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Abstract

Although BERT and its variants have reshaped
the NLP landscape, it still remains unclear
how best to derive sentence embeddings from
such pre-trained Transformers. In this work,
we propose a contrastive learning method that
utilizes self-guidance for improving the qual-
ity of BERT sentence representations. Our
method fine-tunes BERT in a self-supervised
fashion, does not rely on data augmentation,
and enables the usual [CLS] token embed-
dings to function as sentence vectors. More-
over, we redesign the contrastive learning ob-
jective (NT-Xent) and apply it to sentence rep-
resentation learning. We demonstrate with ex-
tensive experiments that our approach is more
effective than competitive baselines on diverse
sentence-related tasks. We also show it is effi-
cient at inference and robust to domain shifts.

1 Introduction

Pre-trained Transformer (Vaswani et al., 2017) lan-
guage models such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) have been integral
to achieving recent improvements in natural lan-
guage understanding. However, it is not straightfor-
ward to directly utilize these models for sentence-
level tasks, as they are basically pre-trained to focus
on predicting (sub)word tokens given context. The
most typical way of converting the models into sen-
tence encoders is to fine-tune them with supervision
from a downstream task. In the process, as initially
proposed by Devlin et al. (2019), a pre-defined to-
ken’s (a.k.a. [CLS]) embedding from the last layer
of the encoder is deemed as the representation of an
input sequence. This simple but effective method
is possible because, during supervised fine-tuning,
the [CLS] embedding functions as the only com-
munication gate between the pre-trained encoder

*This work has been mainly conducted when TK was a
research intern at NAVER AI Lab.

Figure 1: BERT(-base)’s layer-wise performance with
different pooling methods on the STS-B test set. We
observe that the performance can be dramatically var-
ied according to the selected layer and pooling strategy.
Our self-guided training (SG / SG-OPT) assures much
improved results compared to those of the baselines.

and a task-specific layer, encouraging the [CLS]
vector to capture the holistic information.

On the other hand, in cases where labeled
datasets are unavailable, it is unclear what the best
strategy is for deriving sentence embeddings from
BERT.1 In practice, previous studies (Reimers and
Gurevych, 2019; Li et al., 2020; Hu et al., 2020)
reported that naı̈vely (i.e., without any processing)
leveraging the [CLS] embedding as a sentence
representation, as is the case of supervised fine-
tuning, results in disappointing outcomes. Cur-
rently, the most common rule of thumb for building
BERT sentence embeddings without supervision is
to apply mean pooling on the last layer(s) of BERT.

1In this paper, the term BERT has two meanings: Nar-
rowly, the BERT model itself, and more broadly, pre-trained
Transformer encoders that share the same spirit with BERT.
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Yet, this approach can be still sub-optimal. In a
preliminary experiment, we constructed sentence
embeddings by employing various combinations of
different BERT layers and pooling methods, and
tested them on the Semantic Textual Similarity
(STS) benchmark dataset (Cer et al., 2017).2 We
discovered that BERT(-base)’s performance, mea-
sured in Spearman correlation (× 100), can range
from as low as 16.71 ([CLS], the 10th layer) to
63.19 (max pooling, the 2nd layer) depending on
the selected layer and pooling method (see Fig-
ure 1). This result suggests that the current prac-
tice of building BERT sentence vectors is not solid
enough, and that there is room to bring out more of
BERT’s expressiveness.

In this work, we propose a contrastive learning
method that makes use of a newly proposed self-
guidance mechanism to tackle the aforementioned
problem. The core idea is to recycle intermediate
BERT hidden representations as positive samples
to which the final sentence embedding should be
close. As our method does not require data augmen-
tation, which is essential in most recent contrastive
learning frameworks, it is much simpler and easier
to use than existing methods (Fang and Xie, 2020;
Xie et al., 2020). Moreover, we customize the NT-
Xent loss (Chen et al., 2020), a contrastive learning
objective widely used in computer vision, for better
sentence representation learning with BERT. We
demonstrate that our approach outperforms com-
petitive baselines designed for building BERT sen-
tence vectors (Li et al., 2020; Wang and Kuo, 2020)
in various environments. With comprehensive anal-
yses, we also show that our method is more compu-
tationally efficient than the baselines at inference
in addition to being more robust to domain shifts.

2 Related Work

Contrastive Representation Learning. Con-
trastive learning has been long considered as ef-
fective in constructing meaningful representations.
For instance, Mikolov et al. (2013) propose to learn
word embeddings by framing words nearby a tar-
get word as positive samples while others as neg-
ative. Logeswaran and Lee (2018) generalize the
approach of Mikolov et al. (2013) for sentence rep-
resentation learning. More recently, several stud-
ies (Fang and Xie, 2020; Giorgi et al., 2020; Wu
et al., 2020) suggest to utilize contrastive learning

2In the experiment, we employ the settings identical with
ones used in Chapter 4. Refer to Chapter 4 for more details.

for training Transformer models, similar to our ap-
proach. However, they generally require data aug-
mentation techniques, e.g., back-translation (Sen-
nrich et al., 2016), or prior knowledge on training
data such as order information, while our method
does not. Furthermore, we focus on revising BERT
for computing better sentence embeddings rather
than training a language model from scratch.

On the other hand, contrastive learning has been
also receiving much attention from the computer vi-
sion community (Chen et al. (2020); Chen and He
(2020); He et al. (2020), inter alia). We improve
the framework of Chen et al. (2020) by optimizing
its learning objective for pre-trained Transformer-
based sentence representation learning. For ex-
tensive surveys on contrastive learning, refer to
Le-Khac et al. (2020) and Jaiswal et al. (2020).

