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Abstract
It is generally believed that a translation
memory (TM) should be beneficial for ma-
chine translation tasks. Unfortunately, existing
wisdom demonstrates the superiority of TM-
based neural machine translation (NMT) only
on the TM-specialized translation tasks rather
than general tasks, with a non-negligible com-
putational overhead. In this paper, we pro-
pose a fast and accurate approach to TM-based
NMT within the Transformer framework: the
model architecture is simple and employs a sin-
gle bilingual sentence as its TM, leading to ef-
ficient training and inference; and its parame-
ters are effectively optimized through a novel
training criterion. Extensive experiments on
six TM-specialized tasks show that the pro-
posed approach substantially surpasses several
strong baselines that use multiple TMs, in
terms of BLEU and running time. In partic-
ular, the proposed approach also advances the
strong baselines on two general tasks (WMT
news Zh→En and En→De).

1 Introduction

A translation memory (TM) is originally collected
from the translation history of professional trans-
lators, and provides the most similar source-target
sentence pairs for the source sentence to be trans-
lated (Garcia, 2009; Koehn and Senellart, 2010b;
Utiyama et al., 2011; Robinson, 2012; Huang et al.,
2021). A TM generally provides valuable transla-
tion information particularly for those input sen-
tences preferably matching the source sentences
in the TM, and many efforts have been devoted to
integrating a TM into statistical machine transla-
tion (Simard and Isabelle, 2009; Koehn and Senel-
lart, 2010a; Ma et al., 2011; Wang et al., 2013; Liu
et al., 2019).

Recently there are increasing interests in im-
proving neural machine translation (NMT) with a
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TM (Li et al., 2016; Farajian et al., 2017; Gu et al.,
2018; Xia et al., 2019; Bulte and Tezcan, 2019; Xu
et al., 2020). Many notable approaches have been
proposed to augment an NMT model by using a
TM. For example, Zhang et al. (2018) and He et al.
(2019) extract scored n-grams from a TM and then
reward each partial translation once it matches an
extracted n-gram during beam search. Gu et al.
(2018) and Xia et al. (2019) use an auxiliary net-
work to encode a TM and then integrate it into the
NMT architecture. Bulte and Tezcan (2019) and Xu
et al. (2020) employ data augmentation to train an
NMT model whose training instances are bilingual
sentences augmented by their TMs. Despite their
improvements on the TM-specialized translation
tasks (aka JRC-Acquis corpora) where a TM is very
similar to test sentences, they consume consider-
able computational overheads in either training or
testing, and particularly it is unclear whether they
can deliver gains over standard NMT on general
tasks where a TM is not very similar to test sen-
tences. Indeed, both Zhang et al. (2018) and Xu
et al. (2020) reported their failures on WMT news
translation tasks.

In this paper, we present a fast and accurate ap-
proach for TM-based NMT which can be applied
to general translation tasks besides TM-specialized
tasks. We first design a light-weight TM-based
NMT model for efficiency: its TM includes a sin-
gle bilingual sentence and we explore variant ways
to encode the TM. Also, the designed model out-
performs strong TM-based baselines. Second, we
deeply analyze its translation performance and ob-
serve an issue of robustness: it decreases signifi-
cantly for those input sentences which are not very
similar to their TMs, although it obtains substan-
tial improvements for other inputs. To address this
issue, we propose a novel training criterion for op-
timizing the parameters of our model inspired by
multiple-task learning (van Dyk and Meng, 2001;
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Ben-David and Borbely, 2008; Qiu et al., 2013).
The loss function includes two terms: the first
term is induced by the bilingual corpus with a TM
whereas the second term is induced by the bilingual
corpus without any TM. In this way, the TM-based
NMT model gains better performance and is robust
to translate any input sentences no matter they are
similar to their TM or not. Additionally, this makes
it possible that a single unified model can handle
both translation situations (with or without a TM),
which is practical for online services.

To validate the effectiveness of the proposed ap-
proach, we conduct extensive experiments on eight
translation tasks including both TM-specialized
tasks and general tasks (WMT). Our experiments
justify that the proposed approach is better than
several strong TM-based baselines in speed, and it
further delivers substantial gains (up to 4.7 BLUE
points) over those baselines on TM-specialized
tasks, leading to up to 8.5 BLEU points over stan-
dard Transformer-based NMT. In particular, it also
outperforms strong baselines on two general trans-
lation tasks, i.e., with a gain of 0.7 BLEU points
on WMT14 En→De task and 1.0 BLEU point on
WMT17 Zh→En task.

