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Abstract

In this digital age, online users expect person-
alized content. To cater to diverse group of au-
diences across online platforms it is necessary
to generate multiple variants of same content
with differing degree of characteristics (senti-
ment, style, formality, etc.). Though text-style
transfer is a well explored related area, it fo-
cuses on flipping the style attribute polarity
instead of regulating a fine-grained attribute
transfer. In this paper we propose a hierarchi-
cal architecture for finer control over the at-
tribute, preserving content using attribute dis-
entanglement. We demonstrate the effective-
ness of the generative process for two different
attributes with varied complexity, namely sen-
timent and formality. With extensive experi-
ments and human evaluation on five real-world
datasets, we show that the framework can gen-
erate natural looking sentences with finer de-
gree of control of intensity of a given attribute.

1 Introduction

The ubiquity of online social networks and world
wide web has brought in diverse and often conflict-
ing groups of users consuming similar information
but from different perspectives. So the onus falls on
the content producer to cater customized content
based on the users’ profile. Consider an exam-
ple related to a Spanish football (soccer) league.
Say the news is “Barcelona has defeated Real
Madrid”. This news needs to be presented in differ-
ent tones to a Barcelona Fan - “Barcelona smashed
Real-Madrid”, a Real-Madrid Fan - “Real Madrid
lost the epic battle” and a (say) Villarreal Fan -
“Barcelona wins three points against Real-Madrid”.
Automatic generation of content with fine regu-
lation of attributes like sentiment and style is ex-
tremely beneficial in this context. There are several
related works in similar space of text-style-transfer
techniques (Hu et al., 2017; Logeswaran et al.,

2018; Shen et al., 2017; Singh and Palod, 2018)
which attempt to switch polarity of a text from,
e.g., formal to casual, or positive to negative senti-
ment. However, none of the work focuses on more
involved problem of fine-grained regulation of at-
tributes to generate multiple variants of a sentence.

Several of the existing style-transfer methods (Fu
et al., 2018; John et al., 2018) convert a continu-
ous entangled generative representation space ob-
tained using variational auto-encoder (Bowman
et al., 2015) into disentangled attribute and content
space. It facilitates attribute polarity switch by per-
turbing attribute representation without interfering
with context. However, a disentangled generative
representation may result in a loss of information
about complex inter-dependency of content and
attributes otherwise captured in an unmodified en-
tangled generative space. Hence, trivial extension
of the variational inference (encoding) mechanism
for finer attribute control by allowing incremental
perturbation of the attribute representation in the
disentangled generative space often leads to gener-
ation of ‘not-so-natural’ sentence mostly unrelated
to the original content.

More specifically, there are two design chal-
lenges which need to be tackled to achieve fine
grained attribute control (a) smooth regulation of
attributes via disentangled attribute space perturba-
tion and (b) natural sentence generation preserving
the content. This paper builds up a layered VAE to
tackle these problems simultaneously. Specifically,
we propose the model Control Text VAE (CTVAE),
that transforms a derived representation of entan-
gled and enriched text embedding (obtained using
the BERT encoder) into a disentangled representa-
tion of attribute and context using a transformation
module followed by a factored prior imposition to
ensure independence between context and attribute
dimensions. Further using attribute supervision
on the dimension designated for a given attribute,
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we establish a correlation between the continuous
representation to the discrete attribute value facil-
itating smooth interpolation as intended in (a). It
preserves both the disentangled and entangled rep-
resentations in different hierarchy of inference mod-
ule. Designing the transformation network as re-
versible, it restores the original entangled sentence
representation which is our generative space, from
the disentangled space to achieve (b).

