
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2873–2887

August 1–6, 2021. ©2021 Association for Computational Linguistics

2873

Cascade versus Direct Speech Translation:
Do the Differences Still Make a Difference?

Luisa Bentivogli1, Mauro Cettolo1, Marco Gaido1,2,
Alina Karakanta1,2, Alberto Martinelli2∗, Matteo Negri1, Marco Turchi1

1Fondazione Bruno Kessler
2University of Trento

{bentivo,cettolo,mgaido,akarakanta,negri,turchi}@fbk.eu

Abstract

Five years after the first published proofs of
concept, direct approaches to speech trans-
lation (ST) are now competing with tradi-
tional cascade solutions. In light of this
steady progress, can we claim that the perfor-
mance gap between the two is closed? Start-
ing from this question, we present a system-
atic comparison between state-of-the-art sys-
tems representative of the two paradigms. Fo-
cusing on three language directions (English–
German/Italian/Spanish), we conduct auto-
matic and manual evaluations, exploiting high-
quality professional post-edits and annotations.
Our multi-faceted analysis on one of the few
publicly available ST benchmarks attests for
the first time that: i) the gap between the two
paradigms is now closed, and ii) the subtle dif-
ferences observed in their behavior are not suf-
ficient for humans neither to distinguish them
nor to prefer one over the other.

1 Introduction

Speech translation (ST) is the task of automatically
translating a speech signal in a given language into
a text in another language. Research on ST dates
back to the late eighties and its evolution followed
the development of the closely related fields of
speech recognition (ASR) and machine translation
(MT) that, since the very beginning, provided the
main pillars for building the so-called cascade ar-
chitectures. With the advent of deep learning, the
neural networks widely used in ASR and MT have
been adapted to develop a new direct ST paradigm.
This approach aims to overcome known limitations
of the cascade one (e.g. architectural complexity,
error propagation) with a single encoder-decoder
architecture that directly translates the source sig-
nal bypassing intermediate representations.

∗∗ The work of Alberto Martinelli was carried out during
an internship at Fondazione Bruno Kessler.

Until now, the consolidated underlying technolo-
gies and the richness of available data have upheld
the supremacy of cascade solutions in industrial
applications. However, architectural simplicity, re-
duced information loss and error propagation are
the ace up the sleeve of the direct approach, which
has rapidly gained popularity within the research
community in spite of the critical bottleneck repre-
sented by data paucity.

Within a few years after the first proofs of con-
cept (Bérard et al., 2016; Weiss et al., 2017), the
performance gap between the two paradigms has
gradually decreased. This trend is mirrored by the
findings of the International Workshop on Spoken
Language Translation (IWSLT),1 a yearly evalu-
ation campaign where direct systems made their
first appearance in 2018. On English-German, for
instance, the BLEU difference between the best
cascade and direct models dropped from 7.4 points
in 2018 (Niehues et al., 2018) to 1.6 points in
2019 (Niehues et al., 2019b). In 2020, participants
were allowed to choose between processing a pre-
segmented version of the test set or the one pro-
duced by their own segmentation algorithm. As re-
ported in (Ansari et al., 2020), the distance between
the two paradigms further decreased to 1.0 BLEU
point in the first condition and, for the first time,
it was slightly in favor of the best direct model in
the second condition, with a small but nonetheless
meaningful 0.24 difference.

So, quoting Ansari et al. (2020), is the cascade
solution still the dominant technology in ST? Has
the direct approach closed the huge initial perfor-
mance gap? Are there systematic differences in the
outputs of the two technologies? Are they distin-
guishable? Answering these questions is more than
running an evaluation exercise. It implies pushing
research towards a deeper investigation of direct

1http://iwslt.org
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ST, finding a path towards its wider adoption in in-
dustrial settings and motivating higher engagement
in data exploitation and resource creation to train
the data-hungry end-to-end neural systems.

For all these reasons, while Ansari et al. (2020)
were cautious in drawing firm conclusions, in
this paper we delve deeper into the problem with
the first thorough comparison between the two
paradigms. Working on three language directions
(en–de/es/it), we train state-of-the-art cascade and
direct models (§3), running them on test data drawn
from the MuST-C corpus (Cattoni et al., 2020).

Systems’ behavior is analysed from different per-
spectives, by exploiting high-quality post-edits and
annotations by professionals. After discussing over-
all systems’ performance (§4), we move to more
fine-grained automatic and manual analyses cover-
ing two main aspects: the relation between systems’
performance and specific characteristics of the in-
put audio (§5), and the possible differences in terms
of lexical, morphological and word ordering errors
(§6). We finally explore whether, due to latent
characteristics overlooked by all previous investi-
gations, the output of cascade and direct systems
can be distinguished either by a human or by an
automatic classifier (§7). Together with a compara-
tive study attesting the parity of the two paradigms
on our test data, another contribution of this paper
is the release of the manual post-edits that rendered
our investigation possible. The data is available at:
https://ict.fbk.eu/mustc-post-edits.

2 Background

Cascade ST. By concatenating ASR and MT com-
ponents (Stentiford and Steer, 1988; Waibel et al.,
1991), cascade ST architectures represent an intu-
itive solution to achieve reasonable performance
and high adaptability across languages and do-
mains. At the same time, however, they suffer from
well-known problems related to the concatenation
of multiple systems. First, they require ad-hoc
training and maintenance procedures for the ASR
and MT modules; second, they suffer from error
propagation and from the loss of speech informa-
tion (e.g. prosody) that might be useful to improve
final translations. Research has focused on mit-
igating error propagation by: i) feeding the MT
system with ASR data structures (e.g. ASR n-best,
lattices or confusion networks) which are more in-
formative than the 1-best output (Lavie et al., 1996;
Matusov et al., 2005; Bertoldi and Federico, 2005;

Beck et al., 2019; Sperber et al., 2019), and ii)
making the MT robust to ASR errors, for instance
by training it on parallel data incorporating real
or emulated ASR errors as in (Peitz et al., 2012;
Ruiz et al., 2015; Sperber et al., 2017; Cheng et al.,
2019; Di Gangi et al., 2019a). Although the former
solutions are effective to some extent, state-of-the-
art cascade architectures (Pham et al., 2019; Bahar
et al., 2020) prefer the latter, as they are simpler to
implement and maintain.

