

As shown in Figure 2, in practice, we first
sample a tuple tijk = (di, eij , rijk, eik) from T +,
PLMs are then asked to distinguish the ground-
truth tail entity eik from other entities in the
document di. To inform PLMs of which head
entity and relation to be conditioned on, we
concatenate the relation name of rijk, the men-
tion of head entity eij and a separation token
[SEP] in front of di, i.e., d∗i =“relation_name
entity_mention[SEP] di”3. The goal of entity
discrimination task is equivalent to maximizing the
posterior P(eik|eij , rijk) = softmax(f(eik)) (f(·)
indicates an entity classifier). However, we empiri-
cally find directly optimizing the posterior cannot
well consider the relations among entities. Hence,
we borrow the idea of contrastive learning (Hadsell
et al., 2006) and push the representations of pos-
itive pair (eij , eik) closer than negative pairs, the
loss function of ED task can be formulated as:

LED = −
∑

tijk∈T +

log
exp(cos(eij , eik)/τ)

|Ei|∑
l=1, l 6=j

exp(cos(eij , eil)/τ)

,

(2)
2Although weighted summation by attention mechanism

is an alternative, the specific method of entity information
aggregation is not our main concern.

3Here we encode the modified document d∗i to obtain the
entity representations. The newly added entity_mention is
not considered for head entity representation.
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Document 1
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Document 3

Document 3

single-sentence

cross-sentence

single-sentence

cross-sentence

founded by
… Since 1773, when the Royal Swedish Opera
was founded by Gustav III of Sweden …

… Gates is an American business magnate,
software developer, and philanthropist … He left
his board positions atMicrosoft…

… Samarinda is the capital of East Kalimantan,
Indonesia, on the island of Borneo … Samarinda
is known for its traditional food amplang, as well
as the cloth Sarung Samarinda …

… Samarinda is the capital of East Kalimantan,
Indonesia, on the island of Borneo … Samarinda
is known for its traditional food amplang, as well
as the cloth Sarung Samarinda…

founded by

capital of

country

Pre-trained Language M
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Figure 3: An example of Relation Discrimination task.
For entity pairs belonging to the same relations, the RD
task requires their relation representations to be closer.

where cos(·, ·) denotes the cosine similarity be-
tween two entity representations and τ (temper-
ature) is a hyper-parameter.

3.4 Relation Discrimination Task
Relation Discrimination (RD) task aims at distin-
guishing whether two relations are close or not
semantically. Compared with existing relation-
enhanced PLMs, we employ document-level rather
than sentence-level distant supervision to further
make PLMs comprehend the complex reasoning
chains in real-world scenarios and thus improve
PLMs’ relation understanding.

As depicted in Figure 3, we train the text-based
relation representations of the entity pairs that share
the same relations to be closer in the semantic
space. In practice, we linearly4 sample a tuple
pair tA = (dA, eA1 , rA, eA2) and tB = (dB, eB1 ,
rB , eB2) from T +

s (T +
single) or T +

c (T +
cross), where

rA = rB . Using the method mentioned in Sec. 3.2,
we obtain the positive relation representations rtA
and rtB for tA and tB . To discriminate positive
examples from negative ones, similarly, we adopt
contrastive learning and define the loss function of
RD task as follows:

LT1,T2RD = −
∑

tA∈T1,tB∈T2

log
exp(cos(rtA , rtB )/τ)

Z
,

Z =

N∑
tC∈T /{tA}

exp(cos(rtA , rtC )/τ),

LRD = LT
+
s ,T +

s
RD + LT

+
s ,T+

c
RD + LT

+
c ,T+

s
RD + LT

+
c ,T+

c
RD ,

(3)
4The sampling rate of each relation is proportional to its

total number in the current batch.

where N is a hyper-parameter. We ensure tB is
sampled in Z and construct N − 1 negative exam-
ples by sampling tC (rA 6= rC) from T , instead
of T +5. By additionally considering the last three
terms of LRD in Eq.3, which require the model to
distinguish complex inter-sentence relations with
other relations in the text, our model could have bet-
ter coverage and generality of the reasoning chains.
PLMs are trained to perform reasoning in an im-
plicit way to understand those “hard” inter-sentence
cases.