We demonstrate the effectiveness of CTVAE to
generate controlled text by fine tuning two different
attributes namely sentiment and formality. Using
five publicly available datasets, we show that CT-
VAE improves the performance significantly over
previous controlled text generative models while
performing content preserving style transfer and
fine tuning of the target attribute. With human eval-
uation on generated sentences, for three different
metrics - meaning preservation, degree of target
attribute transfer and naturalness - we show that
CTVAE can generate attribute regulated content
preserving natural sentences. 1

2 Related Work

Unlike style-transfer, fine grained attribute regu-
lated text generation is less explored yet extremely
necessary. State-of-the-art methods for style trans-
fer are categorized as supervised and unsupervised
techniques. If parallel examples are available for
any attribute, i.e., training data consisting of origi-
nal and corresponding attribute flipped sentences,
then supervised techniques (Bahdanau et al., 2014;
Vaswani et al., 2017) could be used to perform
style transfer. The papers (Xu et al., 2012; Jham-
tani et al., 2017; Rao and Tetreault, 2018) intro-
duced parallel corpora consisting of formal and
corresponding informal sentences and showed that
coarse-grained formality transfer is possible and
benchmarked various neural frameworks for the
same. Generating parallel training corpus for fine
grained attribute transfer is expensive and impracti-
cal as for one sentence we need to generate multiple
style transferred text bearing fine-grained attribute.

Some recent works focus on semi-supervised ap-
proaches incorporating attribute informations with
non-parallel datasets. These techniques mainly fo-
cus on disentangling the attribute and content repre-
sentation in the latent space (Fu et al., 2018; John
et al., 2018; Logeswaran et al., 2018; Shen et al.,

1https://github.com/bidishasamantakgp/
CTVAE

2017; Singh and Palod, 2018) by using different
encoding modules along with feature supervision.
A recent work (John et al., 2018) uses adversarial
setup in a multitasking setting to achieve attribute
representation independent of the content. As this
work disentangles context and attribute in multi-
dimensional spaces it limits interpolation of the
attribute space to desired degree. Moreover, the
disentangled generative space causes loss in im-
portant context. Similarly, the paper (Hu et al.,
2017) uses attribute information as a structured or
one-hot vector, which is not continuous restricting
interpolation. They replace the attribute representa-
tion to a desired value (corresponding to opposite
polarity) and generate sentences from this disen-
tangled space. However, a naive extension for fine
grained control by perturbing the attribute space
by a small amount is difficult as the representation
is multidimensional moreover, leads to unnatural,
poorly readable sentence.

From a different perspective, a recent work (He
et al., 2020) proposed an unsupervised framework
to achieve style transfer. They propose a generative
probabilistic model that assumes non-parallel cor-
pus as partially observed parallel corpus. They do
not infer posterior distribution of the observed data,
hence fine grained attribute transfer is difficult.

As the extensions of current style transfer meth-
ods are non-trivial, a recent work (Wang et al.,
2019) has proposed fine grained sentiment regula-
tion keeping the content intact. It gradually updates
the entangled latent representation using costly fast-
gradient-iterative modification until it can gener-
ate a sentence entailing target attribute from that .
However, overemphasis on content preservation of-
ten results in generation of the original unmodified
sentence followed by new phrases bearing target
attribute. This is not ideal to extend them for more
difficult attributes like casual to formal transforma-
tion. Understanding the criticality of fine grained
attribute transfer, we propose a new framework to-
wards this direction, which does not only facilitate
fine-grained control even for complex attributes,
but is also able to mitigate the existing problems of
disentangled generative space.

3 CTVAE for Fine Grained Control

We propose a hierarchical model using Variational
Autoencoders (Kingma and Welling, 2013) to
achieve fine grained control over attribute space
while maintaining the quality of the generated sen-
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Figure 1: The architecture of CTVAE. The encoder module (A) takes a word sequence x and converts obtained
BERT embedding to a continuous space zs. Using T transformation modules zs is converted to zf and assigns
the last dimension of zf for attribute representation za. The decoder (D) samples zf from prior or posterior. It
decodes categorical attribute from za and reverse transforms zf to zs. and use it to generate word sequence x.
The grey block indicates a single transformation step which is reversible (B indicates forward and C reverse).

tences. We provide a high level overview of CT-
VAE along with key technical aspects of the indi-
vidual components followed by training procedure.