This paper makes the following contributions:

• It points out a critical issue about robustness
when training TM-based NMT models and
provides an elegant method to address this
issue.

• It proposes a simple TM-based NMT model
that outperforms strong TM-based baselines
in terms of both translation quality and speed.

• It verifies that a well-designed TM-based
translation model is able to advance strong
MT baselines on general translation tasks
where a TM is not very similar to input source
sentences.

2 Preliminary on NMT

Suppose x = {x1, ..., xn} is a source sentence and
y = {y1, ..., ym} is the corresponding target sen-
tence. From the probabilistic perspective, NMT
models the conditional probability of the target sen-
tence y given the source sentence x. Formally, for a
given x, NMT aims to generate the output y accord-
ing to the conditional probability P (y|x) defined
by neural networks:

P (y|x) =

m∏
i=1

P (yi|x, y<i) (1)

where y<i = {y1, . . . , yi−1} denotes a prefix of y,
and each factor P (yi|x, y<i) is defined as follows:

P (yi|x, y<i) = softmax
(
φ(hD,Li )

)
(2)

where hD,Li indicates the ith hidden unit at Lth
layer in the Decoding phrase under the encoder-
decoder framework (Bahdanau et al., 2016), and φ
is a linear network that projects hidden units onto
vectors with dimension of the target vocabulary.

Recently, self-attention networks have attracted
many interests due to their flexibility in parallel
computation and modeling hD,Li . The state-of-the-
art NMT model is Transformer (Vaswani et al.,
2017), which uses stacked self-attention and fully
connected layers for its encoder and decoder. Self-
attention relies on an attention mechanism to com-
pute a representation of a sequence. In Trans-
former, there are three kinds of attention mech-
anisms, including encoder multi-head attention, de-
coder masked multi-head attention and encoder-
decoder multi-head attention. Attention with H
heads can be calculated by the equations:

MH-Att(q,u) =

[
Att(q, φj(u), ψj(u))

]H
j=1

,

Att(q,u,v) = softmax
(
qu>√
d

)
v

(3)

where q is a query vector and u is a two-
dimensional matrix, [uj ]

H
j=1 denotes concatenation

of all vectors uj , φj and ψj stand for two linear
projections from one matrix to another matrix, re-
spectively. The 1√

d
is the scaling factor, and d is the

dimension of q. And we refer enthusiastic readers
to Vaswani et al. (2017) for detailed definitions.

3 Model Architecture

In this section, in order to preferably bridge TM
and NMT, we propose the architecture of TM-based
NMT within the Transformer. To make our pro-
posed model fast in running time and powerful in
quality, at first, we present a configuration of TM
to make the proposed model efficient. Then we ex-
plore three different methods to encode the TM into
a sequence of vectors in a coarse-to-fine manner.
Finally, we propose the architecture that decodes a
target word given an input source sentence and its
TM representation.

3.1 TM Configuration
Following previous works (Gu et al., 2018; Zhang
et al., 2018; Xia et al., 2019), for each source
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Figure 1: The architecture of the proposed three methods. 1. The part in the dashed box is an example of our
methods. The source and target languages are German and English respectively. x is the source sentence and y is
the corresponding target sentence. 2. The part outside of the dashed box shows the whole model architecture. The
core component is the Example Layer which consists of multi-head attention and cross attention mechanisms. For
simplicity, we omit an add and layer normalization in other sub-layers. L is the number of operation layers.

sentence x we employ Apache Lucene (Bialecki
et al., 2020) to retrieve top-100 similar bilingual
sentences from the training data. Then we adopt the
following similarity to re-rank the retrieved bilin-
gual sentences and maintain top-K (K < 100)
bilingual sentences as the TM for x:

sim(x, xtm) = 1− dist(x, xtm)

max(|x|, |xtm|)
(4)

where dist denotes the edit-distance, and xtm is
a retrieved source sentence from the training data
and its reference is ytm.