3.5 Overall Objective

Now we present the overall training objective
of ERICA. To avoid catastrophic forgetting (Mc-
Closkey and Cohen, 1989) of general language
understanding ability, we train masked language
modeling task (LMLM) together with ED and RD
tasks. Hence, the overall learning objective is for-
mulated as follows:

L = LED + LRD + LMLM. (4)

It is worth mentioning that we also try to mask
entities as suggested by Soares et al. (2019) and
Peng et al. (2020), aiming to avoid simply relearn-
ing an entity linking system. However, we do not
observe performance gain by such a masking strat-
egy. We conjecture that in our document-level set-
ting, it is hard for PLMs to overfit on memoriz-
ing entity mentions due to the better coverage and
generality of document-level distant supervision.
Besides, masking entities creates a gap between
pre-training and fine-tuning, which may be a short-
coming of previous relation-enhanced PLMs.

4 Experiments

In this section, we first describe how we construct
the distantly supervised dataset and pre-training
details for ERICA. Then we introduce the experi-
ments we conduct on several language understand-
ing tasks, including relation extraction (RE), en-
tity typing (ET) and question answering (QA).
We test ERICA on two typical PLMs, including
BERT and RoBERTa (denoted as ERICABERT and
ERICARoBERTa)6. We leave the training details

5In experiments, we find introducing no_relation entity
pairs as negative samples further improves the performance
and the reason is that increasing the diversity of training entity
pairs is beneficial to PLMs.

6Since our main focus is to demonstrate the superiority
of ERICA in improving PLMs to capture relational facts and
advance further research explorations, we choose base models
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for downstream tasks and experiments on GLUE
benchmark (Wang et al., 2018) in the appendix.

4.1 Distantly Supervised Dataset
Construction

Following Yao et al. (2019), we construct our pre-
training dataset leveraging distant supervision from
the English Wikipedia and Wikidata. First, we
use spaCy7 to perform Named Entity Recognition,
and then link these entity mentions as well as
Wikipedia’s mentions with hyper-links to Wikidata
items, thus we obtain the Wikidata ID for each en-
tity. The relations between different entities are
annotated distantly by querying Wikidata. We keep
the documents containing at least 128 words, 4
entities and 4 relational triples. In addition, we
ignore those entity pairs appearing in the test sets
of RE and QA tasks to avoid test set leakage. In
the end, we collect 1, 000, 000 documents (about
1G storage) in total with more than 4, 000 relations
annotated distantly. On average, each document
contains 186.9 tokens, 12.9 entities and 7.2 rela-
tional triples, an entity appears 1.3 times per docu-
ment. Based on the human evaluation on a random
sample of the dataset, we find that it achieves an F1
score of 84.7% for named entity recognition, and
an F1 score of 25.4% for relation extraction.

4.2 Pre-training Details

We initialize ERICABERT and ERICARoBERTa with
bert-base-uncased and roberta-base checkpoints
released by Google8 and Huggingface9. We adopt
AdamW (Loshchilov and Hutter, 2017) as the opti-
mizer, warm up the learning rate for the first 20%
steps and then linearly decay it. We set the learning
rate to 3× 10−5, weight decay to 1× 10−5, batch
size to 2, 048 and temperature τ to 5× 10−2. For
LRD, we randomly select up to 64 negative sam-
ples per document. We train both models with 8
NVIDIA Tesla P40 GPUs for 2, 500 steps.

4.3 Relation Extraction

Relation extraction aims to extract the relation be-
tween two recognized entities from a pre-defined
relation set. We conduct experiments on both
document-level and sentence-level RE. We test

for experiments.
7https://spacy.io/
8https://github.com/google-research/bert
9https://github.com/huggingface/

transformers

Size 1% 10% 100%

Metrics F1 IgF1 F1 IgF1 F1 IgF1

CNN - - 42.3 40.3
BILSTM - - 51.1 50.3

BERT 30.4 28.9 47.1 44.9 56.8 54.5
HINBERT - - 55.6 53.7
CorefBERT 32.8 31.2 46.0 43.7 57.0 54.5
SpanBERT 32.2 30.4 46.4 44.5 57.3 55.0
ERNIE 26.7 25.5 46.7 44.2 56.6 54.2
MTB 29.0 27.6 46.1 44.1 56.9 54.3
CP 30.3 28.7 44.8 42.6 55.2 52.7
ERICABERT 37.8 36.0 50.8 48.3 58.2 55.9

RoBERTa 35.3 33.5 48.0 45.9 58.5 56.1
ERICARoBERTa 40.1 38.0 50.3 48.3 59.0 56.6

Table 1: Results on document-level RE (DocRED). We
report micro F1 (F1) and micro ignore F1 (IgF1) on test
set. IgF1 metric ignores the relational facts shared by
the train and dev/test sets.