Direct ST. To overcome the limitations of cascade
models, Bérard et al. (2016) and Weiss et al. (2017)
proposed the first direct solutions bypassing in-
termediate representations by means of encoder-
decoder architectures based on recurrent neural
networks. Currently, more effective solutions
(Potapczyk and Przybysz, 2020; Bahar et al., 2020;
Gaido et al., 2020) rely on ST-oriented adaptations
of Transformer (Vaswani et al., 2017) integrating
the encoder with: i) convolutional layers to reduce
input length, and ii) penalties biasing attention to
local context in the encoder self-attention layers
(Povey et al., 2018; Sperber et al., 2018; Di Gangi
et al., 2019b). Though effective, these architectures
have to confront with training data paucity, a crit-
ical bottleneck for neural solutions. The problem
has been mainly tackled with data augmentation
and knowledge transfer techniques. Data augmen-
tation consists in producing artificial training cor-
pora by altering existing datasets or by generating
(audio, translation) pairs through speech synthesis
or MT (Bahar et al., 2019b; Nguyen et al., 2020;
Ko et al., 2015; Jia et al., 2019). Knowledge trans-
fer (Gutstein et al., 2008) consists in passing (here
to ST) the knowledge learnt by a neural network
trained on closely related tasks (here, ASR and
MT). Existing ASR models have been used for en-
coder pre-training (Bérard et al., 2018; Bansal et al.,
2019; Bahar et al., 2019a) and multi-task learning
(Weiss et al., 2017; Anastasopoulos and Chiang,
2018; Indurthi et al., 2020). Existing neural MT
models have been used for decoder pre-training
(Bahar et al., 2019a; Inaguma et al., 2020), joint
learning (Indurthi et al., 2020; Liu et al., 2020) and
knowledge distillation (Liu et al., 2019).

Previous comparisons. Most of the works on di-
rect ST also evaluate the proposed solutions against
a cascade counterpart. The conclusions, however,
are discordant. Looking at recent works, Pino et al.
(2019) show similar scores, Indurthi et al. (2020)
report higher results for their direct model, while

https://ict.fbk.eu/mustc-post-edits
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Inaguma et al. (2020) end up with the opposite
finding. The main problems of these comparisons
are that: i) not all the architectures are equally
optimized, ii) for the sake of fairness in terms of
training data, cascade systems are restricted to un-
realistic settings with small training corpora that
penalize their performance, and iii) evaluation al-
ways relies only on automatic metrics computed on
single references. The IWSLT campaigns (Niehues
et al., 2019a; Ansari et al., 2020) set up a shared
evaluation framework where systems built on a
large set of training data are optimized to achieve
the best performance, independently from the un-
derlying architecture. In the last round, direct mod-
els approached, and in one case (Potapczyk and
Przybysz, 2020) outperformed, the cascade ones.
However, the evaluation was run only on one lan-
guage pair, by solely relying on automatic metrics
and single references. In this paper, we overcome
these limitations by comparing the two paradigms
on three language pairs, using different metrics,
multiple references (including professional post-
edits) as well as fine-grained automatic and manual
analysis procedures.

3 Experimental Setting

3.1 ST Systems

To maximize the cross-language comparability of
our analyses, we built the cascade and direct ST
systems for en–de/es/it with the same core technol-
ogy, based on Transformer. Their good quality is
attested by the comparison with the winning sys-
tem at the IWSLT-20 offline ST task (Bahar et al.,
2020),2 which consists of an ensemble of two cas-
cade models scoring 28.8 BLEU on the en-de por-
tion of the MuST-C Common test set. On the same
data, our cascade and direct models achieve similar
BLEU scores, respectively 28.9 and 29.1 (see Ta-
ble 1).3 On en-es and en-it, identical architectures
perform similarly or better (up to 32.9 BLEU on
en-es). Although BLEU scores are not strictly com-
parable across languages, we can safely consider
all our models as state-of-the-art.

For the sake of reproducibility, we provide com-
plete details about data, architectures and training
setup in Appendix A.

2In the pre-segmented data condition (Ansari et al., 2020).
3Also the ASR performance of our cascade solution (10.2

WER on MuST-C Common) is in line with the results obtained
by Bahar et al. (2020) for their best ASR model.

3.2 Evaluation Methodology

Data. Our evaluation data is drawn from the
TED-based MuST-C corpus (Cattoni et al., 2020),
the largest freely available multilingual corpus for
ST. It covers 14 language directions, with English
audio segments automatically aligned with their
corresponding manual transcriptions and transla-
tions. The en–de/es/it MuST-C Common test sets
contain the same 27 TED talks, for a total of
around 2,500 segments largely overlapping across
languages.4 For all the three language pairs, we
selected subsets of MuST-C Common containing
the same English audio portions from each talk,
in order to obtain representative groups of con-
tiguous segments that are comparable across lan-
guages. Furthermore, to ensure high data quality,
we manually checked the selected samples and kept
only those segments for which the audio-transcript-
translation alignment was correct. Each of the
three resulting test sets – henceforth PE-sets – is
composed of 550 segments, corresponding to about
10,000 English source words.