Previous studies show that the best translation
quality is achieved when the size K of the TM is
larger than 1. For example, the optimized K is set
to be 5 in Gu et al. (2018) and Xia et al. (2019), and
it is even set to be 100 in Zhang et al. (2018). Un-
fortunately, such a large K significantly decreases
the translation speed because the computational
complexity is linear in the size of K. To make our
inference as efficient as possible, we setK = 1 and
employ the most similar bilingual sentence denoted
by 〈xtm, ytm〉 as the TM for x.1

3.2 Encoding TM

In this subsection, we will describe how to encode
the TM 〈xtm, ytm〉 into a sequence of vectors m.

1We also did some experiments on K = 2 and K = 4 in
our proposed model, but we did not observe significant gains.

Three variant methods for encoding a TM are illus-
trated in the right part of Figure 1.

Method 1: sentence (TF-S) Given 〈xtm, ytm〉
for x, the first method utilizes word embedding
and position embedding of ytm to represent m as
follows:

m = Etm = [Ew(y1tm) + Ep(y
1
tm),

· · · , Ew(yJ
′

tm) + Ep(y
J ′
tm)]

(5)

whereEw andEp are word embedding and position
embedding respectively, J ′ is the length of ytm and
the symbol + denotes a simple addition operator.

Method 2: sentence with score (TF-SS) The
first method is agnostic to the similarity score. In-
tuitively, if a TM 〈xtm, ytm〉 is with high similarity,
ytm may be more helpful to predict a good trans-
lation. So, the second method takes the similarity
score into account and it defines m as follows:

m = stm × Etm (6)
where stm = sim(x, xtm) is the similarity score
and the symbol× denotes the scalar-multiplication.

Method 3: sentence with alignment (TF-SA)
As shown in Figure 1, xtm consists of the matched
parts (in orange color) and the unmatched parts (in
dark color) to x. Since each word in the TM is
not of the same importance to the source sentence
x, we should pay more attention to the words that
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are in the matched parts. So, we further obtain
the word alignment between xtm and ytm through
fast-align toolkit (Dyer et al., 2013).2 Suppose
Atm is the word alignment between xtm and ytm:
Ajtm = 1 denotes yj is aligned to some xi other-
wise Ajtm = 0, where xi is also in x . Therefore,
the third method defines m as follows:

m = Atm ◦
(
stm × Etm

)
(7)

where the symbol ◦ denotes an operator between a
vector and a matrix such that

mj =

{
stm × Ejtm if Ajtm = 0

Ejtm if Ajtm = 1
(8)

3.3 TM Augmented NMT
Suppose the encoded TM 〈xtm, ytm〉 is denoted
by m, a sequence of vectors. We aim to build a
model P (yi | x, y<i,m) for the source sentence x,
given the m and prefix translation y<i at time step
i, leading to the entire translation model:
P (y | x, xtm, ytm; θ) =

∏
i

P (yi | x, y<i,m) (9)

where θ denotes the parameter of our proposed
model.3

Example Layer The model architecture of
P (yi | x, y<i,m) is illustrated at the left part of
Figure 1, where its architecture is generally sim-
ilar to standard Transformer and the core compo-
nent is the Example Layer. Specifically, the Exam-
ple Layer includes two multi-head attention oper-
ators: the left multi-head attention (i.e. MH-Att
(y<i, y<i)) is the same as Transformer, and it is de-
fined on the prefix translation y<i; the right multi-
head attention (i.e. MH-Att (y<i, ytm)) attempts to
capture information from the TM, and its query is
from y<i while key and value are from the represen-
tation of TM m. After the two parallel attention op-
erators, two resulting sequences are passed to Add
& Norm operator and a new sequence is obtained
as the query for the next multi-head attention (i.e.
MH-Att (y<i, x)). The following sub-layer is the
same as Transformer and P (yi | x, y<i,m) can be
obtained similar to the definition of standard NMT
P (yi | x, y<i) as presented in Section 2. We skip
those formal equations to rewrite P (yi | x, y<i,m)
due to space limitation.

2Although some advanced word alignment toolkits (Dou
and Neubig, 2021; Chen et al., 2021; Jalili Sabet et al., 2020)
may lead to better performance, we still employ fast-align to
be in line with previous work for fair comparison (Zhang et al.,
2018; Xia et al., 2019).

3In the rest of this paper, we may drop θ in the model for
easier notations.

In summary The entire model architecture is il-
lustrated in Figure 1: the dashed box in the right
part shows the memory encoder, and the left part
shows how the memory representation is used in
the NMT model similar to the Transformer. In our
model architecture, the encoder block contains two
sub-layers and the decoder block contains three
sub-layers. The core sub-layer in the decoder block
is our proposed Example Layer, which consists of
multi-head attention and cross attention. By intro-
ducing the memory encoder and Example Layer,
the parameters in our model are increased only by
8.96% compared to the standard NMT baseline.