Dataset TACRED SemEval

Size 1% 10% 100% 1% 10% 100%

BERT 36.0 58.5 68.1 43.6 79.3 88.1
MTB 35.7 58.8 68.2 44.2 79.2 88.2
CP 37.1 60.6 68.1 40.3 80.0 88.5
ERICABERT 36.5 59.7 68.5 47.9 80.1 88.0

RoBERTa 26.3 61.2 69.7 46.0 80.3 88.8
ERICARoBERTa 40.0 61.9 69.8 46.3 80.4 89.2

Table 2: Results (test F1) on sentence-level RE (TA-
CRED and SemEval-2010 Task8) on three splits (1%,
10% and 100%).

three partitions of the training set (1%, 10% and
100%) and report results on test sets.

Document-level RE For document-level RE, we
choose DocRED (Yao et al., 2019), which requires
reading multiple sentences in a document and syn-
thesizing all the information to identify the relation
between two entities. We encode all entities in the
same way as in pre-training phase. The relation rep-
resentations are obtained by adding a bilinear layer
on top of two entity representations. We choose the
following baselines: (1) CNN (Zeng et al., 2014),
BILSTM (Hochreiter and Schmidhuber, 1997),
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019), which are widely used as text encoders
for relation extraction tasks; (2) HINBERT (Tang
et al., 2020) which employs a hierarchical infer-
ence network to leverage the abundant information
from different sources; (3) CorefBERT (Ye et al.,
2020) which proposes a pre-training method to help
BERT capture the coreferential relations in context;
(4) SpanBERT (Joshi et al., 2020) which masks

https://spacy.io/
https://github.com/google-research/bert
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Metrics Macro F1 Micro F1

BERT 75.50 72.68
MTB 76.37 72.94
CP 76.27 72.48
ERNIE 76.51 73.39
ERICABERT 77.85 74.71

RoBERTa 79.24 76.38
ERICARoBERTa 80.77 77.04

Table 3: Results on entity typing (FIGER). We report
macro F1 and micro F1 on the test set.

and predicts contiguous random spans instead of
random tokens; (5) ERNIE (Zhang et al., 2019)
which incorporates KG information into BERT to
enhance entity representations; (6) MTB (Soares
et al., 2019) and CP (Peng et al., 2020) which in-
troduce sentence-level relation contrastive learning
for BERT via distant supervision. For fair compari-
son, we pre-train these baselines on our constructed
pre-training data10 based on the implementation re-
leased by Peng et al. (2020)11. From the results
shown in Table 1, we can see that: (1) ERICA
outperforms all baselines significantly on each su-
pervised data size, which demonstrates that ER-
ICA could better understand the relations among
entities in the document via implicitly considering
their complex reasoning patterns in the pre-training;
(2) both MTB and CP achieve worse results than
BERT, which means sentence-level pre-training,
lacking consideration for complex reasoning pat-
terns, hurts PLM’s performance on document-level
RE tasks to some extent; (3) ERICA outperforms
baselines by a larger margin on smaller training
sets, which means ERICA has gained pretty good
document-level relation reasoning ability in con-
trastive learning, and thus obtains improvements
more extensively under low-resource settings.

Sentence-level RE For sentence-level RE, we
choose two widely used datasets: TACRED (Zhang
et al., 2017) and SemEval-2010 Task 8 (Hendrickx
et al., 2019). We insert extra marker tokens to in-
dicate the head and tail entities in each sentence.
For baselines, we compare ERICA with BERT,
RoBERTa, MTB and CP. From the results shown
in Table 2, we observe that ERICA achieves almost
comparable results on sentence-level RE tasks with
CP, which means document-level pre-training in

10In practice, documents are split into sentences and we
only keep within-sentence entity pairs.

