
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2928–2941

August 1–6, 2021. ©2021 Association for Computational Linguistics

2928

Marginal Utility Diminishes: Exploring the Minimum Knowledge for
BERT Knowledge Distillation

Yuanxin Liu1,2∗, Fandong Meng3, Zheng Lin1†, Weiping Wang1, Jie Zhou3

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3Pattern Recognition Center, WeChat AI, Tencent Inc, China
{liuyuanxin,linzheng,wangweiping}@iie.ac.cn, {fandongmeng,withtomzhou}@tencent.com

Abstract

Recently, knowledge distillation (KD) has
shown great success in BERT compression. In-
stead of only learning from the teacher’s soft
label as in conventional KD, researchers find
that the rich information contained in the hid-
den layers of BERT is conducive to the stu-
dent’s performance. To better exploit the hid-
den knowledge, a common practice is to force
the student to deeply mimic the teacher’s hid-
den states of all the tokens in a layer-wise man-
ner. In this paper, however, we observe that
although distilling the teacher’s hidden state
knowledge (HSK) is helpful, the performance
gain (marginal utility) diminishes quickly as
more HSK is distilled. To understand this ef-
fect, we conduct a series of analysis. Specifi-
cally, we divide the HSK of BERT into three
dimensions, namely depth, length and width.
We first investigate a variety of strategies to
extract crucial knowledge for each single di-
mension and then jointly compress the three
dimensions. In this way, we show that 1) the
student’s performance can be improved by ex-
tracting and distilling the crucial HSK, and 2)
using a tiny fraction of HSK can achieve the
same performance as extensive HSK distilla-
tion. Based on the second finding, we fur-
ther propose an efficient KD paradigm to com-
press BERT, which does not require loading
the teacher during the training of student. For
two kinds of student models and computing de-
vices, the proposed KD paradigm gives rise to
training speedup of 2.7× ∼3.4×.

1 Introduction

Since the launch of BERT (Devlin et al., 2019),
pre-trained language models (PLMs) have been
advancing the state-of-the arts (SOTAs) in a wide
range of NLP tasks. At the same time, the growing

∗ Work was done when Yuanxin Liu was an intern at
Pattern Recognition Center, WeChat AI, Tencent Inc, China.

† Zheng Lin is the corresponding author.

0 10−3 10−2 10−1 100

Amount of HSK (Norma i(ed)

85.0

85.5

86.0

86.5

87.0

87.5

88.0

QN
LI
 A
cc

ROSITA6
TinyBERT4

Figure 1: The Acc variation of ROSITA (Liu et al.,
2021) and TinyBERT (Jiao et al., 2020) on QNLI with
the increase of HSK.

size of PLMs has inspired a wave of research inter-
est in model compression (Han et al., 2016) in the
NLP community, which aims to facilitate the de-
ployment of the powerful PLMs to resource-limited
scenarios.

Knowledge distillation (KD) (Hinton et al.,
2015) is an effective technique in model com-
pression. In conventional KD, the student model
is trained to imitate the teacher’s prediction over
classes, i.e., the soft labels. Subsequently, Romero
et al. (2015) find that the intermediate representa-
tions in the teacher’s hidden layers can also serve as
a useful source of knowledge. As an initial attempt
to introduce this idea to BERT compression, PKD
(Sun et al., 2019) proposed to distill representations
of the [CLS] token in BERT’s hidden layers, and
later studies (Jiao et al., 2020; Sun et al., 2020; Hou
et al., 2020; Liu et al., 2021) extend the distillation
of hidden state knowledge (HSK) to all the tokens.

In contrast to the previous work that attempts to
increase the amount of HSK, in this paper we ex-
plore towards the opposite direction to “compress”
HSK. We make the observation that although distill-
ing HSK is helpful, the marginal utility diminishes
quickly as the amount of HSK increases. To under-
stand this effect, we conduct a series of analysis

2929

by compressing the HSK from three dimensions,
namely depth, length and width (see Section 2.3 for
detailed description). We first compress each single
dimension and compare a variety of strategies to ex-
tract crucial knowledge. Then, we jointly compress
the three dimensions using a set of compression
configurations, which specify the amount of HSK
assigned to each dimension. Figure 1 shows the
results on QNLI dataset. We can find that 1) per-
ceivable performance improvement can be obtained
by extracting and distilling the crucial HSK, and 2)
with only a tiny fraction of HSK the students can
achieve the same performance as extensive HSK
distillation.

Based on the second finding, we further propose
an efficient paradigm to distill HSK. Concretely,
we run BERT over the training set to obtain and
store a subset of HSK. This can be done on cloud
devices with sufficient computational capability.
Given a target device with limited resource, we
can compress BERT and select the amount of HSK
accordingly. Then, the compressed model can per-
form KD on either the cloud or directly on the
target device using the selected HSK and the origi-
nal training data, dispensing with the need to load
the teacher model.

In summary, our maojor contributions are:

• We observe the marginal utility diminishing
effect of HSK in BERT KD. To our knowl-
edge, we are the first attempt to systematically
study knowledge compression in BERT KD.

• We conduct exploratory studies on how to
extract the crucial knowledge in HSK, based
on which we obtain perceivable improvements
over a widely-used HSK distillation strategy.

• We propose an efficient KD paradigm based
on the empirical findings. Experiments on
the GLUE benchmark for NLU (Wang et al.,
2019) show that, the proposal gives rise to
training speedup of 2.7× ∼3.4× for Tiny-
BERT and ROSITA on GPU and CPU1.

2 Preliminaries

2.1 BERT Architecture
The backbone of BERT consists of an embedding
layer and L identical Transformer (Vaswani et al.,
2017) layers. The input to the embedding layer is a

1The code is available at https://github.com/
llyx97/Marginal-Utility-Diminishes

text sequence x tokenized by WordPiece (Wu et al.,
2016). There are two special tokens in x: [CLS]
is inserted in the left-most position to aggregate
the sequence representation and [SEP] is used to
separate text segments. By summing up the token
embedding, the position embedding and the seg-
ment embedding, the embedding layer outputs a se-
quence of vectors E =

[
e1, · · · , e|x|

]
∈ R|x|×dH ,

where dH is the hidden size of the model.
Then, E passes through the stacked Transformer

layers, which can be formulated as:

Hl = Trml (Hl−1) , l ∈ [1, L] (1)

where Hl =
[
hl,1, · · · ,hl,|x|

]
∈ R|x|×dH is the

outputs of the lth layer and H0 = E. Each
Transformer layer is composed of two sub-layers:
the multi-head self-attention layer and the feed-
forward network (FFN). Each sub-layer is followed
by a sequence of dropout (Srivastava et al., 2014),
residual connection (He et al., 2016) and layer nor-
malization (Ba et al., 2016).