4 Training

Suppose the training corpus is D =
{〈xi, yi, xitm, yitm〉 | i ∈ [1, N ]}, where 〈xi, yi〉
is a bilingual sentence, and 〈xitm, yitm〉 is the
related TM which consists of a single bilingual
sentence. Our goal is to learn the parameter θ of
the TM-based NMT model P (y | x, xtm, ytm; θ)
defined in Eq.(9) using D.

The common wisdom is to optimize the pa-
rameter under the maximum likelihood estimation
(MLE), i.e. standard training. Formally, it mini-
mizes the following criterion:

−
N∑
i

logP (yi | xi, xitm, yitm; θ).

Robustness issue Unfortunately, the model
trained with MLE suffers from an issue about ro-
bustness even if its overall performance is much
better than standard Transformer and outperforms
TM-based baselines on the Es→En task. Accord-
ing to our experiments (see Table 4 later), our pro-
posed model performs worse than the Transformer
for those sentences which do not have a similar TM.
As a result, it would be dangerous to use the model
for online services because users may provide an
input sentence whose TM is not similar to itself.

The possible reason for the above issue is ex-
plained as follows. On the average case, the refer-
ence y is strongly correlated to its TM target ytm
in the training corpus D. For example, the average
similarity score is about 0.58 for Es→En transla-
tion task, according to our statistics. Because of
the powerful fitting ability of neural networks, the
model parameters will be guided to heavily depend
on the given TM target ytm during training. In
this way, if an input source sentence x has a high
similarity with its given TM, the model will output
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high-quality results, as we also observed in Table 5.
On the contrary, once an input sentence is provided
with a low similar TM 〈xtm, ytm〉 (for instance,
the similarity between 0 and 0.3, as shown in Ta-
ble 4), the translation quality of its output rapidly
decreases.

Training criterion In order to avoid the TM
over-fitting, we propose a simple yet elegant
method, inspired by data augmentation (van Dyk
and Meng, 2001; Li et al., 2019; Zhong et al.,
2020) and multiple-task learning (Ben-David and
Borbely, 2008; Qiu et al., 2013; Liu et al., 2016).
Specifically, we first construct another corpus
D0 = {〈xi, yi, null, null〉 | i ∈ [1, N ]} from
D = {〈xi, yi, xitm, yitm〉 | i ∈ [1, N ]}. In the
constructed corpus, 〈null, null〉 plays a role of a
TM, but both source and target sides of the TM
are empty sentences.4 Then we train the model
P (y | x, xtm, ytm; θ) using both D and D0, i.e.
joint training, which is similar to multiple-task
learning. Formally, we minimize the following
joint loss function:

`(D,D0; θ) = −
N∑
i

(
logP (yi | xi, xitm, yitm; θ)

+ λ× logP (yi | xi, null, null; θ)
)

(10)
where 0 < λ is a coefficient to trade off both
loss terms. Intuitively, the first term induced by
D guides the model to use the information from a
TM for prediction, and thereby it will generate ac-
curate translations for those input source sentences
whose TM is with high similarity. On the other
hand, the second term induced by D0 teaches the
model to output good translations without informa-
tion from a TM. Additionally, this makes it possible
that a single unified model can handle both trans-
lation scenarios (with or without a TM), which is
practical for online services.

Note that the proposed method is slightly dif-
ferent from standard data augmentation (Sennrich
et al., 2016a; Fadaee et al., 2017; Fadaee and Monz,
2018; Wang et al., 2018) and multiple-task learn-
ing (Dong et al., 2015; Kiperwasser and Balles-
teros, 2018; Wang et al., 2020) in NMT research.
These data augmentation techniques automatically
generate pseudo data based on the original train-
ing data and then train a model using both original
and generated data. However, the dataset D0 is

4In the experiments, we implement null as the sentence
including a single word, i.e. “〈eos〉”.