11https://github.com/thunlp/
RE-Context-or-Names

Setting Standard Masked

Size 1% 10% 100% 1% 10% 100%

FastQA - 27.2 - 38.0
BiDAF - 49.7 - 59.8

BERT 35.8 53.7 69.5 37.9 53.1 73.1
CorefBERT 38.1 54.4 68.8 39.0 53.5 70.7
SpanBERT 33.1 56.4 70.7 34.0 55.4 73.2
MTB 36.6 51.7 68.4 36.2 50.9 71.7
CP 34.6 50.4 67.4 34.1 47.1 69.4
ERICABERT 46.5 57.8 69.7 40.2 58.1 73.9

RoBERTa 37.3 57.4 70.9 41.2 58.7 75.5
ERICARoBERTa 47.4 58.8 71.2 46.8 63.4 76.6

Table 4: Results (accuracy) on the dev set of WikiHop.
We test both the standard and masked settings on three
splits (1%, 10% and 100%).

Setting SQuAD TriviaQA NaturalQA

Size 10% 100% 10% 100% 10% 100%

BERT 79.7 88.9 60.8 70.7 68.4 78.4
MTB 63.5 87.1 52.0 67.8 61.2 76.7
CP 69.0 87.1 52.9 68.1 63.3 77.3
ERICABERT 81.8 88.9 63.5 71.9 70.2 79.1

RoBERTa 82.9 90.5 63.6 72.0 71.8 80.0
ERICARoBERTa 85.0 90.4 63.6 72.1 73.7 80.5

Table 5: Results (F1) on extractive QA (SQuAD, Triv-
iaQA and NaturalQA) on two splits (10% and 100%).
Results on 1% split are left in the appendix.

ERICA does not impair PLMs’ performance on
sentence-level relation understanding.

4.4 Entity Typing
Entity typing aims at classifying entity men-
tions into pre-defined entity types. We choose
FIGER (Ling et al., 2015), which is a sentence-
level entity typing dataset labeled with distant
supervision. BERT, RoBERTa, MTB, CP and
ERNIE are chosen as baselines. From the results
listed in Table 3, we observe that, ERICA outper-
forms all baselines, which demonstrates that ER-
ICA could better represent entities and distinguish
them in text via both entity-level and relation-level
contrastive learning.

4.5 Question Answering
Question answering aims to extract a specific an-
swer span in text given a question. We conduct
experiments on both multi-choice and extractive
QA. We test multiple partitions of the training set.

Multi-choice QA For Multi-choice QA, we
choose WikiHop (Welbl et al., 2018), which re-
quires models to answer specific properties of an

https://github.com/thunlp/RE-Context-or-Names
https://github.com/thunlp/RE-Context-or-Names
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entity after reading multiple documents and con-
ducting multi-hop reasoning. It has both stan-
dard and masked settings, where the latter setting
masks all entities with random IDs to avoid in-
formation leakage. We first concatenate the ques-
tion and documents into a long sequence, then
we find all the occurrences of an entity in the
documents, encode them into hidden representa-
tions and obtain the global entity representation
by applying mean pooling on these hidden rep-
resentations. Finally, we use a classifier on top
of the entity representation for prediction. We
choose the following baselines: (1) FastQA (Weis-
senborn et al., 2017) and BiDAF (Seo et al., 2016),
which are widely used question answering systems;
(2) BERT, RoBERTa, CorefBERT, SpanBERT,
MTB and CP, which are introduced in previous
sections. From the results listed in Table 4, we ob-
serve that ERICA outperforms baselines in both set-
tings, indicating that ERICA can better understand
entities and their relations in the documents and
extract the true answer according to queries. The
significant improvements in the masked setting also
indicate that ERICA can better perform multi-hop
reasoning to synthesize and analyze information
from contexts, instead of relying on entity mention
“shortcuts” (Jiang and Bansal, 2019).

Extractive QA For extractive QA, we adopt
three widely-used datasets: SQuAD (Rajpurkar
et al., 2016), TriviaQA (Joshi et al., 2017) and Natu-
ralQA (Kwiatkowski et al., 2019) in MRQA (Fisch
et al., 2019) to evaluate ERICA in various domains.
Since MRQA does not provide the test set for each
dataset, we randomly split the original dev set into
two halves and obtain the new dev/test set. We fol-
low the QA setting of BERT (Devlin et al., 2018):
we concatenate the given question and passage into
one long sequence, encode the sequence by PLMs
and adopt two classifiers to predict the start and end
index of the answer. We choose BERT, RoBERTa,
MTB and CP as baselines. From the results listed
in Table 5, we observe that ERICA outperforms
all baselines, indicating that through the enhance-
ment of entity and relation understanding, ERICA
is more capable of capturing in-text relational facts
and synthesizing information of entities. This abil-
ity further improves PLMs for question answering.