Fine-tuning BERT with Supervision. It is not
always trivial to fine-tune pre-trained Transformer
models of gigantic size with success, especially
when the number of target domain data is limited
(Mosbach et al., 2020). To mitigate this training in-
stability problem, several approaches (Aghajanyan
et al., 2020; Jiang et al., 2020; Zhu et al., 2020)
have been recently proposed. In particular, Gunel
et al. (2021) propose to exploit contrastive learning
as an auxiliary training objective during fine-tuning
BERT with supervision from target tasks. In con-
trast, we deal with the problem of adjusting BERT
when such supervision is not available.

Sentence Embeddings from BERT. Since
BERT and its variants are originally designed to
be fine-tuned on each downstream task to attain
their optimal performance, it remains ambiguous
how best to extract general sentence representations
from them, which are broadly applicable across
diverse sentence-related tasks. Following Con-
neau et al. (2017), Reimers and Gurevych (2019)
(SBERT) propose to compute sentence embeddings
by conducting mean pooling on the last layer of
BERT and then fine-tuning the pooled vectors on
the natural language inference (NLI) datasets (Bow-
man et al., 2015; Williams et al., 2018). Meanwhile,
some other studies concentrate on more effectively
leveraging the knowledge embedded in BERT to
construct sentence embeddings without supervi-
sion. Specifically, Wang and Kuo (2020) propose
a pooling method based on linear algebraic algo-
rithms to draw sentence vectors from BERT’s inter-
mediate layers. Li et al. (2020) suggest to learn a
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mapping from the average of the embeddings ob-
tained from the last two layers of BERT to a spher-
ical Gaussian distribution using a flow model, and
to leverage the redistributed embeddings in place
of the original BERT representations. We follow
the setting of Li et al. (2020) in that we only utilize
plain text during training, however, unlike all the
others that rely on a certain pooling method even
after training, we directly refine BERT so that the
typical [CLS] vector can function as a sentence
embedding. Note also that there exists concurrent
work (Carlsson et al., 2021; Gao et al., 2021; Wang
et al., 2021) whose motivation is analogous to ours,
attempting to improve BERT sentence embeddings
in an unsupervised fashion.

3 Method

As BERT mostly requires some type of adaptation
to be properly applied to a task of interest, it might
not be desirable to derive sentence embeddings
directly from BERT without fine-tuning. While
Reimers and Gurevych (2019) attempt to alleviate
this problem with typical supervised fine-tuning,
we restrict ourselves to revising BERT in an un-
supervised manner, meaning that our method only
demands a bunch of raw sentences for training.

Among possible unsupervised learning strate-
gies, we concentrate on contrastive learning which
can inherently motivate BERT to be aware of sim-
ilarities between different sentence embeddings.
Considering that sentence vectors are widely used
in computing the similarity of two sentences, the
inductive bias introduced by contrastive learning
can be helpful for BERT to work well on such tasks.
The problem is that sentence-level contrastive learn-
ing usually requires data augmentation (Fang and
Xie, 2020) or prior knowledge on training data, e.g.,
order information (Logeswaran and Lee, 2018), to
make plausible positive/negative samples. We at-
tempt to circumvent these constraints by utilizing
the hidden representations of BERT, which are read-
ily accessible, as samples in the embedding space.

3.1 Contrastive Learning with Self-Guidance

We aim at developing a contrastive learning method
that is free from external procedure such as data
augmentation. A possible solution is to leverage
(virtual) adversarial training (Miyato et al., 2018)
in the embedding space. However, there is no as-
surance that the semantics of a sentence embedding
would remain unchanged when it is added with a

𝑝

Copy

Sampler 𝜎

Projection Head 𝑓

(initialize)

.

.

.

Layer 1

Layer 0

𝐁𝐄𝐑𝐓𝑭

.

.

.

Layer ℓ

Layer 1

Layer 0

𝒉!

[CLS]

𝒄!

The cat sat on the mat

𝑠"

𝒉! ,#

𝒉! ,$

𝒉! ,%

𝒄"𝒉"

𝑓 𝒉! 𝑓 𝒄!

Pooling

𝑝

𝑝

𝐁𝐄𝐑𝐓𝑻

𝐁𝐄𝐑𝐓𝑻$𝑭

The bat and …
𝑠%

…

𝑓 𝒉" 𝑓 𝒄"

NT-Xent Loss 𝐿

Layer ℓ

Figure 2: Self-guided contrastive learning framework.
We clone BERT into two copies at the beginning of
training. BERTT (except Layer 0) is then fine-tuned to
optimize the sentence vector ci while BERTF is fixed.

random noise. As an alternative, we propose to uti-
lize the hidden representations from BERT’s inter-
mediate layers, which are conceptually guaranteed
to represent corresponding sentences, as pivots that
BERT sentence vectors should be close to or be
away from. We call our method as self-guided con-
trastive learning since we exploit internal training
signals made by BERT itself to fine-tune it.

We describe our training framework in Figure
2. First, we clone BERT into two copies, BERTF
(fixed) and BERTT (tuned) respectively. BERTF
is fixed during training to provide a training sig-
nal while BERTT is fine-tuned to construct better
sentence embeddings. The reason why we differen-
tiate BERTF from BERTT is that we want to pre-
vent the training signal computed by BERTF from
being degenerated as the training procedure contin-
ues, which often happens when BERTF = BERTT .
This design decision also reflects our philosophy
that our goal is to dynamically conflate the knowl-
edge stored in BERT’s different layers to produce
sentence embeddings, rather than introducing new
information via extra training. Note that in our
setting, the [CLS] vector from the last layer of
BERTT , i.e., ci, is regarded as the final sentence
embedding we aim to optimize/utilize during/after
fine-tuning.