Finally, for the tasks of NLU, a task-specific
classifier is employed by taking as input the repre-
sentation of [CLS] in the Lth layer.

2.2 BERT Compression with KD

Knowledge distillation is a widely-used technique
in model compression, where the compressed
model (student) is trained under the guidance of
the original model (teacher). This is achieved by
minimizing the difference between the features pro-
duced by the teacher and the student:

LKD =
∑

(fS ,fT)

L
(
fS(x), fT (x)

)
(2)

where
(
fS , fT

)
is a pair of features from student

and teacher respectively. L is the loss function
and x is a data sample. In terms of BERT com-
pression, the predicted probability over classes, the
intermediate representations and the self-attention
distributions can be used as the features to transfer.
In this paper, we focus on the intermediate rep-
resentations {Hl}Ll=0 (i.e., the HSK), which have
shown to be a useful source of knowledge in BERT
compression. The loss function is computed as the
Mean Squared Error (MSE) in a layer-wise way:

LHSK =

L
′∑

l=0

MSE
(
HS

l W,HT
g(l)

)
(3)

https://github.com/llyx97/Marginal-Utility-Diminishes
https://github.com/llyx97/Marginal-Utility-Diminishes

2930

where L
′

is the student’s layer number and g(l) is
the layer mapping function to select teacher lay-
ers. W ∈ RdSH×d

T
H is the linear transformation

to project the student’s representations HS
l to the

same size as the teacher’s representation HT
l .

2.3 HSK Compression

According to Equation 3, the HSK from
teacher can be stacked into a tensor ĤT =[
HT

g(0), · · · ,H
T
g(L′)

]
∈ R(L

′
+1)×|x|×dTH , which

consists of three structural dimensions, namely
depth, length and width. For the depth dimension,
ĤT can be compressed by eliminating entire layers.
By dropping the representations corresponding to
particular tokens, we compress the length dimen-
sion. When it comes to the width dimension, we set
the eliminated activations to zero. We will discuss
the strategies to compress each dimension later in
Section 4.

3 Experimental Setups

3.1 Datasets

We perform experiments on seven tasks from
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019): CoLA
(linguistic acceptability), SST-2 (sentiment analy-
sis), RTE, QNLI, MNLI-m and MNLI-mm (natural
language inference), MRPC and STS-B (semantic
matching/similarity). Due to space limitation, we
only report results on CoLA, SST-2, QNLI and
MNLI for single-dimension HSK compression in
Section 4, and results on the other three tasks are
presented in Appendix E.

3.2 Evaluation

Following (Devlin et al., 2019), for the dev set,
we use Matthew’s correlation and Spearman cor-
relation to evaluate the performance on CoLA and
STS-B respectively. For the other tasks, we report
the classification accuracy. We use the dev set to
conduct our exploratory studies and the test set re-
sults are reported to compare HSK compression
with the existing distillation strategy. For the test
set of MRPC, we report the results of F1 score.

3.3 Implementation Details

We take two representative KD-based methods, i.e.,
TinyBERT (Jiao et al., 2020) and ROSITA (Liu
et al., 2021), as examples to conduct our analysis.
TinyBERT is a compact version of BERT that is
randomly initialized. It is trained with two-stage

KD: first on the unlabeled general domain data and
then on the task-specific training data. ROSITA
replaces the first stage KD with structured pruning
and matrix factorization, which can be seen as a di-
rect transfer of BERT’s knowledge from the model
parameters.

We focus on KD with the task-specific train-
ing data and do not use any data augmentation.
For TinyBERT, the student model is initialized
with the 4-layer general distillation model pro-
vided by Jiao et al. (2020) (denoted as TinyBERT4).
For ROSITA, we first fine-tune BERTBASE on
the downstream task and then compress it fol-
lowing Liu et al. (2021) to obtain a 6-layer stu-
dent model (denoted as ROSITA6). The fine-tuned
BERTBASE is used as the shared teacher for Tiny-
BERT and ROSITA. Following Jiao et al. (2020),
we first conduct HSK distillation as in Equation 3
(w/o distilling the self-attention distribution) and
then distill the teacher’s predictions using cross-
entropy loss. All the results are averaged over three
runs with different random seeds. The model ar-
chitecture of the students and the hyperparameter
settings can be seen in Appendix A and Appendix
B respectively.

4 Single-Dimension Knowledge
Compression

Researches on model pruning have shown that the
structural units in a model are of different levels
of importance, and the unimportant ones can be
dropped without affecting the performance. In this
section, we investigate whether the same law holds
for HSK compression in KD. We study the three
dimensions separately and compare a variety of
strategies to extract the crucial knowledge. When
a certain dimension is compressed, the other two
dimensions are kept to full scale.

4.1 Depth Compression

4.1.1 Compression Strategies

From the layer point of view, HSK compres-
sion can be divided into two steps. First, the
layer mapping function g(l) selects one of the
teacher layers for each student layer. This pro-
duces L

′
+ 1 pairs of teacher-student features:[

(HS
0 ,H

T
g(0)), · · · , (H

S
L
′ ,HT

g(L
′
)
)
]
. Second, a

subset of these feature pairs are selected to perform
HSK distillation.

For the first step, a simple but effective strategy

2931

Embedding

Text Sequence

Trm1

Trm2

Trm3

Trm4

Trm5

Trm6

Embedding

Text Sequence

Trm1

Trm2

Trm3

StudentTeacher

Embedding

Text Sequence

Trm1

Trm2

Trm3

Trm4

Trm5

Trm6

Embedding

Text Sequence

Trm1

Trm2

Trm3

StudentTeacher

Figure 2: Illustration of the redesigned uniform layer
mapping strategy. Left: Ltop is the top teacher layer.
Right: Ltop is the second-top teacher layer.

is the uniform mapping function:

g(l) = l × L

L′
,mod(L,L

′
) = 0 (4)

In this way, the teacher layers are divided into L
′

blocks and the top layer of each block serves as
the guidance in KD. Recently, Wang et al. (2020a)
empirically show that the upper-middle layers of
BERT, as compared with the top layer, are a better
choice to guide the top layer of student in self-
attention distillation. Inspired by this, we redesign
Equation 4 to allow the top student layer to dis-
till knowledge from an upper-middle teacher layer,
and the lower layers follow the uniform mapping
principle. This function can be formulated as:

g(l, Ltop) = l × round(
Ltop

L′
) (5)

where Ltop is the teacher layer corresponding to
the top student layer and round() is the rounding-
off operation. Figure 2 gives an illustration of
g(l, Ltop) with a 6-layer teacher and a 3-layer stu-
dent. Specifically, for the 12-layer BERTBASE

teacher, we select Ltop from {8, 10, 12}. For the
second step, we simply keep the top ND feature
pairs: {(HS

l ,H
T
g(l,Ltop))}

L
′

l=L′−ND+1
.