3.1 Model overview

We consider an input set X = {x0, · · · ,xM−1} of
M observed sentences sampled from some under-
lying unknown data distribution pD. Along with
the sentences, we observe ground truth attribute,
F = {f0, · · · , fM−1} where fi is associated to
sentence xi. For ease of reference, we will hence-
forth denote a training instance xi and fi by x and
f respectively. Detailed architectural overview of
CTVAE is depicted in Figure 1, which can be di-
vided into two modules consisting of a hierarchical
encoder and a corresponding hierarchical decoder.
We start by describing the inference model (en-
coder) followed by the generation model (decoder).

3.2 Inference model

The inference model is designed as a bottom-up hi-
erarchical encoder with two distinct layers for mod-
elling word sequence representation zs, and feature
representation zf . We model an enriched sentence
representation zs ∈ Rd with latent dimension size
d from word sequence x as follows. We first obtain
the contextual word embeddings for each word w
in x from the BERT pre-trained model (Turc et al.,
2019). Then, we generate an aggregated encoding
Es by taking an average of them. Finally, we trans-
form it into a continuous d dimensional Gaussian
space using a fully connected neural network gφ by
the following two steps.

[µs, σs] = gφ(Es) (1)

qφ(zs|x) = N (µs, diag(σ2s)), (2)

The sentence representation zs is sampled from
this posterior distribution qφ(zs|x). It is an entan-
gled complex manifold of different salient features
present in multiple dimensions. This enriched rep-
resentation is the generative representation as we
decode sentences from zs for better quality.

Next, we transform the sentence representation
zs into another representation zf on which we
impose disentanglement constraints followed by
attribute supervision such that zf could be de-
composed into independent space of context and
attribute. We need an efficient transformation to
maintain the inherent dependencies between the
context and attribute during this process. Also it is
important to restore enriched zs from decomposed
zf i.e. to capture the reverse dependency. Instead
of modeling two different transformation networks
to capture the dependency in both ways, we design
a single reversible transformation module. It guar-
antees that given a zf , we getback an appropriate
entangled zs useful for natural sentence generation.

Hence, we build our transformation network
extending R-NVP (Dinh et al., 2016) which is
a reversible auto-regressive normalizing flow to
achieve mentioned interdependency and inversion.
Specifically, we split zs into two parts. The first
d− 1 dimensions of the zs is dedicated to model
latent factors important for context modelling. The
rest of the (last) dimension is used to derive a rep-
resentation for the specified attribute. The detailed
interconnection between them in one transforma-
tion step is depicted in Figure 1(B). We obtain
zf by T transformation steps, where T is a hyper
parameter. In a transformation step t we obtain
a representation distribution qt(zt|zt−1), which is
characterized as the ordered set of following opera-
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tions:

[µt1, σ
t
1] = Ψ1

t (zt−1(1:d−1)) (3)

zt(d) = zt−1(d) · σ
t
1 + µt1 (4)

[µt2, σ
t
2] = Ψ2

t (zt(d)) (5)

zt(1:d−1) = zt−1(1:d−1).σ
t
2 + µt2, (6)

The Eq. (4) describes intuitively that the attribute
representation field is dependent on first d− 1 di-
mensions or context. The Eq. (6) encodes how
context is influenced by the attribute. Here, Ψ1

t

and Ψ2
t are designed as multilayer fully connected

feed-forward networks which are not invertible.
However, a careful inspection of Eqs. (4) and (6)
reveals that given a zt, the input zt−1 can be fully
recovered. We provide the reverse transforma-
tions in the next subsection. Thus, we can get
qφ(zf |zs) := qφ(zT |zs) and we assign zf := zT .
We pick the dth (last) dimension of zf to model
specified attribute representation za. To facilitate
smooth interpolation in this attribute space, we
keep za as unidimensional. We further use attribute
supervision to establish the correlation with cate-
gorical values of the attribute. We will discuss
the process in the next subsection. The rest of
the dimensions of zf are kept for other contextual
features zu. We discuss about disentanglement of
zf in Sec. 3.4. The overall posterior distribution
achieved by the hierarchical inference mechanism:

qφ(z|x) = qφ(zs|x)︸ ︷︷ ︸
Entangled

qφ(zf |zs)︸ ︷︷ ︸
Disentangled

(7)