Second, given b sentences in a mini-batch,
say s1, s2, · · · , sb, we feed each sentence si into
BERTF and compute token-level hidden represen-
tations Hi,k ∈ Rlen(si)×d:

[Hi,0;Hi,1; · · · ;Hi,k; · · · ;Hi,l] = BERTF (si),
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where 0 ≤ k ≤ l (0: the non-contextualized layer),
l is the number of hidden layers in BERT, len(si)
is the length of the tokenized sentence, and d is
the size of BERT’s hidden representations. Then,
we apply a pooling function p to Hi,k for deriving
diverse sentence-level views hi,k ∈ Rd from all
layers, i.e., hi,k = p(Hi,k). Finally, we choose the
final view to be utilized by applying a sampling
function σ:

hi = σ({hi,k|0 ≤ k ≤ l}).

As we have no specific constraints in defining p
and σ, we employ max pooling as p and a uni-
form sampler as σ for simplicity, unless otherwise
stated. This simple choice for the sampler implies
that each hi,k has the same importance, which is
persuasive considering it is known that different
BERT layers are specialized at capturing disparate
linguistic concepts (Jawahar et al., 2019).3

Third, we compute our sentence embedding ci
for si as follows:

ci = BERTT (si)[CLS],

where BERT(·)[CLS] corresponds to the [CLS]
vector obtained from the last layer of BERT. Next,
we collect the set of the computed vectors into
X = {x|x ∈ {ci} ∪ {hi}}, and for all xm ∈ X,
we compute the NT-Xent loss (Chen et al., 2020):

Lbasem = − log (φ(xm, µ(xm))/Z),

where φ(u,v) = exp(g(f(u), f(v))/τ)

and Z =
∑2b

n=1,n6=m φ(xm,xn).

Note that τ is a temperature hyperparameter, f
is a projection head consisting of MLP layers,4

g(u,v) = u · v/‖u‖‖v‖ is the cosine similarity
function, and µ(·) is the matching function defined
as follows,

µ(x) =

{
hi if x is equal to ci.

ci if x is equal to hi.

Lastly, we sum all Lbasem divided by 2b, and add
a regularizer Lreg = ‖BERTF − BERTT ‖22 to pre-
vent BERTT from being too distant from BERTF .5

3We can also potentially make use of another sampler
functions to inject our bias or prior knowledge on target tasks.

4We employ a two-layered MLP whose hidden size is 4096.
Each linear layer in the MLP is followed by a GELU function.

5To be specific, Lreg is the square of the L2 norm of the
difference between BERTF and BERTT . As shown in Figure
2, we also freeze the 0th layer of BERTT for stable learning.
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Figure 3: Four factors of the original NT-Xent loss.
Green and yellow arrows represent the force of attrac-
tion and repulsion, respectively. Best viewed in color.

As a result, the final loss Lbase is:

Lbase =
1

2b

2b∑
m=1

Lbasem + λ · Lreg,

where the coefficient λ is a hyperparameter.
To summarize, our method refines BERT so that

the sentence embedding ci has a higher similarity
with hi, which is another representation for the
sentence si, in the subspace projected by f while
being relatively dissimilar with cj,j 6=i and hj,j 6=i.
After training is completed, we remove all the com-
ponents except BERTT and simply use ci as the
final sentence representation.

3.2 Learning Objective Optimization

In Section 3.1, we relied on a simple variation of
the general NT-Xent loss, which is composed of
four factors. Given sentence si and sj without loss
of generality, the factors are as follows (Figure 3):

(1) ci →← hi (or cj →← hj): The main com-
ponent that mirrors our core motivation that a
BERT sentence vector (ci) should be consis-
tent with intermediate views (hi) from BERT.

(2) ci ←→ cj : A factor that forces sentence em-
beddings (ci, cj) to be distant from each other.

(3) ci ←→ hj (or cj ←→ hi): An element that
makes ci being inconsistent with views for
other sentences (hj).

(4) hi ←→ hj : A factor that causes a discrepancy
between views of different sentences (hi, hj).

Even though all the four factors play a certain role,
some components may be useless or even cause a
negative influence on our goal. For instance, Chen
and He (2020) have recently reported that in image
representation learning, only (1) is vital while oth-
ers are nonessential. Likewise, we customize the
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training loss with three major modifications so that
it can be more well-suited for our purpose.

First, as our aim is to improve ci with the aid of
hi, we re-define our loss focusing more on ci rather
than considering ci and hi as equivalent entities:

Lopt1i = − log (φ(ci,hi)/Ẑ),

where Ẑ =
∑b

j=1,j 6=i φ(ci, cj) +
∑b

j=1 φ(ci,hj).

In other words, hi only functions as points that ci is
encouraged to be close to or away from, and is not
deemed as targets to be optimized. This revision
naturally results in removing (4). Furthermore, we
discover that (2) is also insignificant for improving
performance, and thus derive Lopt2i :

Lopt2i = − log(φ(ci,hi)/
∑b

j=1 φ(ci,hj)).

Lastly, we diversify signals from (1) and (3) by
allowing multiple views {hi,k} to guide ci:

Lopt3i,k = − log
φ(ci,hi,k)

φ(ci,hi,k)+
∑b

m=1,m 6=i

∑l
n=0 φ(ci,hm,n)

.

We expect with this refinement that the learning ob-
jective can provide more precise and fruitful train-
ing signals by considering additional (and freely
available) samples being provided with. The final
form of our optimized loss is:

Lopt =
1

b(l + 1)

b∑
i=1

l∑
k=0

Lopt3i,k + λ · Lreg.