4.1.2 Results and Analysis
Figure 3 presents the results of depth compression
with different layer mapping functions. We can find
that: 1) For the g(l, 12) mapping function (the grey
lines), depth compression generally has a negative
impact on the students’ performance. Specially,
the performance of ROSITA6 declines drastically
when the number of layers is reduced to 1 ∼ 3. 2)
In terms of the g(l, 10) and g(l, 8) mapping func-
tions (the blue and orange lines), HSK distillation
with only one or two layers can achieve compa-
rable performance as using all the L

′
+ 1 layers.

1 2 3 4 5 6 7

15

20

25

30

35

40

Co
LA

 M
cc

ROSITA6 g(l, 8)
ROSITA6 g(l, 10)
ROSITA6 g(l, 12)
TinyBERT4 g(l, 8)
TinyBERT4 g(l, 10)
TinyBERT4 g(l, 12)

1 2 3 4 5 6 7
86

87

88

89

90

91

SS
T-
2
Ac
c

1 2 3 4 5 6 7
HSK Depth (# of layers)

86.25

86.50

86.75

87.00

87.25

87.50

87.75

QN
LI
 A
cc

1 2 3 4 5 6 7
HSK Depth (# of layers)

79.0

79.5

80.0

80.5

81.0

81.5

M
NL

I-m
 A
cc

Figure 3: Results of depth compression on CoLA, SST-
2, QNLI and MNLI. Each color denotes a layer map-
ping function. The number of layers in HSK includes
the embedding layer. Full results on seven tasks are
shown in Appendix E.1.

On the QNLI and MNLI datasets, the performance
can even be improved by eliminating the lower
layers. 3) In general, the student achieves better
results with the redesigned layer mapping function
in Equation 5 across the four tasks. This demon-
strates that, like the self-attention knowledge, the
most crucial HSK does not necessarily reside in the
top BERT layer, which reveals a potential way to
improve HSK distillation of BERT. 4) Compared
with g(l, 8), the improvement brought by g(l, 10) is
more stable across different tasks and student mod-
els. Therefore, we use the g(l, 10) layer mapping
function when investigating the other two dimen-
sions.

4.2 Length Compression

4.2.1 Compression Strategies

To compress the length dimension, we design a
method to measure the tokens’ importance by us-
ing the teacher’s self-attention distribution. The
intuition is that self-attention controls the informa-
tion flow among tokens across layers, and thus the
representations of the most attended tokens may
contain crucial information.

Assuming that the teacher has Ah attention
heads, and the attention weights in the lth layer

is AT
l =

{
AT

l,a

}Ah

a=1
, where AT

l,a ∈ R|x|×|x| is the

attention matrix of the ath head. Each row of AT
l,a

is the attention distribution of a particular token to
all the tokens. In our length compression strategy,
the importance score of the tokens is the attention
distribution of the [CLS] token (i.e., the first row in

2932

0.05 0.10 0.15 0.20 0.25 0.30
25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Co
LA

 M
cc

Left
Att
Att w/o [SEP]
Att (Ltop=12) w/o [SEP]
full length

0.05 0.10 0.15 0.20 0.25 0.30
85

86

87

88

89

90

91

SS
T-
2
Ac
c

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

85.0

85.5

86.0

86.5

87.0

87.5

QN
LI
 A
cc

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

79.0

79.5

80.0

80.5

81.0

81.5

M
NL

I-m
 A
cc

Figure 4: Length compression results of ROSITA6 on
CoLA, SST-2, QNLI and MNLI. The horizontal axis
represents the compressed HSK length normalized by
full length. The left-most points in each plot mean com-
pressing the length to one token. Full results on seven
tasks are shown in Appendix E.2.

AT
l,a) averaged over the Ah heads:

Sl =
1

Ah

Ah∑
a=1

AT
l,a,1,Sl ∈ R|x| (6)

To match the depth of the student, we employ the
layer mapping function in Equation 5 to select
Sg(l,Ltop) for the lth student layer.

The length compression strategies examined in
this section are summarized as:

Att is the attention-based strategy as described
above. The layer mapping function to select S is
the same as the one to select HSK, i.e., g(l, 10).

Att w/o [SEP] excludes the HSK of the special
token [SEP]. The rationality of this operation will
be explained in the following analysis.

Att (Ltop = 12) w/o [SEP] is different from Att
w/o [SEP] in that it utilizes g(l, 12) to select S.

Left is a naive baseline that discards tokens from
the tail of the text sequence. When the token num-
ber is reduced to 1, the student only distills the
HSK from the [CLS] token.

4.2.2 Results and Analysis
The length compression results are shown in Fig-
ure 4 and Figure 5. We can derive the follow-
ing observations: 1) For all strategies, significant
performance decline can only be observed when
HSK length is compressed heavily (to less than
0.05 ∼ 0.30). In some cases, using a subset of
tokens’ representation even leads to perceivable

0.05 0.10 0.15 0.20 0.25 0.30
24

26

28

30

32

34

Co
LA

 M
cc

Left
Att
Att w/o [SEP]
Att (Ltop=12) w/o [SEP]
full length

0.0 0.1 0.2 0.3 0.4
88.0

88.5

89.0

89.5

90.0

90.5

SS
T-
2
Ac
c

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

85.75

86.00

86.25

86.50

86.75

87.00

87.25

QN
LI
 A
cc

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

79.50

79.75

80.00

80.25

80.50

80.75

81.00

81.25

M
NL

I-m
 A
cc

Figure 5: Length compression results of TinyBERT4

on CoLA, SST-2, QNLI and MNLI. The axes, points
and lines are defined in the same way as Figure 4. Full
results on seven tasks are shown in Appendix E.2.

2 4 6 8 10 12
0

20

40

60

80

100

%
 o
f t
ra
in
in
g
sa
m
pl
es

CoLA
[SEP] in top1
[SEP] in top3

2 4 6 8 10 12
0

20

40

60

80

100
SST-2

2 4 6 8 10 12
Layer Index

0

20

40

60

80

100

%
 o
f t
ra
in
in
g
sa
m
pl
es

QNLI

2 4 6 8 10 12
Layer Index

0

20

40

60

80

100
MNLI

Figure 6: The proportion of the data samples in which
[SEP] is among the top1 and top3 attended tokens. We
present the results over the 12 layers of the BERTBASE

fine-tuned on CoLA, SST-2, QNLI and MNLI. Full re-
sults on seven tasks are shown in Appendix E.2.

improvement over the full length (e.g., ROSITA6

on CoLA and TinyBERT4 on SST-2 and QNLI). 2)
The performance of Att is not satisfactory. When
being applied to ROSITA6, the Att strategy under-
performs the Left baseline. The results of Att in
TinyBERT4, though better than those in ROSITA6,
still lag behind the other strategies at the left-most
points. 3) Excluding [SEP] in the Att strategy al-
leviates the drop in performance, especially when
HSK length is compressed to less than 0.05. 4) As
a general trend, further improvement over Att w/o
[SEP] can be obtained by using g(l, 12) in the se-
lection of S, which produces the most robust results
among the four strategies.

