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Abstract

Lifelong learning (LL) aims to train a neu-
ral network on a stream of tasks while retain-
ing knowledge from previous tasks. However,
many prior attempts in NLP still suffer from
the catastrophic forgetting issue, where the
model completely forgets what it just learned
in the previous tasks. In this paper, we in-
troduce Rational LAMOL, a novel end-to-end
LL framework for language models. In or-
der to alleviate catastrophic forgetting, Ratio-
nal LAMOL enhances LAMOL, a recent LL
model, by applying critical freezing guided by
human rationales. When the human rationales
are not available, we propose exploiting unsu-
pervised generated rationales as substitutions.
In the experiment, we tested Rational LAMOL
on permutations of three datasets from the
ERASER benchmark. The results show that
our proposed framework outperformed vanilla
LAMOL on most permutations. Furthermore,
unsupervised rationale generation was able to
consistently improve the overall LL perfor-
mance from the baseline without relying on
human-annotated rationales. We made our
code publicly available at https://github.
com/kanwatchara-k/r_lamol.

1 Introduction

The grounds of lifelong learning (LL) stem from
the ability of humans to continually acquire, consol-
idate, and transfer knowledge and skills throughout
their lifespan. This ability is also important for
real-world natural language processing (NLP) ap-
plications, where autonomous agents are required
to interact with users from various domains through
continuous streams of information and language
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semantic drifts occur over time. The existing dom-
inant paradigm for machine learning, however, is
isolated learning (Chen and Liu, 2016). While
isolated learning has shown some successes in a
variety of domains, their applicability remains lim-
ited to the assumption that all samples are available
during the learning phase. When a stream of tasks
are trained sequentially, machine learning and neu-
ral network models face catastrophic forgetting or
interference (McCloskey and Cohen, 1989). This
occurs due to the non-stationary data distribution
that biases the model.

We focus on lifelong language learning (LLL),
which is lifelong learning on a stream of NLP tasks.
To the best of our knowledge, the grounds of LLL
are left largely underexplored. LAMOL is an LLL
general framework that has garnered recent interest
due to its simplicity (Sun et al., 2020). In particular,
LAMOL transforms all NLP tasks into the question
answering (QA) format according to McCann et al.
(2018) and generates pseudo-samples of old tasks
using its language modeling (LM) capability to re-
fresh the learned knowledge. However, there is still
a gap between the performance of LAMOL and the
result of multi-task learning which is generally con-
sidered as the upper bound of LLL performance.
This indicates that only pseudo-samples genera-
tion may not be sufficient to prevent catastrophic
forgetting.

In this paper, we improve existing LLL strategies
by proposing Rational LAMOL, a rationale-based
lifelong learning framework which equips the orig-
inal LAMOL with critical freezing (Nguyen et al.,
2020) to further prevent catastrophic forgetting.
Particularly, we devise an algorithm to identify
critical components in transformer-based language
models using rationales, and the selected compo-
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nents will be frozen to maintain learned knowledge
while being trained on a new task.

The contributions of our paper are listed below:

• We demonstrate the importance of freezing
plastic components (i.e., components that are
most susceptible to change) in transformer-
based models to strengthen memories of the
previously learned tasks in the LLL setting.

• We propose critical component identification
algorithm which analyzes the transformer-
based LLL model with rationales so as to find
the most plastic component to freeze. This
step is so called critical freezing, firstly de-
vised in computer vision (Nguyen et al., 2020)
but we adapted it to NLP.

• We propose that unsupervised generated ra-
tionales by InvRat (Chang et al., 2020) can
be effectively used as substitutions of human
rationales, allowing our framework to be ap-
plied to generic NLP datasets.

We evaluated Rational LAMOL on six task order
permutations of three datasets from the ERASER
benchmark (DeYoung et al., 2020). The results
show that our proposed framework outperformed
the original LAMOL on five out of the six permu-
tations, achieving average improvements of 1.83%
with a lower standard deviation of 4.57%. More-
over, using unsupervised rationale generation in-
stead of human rationales also yielded competitive
performance, achieving average improvements of
2.67% from original LAMOL.

2 Background and Related Work

In this section, we briefly introduce the concept of
lifelong learning, catastrophic forgetting, and com-
ponent freezing which are relevant to the core idea
of Rational LAMOL. We also briefly summarize
prominent researches related to rationales.