Algorithm 1: Joint Training Algorithm
Input: Mini-batch size b, maximal iteration

M , a learning rate schema η and two
corpus: D = {〈xi, yi, xitm, yitm〉 |
i ∈ [1, N ]} and D0 =
{〈xi, yi, null, null〉 | i ∈ [1, N ]}

Output: The parameter θ.
1 for 1 ≤ t ≤M do
2 Sample a mini-batch B with size of b/2

from D
3 Sample a mini-batch B0 with size of b/2

from D0

4 Calculate gradient ∆ = ∇θ`(B,B0; θ)
as defined in Eq.(10)

5 Update parameter: θ = θ − ηt∆

directly taken from the original D in our scenario.
Also, multiple-task learning in their works typically
involves different models that share some partial
parameters rather than all parameters. In contrast,
both terms in our joint loss correspond to the same
task, i.e. translation prediction given a source sen-
tence and its TM; and both models are exactly the
same.

The detailed joint training algorithm is presented
in Algorithm 1. It follows the standard gradient
descent method for optimization. Note that in line
2 and 3, it samples two mini-batches which do
not share the same bilingual sentences to promote
diversity, i.e., D and D0 are independently and
randomly sampled. In our experiments, we employ
Adam (Kingma and Ba, 2014) with default settings
as the learning rate schema.

5 Experiments

In this section, we validate the effectiveness of
the proposed approach: robustness for handling
both translation situations (with or without a TM),
running efficiency compared with the previous TM-
based NMT models, translation quality on both
TM-specialized tasks and general MT tasks. We
use the case-insensitive BLEU score as the auto-
matic metric (Papineni et al., 2002) for the transla-
tion quality evaluation.

5.1 Setup
TM-specialized tasks We evaluate our proposed
models with the JRC-Acquis corpora, which in-
clude three language pairs and lead to six trans-
lation tasks in total: English↔German (En↔De),
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TM-specialized Tasks General WMT Tasks
Fr↔EnEs↔EnDe↔En En→De Zh→En

Train/Sent(#) 740467 673856 693011 4558262 20605452

Dev/Sent(#) 2649 2511 2440 3000 2002

Test/Sent(#) 2650 2585 2461 3003/3004 2001

En/Word(#) 29.44 32.68 34.00 28.94 25.46
Other/Word(#) 33.35 35.58 34.22 29.90 23.03

Table 1: Statistics of the datasets. The last two lines
are average sentence lengths in English and other lan-
guages.

TM-specialized Tasks General WMT Tasks
All En→De Zh→En

Layers 6 6 6
Dropout 0.1 0.1 0.1
Embedding 512 512 512
Batch size 3500 2500 4096
Source vocab 20000 32000 75000
Target vocab 20000 32000 63000

Table 2: Training settings. Batch size refers to the to-
ken number for each batch. Embedding refers to the
number of word embedding dimensions. For a fair com-
parison, the source vocabulary size is 40000 in baseline
FM+ on Es→En task.

English↔Spanish (En↔Es) and English↔French
(En↔Fr). To compare with previous work, we
adopt the same splitting of training/dev/test and
pre-processing as Gu et al. (2018), Zhang et al.
(2018), and Xia et al. (2019).

General tasks The proposed models are
evaluated on the widely-used general WMT
tasks: WMT14 English-to-German (En→De) and
WMT17 Chinese-to-English (Zh→En) tasks. For
the En→De task, we use newstest2013 as the
development set, as well as employ newstest2014
and newstest2017 as the test sets. For the Zh→En
task, we employ newsdev2017 and newstest2017
as the development and test set respectively.

Table 1 summarizes the data statistics for both
TM-specialized and general tasks. In addition, we
employ Byte Pair Encoding (BPE) (Sennrich et al.,
2016b) on all the tasks mentioned before.

BLEU TF TF-S TF-SS TF-SA

Dev 63.35 65.00 67.04 67.23
Test 62.79 65.52 67.04 67.26

Table 3: Performance of our models under the standard
training criterion. BLEU is reported on Es→En task.
Best results are highlighted.