To explain why the Att strategy performs poorly,
we inspect into the tokens that receive the highest
importance scores under Equation 6. We find that
the special token [SEP] is dominant in most hidden
layers. As shown in Figure 6, from the 4th ∼ 10th

2933

0.2 0.4 0.6 0.8 1.0
20

25

30

35

40

Co
LA

 M
cc

0.2 0.4 0.6 0.8 1.0
88.0

88.5

89.0

89.5

90.0

90.5

91.0

SS
T-
2
Ac
c

0.2 0.4 0.6 0.8 1.0
HSK Width (Normalized)

65

70

75

80

85

QN
LI
 A
cc

ROSITA6 Mag Mask
ROSITA6 Rand Mask
ROSITA6 Uniform Mask
TinyBERT4 Mag Mask
TinyBERT4 Rand Mask
TinyBERT4 Uniform Mask

0.2 0.4 0.6 0.8 1.0
HSK Width (Normalized)

77

78

79

80

81

M
NL

I-m
 A
cc

Figure 7: Results of width compression with different
masking strategies on CoLA, SST-2, QNLI and MNLI.
Full results on seven tasks are shown in Appendix E.3.

layers, [SEP] is the most attended token for almost
all training samples. Meanwhile, [SEP] frequently
appears in the top three positions across all the
layers. Similar phenomenon was found in Clark
et al. (2019), where [SEP] receives high attention
scores from itself and other tokens in the middle
layers. Combining this phenomenon and the results
in Figure 4 and Figure 5, it can be inferred that the
representations of [SEP] is not a desirable source
of knowledge for ROSITA and TinyBERT. We con-
jecture that this is because there exists some trivial
patterns in the representations of [SEP], which pre-
vents the student to extract the informative features
that are more relevant to the task.

4.3 Width Compression

4.3.1 Compression Strategies

As discussed in Section 2.3, the width dimension is
compressed by setting some activations in the inter-
mediate representations to zero. Practically, we ap-
ply a binary mask M ∈ RdTH to the vectors in HT

l ,

which gives rise to
[
M� hT

l,1, · · · ,M� hT
l,|x|

]
,

where � denotes the element-wise product. On
this basis, we introduce and compare three mask-
ing designs for width compression:

Rand Mask randomly set the values in M to
zero, where the total number of “0” is controlled by
the compression ratio. This mask is static, i.e.,
hT
l,i(∀i, l) for all the training samples share the

same mask.

Uniform Mask is also a static mask. It is con-
structed by distributing “0” in a uniform way. For-

mally, the mask M is defined as:

Mi =

{
1, i ∈ I
0, otherwise

(7)

where I =
{
round

(
i× dTH

NW

)}NW

i=1
is the indices

of the remained NW activations.

Mag Mask masks out the activations with low
magnitude. Therefore, this mask is dynamic, i.e.,
every hT

l,i(∀i, l) has its own M.

4.3.2 Results and Analysis
The width compression results can be seen in Fig-
ure 7, from which we can obtain two findings. First,
the masks reveal different patterns when combined
with different student models. For ROSITA6, the
performance of Rand Mask and Uniform Mask
decreases sharply at 20% HSK width. In compari-
son, the performance change is not that significant
when it comes to TinyBERT4. This suggests that
TinyBERT4 is more robust to HSK width compres-
sion than ROSITA6. Second, the magnitude-based
masking strategy obviously outperforms Rand
Mask and Uniform Mask. As we compress the
nonzero activations in HSK from 100% to 20%, the
performance drop of Mag Mask is only marginal,
indicating that there exists considerable knowledge
redundancy in the width dimension.

5 Three-Dimension Joint Knowledge
Compression

With the findings in single-dimension compression,
we are now at a position to investigate joint HSK
compression from the three dimensions.

5.1 Measuring the Amount of HSK
For every single dimension, measuring the amount
of HSK is straightforward: using the number of
layers, tokens and activations for depth, length and
width respectively. In order to quantify the total
amount of HSK (denoted as AHSK), we define
one unit of AHSK as the amount of HSK in any
hT
l,i(∀l ∈ [0, L], i ∈ [1, |x|]). In other words, the

AHSK of ĤT equals to (L
′
+1)×|x|. When HSK

is compressed to ND layers, NL tokens and NW

activations, the AHSK is ND ×NL × NW

dTH
.

5.2 Compression Configurations & Strategies
Formally, the triplet (ND, NL, NW) defines a
search space ∈ R(L

′
+1)×|x|×dTH of the configu-

2934

20

25

30

35

40

M
cc

CoLA, g(l,8)

87

88

89

90

91

Ac
c

SST-2, g(l,10)

76

78

80

82

Ac
c

MNLI-m, g(l,10)

65

66

67

68

Ac
c

RTE, g(l,8)

0 10−3 1002 1001 100
Amo−nt of HSK (Normalized)

85

86

87

88

Ac
c

QNLI, g(l,10)

Bes,
g(l,12)
)re is,ill
Avg

0 1003 1002 1001 100
Am(−n, (f HSK (N(rmalize)

77

78

79

80

81

Ac
c

MRPC, g(l,10)

0 1003 1002 1001 100
Am(−n, (f HSK (N(rmalize)

84

85

86

87

S)
ea
rm

an
r

STS-B, g(l,8)

Figure 8: Results of 3D HSK compression for ROSITA6. The horizontal axis represents the remained AHSK

normalized by the AHSK of ĤT . The left-most points (grey stars) in each plot correspond to only distilling the
teacher’s predictions. The mapping function used in depth compression is shown in the title of each plot, and the
red stars denote the results of using g(l, 12). We show the averaged and best results of the configurations with the
same AHSK . The error bars of “Avg” denote the standard deviation.