Lifelong Learning and Catastrophic Forgetting
While people fine tune a pre-trained model to
perform a single task, lifelong learning (LL) is
a setting in which a learner performs sequen-
tial learning of infinitely incoming tasks τ =
{τ1, τ2, ..., τi, ..., }, where τi is the i-th task to learn
at a particular point in time. The objective of the LL
learner is to ideally both optimize the performance
on the new task and maintain optimal performance
on previous tasks τt for t = 0, 1, ..., i. Moreover,

the ability to transfer knowledge across different
tasks is also desired. However, naively training
on a sequence of tasks without accounting for the
difference in data distributions would result in an
abrupt decrease in old tasks performance. This
phenomenon is known as Catastrophic Forgetting
(McCloskey and Cohen, 1989). There are multiple
existing works that aim to mitigate catastrophic for-
getting in LL. They can be categorized into three
major approaches. First, regularization methods
use a regularization term to constrain changes when
updating weights in a new task (Kirkpatrick et al.,
2017; Aljundi et al., 2017; Lee et al., 2017). Sec-
ond, data-based methods disallow significant devi-
ation of weights from previous tasks by keeping a
small subset of data from the previous tasks or gen-
erating pseudo-data to refresh the learned knowl-
edge (Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2019; de Masson d’Autume et al., 2019;
Li and Hoiem, 2018). Third, architecture-based
methods dynamically transform the neural network
architectures in order to accommodate new knowl-
edge (Rusu et al., 2016; Chen et al., 2016).

Lifelong Language Learning or LLL is a sce-
nario where a model sequentially learns from a
stream of NLP tasks in an LL manner. To the best
of our knowledge, LLL has rarely been studied and
previous works usually target a single type of NLP
tasks (Chen et al., 2015; Liu et al., 2019; de Mas-
son d’Autume et al., 2019). To go beyond this limi-
tation, Sun et al. (2020) proposed LAMOL, a learn-
ing framework that utilizes a language model to si-
multaneously predict outputs and learn to generate
pseudo-training examples, which are exploited to
alleviate catastrophic forgetting. Hence, LAMOL,
as well as our Rational LAMOL, naturally falls into
the data-based LL approach since data from previ-
ous tasks, albeit generated, is utilized to constrain
a model.

Component Freezing While component freez-
ing is also a common practice in the fine-tuning
process, it is done to prevent loss in general knowl-
edge in lower layers of the model (Raganato and
Tiedemann, 2018).

By contrast, many architecture-based LL meth-
ods, for example Rusu et al. (2016), utilize compo-
nent freezing to prevent changes to learned knowl-
edge from previous tasks and enlarge the model to
accommodate new tasks, thereby making the model
immune to forgetting. Our Rational LAMOL also
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uses component freezing, but unlike architecture-
based methods, only a small part of the model is
frozen and its size is constant throughout the learn-
ing process.

Rationales Rationales are reasons for labels or
predictions. In NLP, they are usually parts of the
input texts which support or contribute to the class
labels. Rationales could be either annotated by
humans or generated by machine learning models.
Human rationales have been used to enhance ma-
chine learning in multiple studies. For instance,
Rajani et al. (2019) used the rationales to guide
a neural network toward better reasoning. Bao
et al. (2018) utilized rationales as auxiliary infor-
mation to train a neural network model, reduc-
ing training examples required to achieve good re-
sults. Recently, DeYoung et al. (2020) introduced
the ERASER benchmark consisting of multiple
datasets, all of which are annotated with human
rationales. This facilitates the advancement of re-
search on interpretable NLP. In the experiment, we
used human rationales from ERASER in the criti-
cal component identification step to find the most
plastic component to be frozen.

Meanwhile, some researchers attempt to de-
sign architectures to predict rationales from la-
belled data. Existing rationalization techniques
commonly use the maximum mutual information
(MMI) criterion to select rationales, which is prone
to choosing spurious correlation between input fea-
tures and outputs as rationales (Lei et al., 2016;
Yu et al., 2019). To fix this issue, Invariant Ra-
tionalization (InvRat) (Chang et al., 2020) follows
the invariant risk minimization (IRM) paradigm,
as introduced by Arjovsky et al. (2019). It utilizes
the environment variable to isolate and select the
causal features that faithfully explain the output. In
order to allow Rational LAMOL to be applied to
any NLP dataset, we choose to leverage InvRat to
automatically produce rationales due to its supe-
rior performance and straightforward application,
removing the need for human rationales.