3.3 Generative model

We design our generative model pθ using a top-
down hierarchy, with two different variables zs and
zf . The overall distribution of the latent variables
for the generation is defined as:

pθ(z) = pπ(zf )︸ ︷︷ ︸
Disentangled

pθ(zs|zf )︸ ︷︷ ︸
Entangled

(8)

Here pπ(zf ) is a factored prior of the feature repre-
sentation zf , which can be expressed as pπ(zf ) =∏d
i=1 pπ(zif ). We use a standard normal distribu-

tion, which is a factored isotropic distribution, as
prior, i.e., pπ(zf ) = N (0, I). Imposing this fac-
tored prior enforces disentanglement (Kim and
Mnih, 2018) on the derived space qφ(zf |zs). As
discussed in the previous section, we have desig-
nated the last dimension of the zf to capture any

attribute of interest, and remaining dimensions for
other contextual features. Henceforth, attribute rep-
resentation prior can be sampled from pπ(zdf ) and
other contextual features prior representations can
be sampled from

∏d−1
i=1 pπ(zif ). We use feature su-

pervision on za to increase the correlation between
the representation and the attribute value as follows.
Given za, we decode the categorical attribute value
of the given sentence x and back propagate the
loss of prediction to modify the network parame-
ters. More specifically, the decoding distribution
for the ground truth attribute is

pθ(f |za) = Categorical(ξ(za)) (9)

Here ξ is a scaling network to convert the singu-
lar value za into a logit vector corresponding to
categorical values of ground-truth attribute. Next,
the network tries to decode the entangled distribu-
tion zs from the disentangled distribution zf . We
apply the reverse transformation flow to recover
zs using T inverse transformations. Starting from
zf (zT ), we recover zs by reverse transformation
steps pt(zt−1|zt), as a set of ordered operations:

[µt2, σ
t
2] = Ψ2

t (zt(d)) (10)

zt−1(1:d−1) =
zt(1:d−1) − µt2

σt2
, (11)

[µt1, σ
t
1] = Ψ1

t (zt−1(1:d−1)) (12)

zt−1(d) =
zt(d) − µt1

σt1
(13)

The Eq. (11) is the reverse transformation corre-
sponding to the Eq. (6). Similarly Eq. (13) de-
fines the reverse flow of Eq. (4). It may be noted
that µ1t , µ

2
t and σ1t , σ

2
t are derived from the same

neural network Ψ1
t ,Ψ

2
t as Eqs. (3), (5). Hence,

given a zt we can easily get back zt−1 without any
loss of information. Thus we get zs := z1. Fol-
lowing the density estimation theory (Dinh et al.,
2016), the log probability density of pθ(zs|zf ), i.e.,
log pT (zs|zf ) denoted as:

log pπ(zf )−
T∑
t=1

log det
dft
dft−1

(14)

where ft denotes transformation function at step t
described in Eqs. (3)- (6). Finally, with the decoded
zs, we sample the word sequence x(j) using a
recurrent unit as follows:

x(j) ∼ Softmax(mθ(h(j))) (15)
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here h(j) = rθ(x(j − 1), zs) is the hidden state
of gated recurrent unit rθ which takes the previ-
ously generated token x(j − 1) and the sentence
representation zs. Then we pass this hidden state
information to a feedforward network mθ to gener-
ate logits. Subsequently, we sample words based
on the softmax distribution of the generated logits.
The joint likelihood of the sentence, features, and
the latent variables pθ(x,f , zs, zf ):

= pθ(x|zs)pθ(f |za)pθ(zs|zf )pπ(zf ) (16)