Post-editing. A key element of our multi-faceted
analysis is human post-editing (PE), which consists
in manually correcting systems’ output according
to the input (the source audio in our case). In PE-
based evaluation, the original output is compared
against its post-edited version using distance-based
metrics like TER (Snover et al., 2006). This allows
for counting only the true errors made by a system,
without penalising differences due to linguistic vari-
ation as it happens when exploiting independent
references. This makes PE-based evaluation one of
the most prominent methodologies used for transla-
tion quality assessment (Snover et al., 2006, 2009;
Denkowski and Lavie, 2010; Cettolo et al., 2013;
Bojar et al., 2015; Graham et al., 2016; Bentivogli
et al., 2018b).

To collect the post-edits for our study, we strictly
followed the methodology of the IWSLT 2013-
2017 evaluation campaigns (Cettolo et al., 2013),
which offered us a consolidated framework and
best practices to draw upon. Our cascade and di-
rect systems were both run on the PE-sets to be
post-edited. To guarantee high quality post-edits,
for each language we hired two professional trans-
lators with experience in subtitling and post-editing.
Moreover, in order to cope with translators’ vari-

4MuST-C Common segments can vary across languages
due to the automatic procedures of segmentation, audio-text
alignment and filtering that were applied to the talks.
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ability (i.e. more/less aggressive editing strategies),
the outputs of the two ST systems were randomly
assigned ensuring that each translator worked on
all the 550 segments, post-editing an equal num-
ber of outputs from both systems. The task was
performed with a CAT tool5 that displays the man-
ual transcript of the audio together with the ST
output to be edited. However, since ST systems
take as input an audio signal, we also provided
translators with the audio file of each segment, ask-
ing them to post-edit strictly according to it.6 For
each language pair, the final PE-set used in our
study consists of the 550 MuST-C original audio-
transcript-translation triplets plus two additional
sets of reference translations, i.e. the post-edited
versions of the two systems’ outputs.

Analyses. The collected post-edits are exploited
to assess overall systems’ performance (§4) as well
as to carry out deeper quantitative and qualitative
analyses aimed to shed light on possible systematic
differences in systems’ behavior (§5.1 and §6.1).
Focusing on specific aspects of the ST problem, the
inquiry is also performed by means of manual an-
notation of systems’ outputs (§5.2, §6.2 and §7.1).
Due to the linguistic nature of this task, centred on
fine-grained aspects requiring a variety of skills in
both evaluation and ST technology, for such anal-
yses we relied on three researchers in translation
technology – one per language pair – with a strong
background in linguistics, excellent knowledge of
the addressed languages (C2 or native), as well as
strong expertise in systems’ evaluation.

4 Overall Systems’ Performance

We compute overall performance results both on
the PE-sets and on the MuST-C Common test sets.
Our primary evaluation is based on the collected
post-edits. We consider two TER-based7 metrics:
i) human-targeted TER (HTER) computed between
the automatic translation and its human post-edited
version, and ii) multi-reference TER (mTER) com-
puted against the closest reference among the three
available ones (two post-edits and the official ref-
erence from MuST-C). The latter metric better ac-
counts for post-editors’ variability, making the eval-
uation more reliable and informative. For the sake
of completeness, in Table 1 we also report Sacre-

5www.matecat.com
6The ad-hoc ST PE guidelines given to translators are

included in Appendix B.
7www.cs.umd.edu/˜snover/tercom

BLEU8 (Post, 2018) and TER scores computed
only on the official MuST-C Common references.

PE Set M. Common
HTER mTER BLEU TER BLEU TER

de C 28.65 24.41 28.96 53.23 28.86 53.93
D 30.22 25.60 28.46 52.56 29.05 52.77∗

es C 29.96 25.30 34.05∗ 50.75 32.93∗ 53.21∗

D 28.19∗ 24.02∗ 32.17 51.08 31.98 54.00

it C 25.69 23.29 30.04∗ 54.01 28.56 56.29
D 26.14 23.26 28.81 54.06 28.56 55.35∗

Table 1: Performance of (C)ascade and (D)irect sys-
tems on the PE-sets and MuST-C Common test sets.
Statistically significant differences (∗) are computed
with Paired Bootstrap Resampling (Koehn, 2004).

A bird’s-eye view of the results shows that, in
more than half of the cases, performance differ-
ences between cascade and direct systems are not
statistically significant. When they are, the raw
count of wins for the two approaches is the same
(4), attesting their substantial parity.

Looking at our primary metrics (HTER and
mTER), systems are on par on en-it and en-de,
while for en-es the direct approach significantly
outperforms the cascade one. This difference, how-
ever, does not emerge with the other metrics. In-
deed, BLEU and TER scores computed against the
official references are less coherent across metrics
and test sets. For instance, on the en-it PE-set the
cascade system significantly outperforms the direct
one in terms of BLEU score, while TER shows the
opposite on MuST-C Common. Interestingly, the
scores obtained using independent references can
also disagree with those computed with post-edits.
This is the case of en-es, where significant HTER
and mTER reductions attest the superiority of the
direct system, while most BLEU and TER scores
are still in favor of the cascade.

On the one hand, primary evaluation scores sug-
gest that the rapidly advancing direct technology
has eventually reached the traditional cascaded ap-
proach. On the other, the highlighted incongruities
confirm widespread concerns about the reliability
of fully automatic metrics – based on independent
references – to properly evaluate neural systems
(Way, 2018). This calls for deeper quantitative
and qualitative analyses. Those presented in the
next sections investigate performance differences
focusing on two main aspects: the impact of spe-
cific input audio properties (§5), and the linguistic
errors made by the systems (§6).

8BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.3

www.matecat.com
www.cs.umd.edu/~snover/tercom
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5 ST Quality and Audio Properties

5.1 Automatic Analysis
The two ST approaches handle the input audio
differently: the cascade one by means of a ded-
icated ASR component that produces intermedi-
ate transcripts; the direct one by extracting all the
relevant information to translate in an end-to-end
fashion. Is it therefore possible that some audio
properties have different impact on their results?
Overall performance being equal, answering this
question would help to understand if one approach
is preferable over the other under specific audio
conditions.

Among other possible factors (e.g. noise, record-
ing conditions, overlapping speakers) we tried to
shed light on this aspect by focusing on two com-
mon factors: audio duration and speech rate. To
this aim, we grouped the sentences in the PE-set
according to the sentence-wise HTER percentage
difference – i.e. the difference between the cascade
and direct HTER scores divided by their average.

The threshold for considering performance dif-
ferences as significant was set to 10%. The re-
sulting groups contain sentences where: i) cascade
is significantly better than direct, ii) direct is sig-
nificantly better than cascade, iii) the difference
between the two is not significant, and iv) both sys-
tems have HTER=0. For each group, we calculated
the average audio duration and the corresponding
speech rate in terms of phonemes9 per second.

Results are shown in Table 2, where – for the
sake of completeness – also the length of the ref-
erence audio transcript is given, together with the
average HTER of the systems.

As we can see, results are coherent across lan-
guages: audio duration and speech rate averages do
not differ, neither when one system performs sig-
nificantly better than the other, nor when the HTER
differences are not significant. We can hence con-
clude that, if audio duration and speech rate have
any influence on systems’ performance, our anal-
ysis does not highlight specific conditions that are
more favorable to one approach than to the other.
Both are equally robust with respect to the audio
properties here considered.

5.2 Manual Analysis
Handling the input audio differently, the two ap-
proaches have inherent strengths and weaknesses.

9Obtained by processing the transcripts with eSpeak
(espeak.sourceforge.net).
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C better 240 6.15 14.43 19.75 16.30 40.53
D better 191 6.00 14.52 18.88 44.85 17.89
No Diff 45 6.68 14.31 22.07 40.74 40.18
HTER 0 74 2.71 15.53 9.64 0 0

es

C better 215 5.92 12.20 19.52 16.09 38.76
D better 234 6.28 12.09 20.39 46.45 21.14
No Diff 54 6.47 12.01 20.26 40.22 40.37
HTER 0 47 3.09 13.14 10.23 0 0

it

C better 231 6.03 12.31 19.41 14.82 36.40
D better 212 6.06 12.21 19.33 37.65 15.80
No Diff 55 6.93 11.94 21.73 35.39 35.37
HTER 0 52 2.96 12.68 10.33 0 0

Table 2: Comparison of (C)ascade and (D)irect perfor-
mance based on different audio properties.

In particular, although suffering from the well-
known scarcity of sizeable training corpora, di-
rect solutions come with the promise (Sperber and
Paulik, 2020) of: i) higher robustness to error prop-
agation, and ii) reduced loss of speech information
(e.g. prosody). Our next qualitative analysis tries
to delve into these aspects by looking at audio un-
derstanding and prosody issues.

Audio understanding. Errors due to wrong au-
dio understanding are easy to identify for cascade
systems – since they are evident in the intermedi-
ate ASR transcripts – but harder to spot for direct
systems, whose internal representations are by far
less accessible. In this case, errors can still be iden-
tified in mistranslations corresponding to words
which are phonetically similar to parts of the input
audio – e.g. nice voice mistranslated in German
as nette Jungen (nice boys). To spot such errors,
our annotators carefully inspected the PE-set by
comparing the audio, the reference transcripts and
systems’ output translations for both the cascade
and direct models, as well as the ASR transcripts
for the cascade one. Some interesting examples of
the identified errors are reported in Table 3.

AUDIO to the er- euh [disfluency] Egyptian government
C der eruptiven [Eng. “eruptive”] Regierung ...
D an die Regierung Ägyptens
AUDIO dominated by big, scary guys,...
C dominados por grandes tipos aterradores
D dominados por los chicos de Big Kerry
AUDIO I think, like her,...
C Penso che, come qui [Eng. “here”], ...
D Penso che, come i capelli [Eng. “hair”], ...

Table 3: Examples of audio understanding errors.

espeak.sourceforge.net
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As shown in Table 4, audio understanding errors
are quite common for both systems in all language
pairs. However, both the number of errors and
the number of sentences they affect is significantly
lower for the direct one. We observed that this is
the case especially for “more difficult” sentences,
such as sentences with poor audio quality and over-
lapping or disfluent speech.

Though far from being conclusive (we acknowl-
edge that, due to the “opacity” of direct models,
their error counts might be slightly underestimated),
this analysis seems to confirm the theoretical advan-
tages of direct ST. This finding advocates for more
thorough future investigations on neural networks’
interpretability, targeting its empirical verification
on larger and diverse benchmarks.

Both C D Ctot Dtot Csent Dsent

de 51 96 52 147 103 117 91
es 82 108 66 190 148 150 127
it 87 82 69 169 156 143 138

Table 4: Audio understanding errors in the PE-set and
number of sentences containing at least one such error.