3 Methodology

We introduce Rational LAMOL and its detailed im-
plementation in this section. As Rational LAMOL
is based from LAMOL (Sun et al., 2020), we briefly
explain LAMOL in Section 3.1. Then we intro-
duce the core lifelong learning framework of Ra-
tional LAMOL in Section 3.2. This is followed
by two proposed enhancements including critical

component identification and unsupervised ratio-
nale generation, detailed in Section 3.3 and 3.4,
respectively.

3.1 LAMOL
Language Modeling for Lifelong Language Learn-
ing (LAMOL) (Sun et al., 2020) utilizes a single
language model (LM) as a multipurpose model.
Framing all tasks as question answering (QA), the
LM now poses as a generic task-agnostic model.
In addition, LAMOL trains the LM as a generative
model upon receiving a special generation token.
Using a single model for both providing answers
and generating pseudo-samples, LAMOL truly ex-
hibits a model of LM and QA duality.

The benefit that comes with the generative part
of the model tackles the long-standing issue of LL–
catastrophic forgetting. While other methods make
use of extra memory or model capacity to preserve
a subset of real samples (Lopez-Paz and Ranzato,
2017; Chaudhry et al., 2019) or to accomodate a
separate generator (Shin et al., 2017; Kemker and
Kanan, 2017), LAMOL transfers all the responsi-
bilities into a single model. It learns the ability
to select potentially prominent features befitting
learning by modeling the input. This allows the
model to replay meaningful pseudo-samples from
previous tasks while forcing the model to memo-
rize knowledge acquired from previous tasks tied to
the generation token. In this paper, we propose ex-
ploiting rationales with LAMOL to further improve
the LLL performance, discussed next.

3.2 Rational LAMOL
Rational LAMOL, illustrated in Figure 1 (right), is
a learning framework revolving around the origi-
nal methodologies of LAMOL. We consider an LL
setting where τ = {τ1, τ2, ..., τi, ...} is a stream of
learning tasks and τi is the i-th task to train at a par-
ticular point in time. Let Mi denote the model M
after being trained for task i, where M0 is the ini-
tialized pre-trained model. Using these notations
and starting from M0, Rational LAMOL works
iteratively in four steps as follows. First, given
a model Mi, it trains Mi with the task τi+1 us-
ing LAMOL’s training procedure to obtain M̂i+1.
Second, for i > 0, it applies critical component
identification, which is described in Section 3.3,
on Mi and M̂i+1 with the rationales of task τi to
dissect the most plastic layers or blocks. Third, we
take a step back to work at Mi and apply critical
freezing, i.e., freezing the most plastic components,
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Figure 1: Left: The overview of LAMOL. Right: The overview of Rational LAMOL, our proposed framework
that aims to alleviate catastrophic forgetting by freezing the critical component.

Figure 2: Schematic illustration of the calculation of IoUM,GT . A: The input is fed through each attention block
ATj , where each block j has multiple heads. B: A single attention head ATj,a consists of the attention of the
sequence in relation to all other tokens, as shown in C. Finally, the IoU calculation F is applied on the hard
selection of attention token with percentiles D and the rationale ground truth in E.

to obtain MCF
i . Lastly, we train MCF

i through
the task τi+1 again to get a new model Mi+1 that
retains the most plastic memories. Note that de-
spite the unique nature of LAMOL, our Rational
LAMOL does not limit its usage to a single model
architecture. It has potential applications to general
attention-based models suffering from catastrophic
forgetting through domain shifts across tasks.

3.3 Critical Component Identification (CCI)

We propose the Critical Component Identification
(CCI) algorithm, pointing out the most plastic block
of our transformer-based LL model before moving
on to a new task completely. (This shares the same
spirit as Nguyen et al. (2020), proposing Auto
DeepVis to find the most plastic blocks of CNN
models for image classification.) The chosen block
is the one that forgets what it has learned from
the recent task the most when being introduced a
new task, so we will freeze the block to prevent
catastrophic forgetting in Rational LAMOL.