3.4 Training
We can learn the model parameters by optimizing
the joint likelihood given in Eq.(16). To learn the
complex transformation of disentangled attribute
and context in zf from entangled zs precisely, we
need to first estimate the approximate posterior
qφ(zs|x) accurately. However, in the initial it-
erations of training the encoder fails to approxi-
mate the posterior distribution (He et al., 2019).
Hence, we first train the lower layer by maximizing
ELBO (Kingma and Welling, 2013) :

Eqφ(zs|x)log pθ(x|zs)− KL(qφ(zs|x)||pθ(zs|zf ))

(17)

This is an unsupervised training as we are not using
any attribute information and this objective helps
to update encoder parameters to generate entangled
zs. Once the lower layer is trained, we update the
transformation parameters (Eq.(14)) and impose
feature supervision by maximizing the marginal
likelihood of zf given below:

Eqφ(zf |zs)
[
βlog pθ(f |za) + log pπ(zf )− (18)

T∑
t=1

log det
dft
dft−1

]
− αKL(qφ(zf |zs)||pπ(zf ))

where α and β are regularizing parameters to en-
force disentanglement of zf and emphasize on
attribute supervision respectively. If we break-
down the KL term of the above objective func-
tion as Ez∼qφ(zs)I(zs, zf )+ KL(qφ(zf )||pπ(zf )),
we get total correlation loss KL(qφ(zf )||pπ(zf )),
minimizing which the model achieves disentangle-
ment on zf along the dimensions (Higgins et al.,
2017). Also, the mutual information I(f, za) be-
tween specified attribute and za can be computed
using entropy functionH(.) asH(f)−H(f |za) ≥

Attribute Dataset # sentences Avg. len Vocab
Sentiment Yelp (Wang et al., 2019) 443K 15 16K
Sentiment Amazon (Wang et al., 2019) 554K 35 18K
Sentiment Gab (Qian et al., 2019) 36K 35 29K
Formality Family (Rao and Tetreault, 2018) 1M 25 41K
Formality Music (Rao and Tetreault, 2018) 1M 25 35K

Table 1: The statistics of different datasets.

Ex∼pD [Eqφ(zs|x)qφ(za|zs)log pθ(f |za)], is lower
bounded by the likelihood pθ(f |za), hence, we
emphasise on the likelihood term in the objective
function using β to maintain higher correlation
between za and f . Thus we update the network
parameters phase by phase using Eqs.(17) and(18).

4 Experiments

We broadly looked into two evaluation criteria to
compare the performance of different generative
models (a) Attribute control: efficiency in gener-
ating sentences entailing target attribute of interest
(b) Fine-grained transfer: efficiency of content
preserving fine-grained attribute regulated text gen-
eration. In this section we discuss datasets, base-
lines followed by the performance across datasets.

4.1 Datasets
We focused on two attributes of varied complexity,
namely, (a) sentiment and (b) formality. In Table 1
we describe the datasets in detail. For sentiment we
include two review datasets and one hate-speech
dataset. The Gab dataset is designed for counter-
hatespeech learning and every hateful sentence has
a candidate counter hate-speech. We consider them
as non-hateful (NH) class of content. Thus we have
training examples with hateful (H) and non-hateful
(NH) contents. The formality datasets have formal
(F) and corresponding casual (C) instances. We
report all the results on the test data provided.

4.2 Baseline methods
We compare CTVAE performance with semi-
supervised method - (a) ctrlGen (Hu et al., 2017),
supervised method -(b) DAE (John et al., 2018)
that focus on text-style-transfer using disentangle-
ment, and unsupervised method (c) ProbStyle-
Transfer (He et al., 2020). We also compare with
(d) entangleGen (Wang et al., 2019) which focuses
on fine-grained style transfer using entangled rep-
resentation. Apart from these state-of-the-art base-
lines, we inspect (e) CTVAE-NR (CTVAE Non-
Reversible transformation) where we replace the in-
vertible transformations of CTVAE with two sepa-
rate transformation networks responsible to capture
qφ(zf |zs) and pθ(zs|zf ). For different evaluation
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Sentiment Formality
Yelp Amazon GAB Music Family

Methods Control
gen.