In Section 5.1, we show the decisions made in this
section contribute to improvements in performance.

4 Experiments

4.1 General Configurations
In terms of pre-trained encoders, we leverage
BERT (Devlin et al., 2019) for English datasets
and MBERT, which is a multilingual variant of
BERT, for multilingual datasets. We also employ
RoBERTa (Liu et al., 2019) and SBERT (Reimers
and Gurevych, 2019) in some cases to evaluate
the generalizability of tested methods. We use the
suffixes ‘-base’ and ‘-large’ to distinguish small
and large models. Every trainable model’s per-
formance is reported as the average of 8 separate
runs to reduce randomness. Hyperparameters are
optimized on the STS-B validation set using BERT-
base and utilized across different models. See Table
8 in Appendix A.1 for details. Our implementation
is based on the HuggingFace’s Transformers
(Wolf et al., 2019) and SBERT (Reimers and
Gurevych, 2019) library, and publicly available at
https://github.com/galsang/SG-BERT.

4.2 Semantic Textual Similarity Tasks

We first evaluate our method and baselines on Se-
mantic Textual Similarity (STS) tasks. Given two
sentences, we derive their similarity score by com-
puting the cosine similarity of their embeddings.

Datasets and Metrics. Following the literature,
we evaluate models on 7 datasets in total, that is,
STS-B (Cer et al., 2017), SICK-R (Marelli et al.,
2014), and STS12-16 (Agirre et al., 2012, 2013,
2014, 2015, 2016). These datasets contain pairs of
two sentences, whose similarity scores are labeled
from 0 to 5. The relevance between gold annota-
tions and the scores predicted by sentence vectors
is measured in Spearman correlation (× 100).

Baselines and Model Specification. We first
prepare two non-BERT approaches as baselines,
i.e., Glove (Pennington et al., 2014) mean embed-
dings and Universal Sentence Encoder (USE; Cer
et al. (2018)). In addition, various methods for
BERT sentence embeddings that do not require
supervision are also introduced as baselines:

• CLS token embedding: It regards the [CLS]
vector from the last layer of BERT as a sentence
representation.

• Mean pooling: This method conducts mean pool-
ing on the last layer of BERT and use the output
as a sentence embedding.

• WK pooling: This follows the method of Wang
and Kuo (2020), which exploits QR decomposi-
tion and extra techniques to derive meaningful
sentence vectors from BERT.

• Flow: This is BERT-flow proposed by Li et al.
(2020), which is a flow-based model that maps
the vectors made by taking mean pooling on the
last two layers of BERT to a Gaussian space.6

• Contrastive (BT): Following Fang and Xie
(2020), we revise BERT with contrastive learning.
However, this method relies on back-translation
to obtain positive samples, unlike ours. Details
about this baseline are specified in Appendix A.2.

We make use of plain sentences from STS-B to
fine-tune BERT using our approach, identical with
Flow.7 We name the BERT instances trained with
our self-guided method as Contrastive (SG) and

6We restrictively utilize this model, as we find it difficult
to exactly reproduce the model’s result with its official code.

7For training, Li et al. (2020) utilize the concatenation of
the STS-B training, validation, and test set (without gold anno-
tations). We also follow the same setting for a fair comparison.

https://github.com/galsang/SG-BERT
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Models Pooling STS-B SICK-R STS12 STS13 STS14 STS15 STS16 Avg.

Non-BERT Baselines
GloVe† Mean 58.02 53.76 55.14 70.66 59.73 68.25 63.66 61.32
USE† - 74.92 76.69 64.49 67.80 64.61 76.83 73.18 71.22

BERT-base
+ No tuning CLS 20.30 42.42 21.54 32.11 21.28 37.89 44.24 31.40
+ No tuning Mean 47.29 58.22 30.87 59.89 47.73 60.29 63.73 52.57
+ No tuning WK 16.07 41.54 16.01 21.80 15.96 33.59 34.07 25.58
+ Flow Mean-2 71.35±0.27 64.95±0.16 64.32±0.17 69.72±0.25 63.67±0.06 77.77±0.15 69.59±0.28 68.77±0.07

+ Contrastive (BT) CLS 63.27±1.48 66.91±1.29 54.26±1.84 64.03±2.35 54.28±1.87 68.19±0.95 67.50±0.96 62.63±1.28

+ Contrastive (SG) CLS 75.08±0.73 68.19±0.36 63.60±0.98 76.48±0.69 67.57±0.57 79.42±0.49 74.85±0.54 72.17±0.44

+ Contrastive (SG-OPT) CLS 77.23±0.43 68.16±0.50 66.84±0.73 80.13±0.51 71.23±0.40 81.56±0.28 77.17±0.22 74.62±0.25

BERT-large
+ No tuning CLS 26.75 43.44 27.44 30.76 22.59 29.98 42.74 31.96
+ No tuning Mean 47.00 53.85 27.67 55.79 44.49 51.67 61.88 48.91
+ No tuning WK 35.75 38.39 12.65 26.41 23.74 29.34 34.42 28.67
+ Flow Mean-2 72.72±0.36 63.77±0.18 62.82±0.17 71.24±0.22 65.39±0.15 78.98±0.21 73.23±0.24 70.07±0.81

+ Contrastive (BT) CLS 63.84±1.05 66.53±2.62 52.04±1.75 62.59±1.84 54.25±1.45 71.07±1.11 66.71±1.08 62.43±1.07

+ Contrastive (SG) CLS 75.22±0.57 69.63±0.95 64.37±0.72 77.59±1.01 68.27±0.40 80.08±0.28 74.53±0.43 72.81±0.31