As shown in Algorithm 1, for each validation
sample x ∈ X of task i, the CCI compares the
attention maps AT produced by the model Mi (i.e.,
the old model MO in Algorithm 1) and M̂i+1 (i.e.,
the new model MN in Algorithm 1) to find the

most plastic block b with respect to this sample.
Then it returns the block F which is the mode of
all b, voted by most of the samples in X . Note that
most of the variable names are preserved similar
to Nguyen et al. (2020) for ease of reference, and
some sections are refactored for readability.

In particular, to find b for the sample x, we iterate
over all blocks j = 1, ...,K and perform two steps.
First, we find the representative map of the block
j in MO with respect to the ground truth GT (i.e.,
RMMO,GT (j)) by selecting the attention map of
the attention head a∗ and the token s∗ in x from the
block j that is most similar to the human rationale
for the sample x (i.e., ground truth GT in Algo-
rithm 1). Although interpretable NLP stands to be
a nascent subfield for exploration (DeYoung et al.,
2020), elementary visualization of attentions are
possible in Transformers (Vig, 2019; Hoover et al.,
2020). These self-attention mechanisms associate
distant positions of a single sequence and many
appear to exhibit behavior related to the sentences’
syntactic and semantic structure (Vaswani et al.,
2017). We hypothesize that the semantic nature of
the self-attention mechanisms would opt for tokens
most relating to positive evidence vital for predic-
tions, being analogous to rationales–snippets that
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Algorithm 1 Critical Component Identification
Input: Validation set X , ground truth rationale
GT , old model MO, new model MN , number of
blocks K

Output: Critical block F
Ł← ∅
for all validation sample x ∈ X do:

IoUs← ∅
ATO, ATN ← [MO(x),MN (x)]
for j = 1,K do:

RMMO,GT ←
ATj,a∗,s∗ with highest IoUMO,GT

RMMN ,MO
←

ATj,a∗,s∗ with highest IoUMN ,MO

APPEND(IoUs, max(IoUMN ,MO
))

end for
b← argminj IoUs
APPEND(Ł, b)

end for
F = MODE(Ł)
return F

support outputs. To compute the similarity between
attention maps and human rationales, we use Inter-
section over Union (IoU). Formally, the following
equations explain this step.

RMM,GT (j) = ATj,a∗,s∗ (1)

where

(a∗, s∗) = argmax
a∈A,s∈S

(IoUM,GT (j, a, s)) (2)

and

IoUM,GT (j, a, s) =
Pβ(ATj,a,s) ∩GT
Pβ(ATj,a,s) ∪GT

(3)

A is the set of all attention heads in the block, and
S is the set of all tokens in x. IoUM,GT (j, a, s)
reflects the similarity between the ground truth and
the attention map of the block j, head a, and to-
ken s in x. Since the ground truth contains binary
labels indicating whether a token is a part of the
rationale or not, we need to convert the attention
map ATj,a,s into binary labels using Pβ – a simple
binary thresholding which returns 1 for the value
greater than the β-th percentile on the entire se-
quence (otherwise, 0). This is required as IoU
works for comparing two binary masks. Figure 2
visualizes how to compute the IoU score by drilling
down each component of the model.

After we obtain RMMO,GT (j) of the block
j, the second step finds the representative map
of the block j in MN with respect to MO (i.e.,
RMMN ,MO

(j)). This can be done by replacing
M and GT in Equation 1-3 by MN and MO, re-
spectively, and replacing GT on the right side of
Equation 3 to be Pβ(RMMO,GT (j)). After that,
we collect the maximum IoUMN ,MO

of the block
j which represents the amount of knowledge of
task i held in the model after we introduce task
i+ 1. Therefore, the most plastic block b for this
sample x is the block with the lowest maximum
IoUMN ,MO

.
Actually, transformer blocks are not the finest

granularity that we could freeze. Since each block
contains several attention heads, it is possible to
freeze some attention heads individually. Hence,
we propose another algorithm, applying to heads.
This is similar to Algorithm 1, but instead of search-
ing for blocks with lowest maximum IoU, the algo-
rithm searches using both the attention blocks and
attention heads together as keys. Although the defi-
nition of IoU stays the same, the definition of the
representative map will be at a higher granularity.
Formally, for a block index j and attention head a,
RMM,GT will be computed as:

RMM,GT (j, a) = ATj,a,s∗ (4)

where

(s∗) = argmax
s∈S

(IoUM,GT (j, a, s)) (5)

and we can freeze top n heads that receives most
votes from the samples in the validation set X .