Prosody. Prosody is central to disambiguating ut-
terances, as it reflects language elements which
may not be encoded by grammar and vocabulary
choices. While prosody is directly encoded by the
direct system, it is lost in the unpunctuated input
received by the MT component of a cascade. Be-
sides few interrogative sentences, our annotators
were able to isolate only a handful of utterances
whose prosodic markers result in different inter-
pretations by the two models. Concerning inter-
rogatives, both systems managed to translate them
correctly in most cases (24 for cascade and 25 for
direct out of 31). This is not surprising given the
syntactic structure of English questions, which is
explicit and does not rely solely on prosody (e.g.
compared to Italian). In all other cases (examples
in Table 5), the direct model’s higher sensitivity to
prosody seems to give it an edge on cascade in dis-
ambiguating and correctly rendering the utterance
meaning. Also this finding calls for future inquiries
aimed to check the regularity of these differences
on larger datasets.

6 Linguistic Errors

6.1 Automatic Analysis
For this analysis, we rely on the publicly available
tool10 used by Bentivogli et al. (2018a) to analyse

10wit3.fbk.eu/2016-02, details in Appendix C.

src nation states — governments doing the attacks
C Regierungen der Nationalstaaten

[governments of nation states]
D Nationen, Regierungen

[nations, governments]
src like the one we saw before, moving
C como el que vimos antes de moverse

[like the one we saw before moving]
D como el que hemos visto antes, moviéndose

[like the one we saw before, moving]
src Photos like this: construction going on
C Foto come questa costruzione

[Photos like this construction]
D Foto come queste: costruzione

[Photos like these: construction]

Table 5: The two approaches dealing with prosody.

en-de en-es en-it
C D ∆% C D ∆% C D ∆%

L 2481 2560 +3.2 2674 2497 -6.6 2264 2264 0.0
M 468 536 +14.5 535 494 -7.7 433 470 +8.6
R 398 476 +19.6 308 290 -5.8 230 226 -1.7

3347 3572 +6.7 3517 3281 -6.7 2927 2960 +1.1

Table 6: Distribution of (L)exical, (M)orphological and
(R)eordering errors. Absolute numbers are presented
together with the percentage of reduction/increase of
the (D)irect system with respect to the (C)ascade (∆%).

what linguistic phenomena are best modeled by
MT systems. The tool exploits manual post-edits
and HTER-based computations to detect and clas-
sify translation errors according to three linguistic
categories: lexicon, morphology and word order.
Table 6 presents their distribution.

As expected from the HTER scores in Table 1,
results vary across language pairs. On en-it, sys-
tems show pretty much the same number of errors,
with a slight percentage gain (+1.1) in favor of the
cascade. For the other two pairs, differences are
more marked and opposite, with an overall error
reduction for the direct system on en-es (-6.7) and
in favor of the cascade on en-de (+6.7).

Looking at the distribution of errors across cat-
egories, while for en-es the direct system is al-
ways better and the percentage reduction is homo-
geneously distributed, for en-de the better perfor-
mance of the cascade is concentrated in the mor-
phology and word order categories. Since English
and German are the most different languages in
terms of morphology and word order, this result
suggests that cascade systems still have an edge on
the direct ones in their ability to handle morphology
and word reordering. This is further supported by
en-it: the only difference, in favor of the cascade,
is indeed observed in the morphology category.

wit3.fbk.eu/2016-02
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6.2 Manual Analysis

Since lexical errors represent by far the most fre-
quent category for both approaches in all language
pairs, we complement the automatic analysis with
a more fine-grained manual inspection, further dis-
tinguishing among lexical errors due to missing
words, extra words, or wrong lexical choice.11

The analysis was carried out on subsets of the
PE-set, created in such a way to be suitable for man-
ual annotation. Namely, we removed sentences for
which the output of the two systems is: i) identi-
cal, ii) judged correct by post-editors (HTER=0),
or iii) too poor to be reliably annotated for errors
(HTER>40%). The resulting sets contain 207 sen-
tences for en-de, 238 for en-es, and 285 for en-it.

This analysis reveals that, for all language pairs,
wrong lexical choice is the most frequent error type
(∼65% of lexical errors on average) followed by
missing words (∼30%), and extra words (∼5%).

While errors due to lexical choice and superflu-
ous words vary across languages, we observe a
systematic behavior with respect to missing words
(words that are present in the audio but are not
translated). As we can see in Table 7, direct sys-
tems lose more information from the source input
than their cascade counterparts, in terms of both
single words and contiguous word sequences. It is
particularly interesting to notice that also for en-es
– where the direct system is significantly stronger
than the cascade – the issue is still evident, although
to a lesser extent. Table 8 collects examples of the
encountered lexical phenomena.

single word total
words sequences # words

C D C D C D ∆%
de 25 34 6 10 42 58 +38.10
es 26 40 10 11 59 68 +15.25
it 53 83 14 18 96 128 +33.33

Table 7: Missing words for (C)ascade and (D)irect sys-
tems. Absolute numbers vary across languages as they
reflect the different size of the annotated subsets.

Finally, we report that a non-negligible amount
of missing words (between 10% and 20%) is repre-
sented by discourse markers, i.e. words or phrases
used to connect and manage what is being said
(e.g. “you know”, “well”, “now”). Although this is

11Various error taxonomies covering different levels of
granularity have been developed, and the distinction between
these types of lexical errors is widely adopted, including the
DQF-MQM framework – https://info.taus.net/
dqf-mqm-error-typology-templ

AUDIO “That’s fine”, says George,
C “Das ist in Ordnung.” [ – ] George,
D “Das ist in Ordnung, [ – ] George,”
AUDIO Well after two years, ...
C Bueno, después de dos años, ...
D [ – ] Después de dos años, ...
AUDIO My wife and kids and I, moved to ...
C Io e mia moglie e i miei figli ci siamo trasferiti...
D Io e mia moglie [ – ] ci siamo trasferiti...