5 Analysis

In this section, we first conduct a suite of ablation
studies to explore how LED and LRD contribute to

Dataset DocRED FIGER WikiHop

BERT 44.9 72.7 53.1
-NSP 45.2 72.6 53.6
-NSP+LED 47.6 73.8 59.8
-NSP+LT

+

c ,T
+

c
RD 46.4 72.6 52.2

-NSP+LT
+

s ,T
+

s
RD 47.3 73.5 51.2

-NSP+LRD 48.0 74.0 52.0
ERICABERT 48.3 74.7 58.1

Table 6: Ablation study. We report test IgF1 on Do-
cRED (10%), test micro F1 on FIGER and dev accu-
racy on the masked setting of WikiHop (10%).

ERICA. Then we give a thorough analysis on how
pre-training data’s domain / size and methods for
entity encoding impact the performance. Lastly,
we visualize the entity and relation embeddings
learned by ERICA.

5.1 Ablation Study

To demonstrate that the superior performance of
ERICA is not owing to its longer pretraining (2500
steps) on masked language modeling, we include
a baseline by optimizing LMLM only (removing
the Next Sentence Prediction (-NSP) loss (Devlin
et al., 2018)). In addition, to explore how LED and
LRD impact the performance, we keep only one of
these two losses and compare the results. Lastly,
to evaluate how intra-sentence and inter-sentence
entity pairs contribute to RD task, we compare
the performances of only sampling intra-sentence
entity pairs (LT

+
s ,T+

s
RD ) or inter-sentence entity pairs

(LT
+
c ,T+

c
RD ), and sampling both of them (LRD) during

pre-training. We conduct experiments on DocRED,
WikiHop (masked version) and FIGER. For Do-
cRED and WikiHop, we show the results on 10%
splits and the full results are left in the appendix.

From the results shown in Table 6, we can see
that: (1) extra pretraining (-NSP) only contributes a
little to the overall improvement. (2) For DocRED
and FIGER, either LED or LRD is beneficial, and
combining them further improves the performance;
For WikiHop, LED dominates the improvement
while LRD hurts the performance slightly, this is
possibly because question answering more resem-
bles the tail entity discrimination process, while
the relation discrimination process may have con-
flicts with it. (3) For LRD, both intra-sentence and
inter-sentence entity pairs contribute, which demon-
strates that incorporating both of them is necessary
for PLMs to understand relations between entities
in text comprehensively. We also found empiri-
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Size 1% 10% 100%

BERT 28.9 44.9 54.5
ERICABERT 36.0 48.3 55.9
ERICADocRED

BERT 36.3 48.6 55.9

Table 7: Effects of pre-training data’s entity distribu-
tion shifting. We report test IgF1 on DocRED.

0% 30% 50% 70% 100%
1% DocRED
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0% 30% 50% 70% 100%
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45

46
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48

 

0% 30% 50% 70% 100%
100% DocRED

54.5

55.0

55.5

 

Figure 4: Impacts of relation distribution shifting. X
axis denotes different ratios of relations, Y axis denotes
test IgF1 on different partitions of DocRED.

cally that when these two auxiliary objectives are
only added into the fine-tuning stage, the model
does not have performance gain. The reason is that
the size and diversity of entities and relations in
downstream training data are limited. Instead, pre-
training with distant supervision on a large corpus
provides a solution for increasing the diversity and
quantity of training examples.

5.2 Effects of Domain Shifting

We investigate two domain shifting factors: entity
distribution and relation distribution, to explore
how they impact ERICA’s performance.

Entity Distribution Shifting The entities in su-
pervised datasets of DocRED are recognized by
human annotators while our pre-training data is
processed by spaCy. Hence there may exist an en-
tity distribution gap between pre-training and fine-
tuning. To study the impacts of entity distribution
shifting, we fine-tune a BERT model on training
set of DocRED for NER tagging and re-tag enti-
ties in our pre-training dataset. Then we pre-train
ERICA on the newly-labeled training corpus (de-
noted as ERICADocRED

BERT ). From the results shown in
Table 7, we observe that it performs better than the
original ERICA, indicating that pre-training on a
dataset that shares similar entity distributions with
downstream tasks is beneficial.