3.4 Unsupervised Rationale Generation

As described in Section 3.2, our framework re-
quires rationales as an input. However, most exist-
ing NLP datasets are not annotated with rationales.
To overcome the limitation, we leverage a recent
unsupervised rationale generation framework, In-
vRat (Chang et al., 2020) to generate rationales
as substitutions. Originally, InvRat was designed
for single-input tasks such as sentiment analysis.
However, since some of the datasets we experi-
mented with are text-pair classification, we append
the query (or question) at the end of each sample
to accommodate these tasks.
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Dataset # Train # Val # Test Metric
BoolQ 6,363 1,491 2,817

EMMovie 1,600 200 200
SciFact 405 100 188

Table 1: Summary of datasets, dataset sizes, and their
corresponding metrics. EM represents an exact match
between texts.

4 Experimental Setup

4.1 Datasets

To evaluate our proposed framework, we conducted
an experiment on three English text classification
datasets, curated and made publicly available by
ERASER1 (DeYoung et al., 2020). All of the three
datasets, as listed below, are provided with ratio-
nales marked by humans. Table 1 contains a sum-
mary of the datasets, dataset sizes, and metrics.

• BoolQ (Clark et al., 2019): a dataset com-
prises selected passages from Wikipedia and
naturally occurring yes/no questions to be an-
swered by the model.

• Movie Reviews (Zaidan and Eisner, 2008): a
dataset composed of movie reviews. It con-
tains positive and negative sentiment labels to
be predicted by the model.

• SciFact (Wadden et al., 2020): a dataset
containing expert-written scientific claims
coupled with evidence-containing abstracts.
Given a claim, the model has to identify if the
abstract supports or refutes the claim.

We ran our proposed framework on all six per-
mutations of task order for three times with dif-
ferent random seeds. The average results are then
reported in Section 5.

4.2 Implementation Details

We followed the best LAMOL configuration from
Sun et al. (2020). All parameters were kept at the
default values. For all methods, we use the small
GPT-2 model (Radford et al., 2019) as the language
model. Each task was trained for five epochs. We
applied greedy decoding during inference. Due to
fine-tuning instability of neural network, in each
task order, we used the same first task model M1

for all methods in each run for fair comparison.

1https://www.eraserbenchmark.com/

Figure 3: Average runtime in hours of various methods.
R-LAMOL, R-LAMOL (g), and Partial Brute Force re-
fer to Rational LAMOL, Generated Rational LAMOL,
and Partial Brute Force block respectively.

Critical freezing was applied to a model with
two different levels of granularity: block level and
head level. The validation set of each task was used
as input to Algorithm 1. For block level granularity,
we chose to freeze the most frequent block obtained
from the algorithm, while for head level granular-
ity, 12 heads chosen returned by the algorithm were
kept frozen during training. We used β = 80, i.e.,
selecting the top 20 percentile of attention scores
to compare with ground truth rationales. As the
ERASER benchmark has an average ratio of ratio-
nale tokens to document tokens of around 9.4%,
we allowed rationale selection to be two times the
average ratio (i.e., 20%).

For InvRat, we opted for 300-dimensional GloVe
embeddings (Pennington et al., 2014). The gen-
erator and the predictor modules of InvRat were
based on 1-layer bidirectional gated recurrent units
(Chung et al., 2014) with 256 hidden units as in
Chang et al. (2020). Maximum model input was
set to 1,024 tokens. All hyperparameters for each
task were tuned on the validation set.

5 Results and Discussion

This section reports the performance of Rationale
LAMOL and compares it with LAMOL as the base-
line as well as multitask learning, which is consid-
ered as the upper bound of LL. We also analyze the
effect of each component in the proposed frame-
work.