25.0

27.5

30.0

32.5

35.0

37.5

M
cc

CoLA, g(l,8)

88

89

90

Ac
c

SST-2, g(l,8)

Best
g(l,12)
pred distill
Avg

79

80

81

Ac
c

MNLI-m, g(l,12)

63

64

65

66

Ac
c

RTE, g(l,10)

0 10−3 1012 1011 100
Amoun− of HSK (Normalized)

85

86

87

88

Ac
c

QNLI, g(l,10)

0 1013 1012 1011 100

Am)u(−)f HSK (N)rmali0ed)

81

82

83

A

MRPC, g(l,8)

0 1013 1012 1011 100

Am)u(−)f HSK (N)rmali0ed)

85.00

85.25

85.50

85.75

86.00

Sp
ea

rm
an

r

STS-B, g(l,10)

Figure 9: Results of 3D HSK compression for TinyBERT4. The axes, points, titles and lines are defined in the
same way as Figure 8.

AHSK /unit 1±10% 3±5% 5±5% 10±5% 50±5%

ROSITA6 13 20 31 36 21
TinyBERT4 13 18 26 30 13

Table 1: The number of sampled configurations for dif-
ferent AHSK . Each AHSK is extended to ±5% or
±10% to include more configurations.

rations for three-dimension (3D) HSK compres-
sion, and we could have multiple combinations of
(ND, NL, NW) that satisfy a particular AHSK . In
practice, we reconstruct the search space as:

ND ∈ [1, L
′
+ 1], NL ∈ [1, 50], N

W

dTH
∈ {0.1× i}10i=1

(8)
To study the student’s performance with different
amounts of HSK, we sample a set of configurations
for a range of AHSK , the statistics of which is sum-
marized in Table 1. Details of the configurations

can be seen in Appendix C.
To compress each single dimension in joint HSK

compression, we utilize the most advantageous
strategies that we found in Section 4. Specifically,
Att (Ltop = 12) w/o [SEP] is used to compress
length, Mag Mask is used to compress width and
the g(l, Ltop) for depth compression is selected ac-
cording to the performance of depth compression.

5.3 Results and Analysis

The results of 3D joint HSK compression are pre-
sented in Figure 8 and Figure 9. As we can see,
introducing HSK in KD brings consistent improve-
ment to the conventional prediction distillation
method. However, the marginal benefit quickly
diminishes as more HSK is included. Typically,
with less than 1% of HSK, the student models can
achieve the same or better result as full-scale HSK
distillation. Over a certain threshold of AHSK , the

2935

Method CoLA SST-2 QNLI MNLI-m/mm MRPC RTE STS-B Avg

Dev

BERTBASE(T) 60.1 93.5 91.5 84.7/84.7 86.0 67.5 88.5 82.1

TinyBERT4 29.8 89.7 87.2 81.0/81.4 82.4 64.7 85.1 75.2
w/ HSK compression 37.5 90.6 88.1 81.5/81.7 83.3 66.3 86.1 76.9

ROSITA6 30.6 90.1 87.6 81.2/81.5 80.7 64.9 83.4 75.0
w/ HSK compression 43.0 91.6 88.2 81.8/82.0 80.9 68.0 87.2 77.8

Test

BERTBASE(G) 52.1 93.5 90.5 84.6/83.4 88.9 66.4 85.8 80.7

TinyBERT4 28.2 90.9 86.4 81.0/80.3 85.6 61.5 76.8 73.8
w/ HSK compression 30.6 90.6 87.3 81.5/80.8 85.4 61.7 79.0 74.6

ROSITA6 28.1 90.5 87.0 81.5/80.4 83.0 61.7 73.9 73.3
w/ HSK compression 35.3 91.3 86.7 81.9/80.9 84.5 61.7 79.9 75.3

Table 2: Dev and test set performance of BERTBASE and KD-based BERT compression methods. (G) and (T)
denote the results of BERTBASE from Devlin et al. (2019) and the results of our teacher model, respectively.

performance begins to decrease. Among different
tasks and student models, the gap between the best
results (peaks on the blue lines) and full-scale HSK
distillation varies from 0.3 (ROSITA6 on MNLI
and STS-B) to 5.3 (TinyBERT4 on CoLA). The
results also suggest that existing BERT distillation
method (i.e., g(l, 12)) can be improved by simply
compressing HSK: Numerous points of different
configurations lie over the red stars.

Table 2 presents the results of different KD-
based BERT compression methods. For fair com-
parison, we do not include other methods described
in Section 7, because they either distill different
type of knowledge or use different student model
structure. Here, we focus on comparing the perfor-
mance with or without HSK compression given the
same student model. We can see that except for the
results of a few tasks on the test sets, HSK com-
pression consistently promotes the performance of
the baseline methods.

6 Improving Training Efficiency

Existing BERT compression methods mostly fo-
cus on improving the inference efficiency. How-
ever, the teacher model is used to extract features
throughout the training process, which suggests
that the training efficiency still has room for im-
provement. As shown in Figure 10, the compressed
models achieve considerable inference speedup,
while the increase in training speed is relatively
small. Moreover, for students with different sizes
or architectures, the teacher should be deployed
every time when training a new student. Intuitively,
we can run the teacher once and reuse the features
for all the students. In this way, we do not need to
load the teacher model while training the student,
and thereby increasing the training speed. We refer

2.2x faster 2.0x

3.1x 2.8x

9.2x faster 6.9x

7.7x faster 4.0x

2.8x faster 2.5x

3.4x 2.7x

Figure 10: Training time (left) and inference time
(right) with different devices and models on MNLI. On-
line means the teacher is loaded during training and
offline is the proposed KD paradigm. Please refer to
Appendix D for the experimental setups.

to this strategy as offline HSK distillation 2.
To evaluate the training efficiency of the pro-

posed KD paradigm, we compute the training time
on the MNLI dataset. The results are presented in
the left plots of Figure 10. As we can see, offline
HSK distillation increases the training speed of the
student models, as compared with online distilla-
tion. The speedup is consistent for different student
models and devices.

Despite the training speedup, however, loading
and storing HSK increases the memory consump-
tion. The full set of HSK can take up a large amount
of space, especially for the pre-trained language
models like BERT. Fortunately, our findings in the
previous sections suggest that the student only re-
quires a tiny fraction of HSK.

Table 3 summarizes the actual memory consump-

2In the literature (Gou et al., 2020), “offline distillation”
also means the teacher parameters are fixed during KD, which
is different from our definition here.

2936

(ND, NL, NW) AHSK Feature Size (GB) Mag Mask Size (GB)

(1, 9, 0.1) 0.9 1.0 2.5
(5, 2, 0.3) 3 3.4 2.8
(3, 8, 0.2) 4.8 5.4 6.8
Full ROSITA6 896 1011 0

Table 3: Memory consumption of different AHSK on
MNLI training set. The last row is the full set of HSK
for ROSITA6.

tion of four configurations with different AHSK .
As we can see, the full set of HSK for ROSITA6

takes up approximately 1 TB of memory space,
which is only applicable to some high-end cloud
servers. Compressing the HSK can reduce the size
to GB level, which enables training on devices like
personal computers. It is worth noticing that stor-
ing the dynamic Mag Mask is consuming, which
typically accounts for more space than HSK. How-
ever, the binary masks can be further compressed
using some data compression algorithms.