Table 8: Examples of missing words.

a frequent phenomenon in speech, not translating
discourse markers cannot be properly considered
as an error, since markers i) do not carry semantic
information, and ii) can be intentionally dropped
in some use cases, such as in subtitling.

7 Classifiers’ Verdict

So far, our inquiry has been entirely driven by pre-
defined assumptions (the importance of certain au-
dio properties) and linguistic criteria (the focus
on specific error types). This top-down approach,
however, might fail to disclose important differ-
ences, which were not specifically sought after
when analysing the two paradigms. This considera-
tion motivates the adoption of the complementary
bottom-up approach that concludes our compara-
tive study by answering the question: is the output
of cascade and direct systems distinguishable? Un-
derstanding if and why discriminating between the
two is possible would not only suggest new issues
to look at. It would also highlight possible output
regularities that, despite the similar overall perfor-
mance, make one paradigm preferable over the
other in specific application scenarios. To this aim,
we set up a classification experiment, comparing
the ability of humans to correctly identify the out-
put of the two systems with the performance of an
automatic text classifier.

7.1 Human Classification
After getting acquainted with systems’ output
through the previous manual analyses, our asses-
sors were instructed to perform a classification task.
The classification had to be performed on 10 blocks
of items comprising a set of unseen English con-
tiguous sentences (gold transcripts) from the MuST-
C Common test set, and two sets of anonymized
translations, one produced by the cascade and one
by the direct model. For each block, the assessors
had to assign each set of translations to the correct
system, or label them as indistinguishable. To in-
vestigate whether more context helps in the assign-

https://info.taus.net/dqf-mqm-error-typology-templ
https://info.taus.net/dqf-mqm-error-typology-templ
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ment, we set up two experiments with respectively
10 and 20 contiguous sentences per block.

en-de en-es en-it
# of sentences 10 20 10 20 10 20
Correct 7 6 4 4 4 3
Wrong 2 2 2 3 1 2
Indistinguishable 1 2 4 3 5 5
Total # of blocks 10 10 10 10 10 10

Table 9: Results of human classification.

The results in Table 9 show that en-es and en-it
systems are not distinguishable, since only a maxi-
mum of 4 blocks out of 10 were correctly classified,
while most en-de blocks were correctly classified.
According to the en-de assessor, this is due to the
fact that the structure of the sentences generated
by the direct system is very similar to that of the
corresponding English sources. This characteristic
stands out in German, which differs from English
in terms of word order more than Italian and Span-
ish. This type of behavior does not necessarily
imply the presence of errors but, like a fingerprint,
makes the en-de direct system more recognizable
by a human. Furthermore, being sub-optimal for
German, this structure can cause preferential edits
by the post-editors, which would be in line with the
concentration of errors in the word order category
observed in Table 6 (+19.6%).

Assessing the importance of context, the ability
of humans to distinguish the systems does not im-
prove when passing from 10 to 20 sentences per
block. This suggests that the behavioral differences
between cascade and direct systems are so subtle
that, on larger samples, they mix up and balance
making their fingerprints less traceable.

7.2 Automatic Classification
As a complement to the human classification ex-
periment, we check whether an automatic tool is
able to accomplish a similar task. Our classifier
combines n-gram language models with the Naive
Bayes algorithm, as proposed in (Peng and Schu-
urmans, 2003). We trained two 5-gram models,
respectively using translations by the cascade and
the direct systems. At classification time, given a
translated text, the classifier computes the perplex-
ity of the two models and assigns the cascade or
direct label based on the model with the lowest per-
plexity. Also these experiments were carried out on
the MuST-C Common set. The classifier was tested
via k-fold cross-validation, for different values of k
– i.e. different sizes of text to classify.

As shown in Figure 1, contrary to humans, the
more data the classifier receives, the higher its ac-
curacy in discriminating between systems. Already
at a size of 20 sentences, accuracy is always∼80%.
This suggests that systems have their own “lan-
guage”, a fluency-related fingerprint.

Figure 1: Results of automatic classification for differ-
ent sizes of system output blocks (1-600 sentences).

To check this finding, we measured outputs’ lex-
ical diversity in terms of moving average Type-
Token Ratio – maTTR (Covington and McFall,
2010) – and with the Measure of Textual Lexical
Diversity (MTLD) by McCarthy and Jarvis (2010).

Table 10 shows that the cascade output exhibits
higher lexical diversity on all languages, with
smaller differences on en-de and en-es compared
to en-it. A plausible conclusion is that the cas-
cade produces richer output, whose variety does
not necessarily result in better translations nor is
appreciated by humans. Indeed, annotators were
able to correctly distinguish the output only for
en-de, where lexical diversity is similar (see §7.1).

en-de en-es en-it
maTTR MTLD maTTR MTLD maTTR MTLD

R 73.11 97.02 69.81 77.19 74.50 109.79
C 71.84 83.64 68.42 67.68 73.20 97.82
D 71.45 83.27 67.99 65.59 72.60 90.78

Table 10: Lexical diversity of the human (R)eference,
(C)ascade and (D)irect outputs.

8 Conclusion and Final Remarks

There is a time when the possible transition from
consolidated technological frameworks to new
emerging paradigms depends on answering fun-
damental questions about their potential, strengths
and weaknesses. A time when technology develop-
ers are faced with the choice of where to direct their
future investments. Five years after its appearance
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on the scene, the direct approach to ST confronts
the community with similar questions in relation
to the traditional cascade paradigm that it aims to
overtake. Our investigation showed that, in spite
of the known data paucity conditions still penaliz-
ing the direct approach, the two technologies now
perform substantially on par. Subtle differences
in their behavior exist: overall performance being
equal, the cascade still seems to have an edge in
terms of morphology, word ordering and lexical
diversity, which is balanced by the advantages of
direct models in audio understanding and in captur-
ing prosody. However, they do not seem sufficient
and consistent enough across languages to make
the output of the two approaches easily distinguish-
able, nor to make one model preferable to the other.
Back to our title, they no longer make a difference.