+ Contrastive (SG-OPT) CLS 76.16±0.42 70.20±0.65 67.02±0.72 79.42±0.80 70.38±0.65 81.72±0.32 76.35±0.22 74.46±0.35

SBERT-base
+ No tuning CLS 73.66 69.71 70.15 71.17 68.89 75.53 70.16 71.32
+ No tuning Mean 76.98 72.91 70.97 76.53 73.19 79.09 74.30 74.85
+ No tuning WK 78.38 74.31 69.75 76.92 72.32 81.17 76.25 75.59
+ Flow‡ Mean-2 81.03 74.97 68.95 78.48 77.62 81.95 78.94 77.42
+ Contrastive (BT) CLS 74.67±0.30 70.31±0.45 71.19±0.37 72.41±0.60 69.90±0.43 77.16±0.48 71.63±0.55 72.47±0.37

+ Contrastive (SG) CLS 81.05±0.34 75.78±0.55 73.76±0.76 80.08±0.45 75.58±0.57 83.52±0.43 79.10±0.51 78.41±0.33

+ Contrastive (SG-OPT) CLS 81.46±0.27 76.64 ±0.42 75.16±0.56 81.27±0.37 76.31±0.38 84.71±0.26 80.33±0.19 79.41±0.17

SBERT-large
+ No tuning CLS 76.01 70.99 69.05 71.34 69.50 76.66 70.08 71.95
+ No tuning Mean 79.19 73.75 72.27 78.46 74.90 80.99 76.25 76.54
+ No tuning WK 61.87 67.06 49.95 53.02 46.55 62.47 60.32 57.32
+ Flow‡ Mean-2 81.18 74.52 70.19 80.27 78.85 82.97 80.57 78.36
+ Contrastive (BT) CLS 76.71±1.22 71.56±1.34 69.95±3.57 72.66±1.16 70.38±2.10 77.80±3.24 71.41±1.73 72.92±1.53

+ Contrastive (SG) CLS 82.35±0.15 76.44±0.41 74.84±0.57 82.89±0.41 77.27±0.35 84.44±0.23 79.54±0.49 79.68±0.37

+ Contrastive (SG-OPT) CLS 82.05±0.39 76.44±0.29 74.58±0.59 83.79±0.14 76.98±0.19 84.57±0.27 79.87±0.42 79.76±0.33

Table 1: Experimental results on STS tasks. Results for trained models are averaged over 8 runs (±: the standard
deviation). The best figure in each (model-wise) part is in bold and the best in each column is underlined. Our
method with self-guidance (SG, SG-OPT) generally outperforms competitive baselines. We borrow scores from
previous work if we could not reproduce them. †: from Reimers and Gurevych (2019). ‡: from Li et al. (2020).

Contrastive (SG-OPT), which utilize Lbase and
Lopt in Section 3 respectively.

Results. We report the performance of different
approaches on STS tasks in Table 1 and Table 11
(Appendix A.6). From the results, we confirm the
fact that our methods (SG and SG-OPT) mostly
outperform other baselines in a variety of experi-
mental settings. As reported in earlier studies, the
naı̈ve [CLS] embedding and mean pooling are
turned out to be inferior to sophisticated methods.
To our surprise, WK pooling’s performance is even
lower than that of mean pooling in most cases, and
the only exception is when WK pooling is applied
to SBERT-base. Flow shows its strength outper-
forming the simple strategies. Nevertheless, its
performance is shown to be worse than that of our
methods (although some exceptions exist in the
case of SBERT-large). Note that contrastive learn-
ing becomes much more competitive when it is
combined with our self-guidance algorithm rather
than back-translation. It is also worth mentioning

Models Spanish

Baseline (Agirre et al., 2014)
UMCC-DLSI-run2 (Rank #1) 80.69

MBERT
+ CLS 12.60
+ Mean pooling 81.14
+ WK pooling 79.78
+ Contrastive (BT) 78.04
+ Contrastive (SG) 82.09
+ Contrastive (SG-OPT) 82.74

Table 2: SemEval-2014 Task 10 Spanish task.

that the optimized version of our method (SG-OPT)
generally shows better performance than the basic
one (SG), proving the efficacy of learning objec-
tive optimization (Section 3.2). To conclude, we
demonstrate that our self-guided contrastive learn-
ing is effective in improving the quality of BERT
sentence embeddings when tested on STS tasks.

4.3 Multilingual STS Tasks
We expand our experiments to multilingual settings
by utilizing MBERT and cross-lingual zero-shot
transfer. Specifically, we refine MBERT using only
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Models Arabic Spanish English
(Track 1) (Track 3) (Track 5)

Baselines
Cosine baseline (Cer et al., 2017) 60.45 71.17 72.78
ENCU (Rank #1, Tian et al. (2017)) 74.40 85.59 85.18

MBERT
+ CLS 30.57 29.38 24.97
+ Mean pooling 51.09 54.56 54.86
+ WK pooling 50.38 55.87 54.87
+ Contrastive (BT) 54.24 68.16 73.89
+ Contrastive (SG) 57.09 78.93 78.24
+ Contrastive (SG-OPT) 58.52 80.19 78.03

Table 3: Results on SemEval-2017 Task 1: Track 1
(Arabic), Track 3 (Spanish), and Track 5 (English).

English data and test it on datasets written in other
languages. As in Section 4.2, we use the English
STS-B for training. We consider two datasets for
evaluation: (1) SemEval-2014 Task 10 (Spanish;
Agirre et al. (2014)) and (2) SemEval-2017 Task 1
(Arabic, Spanish, and English; Cer et al. (2017)).
Performance is measured in Pearson correlation (×
100) for a fair comparison with previous work.