Relation Distribution Shifting Our pre-training
data contains over 4, 000 Wikidata relations. To
investigate whether training on a more diverse rela-
tion domain benefits ERICA, we train it with the
pre-training corpus that randomly keeps only 30%,
50% and 70% the original relations, and compare

0% 10% 30% 50% 70%100%
1% DocRED

30

32

34

36

 

0% 10% 30% 50% 70%100%
10% DocRED

45

46

47

48

 

0% 10% 30% 50% 70%100%
100% DocRED

54.5

55.0

55.5

 

Figure 5: Impacts of pre-training data’s size. X axis
denotes different ratios of pre-training data, Y axis de-
notes test IgF1 on different partitions of DocRED.

Size 1% 10% 100%

Metrics F1 IgF1 F1 IgF1 F1 IgF1

Mean Pool
BERT 30.4 28.9 47.1 44.9 56.8 54.5
ERICABERT 37.8 36.0 50.8 48.3 58.2 55.9
ERICADocRED

BERT 38.5 36.3 51.0 48.6 58.2 55.9

Entity Marker
BERT 23.0 21.8 46.5 44.3 58.0 55.6
ERICABERT 34.9 33.0 50.2 48.0 59.9 57.6
ERICADocRED

BERT 36.9 34.8 52.5 50.3 60.8 58.4

Table 8: Results (IgF1) on how entity encoding strat-
egy influences ERICA’s performance on DocRED. We
also show the impacts of entity distribution shifting
(ERICADocRED

BERT and ERICADocRED
BERT ) as is mentioned in the

main paper.

their performances. From the results in Figure 4,
we observe that the performance of ERICA im-
proves constantly as the diversity of relation do-
main increases, which reveals the importance of
using diverse training data on relation-related tasks.
Through detailed analysis, we further find that ER-
ICA is less competent at handling unseen relations
in the corpus. This may result from the construc-
tion of our pre-training dataset: all the relations are
annotated distantly through an existing KG with
a pre-defined relation set. It would be promising
to introduce more diverse relation domains during
data preparation in future.

5.3 Effects of Pre-training Data’s Size

To explore the effects of pre-training data’s size, we
train ERICA on 10%, 30%, 50% and 70% of the
original pre-training dataset, respectively. We re-
port the results in Figure 5, from which we observe
that with the scale of pre-training data becoming
larger, ERICA is performing better.

5.4 Effects of Methods for Entity Encoding

For all the experiments mentioned above, we en-
code each occurrence of an entity by mean pooling
over all its tokens in both pre-training and down-
stream tasks. Ideally, ERICA should have consis-
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tent improvements on other kinds of methods for
entity encoding. To demonstrate this, we try an-
other entity encoding method mentioned by Soares
et al. (2019) on three splits of DocRED (1%, 10%
and 100%). Specifically, we insert a special start
token [S] in front of an entity and an end token
[E] after it. The representation for this entity is
calculated by averaging the representations of all
its start tokens in the document. To help PLMs
discriminate different entities, we randomly assign
different marker pairs ([S1], [E1]; [S2], [E2], ...)
for each entity in a document in both pre-training
and downstream tasks12. All occurrences of one
entity in a document share the same marker pair.
We show in Table 8 that ERICA achieves consistent
performance improvements for both methods (de-
noted as Mean Pool and Entity Marker), indicat-
ing that ERICA is applicable to different methods
for entity encoding. Specifically, Entity Marker
achieves better performance when the scale of train-
ing data is large while Mean Pool is more powerful
under low-resource settings. We also notice that
training on a dataset that shares similar entity dis-
tributions is more helpful for Mean Pool, where
ERICADocRED

BERT achieves 60.8 (F1) and 58.4 (IgF1)
on 100% training data.

5.5 Embedding Visualization

In Figure 6, we show the learned entity and re-
lation embeddings of BERT and ERICABERT on
DocRED’s dev set by t-distributed stochastic neigh-
bor embedding (t-SNE) (Hinton and Roweis, 2002).
We label points with different colors to represent
its corresponding category of entities or relations13

in Wikidata and only visualize the most frequent 10
relations. From the figure, we can see that jointly
training LMLM with LED and LRD leads to a more
compact clustering of both entities and relations
belonging to the same category. In contrast, only
training LMLM exhibits random distribution. This
verifies that ERICA could better understand and
represent both entities and relations in the text.