Similarity Sents Percents Baseline Std Train Joint Train
(#) (%) TF TF-SA TF-SA

[0, 0.1) 2 0.08 36.91 64.05 74.48
[0.1, 0.2) 138 5.34 38.53 37.70 39.52
[0.2, 0.3) 462 17.87 47.88 47.07 49.09
[0.3, 0.4) 305 11.80 54.02 54.75 56.19
[0.4, 0.5) 272 10.52 62.29 64.01 66.18
[0.5, 0.6) 206 7.97 65.94 71.32 72.48
[0.6, 0.7) 203 7.85 71.88 79.63 80.08
[0.7, 0.8) 188 7.27 77.20 85.96 86.45
[0.8, 0.9) 377 14.59 79.93 90.71 91.31
[0.9, 1) 432 16.71 81.95 94.60 94.68

[0, 0.3) 602 23.29 45.36 44.45 46.41
[0.3, 1) 1983 76.71 70.97 78.22 79.06

[0, 1) 2585 100 62.79 67.26 68.49

Table 4: Translation accuracy in terms of BLEU on the
Es→En task (test set only) for the divided subsets ac-
cording to the similarity of TM.

Baseline systems We compare our proposed
model with the strong baselines as follows:

• TF (Vaswani et al., 2017): it is the standard
Transformer.

• TF-P (Zhang et al., 2018): it is re-
implemented on top of Transformer by our-
selves.

• TF-G (Xia et al., 2019) and TF-SEQ (Gu
et al., 2018): TF-SEQ is a mimic implemen-
tation over Transformer by Xia et al. (2019).
We report the results from Xia et al. (2019)
since they were also implemented over Trans-
former as comparison.

• FM+ (Xu et al., 2020): since Xu et al. (2020)
adopt a different split on JRC corpus, the re-
sults are not comparable to ours. For a fair
comparison, we re-implement a strong model
FM+ as a baseline which makes use of the
same metric to retrieve a TM as ours and is
better than the method in Bulte and Tezcan
(2019).

Our models In the case of the three methods
proposed in this paper, TF-S, TF-SS and TF-SA
refer to the method encoding TM by the sentence,
sentence with score, and sentence with alignment,
respectively. We optimize their parameters through
both standard training and joint training. For joint
training, the hyperparameter λ is set to be 1 for all
translation tasks.

System configuration For a fair comparison, we
employ the same settings to train all baselines and
our models, and the learning rate for all models
is Adam with the default hyper-parameters. The
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details of the settings are shown in Table 2.

5.2 Results and Analysis on Es→En Task

Standard training and robustness issue We
first evaluate the proposed models under the stan-
dard training criterion. Table 3 shows the compari-
son among different TM encoding methods for our
models. From this table, we can see that our mod-
els achieve substantial improvements over Trans-
former (TF) which does not use any TM, even if
our models are simple and only utilize a single
bilingual sentence in the TM. TF-SA performs bet-
ter than TF-S and TF-SS thanks to the fine-grained
alignment information encoded in the TM. Also,
TF-SA outperforms all TM-based baselines by at
least 1.0 BLEU point, compared with Table 6.

In addition, we exploit the influence of our mod-
els on the similarity of a TM. We thereby divide the
test dataset into ten subsets according to the similar-
ity score and report the results in Table 4. We find
that the gains of our models over the TF baseline
are mainly from those sentences whose TMs are
with relatively high similarity. To our surprise, our
models perform worse than TF on the subset with
relatively low similarity except the subset with the
lowest similarity.5 This result demonstrates that
our models with standard training are not robust to
similarity scores, as deeply explained in the previ-
ous section.

Joint training Luckily the robustness issue can
be fixed well by joint training, as depicted in the
right part of Table 4. We can see that our model is
better than the baseline TF on the subset of [0, 0.3),
and it substantially outperforms TF on the subset
of [0.3, 1). With the help of joint training, TF-SA
delivers gains of 1.2 BLEU points over standard
training, and gains of 5.7 BLEU points over the
strong TF baseline on the entire test set.

Therefore, in the rest of the experiments, we
employ joint training to set up all of our models
because it is robust to the low similarity of TMs.

Without TM or with Ref as TM The situation
without any TM and the situation with reference
as a TM are more extreme cases of the robustness
issue. As reported in Table 5, if a perfect TM is

5We further check these two exceptional sentences and
find that they are very short in length. In particular, their word
alignment results from the fast-align toolkit are very good,
which may be beneficial to our proposed model. This might
be the reason why our proposed model advances the baseline
Transformer.

BLEU TF TF-S TF-SS TF-SA

Es→En
Without TM 62.79 62.72 62.83 63.15
Ref as TM - 88.66 93.19 92.38
With TM - 67.99 68.40 68.49

Zh→En
Without TM 24.12 24.13 24.26 24.13
Ref as TM - 94.90 99.43 98.81
With TM - 24.22 25.12 25.03

Table 5: BLEU comparison on Es→En and Zh→En
tasks. “Ref as TM”, “With TM” and “Without TM” re-
spectively denote our models are provided a reference
as a TM, a retrieved TM, not provided a TM during
inference.