From Table 2, we see that MBERT with mean
pooling already outperforms the best system (at the
time of the competition was held) on SemEval-
2014 and that our method further boosts the
model’s performance. In contrast, in the case of
SemEval-2017 (Table 3), MBERT with mean pool-
ing even fails to beat the strong Cosine baseline.8

However, MBERT becomes capable of outperform-
ing (in English/Spanish) or being comparable with
(Arabic) the baseline by adopting our algorithm.
We observe that while cross-lingual transfer us-
ing MBERT looks promising for the languages
analogous to English (e.g., Spanish), its effective-
ness may shrink on distant languages (e.g., Arabic).
Compared against the best system which is trained
on task-specific data, MBERT shows reasonable
performance considering that it is never exposed to
any labeled STS datasets. In summary, we demon-
strate that MBERT fine-tuned with our method has
a potential to be used as a simple but effective tool
for multilingual (especially European) STS tasks.

4.4 SentEval and Supervised Fine-tuning

We also evaluate BERT sentence vectors using the
SentEval (Conneau and Kiela, 2018) toolkit. Given
sentence embeddings, SentEval trains linear classi-
fiers on top of them and estimates the quality of the
vectors via their performance (accuracy) on down-

8The Cosine baseline computes its score as the cosine
similarity of binary sentence vectors with each dimension
representing whether an individual word appears in a sentence.

Models MR CR SUBJ MPQA SST2 TREC MRPC Avg.

BERT-base
+ Mean 81.46 86.71 95.37 87.90 85.83 90.30 73.36 85.85
+ WK 80.64 85.53 95.27 88.63 85.03 94.03 71.71 85.83
+ SG-OPT 82.47 87.42 95.40 88.92 86.20 91.60 74.21 86.60

BERT-large
+ Mean 84.38 89.01 95.60 86.69 89.20 90.90 72.79 86.94
+ WK 82.68 87.92 95.32 87.25 87.81 91.18 70.13 86.04
+ SG-OPT 86.03 90.18 95.82 87.08 90.73 94.65 73.31 88.26

SBERT-base
+ Mean 82.80 89.03 94.07 89.79 88.08 86.93 75.11 86.54
+ WK 82.96 89.33 95.13 90.56 88.10 91.98 76.66 87.82
+ SG-OPT 83.34 89.45 94.68 89.78 88.57 87.30 75.26 86.91

Table 4: Experimental results on SentEval.

stream tasks. Among available tasks, we employ 7:
MR, CR, SUBJ, MPQA, SST2, TREC, MRPC.9

In Table 4, we compare our method (SG-OPT)
with two baselines.10 We find that our method
is helpful over usual mean pooling in improving
the performance of BERT-like models on SentEval.
SG-OPT also outperforms WK pooling on BERT-
base/large while being comparable on SBERT-base.
From the results, we conjecture that self-guided
contrastive learning and SBERT training suggest
a similar inductive bias in a sense, as the bene-
fit we earn by revising SBERT with our method
is relatively lower than the gain we obtain when
fine-tuning BERT. Meanwhile, it seems that WK
pooling provides an orthogonal contribution that is
effective in the focused case, i.e., SBERT-base.

In addition, we examine how our algorithm im-
pacts on supervised fine-tuning of BERT, although
it is not the main concern of this work. Briefly re-
porting, we identify that the original BERT(-base)
and one tuned with SG-OPT show comparable per-
formance on the GLUE (Wang et al., 2019) valida-
tion set, implying that our method does not influ-
ence much on BERT’s supervised fine-tuning. We
refer readers to Appendix A.4 for more details.

5 Analysis

We here further investigate the working mechanism
of our method with supplementary experiments.
All the experiments conducted in this section follow
the configurations stipulated in Section 4.1 and 4.2.

9Refer to Conneau and Kiela (2018) for each task’s spec.
10We focus on reporting our own results as we discovered

that the toolkit’s outcomes can be fluctuating depending on
its configuration (we list our settings in Appendix A.3). We
also restrict ourselves to evaluating SG-OPT for simplicity, as
SG-OPT consistently showed better performance than other
contrastive methods in previous experiments.
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Models STS Tasks (Avg.)

BERT-base
+ SG-OPT (Lopt3) 74.62
+ Lopt2 73.14 (-1.48)
+ Lopt1 72.61 (-2.01)
+ SG (Lbase) 72.17 (-2.45)

BERT-base + SG-OPT (τ = 0.01, λ = 0.1) 74.62
+ τ = 0.1 70.39 (-4.23)
+ τ = 0.001 74.16 (-0.46)
+ λ = 0.0 73.76 (-0.86)
+ λ = 1.0 73.18 (-1.44)
- Projection head (f ) 72.78 (-1.84)

Table 5: Ablation study.

Figure 4: Domain robustness study. The yellow bars
indicate the performance gaps each method has accord-
ing to which data it is trained with: in-domain (STS-B)
or out-of-domain (NLI). Our method (SG-OPT) clearly
shows its relative robustness compared to Flow.

5.1 Ablation Study

We conduct an ablation study to justify the deci-
sions made in optimizing our algorithm. To this
end, we evaluate each possible variant on the test
sets of STS tasks. From Table 5, we confirm that
all our modifications to the NT-Xent loss contribute
to improvements in performance. Moreover, we
show that correct choices for hyperparameters are
important for achieving the optimal performance,
and that the projection head (f ) plays a significant
role as in Chen et al. (2020).