5.1 Effect of Component Freezing
In order to validate if component freezing truly
helps reduce catastrophic forgetting, we performed
partial brute force block-level freezing on each task
permutation to approximately determine the upper
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Methods BMS BSM MBS MSB SBM SMB Average Std.
LAMOL 57.39 55.98 65.89 66.71 67.63 60.08 62.28 5.09

Partial Brute Force block 62.97 64.05 66.73 67.75 65.22 69.05 65.96 2.30
Rational LAMOL block 62.49 59.55 66.09 68.04 68.55 59.94 64.11 4.57
Rational LAMOL head 64.35 61.70 65.22 67.76 56.59 60.62 62.71 3.93

Gen-Rational LAMOL block 66.82 59.97 66.38 65.11 66.94 64.49 64.95 2.63
Gen-Rational LAMOL head 67.35 57.36 66.51 63.85 63.98 65.52 64.10 3.57

Multitask 67.32

Table 2: Accuracy of different methods evaluated on the models at the last epoch of the last task, averaged over
three seeds. Each column refers to the order of tasks on which the methods were trained. B, M and, S refer to
BoolQ, Movie Reviews, and SciFact, respectively. The Average and Std columns respectively are the average and
standard deviation of the accuracy scores for each row of the methods.

bound of our Rationale LAMOL block. Due to lim-
ited computing resources, we compromised with
searching for all even-numbered block indices, and
choosing the model with maximum average score
of the first two tasks to do the brute force on the
latter two tasks. Since brute force was performed
on a per-task basis, our search space would be 6+6,
the first six being the six blocks on the first two
tasks, and the latter six being the six blocks on
the last two tasks. Do note that true brute force
would be 12×12. Although it is possible that our
partial brute force is sub-optimal, we find that it is
a good compromise due to limited computing re-
sources. The results are presented in Table 2. Brute
force was able to outperform vanilla LAMOL by
a substantial margin of 3.68%, only 1.36% from
the multitask upper bound. This suggests that com-
ponent freezing is able to further nullify the effect
of catastrophic forgetting from LAMOL. It also
achieved a standard deviation of only 2.3% com-
pared with LAMOL’s 5.28%. This suggests that
freezing the right component helps with task order
resilience.

A sample of accuracy graphs (as the learning
progressed) of the compared methods, with the
BoolQ →SciFact→Movies (BSM) task order is
shown in Figure 4 from top to bottom, respectively.
As the first task, BoolQ was not really affected
by SciFact, but encountered a heavy drop during
the third task of Movies. In the baseline, BoolQ
dropped from 61% to a mere 6%, while only re-
bounding up to 26% at the end. However, after
freezing the most plastic block identified by partial
brute forcing, BoolQ dropped from 62% to 15%,
and rebounding up to 47%. Comparatively, in the
second task, SciFact encountered a smaller drop
during the third task from 63% to 55%, and then
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Figure 4: Learning curves of task order BSM. The
graphs show accuracy at each epoch for each task.
Green background refers to the epochs on which the
model is first introduced with a particular task. In this
figure, for example, the model is trained on Bool-Q and
evaluated on all the three tasks during epoch 1-5.

rebounded back to 65%. As the last task, movies
was not affected by catastrophic forgetting.

Accuracy graphs for all permutation of tasks
is available in Appendix 6 from which we make
several observations concerning the effect of task
orders on the overall performance:
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• There is evidence that Movies accelerate the
forgetting process of first task due to the
abrupt change in data distribution.

• However, the performance on the task Movies
itself is barely affected by the task order. We
attribute it to the low difficulty of the task.

• There is usually no interference between the
tasks Bool-Q and SciFact when these tasks
are trained in adjacency since they are similar.

5.2 Effect of Critical Component
Identification (CCI)

It is unrealistic to perform brute force in every sin-
gle setting. So, it is crucial that our algorithm
uses reasonable amount of time while still main-
taining improvements from the baseline. The CCI
algorithm requires each task except task 1 to be
repeated twice. This doubles the time needed to
train a single task. Combined with time required
for CCI, Rational LAMOL required approximately
2.4 times more time than vanilla LAMOL to com-
pletely train a model as shown in Figure 3. On
the other hand, our algorithm used only approxi-
mately half of the time it took to train in the partial
brute force fashion. Currently, CCI only measures
plasticity in between two models (Mi and M̂i+1).
Single model analysis for layer plasticity evalua-
tion is left for future work.