Based on the above results and analysis, we sum-
marize our paradigm for efficient HSK distillation
as: First, the teacher BERT runs on the training
data to obtain and store the features of HSK and
predictions. This can be done on devices that have
sufficient computing and memory resources. Then,
according to the target application and device, we
decide the student’s structure and the amount of
HSK to distill. Finally, KD can be performed on a
cloud server or directly on the target device.

7 Related Work

KD is widely studied in BERT compression. In
addition to distilling the teacher’s predictions as in
Hinton et al. (2015), researches have shown that
the student’s performance can be improved by us-
ing the representations from intermediate BERT
layers (Sun et al., 2019; Liu et al., 2021; Hou et al.,
2020) and the self-attention distributions (Jiao et al.,
2020; Sun et al., 2020). Typically, the knowledge
is extensively distilled in a layer-wise manner. To
fully utilize BERT’s knowledge, some recent work
also proposed to combine multiple teacher layers in
BERT KD (Passban et al., 2021; Li et al., 2020) or
KD on Transformer-based NMT models (Wu et al.,
2020). In contrast to these studies that attempt to in-
crease the amount knowledge, we study BERT KD
from the compression point of view. Similar idea
can be found in MiniLMs (Wang et al., 2020a,b),
which only use the teacher’s knowledge to guide
the last layer of student. However, they only con-

sider knowledge from the layer dimension, while
we investigate the three dimensions of HSK.

We explore a variety of strategies to determine
feature importance for each single dimension. This
is related to a line of studies called the attribution
methods, which attempt to attribute a neural net-
work’s prediction to the input features. The atten-
tion weights have also been investigated as an at-
tribution method. However, prior work (Wiegreffe
and Pinter, 2019; Serrano and Smith, 2019; Brun-
ner et al., 2020; Hao et al., 2020) finds that attention
weights usually fail to correlate well with their con-
tributions to the final prediction. This echoes with
our finding that the original Att strategy performs
poorly in length compression. However, the atten-
tion weights may play different roles in attribution
and HSK distillation. Whether the findings in attri-
bution are transferable to HSK distillation is still a
problem that needs further investigation.

8 Conclusions and Future Work

In this paper, we investigate the compression of
HSK in BERT KD. We divide the HSK of BERT
into three dimensions and explore a range of com-
pression strategies for each single dimension. On
this basis, we jointly compress the three dimen-
sions and find that, with a tiny fraction of HSK, the
student can achieve the same or even better perfor-
mance as distilling the full-scale knowledge. Based
on this finding, we propose a new paradigm to im-
prove the training efficiency in BERT KD, which
does not require loading the teacher model during
training. The experiments show that the training
speed can be increased by 2.7× ∼ 3.4× for two
kinds of student models and two types of CPU and
GPU devices.

Most of the compression strategies investigated
in this study are heuristic, which still have room
for improvement. Therefore, a future direction
of our work could be designing more advanced
algorithm to search for the most useful HSK in
BERT KD. Additionally, since HSK distillation
in the pre-training stage is orders of magnitude
time-consuming than task-specific distillation, the
marginal utility diminishing effect in pre-training
distillation is also a problem worth studying.

Acknowledgments

This work was supported by National Natural Sci-
ence Foundation of China (No. 61976207, No.
61906187).

2937

References
Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Gino Brunner, Yang Liu, Damian Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Watten-
hofer. 2020. On identifiability in transformers. In
ICLR. OpenReview.net.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does bert
look at? an analysis of bert’s attention. In Black-
BoxNLP@ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1), pages 4171–4186. As-
sociation for Computational Linguistics.

Jianping Gou, Baosheng Yu, Stephen John Maybank,
and Dacheng Tao. 2020. Knowledge distillation: A
survey. CoRR, abs/2006.05525.

Song Han, Huizi Mao, and William J. Dally. 2016.
Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huff-
man coding. In ICLR.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2020. Self-
attention attribution: Interpreting information inter-
actions inside transformer. CoRR, abs/2004.11207.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In CVPR, pages 770–778. IEEE Computer
Society.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic
BERT with adaptive width and depth. In NeurIPS.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling BERT for natural lan-
guage understanding. In EMNLP (Findings), pages
4163–4174. Association for Computational Linguis-
tics.

Jianquan Li, Xiaokang Liu, Honghong Zhao, Ruifeng
Xu, Min Yang, and Yaohong Jin. 2020. BERT-EMD:
many-to-many layer mapping for BERT compres-
sion with earth mover’s distance. In EMNLP (1),
pages 3009–3018. Association for Computational
Linguistics.

Yuanxin Liu, Zheng Lin, and Fengcheng Yuan. 2021.
Rosita: Refined bert compression with integrated
techniques. In AAAI.

Peyman Passban, Yimeng Wu, Mehdi Rezagholizadeh,
and Qun Liu. 2021. ALP-KD: attention-based layer
projection for knowledge distillation. In AAAI.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets. In
ICLR (Poster).

Sofia Serrano and Noah A. Smith. 2019. Is attention
interpretable? In ACL (1), pages 2931–2951. Asso-
ciation for Computational Linguistics.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In EMNLP/IJCNLP (1), pages 4322–4331.
Association for Computational Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. In ACL, pages 2158–2170. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR
(Poster). OpenReview.net.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2020a. Minilmv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. CoRR, abs/2012.15828.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In NeurIPS.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In EMNLP/IJCNLP (1), pages
11–20. Association for Computational Linguistics.

Yimeng Wu, Peyman Passban, Mehdi Rezagholizadeh,
and Qun Liu. 2020. Why skip if you can combine:
A simple knowledge distillation technique for inter-
mediate layers. In EMNLP (1), pages 1016–1021.
Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,

2938

Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

A Architecture of Student Models

TinyBERT (Jiao et al., 2020) rescales the structure
of BERT from the number of layers, the dimension
of the Transformer layer outputs, and the hidden
dimension of feed-forward networks. We use the
4-layer version (14.5M parameters) of TinyBERT
that is released by Jiao et al. (2020).

ROSITA (Liu et al., 2021) compresses BERT
from four structural dimensions, namely the layer,
attention heads, the hidden dimension of the feed-
forward network and the rank of SVD to com-
press the embedding matrix. In practice, we scale
the four dimensions to construct a 6-layer model
ROSITA6 that has approximately the same size as
TinyBERT4. ROSITA6 has 6 layers and 2 atten-
tion heads, and the FFN dimension and embedding
matrix rank are 768 and 128 respectively.