5.2 Robustness to Domain Shifts

Although our method in principle can accept any
sentences in training, its performance might be var-
ied with the training data it employs (especially de-
pending on whether the training and test data share
the same domain). To explore this issue, we ap-
ply SG-OPT on BERT-base by leveraging the mix
of NLI datasets (Bowman et al., 2015; Williams
et al., 2018) instead of STS-B, and observe the
difference. From Figure 4, we confirm the fact

Layer
Elapsed Time

Training (sec.) Inference (sec.)

BERT-base
+ Mean pooling - 13.94
+ WK pooling - 197.03 (≈ 3.3 min.)
+ Flow 155.37 (≈ 2.6 min.) 28.49
+ Contrastive (SG-OPT) 455.02 (≈ 7.5 min.) 10.51

Table 6: Computational efficiency tested on STS-B.

that no matter which test set is utilized (STS-B or
all the seven STS tasks), our method clearly out-
performs Flow in every case, showing its relative
robustness to domain shifts. SG-OPT only loses
1.83 (on the STS-B test set) and 1.63 (on average
when applied to all the STS tasks) points respec-
tively when trained with NLI rather than STS-B,
while Flow suffers from the considerable losses of
12.16 and 4.19 for each case. Note, however, that
follow-up experiments in more diverse conditions
might be desired as future work, as the NLI dataset
inherently shares some similarities with STS tasks.

5.3 Computational Efficiency

In this part, we compare the computational effi-
ciency of our method to that of other baselines. For
each algorithm, we measure the time elapsed dur-
ing training (if required) and inference when tested
on STS-B. All methods are run on the same ma-
chine (an Intel Xeon CPU E5-2620 v4 @ 2.10GHz
and a Titan Xp GPU) using batch size 16. The
experimental results specified in Table 6 show that
although our method demands a moderate amount
of time (< 8 min.) for training, it is the most ef-
ficient at inference, since our method is free from
any post-processing such as pooling once training
is completed.

5.4 Representation Visualization

We visualize a few variants of BERT sentence repre-
sentations to grasp an intuition on why our method
is effective in improving performance. Specifically,
we sample 20 positive pairs (red, whose similarity
scores are 5) and 20 negative pairs (blue, whose
scores are 0) from the STS-B validation set. Then
we compute their vectors and draw them on the 2D
space with the aid of t-SNE. In Figure 5, we con-
firm that our SG-OPT encourages BERT sentence
embeddings to be more well-aligned with their pos-
itive pairs while still being relatively far from their
negative pairs. We also visualize embeddings from
SBERT (Figure 6 in Appendix A.5), and identify
that our approach and the supervised fine-tuning
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Models Pooling STS-B SICK-R STS12 STS13 STS14 STS15 STS16 Avg.

BERT-base
+ Contrastive (BT) CLS 63.27±1.48 66.91±1.29 54.26±1.84 64.03±2.35 54.28±1.87 68.19±0.95 67.50±0.96 62.63±1.28

+ Contrastive (SG-OPT) CLS 77.23±0.43 68.16±0.50 66.84±0.73 80.13±0.51 71.23±0.40 81.56±0.28 77.17±0.22 74.62±0.25

+ Contrastive (BT + SG-OPT) CLS 77.99±0.23 68.75±0.79 68.49±0.38 80.00±0.78 71.34±0.40 81.71±0.29 77.43±0.46 75.10±0.15

Table 7: Ensemble of the techniques for contrastive learning: back-translation (BT) and self-guidance (SG-OPT).
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Figure 5: Sentence representation visualization. (Top)
Embeddings from the original BERT. (Bottom) Embed-
dings from the BERT instance fine-tuned with SG-OPT.
Red numbers correspond to positive sentence pairs and
blue to negative pairs.

used in SBERT provide a similar effect, making the
resulting embeddings more suitable for calculating
correct similarities between them.

6 Discussion

In this section, we discuss a few weaknesses of
our method in its current form and look into some
possible avenues for future work.

First, while defining the proposed method in
Section 3, we have made decisions on some parts
without much consideration about their optimal-
ity, prioritizing simplicity instead. For instance,
although we proposed utilizing all the intermediate
layers of BERT and max pooling in a normal set-

ting (indeed, it worked pretty well for most cases),
a specific subset of the layers or another pooling
method might bring better performance in a partic-
ular environment, as we observed in Section 4.4
that we could achieve higher numbers by employ-
ing mean pooling and excluding lower layers in
the case of SentEval (refer to Appendix A.3 for
details). Therefore, in future work, it is encouraged
to develop a systematic way of making more opti-
mized design choices in specifying our method by
considering the characteristics of target tasks.

Second, we expect that the effectiveness of con-
trastive learning in revising BERT can be improved
further by properly combining different techniques
developed for it. As an initial attempt towards this
direction, we conduct an extra experiment where
we test the ensemble of back-translation and our
self-guidance algorithm by inserting the original
sentence into BERTT and its back-translation into
BERTF when running our framework. In Table
7, we show that the fusion of the two techniques
generally results in better performance, shedding
some light on our future research direction.

7 Conclusion

In this paper, we have proposed a contrastive learn-
ing method with self-guidance for improving BERT
sentence embeddings. Through extensive experi-
ments, we have demonstrated that our method can
enjoy the benefit of contrastive learning without re-
lying on external procedures such as data augmen-
tation or back-translation, succeeding in generating
higher-quality sentence representations compared
to competitive baselines. Furthermore, our method
is efficient at inference because it does not require
any post-processing once its training is completed,
and is relatively robust to domain shifts.
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A Appendices

A.1 Hyperparameters

Hyperparameters Values

Random seed 1, 2, 3, 4, 1234, 2345, 3456, 7890
Evaluation step 50
Epoch 1
Batch size (b) 16
Optimizer AdamW (β1, β2=(0.9, 0.9))
Learning rate 0.00005
Early stopping endurance 10
τ 0.01
λ 0.1

Table 8: Hyperparameters for experiments.