12In practice, we randomly initialize 100 entity marker
pairs.

13(Key, value) pairs for relations defined in Wikidata are:
(P176, manufacturer); (P150, contains administrative territo-
rial entity); (P17, country); (P131, located in the administra-
tive territorial entity); (P175, performer); (P27, country of
citizenship); (P569, date of birth); (P1001, applies to jurisdic-
tion); (P57, director); (P179, part of the series).

BERT: entity

 

entity
MISC
ORG
PER
LOC
TIME
NUM

ERICA-BERT: entity

 

entity
TIME
MISC
ORG
LOC
PER
NUM

BERT: relation

 

relation
P17
P131
P1001
P27
P150
P175
P179
P57
P176
P569

ERICA-BERT: relation

 

relation
P176
P150
P17
P131
P175
P27
P569
P1001
P57
P179

Figure 6: t-SNE plots of learned entity and rela-
tion embeddings on DocRED comparing BERT and
ERICABERT.

6 Conclusions

In this paper, we present ERICA, a general frame-
work for PLMs to improve entity and relation un-
derstanding via contrastive learning. We demon-
strate the effectiveness of our method on several
language understanding tasks, including relation
extraction, entity typing and question answering.
The experimental results show that ERICA outper-
forms all baselines, especially under low-resource
settings, which means ERICA helps PLMs better
capture the in-text relational facts and synthesize
information about entities and their relations.
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Appendices

A Training Details for Downstream
Tasks

In this section, we introduce the training details for
downstream tasks (relation extraction, entity typing
and question answering). We implement all models
based on Huggingface transformers14.

A.1 Relation Extraction

Document-level Relation Extraction For
document-level relation extraction, we did ex-
periments on DocRED (Yao et al., 2019). We
modify the official code15 for implementation. For
experiments on three partitions of the original
training set (1%, 10% and 100%), we adopt
batch size of 10, 32, 32 and training epochs of
400, 400, 200, respectively. We choose Adam
optimizer (Kingma and Ba, 2014) as the optimizer
and the learning rate is set to 4 × 10−5. We
evaluate on dev set every 20/20/5 epochs and then
test the best checkpoint on test set on the official
evaluation server16.

Sentence-level Relation Extraction For
sentence-level relation extraction, we did ex-
periments on TACRED (Zhang et al., 2017)
and SemEval-2010 Task 8 (Hendrickx et al.,
2019) based on the implementation of Peng et al.
(2020)17. We did experiments on three partitions
(1%, 10% and 100%) of the original training set.
The relation representation for each entity pair is
obtained in the same way as in pre-training phase.
Other settings are kept the same as Peng et al.
(2020) for fair comparison.

A.2 Entity Tying

For entity typing, we choose FIGER (Ling et al.,
2015), whose training set is labeled with distant
supervision. We modify the implementation of
ERNIE (Zhang et al., 2019)18. In fine-tuning
phrase, we encode the entities in the same way
as in pre-training phase. We set the learning rate to
3× 10−5 and batch size to 256, and fine-tune the

14https://github.com/huggingface/
transformers

15https://github.com/thunlp/DocRED
16https://competitions.codalab.org/

competitions/20717
17https://github.com/thunlp/

RE-Context-or-Names
18https://github.com/thunlp/ERNIE

models for three epochs, other hyper-parameters
are kept the same as ERNIE.

A.3 Question Answering
Multi-choice QA For multi-choice question an-
swering, we choose WikiHop (Welbl et al., 2018).
Since the standard setting of WikiHop does not
provide the index for each candidate, we then find
them by exactly matching them in the documents.
We did experiments on three partitions of the origi-
nal training data (1%, 10% and 100%). We set the
batch size to 8 and learning rate to 5× 10−5, and
train for two epochs.

Extractive QA For extractive question answer-
ing, we adopt MRQA (Fisch et al., 2019) as the
testbed and choose three datasets: SQuAD (Ra-
jpurkar et al., 2016), TriviaQA (Joshi et al., 2017)
and NaturalQA (Kwiatkowski et al., 2019). We
adopt Adam as the optimizer, set the learning rate
to 3× 10−5 and train for two epochs. In the main
paper, we report results on two splits (10% and
100%) and results on 1% are listed in Table 11.