We are aware that the generalizability of these re-
sults depends on several factors such as the consid-
ered languages, systems and benchmarks, as well
as the human workforce deployed for the inquiry.
Here, with the help of professionals, we proposed
multi-faceted quantitative and qualitative analyses,
run on the output of state-of-the-art systems on
three language pairs – though, by now, covering
only the most-explored and data-favorable condi-
tion, which has English as source. Although our
findings hold for a specific scenario, in which free
data were at our disposal (and to which we con-
tribute back by releasing high-quality post-edits),
they might not be generalizable to other (e.g. dif-
ficult, distant) languages and other (e.g. highly
specialized) domains. Nevertheless, we present
them as a timely contribution towards answering a
burning question within the ST community.
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A Systems’ Description

In this section we describe the ST models created
for our study (see Section 3.1 ). All the details
about the different trainings are given below, while
the validation set was common to all trainings,
since we used the MuST-C dev set.

The source code for the ASR and the direct
ST models is available at: https://github.com/
mgaido91/FBK-fairseq-ST.

The source code for the MT component of the
cascade model can be found at: https://github.
com/modernmt/modernmt.

A.1 Cascade approach
The Cascade system is composed of a pipeline of
automatic speech recognition (ASR) and machine
translation (MT) models.

The ASR model is a slightly revisited version
(Gaido et al., 2020) of the S-Transformer (Di Gangi
et al., 2019b), where the two 2D self-attention lay-
ers are replaced with two Transformer encoder lay-
ers (for a total of 8 layers), while the decoder is
the same (with 6 layers). Hence, the model pro-
cesses the input with two 3x3 2D CNNs (having 64
filters), whose output is first projected into a higher-
dimensional space and then summed with posi-
tional embeddings before being fed to the Trans-
former encoder layers; Transformer encoder layers
use logarithmic distance penalty. The attention
mechanism consists of 8 attention heads. The di-
mensionality of input and output is 512, while the
inner-layers have dimensionality 2048. The result-
ing number of parameters is 63M.

The ASR model was trained with the goal of
achieving state-of-the-art performance. To this aim,
we relied on two data augmentation techniques

that were shown to yield competitive models at the
IWSLT-2020 evaluation campaign (Ansari et al.,
2020), namely: i) SpecAugment (Park et al., 2019)
applied with probability 0.5 by masking two bands
on the frequency axis (with 13 as maximum mask
length) and two on the time axis (with 20 as max-
imum mask length), and ii) time stretch (Nguyen
et al., 2020) with probability of 0.3 and stretching
factor sampled uniformly for each utterance be-
tween 0.8 and 1.25. The ASR model was trained on
1.25M utterance-transcript pairs coming from the
ASR corpora Librispeech (Panayotov et al., 2015),
Mozilla Common Voice,13 How2 (Sanabria et al.,
2018), TEDLIUM-v3 (Hernandez et al., 2018),
as well as the ST corpora Europarl-ST (Iranzo-
Sánchez et al., 2020) and MuST-C (Cattoni et al.,
2020).14 We filtered out all pairs whose utterance
was longer than 20 seconds. The audio input was
preprocessed with XNMT15 (Neubig et al., 2018)
to extract 40 features per time frame (with 25ms
windows and 10ms sliding) and per-speaker nor-
malization was applied. The text was preprocessed
by normalizing punctuation and de-escaping spe-
cial characters, and was tokenized with Moses.16

Then it was encoded with a BPE (Sennrich et al.,
2015) code learnt on the OPUS data17 using 8k
merge rules.

The MT component is built on the ModernMT
framework18 which features machine translation
implementing the Transformer architecture. We
trained either a Base (en-it) or a Big (en-{de,es})
Transformer model (Vaswani et al., 2017) with
6 blocks in the encoder and 6 in the decoder,
512/1024 as input size, the same as output size,
2048/4096 as inner dimension and 8/16 attention
heads. The total number of parameters is about
61M for the Base model, 210M for the Big models.

As regards pre-processing, for all the three lan-
guage directions we used the internal ModernMT
procedures.

In training, models are optimized with Adam
using β1=0.9, β2=0.98; the learning rate is linearly
increased during the warmup (8k iterations) up to

13https://voice.mozilla.org/
14For English-German, the ST corpora include also the

Speech-Translation TED corpus provided in the IWSLT
offline-speech-translation task: http://iwslt.org/
doku.php?id=offline_speech_translation

15https://github.com/neulab/xnmt
16https://github.com/moses-smt/

mosesdecoder
17http://opus.nlpl.eu
18https://github.com/modernmt/modernmt
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the maximum value (5×10−4), after that it follows
an inverse square root decay; dropout is set to 0.3.
Minibatches consist of 3072 tokens and update
frequency is set to 4; the total number of iterations
is 200k; the last 10 saved checkpoints (one out of
1k iterations) are averaged. The model uses label
smoothing with a uniform prior distribution (0.1)
over the vocabulary; source and target languages
share a BPE vocabulary of 32k sub-words.

#segments #en words #trg words
en-de 58.2M 776.4M 723.3M
en-es 70.1M 972.5M 1024.9M
en-it 67.9M 792.6M 770.2M

Table 11: Statistics of the parallel training sets col-
lected from the OPUS repository for the three lan-
guages pairs.