BLEU TF TF-P TF-SEQ FM+ TF-G TF-SA

Dev 63.35 65.59 64.81 66.44 66.37 68.68
Test 62.79 65.22 65.16 65.90 66.21 68.49

Table 6: BLEU comparison with baselines on Es→En
task.

provided to our models, they can yield excellent
translation results. Besides, the proposed methods
are not inferior to the standard Transformer when
no TM is provided. As a result, the proposed model
makes it possible that a single unified model can
handle both translation situations (with or without
a TM), which is practical for online services.

Noisy TM To validate whether the model works
well with noisy TMs, we also conduct a quick ex-
periment by adding noises to TM for the test set by
randomly replacing words in the target side of TM
with incorrect words. After replacing one and two
words, the proposed TF-SA achieves 68.17 BLEU
points and 67.94 BLEU points, respectively. Both
results are slightly worse than the noise-free TF-SA
(68.49) but still better than the best TM baseline
(66.21). Note that both results are obtained with-
out retraining TF-SA model with noisy TM. This
fact demonstrates our model is even robust to noisy
TMs and thus it is useful for the online TM.

Comparison with baselines Table 6 illustrates
the results between the proposed model TF-SA
and the baselines. It is clearly shown that TF-SA
surpasses all TM-based baselines with a substantial
margin. In details, TF-SA outperforms TF-P and
TF-SEQ by about 3.2 BLEU points, FM+ by about
2.6 BLEU points, and the strong baseline TF-G by
about 2.2 BLEU points.

Running time Since all TM-based models em-
ploy the same retrieval metric and their retrieval
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Time(s) TF TF-P TF-SEQ TF-G FM+ TF-S TF-SS TF-SA

Train 3727 - 17841 7074 7720 4350 4361 4518
Test 0.30 0.71 1.91 0.55 0.33 0.39 0.40 0.41

Table 7: Running time comparison on Es→En task. Training time reports the time in seconds for training one
epoch on average, and testing time reports the time in seconds for translating one sentence on average.

BLEU TF TF-P TF-G TF-S TF-SS TF-SA

Fr→En 66.25 69.69 70.87 72.00 72.55 72.35
En→Fr 66.49 69.08 69.59 70.38 71.03 71.11
Es→En 62.79 65.22 66.21 67.99 68.40 68.49
En→Es 60.11 61.94 62.76 66.52 66.61 66.94
De→En 58.50 61.49 61.72 65.58 64.86 65.56
En→De 53.15 57.01 56.88 61.71 60.87 61.35

Table 8: Translation accuracy in terms of BLEU on the
TM-specialized tasks.

time is exactly the same, we only report the run-
ning time of all TM-based NMT models excluding
retrieval time in Table 7. As reported in this table,
our proposed model further saves significant run-
ning time over TF-SEQ and TF-G for both training
and testing, besides achieving better translation per-
formance. In addition, although it requires slight
overhead in training, its testing is more efficient
than TF-P; and our training is faster than FM+.

5.3 Overall Translation Quality

5.3.1 On the TM-specialized Datasets
The experimental results of all the systems on the
six translation tasks of TM-specialized datasets are
reported in Table 8. Several observations can be
made from the results. First, the baseline TF-P
and TF-G achieve substantial gains over the strong
baseline TF, outperforming by [1.1, 4.1] BLEU
points. This result is in line with the finding in
Zhang et al. (2018) and Xia et al. (2019). Second,
on the basis of that, compared with the strongest
baseline TF-G, our proposed TF-S, TF-SS and TF-
SA can obtain further gains up to 4.9 BLEU points,
at least 1.2 BLEU points.