B Hyperparameters

Following Jiao et al. (2020), we first distill HSK
and then distill the teacher’s predictions. The hy-
perparamers for HSK distillation basically follow
Jiao et al. (2020), except that the training epoch of
CoLA is changed from 50 to 30, the training epoch
of QNLI is changed from 10 to 5, and the batch
size for MNLI and QNLI is changed from 256 to
64. For prediction distillation, we use the linear
decaying learning rate schedule. For each model
and dataset, we tune the number of epoch (from
{5, 10}) and learning rate (from {2e−5, 5e−5}) for
the baseline method that use the uniform layer-wise
strategy g(l, 12), and the hyperparameters are used
for all the results with compressed HSK. Table 4
summarizes the hyperparameters.

C Configurations of 3D Compression
Strategy

As described in the paper, for each AHSK we can
obtain a number of configurations. Specifically,
when we use the ROSITA6 there are 13, 21, 45,
75, 112 configurations for AHSK = 1± 10%, 3±
10%, 5± 10%, 10± 10%, 50± 10% respectively.
We randomly sample subsets of configurations in
our experiments, the statistics of which is shown in

Table 1. The configurations that exceed the layer
constrain are excluded for TinyBERT4. The de-
tailed configurations for different AHSK are sum-
marized in Table 5.

D Experimental Settings for Efficiency
Evaluation

In Figure 9, we show the training and inference
time of two models on two devices. The training
time is computed as the time to run 500 training
steps (i.e, batches of data). When it comes to in-
ference, we run the models on the entire training
set and dev set for GPU and CPU respectively. For
training, the batch size is set to 64 and 16 for GPU
and CPU respectively. For inference, we set the
batch size to 128 and 1 for GPU and CPU respec-
tively. The maximum sequence length is 128 for
all the settings. For offline distillation, we use the
configuration (1, 9, 0.1).

E More Experimental Results

E.1 Full Results of Depth Compression

Depth compression results on all seven tasks are
presented in Figure 11. Like the results on CoLA,
SST-2, QNLI and MNLI, the results on MRPC,
RTE and STS-B also suggest that the redesigned
mapping functions (i.e., g(l, 8) and g(l, 10)) gen-
erally outperforms the original uniform mapping
function g(l, 12), especially when HSK is com-
pressed to one layer.

E.2 Full Results of Length Compression

Length compression results on all seven tasks are
presented in Figure 12 and Figure 13. As we can
see, the general trends on MRPC, RTE and STS-B
are in accordance with the other four tasks, whose
results are discussed in Section 4.2.2. Significant
performance drop only occurs when length is com-
pressed to less than 0.05 on MRPC, RTE and STS-
B. The strategy base on original attentinon weights
(i.e., Att) performs poorly with small HSK length.
In comparison, Att w/o [SEP] and Att (Ltop = 12)
w/o [SEP] reduce the performance drop caused by
length compression.

Figure 14 shows the proportion of data samples
where [SEP] is the top1 and top3 most attended to-
ken. We can see that for most data samples, [SEP]
is among the top3 tokens and frequently appears as
the top1 from the 4th ∼ 10th layers. This pattern
is consistent across the seven tasks.

2939

Dataset CoLA SST-2 QNLI MNLI MRPC RTE STS-B

HSK Distillation

learning rate (constant) 5e−5 5e−5 5e−5 5e−5 5e−5 5e−5 5e−5

batch size 32 32 64 64 32 32 32
max sequence length 64 64 128 128 128 128 128
epoch 30 10 5 5 20 20 20

Prediction Distillation

learning rate (linear decay) 2e−5 2e−5 2e−5 5e−5 2e−5 2e−5 2e−5

batch size 32 32 64 64 32 32 32
max sequence length 64 64 128 128 128 128 128
epoch 5 5 5 5 5 5 5

Table 4: Hyperparameters for HSK distillation and prediction distillation.

E.3 Full Results of Width Compression
Figure 15 shows the full results of width com-
pression on all seven tasks. We can see that the
gap between compression strategies is larger for
ROSITA6, as compared with TinyBERT4. Among
the three strategies, Mag Mask clearly outper-
forms Rand Mask and Uniform Mask.

1±10% 3±5% 5±5% 10±5% 50±5%

(2, 1, 0.5) (6, 1, 0.5) (1, 13, 0.4) (7, 3, 0.5) (6, 10, 0.8)
(5, 2, 0.1) (6, 5, 0.1) (6, 2, 0.4) (1, 49, 0.2) (2, 36, 0.7)
(1, 9, 0.1) (1, 29, 0.1) (5, 5, 0.2) (3, 8, 0.4) (3, 25, 0.7)
(1, 2, 0.5) (1, 10, 0.3) (2, 24, 0.1) (3, 5, 0.7) (2, 27, 0.9)
(1, 5, 0.2) (1, 5, 0.6) (1, 25, 0.2) (1, 25, 0.4) (6, 9, 0.9)
(1, 1, 1.0) (2, 15, 0.1) (1, 6, 0.8) (2, 7, 0.7) (6, 12, 0.7)
(3, 3, 0.1) (5, 2, 0.3) (7, 7, 0.1) (3, 16, 0.2) (6, 27, 0.3)
(3, 1, 0.3) (5, 1, 0.6) (6, 8, 0.1) (7, 14, 0.1) (7, 24, 0.3)
(1, 10, 0.1) (5, 6, 0.1) (4, 4, 0.3) (2, 8, 0.6) (4, 18, 0.7)
(2, 5, 0.1) (3, 5, 0.2) (2, 6, 0.4) (5, 3, 0.7) (3, 21, 0.8)
(1, 1, 0.9) (1, 30, 0.1) (2, 3, 0.8) (3, 7, 0.5) (5, 10, 1.0)
(5, 1, 0.2) (5, 3, 0.2) (3, 8, 0.2) (4, 8, 0.3) (7, 23, 0.3)
(1, 3, 0.3) (1, 6, 0.5) (4, 12, 0.1) (5, 7, 0.3) (5, 25, 0.4)

(1, 15, 0.2) (1, 7, 0.7) (6, 8, 0.2) (4, 26, 0.5)
(2, 3, 0.5) (1, 49, 0.1) (5, 5, 0.4) (6, 17, 0.5)
(1, 3, 1.0) (2, 4, 0.6) (6, 2, 0.8) (2, 26, 1.0)
(2, 5, 0.3) (5, 10, 0.1) (5, 4, 0.5) (6, 8, 1.0)
(3, 10, 0.1) (1, 5, 1.0) (4, 5, 0.5) (4, 12, 1.0)
(3, 2, 0.5) (3, 4, 0.4) (1, 13, 0.8) (2, 43, 0.6)
(3, 1, 1.0) (1, 10, 0.5) (1, 32, 0.3) (5, 16, 0.6)