The training data, whose statistics are reported
in Table 11, are collected from the OPUS reposi-
tory. For English-Italian, they resulted in almost
70M segment pairs and about 800M English words;
after deduplication and the internal ModernMT
cleaning, the actual training data is reduced to
45M pairs and 550M English words. For English-
{German,Spanish} pairs, the OPUS data were fil-
tered through well-known data selection methods
(Axelrod et al., 2011) using a general-domain seed;
the resulting training data consist of, respectively,
17M and 19M segment pairs, for 270M and 330M
English words. Trainings were performed on RTX
2080 Ti GPUs; for English-Italian, it was run on 7
GPUs and lasted 3 days, while for each of the other
two directions, on a single GPU, it took 6 days.

The three models are then fine-tuned on MuST-C
training data (∼250K pairs, 4-5M English words)
by continuing the training for 4k iterations on the
adaptation data, with a learning rate reduced by
a factor of 5. To mitigate error propagation and
make the MT system more robust to ASR errors,
similarly to (Di Gangi et al., 2019a) fine tuning is
run on the concatenation of human and automatic
transcripts of MuST-C, both paired with manual
translations.

A.2 Direct approach
Our direct model (Gaido et al., 2020) uses the same
architecture of the English ASR model described
in §A.1, but it has 11 Transformer encoder layers
(instead of 8) and 4 Transformer decoder layers (in-
stead of 6) for a total of 64M parameters. The ST
model’s encoder is initialized with the encoder of

the ASR model (Bansal et al., 2019), with the miss-
ing layers initialized randomly. The ST decoder is
also initialized randomly.

The training settings and the data augmentation
methods employed for the direct ST model are
the same described in Section A.1 for the ASR
component of the cascade system. In addition, we
performed synthetic data generation, by automati-
cally translating the English transcripts of the ASR
training corpora (Jia et al., 2019). Furthermore, we
transfer knowledge from MT through knowledge
distillation (Hinton et al., 2015). Knowledge distil-
lation is performed from a teacher MT model by
optimizing the KL divergence between the distribu-
tions produced by the teacher and the student ST
model being trained (Liu et al., 2019). The teacher
MT model is trained on the OPUS datasets (Tiede-
mann, 2016) and is a plain transformer with 16 at-
tention heads and 1024 features in encoder/decoder
embeddings, resulting into 212M parameters.

The direct ST model is trained in two consecu-
tive steps. First, it is optimized using KD. Then,
the resulting model is fine-tuned on label-smoothed
cross entropy (Szegedy et al., 2016). The training
set is composed of the same corpora used for the
ASR model, more precisely: i) the ST corpora and
ii) the synthetic datasets derived from the ASR
corpora.

The ST model is fed with the input utterance
and a token representing the type of the target data,
which can be: i) human reference translations (for
the ST corpora), or ii) translations generated by
the MT model fed with true case transcriptions
with punctuation, and iii) translations generated
by the MT model fed with lower-cased transcrip-
tions without punctuation (for the ASR corpora).
At inference time, the token “human reference” is
always used to generate the translations. The token
is added to the features extracted from the audio
before they are passed to the encoder (Di Gangi
et al., 2019c).

All trainings were performed on 8 K80 GPUs.
The training of each direct model lasted 10 days,
while the ASR and MT pre-trainings 6 days each.

The source code19 implemented to build these
models is based on Fairseq (Ott et al., 2019).

19https://github.com/mgaido91/
FBK-fairseq-ST
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B Post-Editing Guidelines

In this task you are presented with (i) 550 audio
segments that are recordings of portions of different
English TED Talks, (ii) their transcripts, and (iii)
corresponding automatic translations.

Starting from the original audio recording and
its corresponding transcript (done by TED volun-
teer translators), you are asked to post-edit each
given automatic translation by applying the mini-
mal edits required to transform the system output
into a fluent sentence with the same meaning as the
audio/transcript.

While post-editing, remember the following
guidelines:

• We noticed that some audio player software
applications cut the beginning or the end of
the audio segments. If you notice some audio-
transcript out-of-sync, please try another au-
dio player or inform us about the problem.

• The audio should be your first source of infor-
mation, while transcripts are given for your
convenience. It could happen that the tran-
script is not faithful to the spoken original: in
these cases you should not consider the tran-
script and refer to the audio only.

• Some transcripts contain the name or initials
of the speaker (typically followed by colons).
Please don’t add this information into the
sentence you are post-editing. In general,
don’t include in your post-edit any text that
is not present in the audio (e.g. explanation
of acronyms, disambiguation of pronouns),
even though this information could ease the
understanding of the sentence.

• The post-edited sentence is intended as a
translation of spoken language. Also, de-
pending on the style of the source language
talk, you can use the corresponding style in
the target language (e.g. if the talk uses a
friendly/colloquial style you can use informal
words too).

• The focus is the correctness of the single sen-
tence within the given context, not the con-
sistency of a group of sentences. Hence, sur-
rounding segments should be used to under-
stand the context but not to enforce consis-
tency on the use of terms. In particular, dif-
ferent but correct translations of terms across
segments should not be corrected.

C Tool for Automatic Error
Classification

The tool used for the automatic analysis of lin-
guistic errors (Section 6.1) is downloadable at
wit3.fbk.eu/2016-02. It is a modified version of
the tercom script, 20 which requires the lemmatized
versions of both systems’ outputs and post-edits.
To lemmatize the data we used the TreeTagger.21

20www.cs.umd.edu/˜snover/tercom
21www.cis.uni-muenchen.de/˜schmid/

tools/TreeTagger

wit3.fbk.eu/2016-02
www.cs.umd.edu/~snover/tercom
www.cis.uni-muenchen.de/~schmid/tools/TreeTagger
www.cis.uni-muenchen.de/~schmid/tools/TreeTagger