A.2 Specification on Contrastive (BT)
This baseline is identical with our Contrastive
(SG) model, except that it utilizes back-translation
to generate positive samples. To be specific, En-
glish sentences in the training set are traslated into
German sentences using the WMT’19 English-
German translator provided by Ng et al. (2019),
and then the translated German sentences are back-
translated into English with the aid of the WMT’19
German-English model also offered by Ng et al.
(2019). We utilize beam search during decoding
with the beam size 100, which is relatively large,
since we want generated sentences to be more di-
verse while grammatically correct at the same time.
Note that the contrastive (BT) model is trained with
the NT-Xent loss (Chen et al., 2020), unlike CERT
(Fang and Xie, 2020) which leverages the MoCo
training objective (He et al., 2020).

A.3 SentEval Configurations

Hyperparameters Values

Random seed 1, 2, 3, 4, 1234, 2345, 3456, 7890
K-fold 10
Classifier (hidden dimension) 50
Optimizer Adam
Batch size 64
Tenacity 5
Epoch 4

Table 9: SentEval hyperparameters.

In Table 9, we stipulate the hyperparameters of
the SentEval toolkit used in our experiment. Ad-
ditionally, we specify some minor modifications
applied on our contrastive method (SG-OPT). First,
we use the portion of the concatenation of SNLI
(Bowman et al., 2015) and MNLI (Williams et al.,
2018) datasets as the training data instead of STS-B.
Second, we do not leverage the first several layers
of PLMs when making positive samples, similar to

Wang and Kuo (2020), and utilize mean pooling
instead of max pooling.

A.4 GLUE Experiments

Models QNLI SST2 COLA MRPC RTE

BERT-base 90.97±0.49 91.08±0.73 56.63±3.82 87.09±1.87 62.50±2.77

+ SG-OPT 91.28±0.28 91.68±0.41 56.36±3.98 86.96±1.11 62.75±3.91

Table 10: Experimental results on a portion of the
GLUE validation set.

We here investigate the impact of our method
on typical supervised fine-tuning of BERT models.
Concretely, we compare the original BERT with
one fine-tuned using our SG-OPT method on the
GLUE (Wang et al., 2019) benchmark. Note that
we use the first 10% of the GLUE validation set
as the real validation set and the last 90% as the
test set, as the benchmark does not officially pro-
vide its test data. We report experimental results
tested on 5 sub-tasks in Table 10. The results show
that our method brings performance improvements
for 3 tasks (QNLI, SST2, and RTE). However, it
seems that SG-OPT does not influence much on
supervised fine-tuning results, considering that the
absolute performance gap between the two models
is not significant. We leave more analysis on this
part as future work.

A.5 Representation Visualization (SBERT)
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Figure 6: Visualization of sentence vectors computed
by SBERT-base.

A.6 RoBERTa’s Performance on STS Tasks
In Table 11, we additionally report the performance
of sentence embeddings extracted from RoBERTa
using different methods. Our methods, SG and SG-
OPT, demonstrate their competitive performance
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Models Pooling STS-B SICK-R STS12 STS13 STS14 STS15 STS16 Avg.

RoBERTa-base
+ No tuning CLS 45.41 61.89 16.67 45.57 30.36 55.08 56.98 44.57
+ No tuning Mean 54.53 62.03 32.11 56.33 45.22 61.34 61.98 53.36
+ No tuning WK 35.75 54.69 20.31 36.51 32.41 48.12 46.32 39.16
+ Contrastive (BT) CLS 79.93±1.08 71.97±1.00 62.34±2.41 78.60±1.74 68.65±1.48 79.31±0.65 77.49±1.29 74.04±1.16

+ Contrastive (SG) CLS 78.38±0.43 69.74±1.00 62.85±0.88 78.37±1.55 68.28±0.89 80.42±0.65 77.69±0.76 73.67±0.62

+ Contrastive (SG-OPT) CLS 77.60±0.30 68.42±0.71 62.57±1.12 78.96±0.67 69.24±0.44 79.99±0.44 77.17±0.24 73.42±0.31

RoBERTa-large
+ No tuning CLS 12.52 40.63 19.25 22.97 14.93 33.41 38.01 25.96
+ No tuning Mean 47.07 58.38 33.63 57.22 45.67 63.00 61.18 52.31
+ No tuning WK 30.29 28.25 23.17 30.92 23.36 40.07 43.32 31.34
+ Contrastive (BT) CLS 77.05±1.22 67.83±1.34 57.60±3.57 72.14±1.16 62.25±2.10 71.49±3.24 71.75±1.73 68.59±1.53

+ Contrastive (SG) CLS 76.15±0.54 66.07±0.82 64.77±2.52 71.96±1.53 64.54±1.04 78.06±0.52 75.14±0.94 70.95±1.13

+ Contrastive (SG-OPT) CLS 78.14±0.72 67.97±1.09 64.29±1.54 76.36±1.47 68.48±1.58 80.10±1.05 76.60±0.98 73.13±1.20

Table 11: Performance of RoBERTa on STS tasks when combined with different sentence embedding methods.
We could not report the performance of Li et al. (2020) (Flow) as their official code do not support RoBERTa.

overall. Note that contrastive learning with back-
translation (BT) also shows its remarkable perfor-
mance in the case of RoBERTa-base.