B Generalized Language Understanding
(GLUE)

The General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2018) pro-
vides several natural language understanding tasks,
which is often used to evaluate PLMs. To test
whether LED and LRD impair the PLMs’ per-
formance on these tasks, we compare BERT,
ERICABERT, RoBERTa and ERICARoBERTa. We fol-
low the widely used setting and use the [CLS] to-
ken as representation for the whole sentence or
sentence pair for classification or regression. Ta-
ble 9 shows the results on dev sets of GLUE Bench-
mark. It can be observed that both ERICABERT and
ERICARoBERTa achieve comparable performance
than the original model, which suggests that jointly
training LED and LRD with LMLM does not hurt
PLMs’ general ability of language understanding.

C Full results of ablation study

Full results of ablation study (DocRED, WikiHop
and FIGER) are listed in Table 10.

D Joint Named Entity Recognition and
Relation Extraction

Joint Named Entity Recognition (NER) and Re-
lation Extraction (RE) aims at identifying enti-
ties in text and the relations between them. We

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/thunlp/DocRED
https://competitions.codalab.org/competitions/20717
https://competitions.codalab.org/competitions/20717
https://github.com/thunlp/RE-Context-or-Names
https://github.com/thunlp/RE-Context-or-Names
https://github.com/thunlp/ERNIE
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Dataset MNLI(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE

BERT 84.0/84.4 88.9 90.6 92.4 57.2 89.7 89.4 70.1
ERICABERT 84.5/84.7 88.3 90.7 92.8 57.9 89.5 89.5 69.6

RoBERTa 87.5/87.3 91.9 92.8 94.8 63.6 91.2 90.2 78.7
ERICARoBERTa 87.5/87.5 91.6 92.6 95.0 63.5 90.7 91.5 78.5

Table 9: Results on dev sets of GLUE Benchmark. We report matched/mismatched (m/mm) accuracy for MNLI,
F1 score for QQP and MRPC, spearman correlation for STS-B and accuracy for other tasks.

Dataset DocRED WikiHop (m) FIGER

Size 1% 10% 100% 1% 10% 100% 100%

BERT 28.9 44.9 54.5 37.9 53.1 73.1 72.7
-NSP 30.1 45.2 54.6 38.2 53.6 73.3 72.6
-NSP+LED 34.4 47.6 55.8 41.1 59.8 74.8 73.8
-NSP+LT

+

c ,T
+

c
RD 34.8 46.4 54.7 37.4 52.2 72.8 72.6

-NSP+LT
+

s ,T
+

s
RD 33.9 47.3 55.5 38.0 51.2 72.5 73.5

-NSP+LRD 35.9 48.0 55.6 37.2 52.0 72.7 74.0
ERICABERT 36.0 48.3 55.9 40.2 58.1 73.9 74.7

Table 10: Full results of ablation study. We report test IgF1 on DocRED, dev accuracy on the masked (m) setting
of WikiHop and test micro F1 on FIGER.

Setting SQuAD TriviaQA NaturalQA

BERT 15.8 28.7 31.5
MTB 11.2 22.0 28.4
CP 12.5 25.6 29.4
ERICABERT 51.3 51.4 42.9

RoBERTa 22.1 40.6 34.0
ERICARoBERTa 57.6 51.3 57.6

Table 11: Results (F1) on extractive QA (SQuAD, Triv-
iaQA and NaturalQA) on 1% split.

Model
CoNLL04 ADE

NER RE NER RE

BERT 88.5 70.3 89.2 79.2
ERICABERT 89.3 71.5 89.5 80.2

RoBERTa 89.8 72.0 89.7 81.6
ERICARoBERTa 90.0 72.8 90.2 82.4

Table 12: Results (F1) on joint NER&RE.

adopt SpERT (Eberts and Ulges, 2019) as the base
model and conduct experiments on two datasets:
CoNLL04 (Roth and Yih, 2004) and ADE (Gu-
rulingappa et al., 2012) by replacing the base en-
coders (BERT and RoBERTa) with ERICABERT and
ERICARoBERTa, respectively. We modify the imple-
mentation of SpERT19 and keep all the settings the
same. From the results listed in Table 12, we can
see that ERICA outperforms all baselines, which
again demonstrates the superiority of ERICA in

19https://github.com/markus-eberts/spert

helping PLMs better understand and represent both
entities and relations in text.

https://github.com/markus-eberts/spert