From Table 2, Rational LAMOLblock outper-
formed LAMOL by 1.83% average accuracy
(0.97% average Macro-F1) over all permutations
while having smaller standard deviation, indicating
that it is also more robust to task orders. Ratio-
nal LAMOLhead was able to match or outperform
LAMOL in five out of six task orders, but the sig-
nificant decrease in the SBM order lowered the
average to a 0.43% gain (and a slight decrease in
Macro-F1) from the baseline. Upon further inspec-
tion, we found that the pseudo-samples of SciFact
contained high variance in quality during pseudo-
data replay. In addition to generation token mis-
match, i.e., a situation where a pseudo-sample has
an answer token from a wrong task, the low vol-
ume of SciFact training data affected the quality
of the pseudo-samples generated. So, this acceler-
ated catastrophic forgetting rather than alleviating.
Without the SBM drop, Rational LAMOLhead per-
formed comparatively well or slightly higher with
the block-level. Performing a one-tailed paired t-
test on all data points of the total 3 random seeds,

we observed that block-level freezing is able to win
against the original LAMOL with statistical signifi-
cance (p-value of 0.023 and 0.042 for block-level
and generated block-level respectively). With the
SBM result neglected as an outlier, both block-level
and head-level significantly improved the results
compared with the original LAMOL (p-value of
0.015, 0.014, 0.010, 0.049 for block-level, gener-
ated block-level, head-level, and generated head-
level respectively). However, there is no conclusive
evidence of which method (head-level or block-
level freezing) being significantly better (p-value
of 0.133). Even though our Rationale LAMOL out-
performed the baseline, there was still a gap from
the brute force upper bound. This could be due to
many incompatibilities between human rationales
and machine attention scores, as mentioned in Bao
et al. (2018), which made our algorithm choose
sub-optimal layers/heads.

5.3 Effect of Unsupervised Rationale
Generation

Due to the difference in focus between human and
machines, it is conceivable that the rationales gen-
erated by InvRat would be mostly misaligned with
human rationales. This is shown in Table 3, where
the F1 scores of InvRat are quite low when com-
pared with human rationales. Figure 5 shows an
example of generated rationales output by InvRat
compared with human rationales.

Despite that, Generated Rational LAMOLblock
outperformed both Rational LAMOL and LAMOL
baseline by 0.84% accuracy (0.31% Macro-F1) and
2.67% accuracy (1.27% Macro-F1) respectively,
further reducing the gap to Brute Force, the approx-
imate upper bound of the proposed CCI. This sug-
gests that rationales chosen by InvRat, regardless of
how nonsensical they appear, still carry information
that eliminates the need for human rationales. The
results are consistent with Bao et al. (2018) who
showed that significant gains are achieved when
using machines attention scores as an additional su-
pervision signal instead of using human rationales.

Last but not least, Figure 3 shows that the pro-
cess of generating rationales using InvRat, in-
cluding training and inference, contributed only
marginally, about 15 minutes, to the total time used
in the training process.
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Figure 5: An example of rationales from the Movies
task. The sentiment for this particular example is neg-
ative. The underlined text is a human rationale, while
rationales generated by InvRat are shown in red.

P R F1
BoolQ 14.70 18.48 14.57
Movie 5.71 17.89 5.90
SciFact 4.90 5.41 4.99

Table 3: Token-based precision, recall, and F1 show-
ing the agreement between the rationales generated by
InvRat and the human-annotated rationales.

6 Conclusion

To effectively retain learned knowledge in LL for
NLP tasks, we proposed Rational LAMOL, a learn-
ing framework that uses rationales to identify and
freeze the most critical components of the model
while being trained on a new task. We showed that
Rational LAMOL is able to outperform LAMOL
by a significant margin. Furthermore, our frame-
work can be applied to any NLP datasets by lever-
aging unsupervised rationale generation, eliminat-
ing the need for human rationales while maintain-
ing comparable improvements. Overall, Rational
LAMOL bridges the gap between LL in NLP with
model understanding through rationales, exhibiting
potential for a true lifelong language learning as
well as limiting catastrophic forgetting.
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A Learning Curves of All Task
Permutations

Figure 6 to Figure 10 show the learning curves of
all task order permutations of the compared meth-
ods.
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Figure 6: Learning Curves for task order BMS
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Figure 8: Learning Curves for task order MSB
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Figure 9: Learning Curves for task order SBM
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Figure 10: Learning Curves for task order SMB