(2, 13, 0.2) (3, 33, 0.1) (4, 25, 0.5)
(3, 2, 0.8) (3, 34, 0.1)
(4, 3, 0.4) (4, 25, 0.1)
(1, 8, 0.6) (6, 4, 0.4)
(5, 2, 0.5) (5, 10, 0.2)
(2, 5, 0.5) (2, 26, 0.2)
(6, 1, 0.8) (7, 15, 0.1)
(4, 6, 0.2) (1, 11, 0.9)
(1, 16, 0.3) (4, 6, 0.4)
(4, 13, 0.1) (2, 6, 0.8)
(6, 4, 0.2) (2, 10, 0.5)

(1, 10, 1.0)
(4, 26, 0.1)
(5, 2, 1.0)
(3, 4, 0.8)
(4, 3, 0.8)

Table 5: Configurations (ND, NL, NW) of 3D HSK
compression for different AHSK . The configurations
in bold font are not used for TinyBERT4.

2940

1 2 3 4 5 6 7

15

20

25

30

35

40
Co

LA
 M
cc

ROSITA6 g(l, 8)
ROSITA6 g(l, 10)
ROSITA6 g(l, 12)
TinyBERT4 g(l, 8)
TinyBERT4 g(l, 10)
TinyBERT4 g(l, 12)

1 2 3 4 5 6 7
86

87

88

89

90

91

SS
T-
2
Ac
c

1 2 3 4 5 6 7
79.0

79.5

80.0

80.5

81.0

81.5

M
NL

I-m
 A
cc

1 2 3 4 5 6 7

64

65

66

67

68

RT
E
Ac
c

1 2 3 4 5 6 7
HSK Depth (# of layers)

86.25

86.50

86.75

87.00

87.25

87.50

87.75

QN
LI
 A
cc

1 2 3 4 5 6 7
HSK Depth (# of layers)

76

78

80

82

M
RP

C
Ac
c

1 2 3 4 5 6 7
HSK Depth (# of layers)

82

83

84

85

86

87

ST
S-
B
Sp
ea
rm

an
r

Figure 11: Results of depth compression on seven tasks. Each color denotes a layer mapping function.

0.05 0.10 0.15 0.20 0.25 0.30
25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Co
LA

 M
cc

Left
Att
Att w/o [SEP]
Att (Ltop =12) w/o [SEP]
full length

0.05 0.10 0.15 0.20 0.25 0.30
85

86

87

88

89

90

91

SS
T-
2
Ac
c

0.00 0.05 0.10 0.15 0.20

79.0

79.5

80.0

80.5

81.0

81.5
M
NL

I-m
 A
cc

0.00 0.05 0.10 0.15 0.20

50

55

60

65

RT
E
Ac
c

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

85.0

85.5

86.0

86.5

87.0

87.5

QN
LI
 A
cc

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

72

74

76

78

80

M
RP

C
Ac

c

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

30

40

50

60

70

80

ST
S-
B
Sp

ea
rm

an
r

Figure 12: Length compression results of ROSITA6 on seven tasks. The horizontal axis represents the compressed
HSK length normalized by full length. The left-most points in each plot mean compressing the length to one token.

0.05 0.10 0.15 0.20 0.25 0.30
24

26

28

30

32

34

Co
LA

 M
cc

Left
Att
Att w/o [SEP]
Att (Ltop =12) w/o [SEP]
full length

0.0 0.1 0.2 0.3 0.4
88.0

88.5

89.0

89.5

90.0

90.5

SS
T-
2
Ac
c

0.00 0.05 0.10 0.15 0.20
79.50

79.75

80.00

80.25

80.50

80.75

81.00

81.25

M
NL

I-m
 A
cc

0.00 0.05 0.10 0.15 0.20

52.5

55.0

57.5

60.0

62.5

65.0

RT
E
Ac
c

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

85.75

86.00

86.25

86.50

86.75

87.00

87.25

QN
LI
 A
cc

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

77

78

79

80

81

82

M
RP

C
Ac

c

0.00 0.05 0.10 0.15 0.20
HSK Length (Normalized)

76

78

80

82

84

86

ST
S-
B
Sp

ea
rm

an
r

Figure 13: Length compression results of TinyBERT4 on seven tasks. The horizontal axis represents the com-
pressed HSK length normalized by full length. The left-most points in each plot mean compressing the length to
one token.

2941

2 4 6 8 10 12
0

20

40

60

80

100

%
 o
f t
ra
in
in
g
sa
m
pl
es

CoLA
[SEP] in top1
[SEP] in top3

2 4 6 8 10 12
0

20

40

60

80

100
SST-2

2 4 6 8 10 12
0

20

40

60

80

100
MNLI

2 4 6 8 10 12
0

20

40

60

80

100
RTE

2 4 6 8 10 12
Layer Index

0

20

40

60

80

100

%
 o
f t
ra
in
in
g
sa
m
pl
es

QNLI

2 4 6 8 10 12
Layer Index

0

20

40

60

80

100
MRPC

2 4 6 8 10 12
Layer Index

0

20

40

60

80

100
STS-B

Figure 14: The proportion of the data samples in which [SEP] is among the top1 and top3 attended tokens. We
present the results over the 12 layers of the BERTBASE fine-tuned on seven tasks.

0.2 0.4 0.6 0.8 1.0
20

25

30

35

40

Co
LA

 M
cc

0.2 0.4 0.6 0.8 1.0
88.0

88.5

89.0

89.5

90.0

90.5

91.0

SS
T-
2
Ac
c

0.2 0.4 0.6 0.8 1.0

77

78

79

80

81

M
NL
I-m
 A
cc

0.2 0.4 0.6 0.8 1.0

50

55

60

65

RT
E
Ac
c

0.2 0.4 0.6 0.8 1.0
HSK Width (Normalized)

65

70

75

80

85

QN
LI
 A
cc

ROSITA6 Mag Mask
ROSITA6 Rand Mask
ROSITA6 Uniform Mask
TinyBERT4 Mag Mask
TinyBERT4 Rand Mask
TinyBERT4 Uniform Mask

0.2 0.4 0.6 0.8 1.0
HSK Width (Normalized)

70

72

74

76

78

80

82

M
RP
C
Ac
c

0.2 0.4 0.6 0.8 1.0
HSK Width (Normalized)

30

40

50

60

70

80

ST
S-
B
Sp

ea
rm

an
r

Figure 15: Results of width compression with different masking strategies on seven tasks.