5.3.2 On the General WMT Datasets
It is important to mention that all previous TM-
based approaches failed in getting notable improve-
ments on the general WMT datasets. Since Xia
et al. (2019) did not conduct experiments on the
WMT datasets and their implementation is not re-
leased, we compare our models with two baselines:
TF and TF-P. Our experimental results on the gen-
eral WMT datasets are reported in Table 9. As we

BLEU WMT En→De WMT Zh→En
news13 news14 news17 dev17 test17

TF 26.18 27.93 26.82 22.52 24.12
TF-P 26.26 27.79 26.70 22.65 24.17

TF-S 26.56 28.13 26.61 22.88 24.22
TF-SS 27.02 28.22 27.19 23.85 25.12
TF-SA 26.66 28.66 27.48 23.65 25.03

Table 9: Translation accuracy in terms of BLEU on the
general WMT tasks.

can see, the method TF-P is only comparable to the
baseline NMT, which is in line with the observa-
tion in Zhang et al. (2018). In contrast, our mod-
els perform well on these tasks. Our best model
gains about 0.7 BLEU points on the En→De and
1.0 BLEU point on the Zh→En task, over both
baselines on average. The experimental results
demonstrate that a TM based translation model can
advance strong MT baselines on general translation
tasks where a TM is not very similar to input source
sentences. What’s more, as shown in Table 5, our
models can get excellent translation results while a
perfect TM is provided.

In a summary, based on the above extensive ex-
perimental results, our proposed models substan-
tially surpass several baselines on TM-specialized
tasks and general tasks, in terms of BLEU and run-
ning time.

6 Related Work

In the statistical machine translation (SMT) dia-
gram, Koehn and Senellart (2010a) extract bilin-
gual segments from a TM which matches the
source sentence to be translated, and employ a
heuristic score to decide whether the extracted seg-
ments should be used as decoding constraints or
not, then hardly constrain SMT to decode for those
unmatched parts of the source sentence. Ma et al.
(2011) design a fine-grained classifier, rather than
the heuristic score, to predict the score for mak-
ing more reliable decisions. Simard and Isabelle
(2009), Wang et al. (2013) and Wang et al. (2014)
add the extracted bilingual segments to the transla-
tion table of SMT, and then bias the decoder in a
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soft constraint manner when decoding the source
sentence with the augmented translation table. Liu
et al. (2012) use the retrieved bilingual sentences
to update the parameters for the log-linear model
based SMT.

In recent years, many efforts are made on neural
machine translation (NMT) associated with a TM.
Li et al. (2016) and Farajian et al. (2017) make full
use of the retrieved TM sentence pairs to fine-tune
the pre-trained NMT model on-the-fly. The most
obvious drawback of fine-tuning is that the delay is
too long for testing sentences. To avoid the online
tuning process, Zhang et al. (2018) and He et al.
(2019) dynamically integrate translation pieces,
based on n-grams extracted from the matched seg-
ments in the TM target, into the beam search stage.
The second type of approach is efficient but heavily
depends on the global hyper-parameter λ, which is
sensitive to the development set, leading to inferior
performance.

Recently, there are notable approaches for the
sake of further excavation on TM-based NMT.
Bulte and Tezcan (2019) and Xu et al. (2020) pro-
pose data augmentation approaches by augmenting
input sentences with a TM which do not modify
the NMT model architecture. Gu et al. (2018) and
Xia et al. (2019) employ an auxiliary network to
encode TMs and integrate it into the NMT archi-
tecture. Our model architecture is simpler than Gu
et al. (2018) and Xia et al. (2019) and we encode a
single TM target sentence and utilize simple atten-
tion mechanisms on the TM. And the architecture
is more efficient and leads to a faster translation
speed compared with Gu et al. (2018) and Xia et al.
(2019). In particular, we propose a novel training
criterion to make the TM-based NMT model more
robust in different translation situations (with or
without a TM). In parallel with our work, Cai et al.
(2021) extend the translation memory from the
bilingual setting to the monolingual setting through
a cross-lingual retrieval technique, and Khandel-
wal et al. (2021) report significant improvements
in quality on general translation tasks as ours, but
their inference speed is two orders of magnitude
slower than Transformer because they perform con-
textual word retrieval whose search space is much
larger than that of sentence retrieval.

7 Conclusion

This paper presents a simple TM-based NMT
model that employs a single bilingual sentence as

its TM and thus is fast in training and inference. Al-
though the presented model with the standard train-
ing outperforms strong TM-based baselines, it suf-
fers from a robustness issue: its performance highly
depends on the similarity of a TM. To address this
issue, we propose a novel training criterion inspired
by multiple-task learning and data augmentation.
Experiments on TM-specialized tasks demonstrate
its superiority over strong baselines in terms of
running time and BLEU. Also, it is shown that
a TM-based NMT model can advance the strong
Transformer on general translation tasks like WMT.
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