Style
Inversion

Control
gen.

Style
Inversion

Control
Gen. Style Inversion Control

Gen. Style Inversion Control
Gen. Style Inversion

H - NH NH-H C - F F-C C -F F-C
ctrlGen 0.72 0.52 (0.71) 0.62 0.65 (0.66) 0.50 0.22 (0.52) 0.30 (0.73)* 0.63 0.18 (0.40) 0.21 (0.52) 0.60 0.21 (0.50)* 0.38 (0.65)

DAE 0.95 0.49 (0.55) 0.84 0.32 (0.43) 0.98* 0.12 (0.51) 0.05 (0.05) 0.69* 0.07 (0.30) 0.24 (0.32) 0.71* 0.12 (0.39) 0.30 (0.31)
probTrans - 0.63 (0.80) - 0.40 (0.98) - 0.02 (0.02) 0.01 (0.05) - 0.22 (0.62)* 0.44 (0.68)* - 0.19 (0.71) 0.55 (0.64)*

entangleGen - 0.83 (0.86) - 0.67 (0.95)* - 0.55 (0.97)* 0.16 (0.72) - 0.11 (0.54) 0.34(0.54) - 0.19 (0.45) 0.37 (0.61)
CTVAE -NR 0.82 0.51 (0.60) 0.69* 0.40 (0.57) - - - - - - - - -

CTVAE 0.95 0.72 (0.88)* 0.84 0.72 (0.97) 0.98 0.58 (0.93) 0.31 (0.98) 0.79 0.40 (0.62) 0.53 (0.77) 0.87 0.28 (0.73) 0.58 (0.85)

Table 2: Controlled generation and Style inversion (Related content) accuracy achieved by different methods
across datasets for τ = 0.71. The best performer is highlighted in bold, second best indicated by *.

criteria we compare CTVAE with different subsets
of these methods described in relevant sections.

4.3 Performance on attribute control

Experimental setup: We estimate the average rep-
resentation value of za corresponding to each cat-
egorical (binary) value for an attribute of interest
as zmax and zmin from training data. We generate
attribute controlled sentences in two ways. First we
sample a generative representation vector from the
prior distribution (i.e., pθ(zs|zf ∼ N (0, I)) and
assign either zmax or zmin to za. We sample 10
sentences from a representation and select the one
which bears the target attribute. If there is no such
sample generated we consider it as a failure case.
Similarly, we assign zmax or zmin to za depending
on the target attribute to posterior representation of
a given sentence x. We sample 10 sentences from
that and select the one most similar with x (BERT
embeddings having cosine similarity greater than
τ = 0.71) and entails the target attribute. If we fail
to find any candidate following both the criteria we
consider that a miss. We identify the generated sen-
tences with target attribute using a classifier build
by extending BERT and train on different datasets.

We investigate multiple cosine similarity thresh-
olds τ (0.65 to 0.75 with granularity 0.01). We
observe the generated sentences having cosine sim-
ilarity with original sentence less than 0.7, don’t
contain important context words. On contrary, we
observe all methods except CTVAE and entan-
gledGen were able to generate only a very small
number of candidates with high similarity scores
(>0.73). To provide a fair comparison we keep τ
at 0.71 for all datasets across all methods.
Metrics: We report controlled generation accu-
racy, i.e., percentage of generated sentences from
prior bearing target attribute and style inversion ac-
curacy, i.e., the percentage of generated sentences
from posterior bearing target attribute and related
content. We also report percentages of related con-
tent generation for style inversion. We report mean
performance of each model trained with three ran-

dom initialization.
Baselines: We report ctrlGen and DAE for both
metrics as they can sample generative representa-
tion from both prior and posterior. Whereas en-
tangleGen and probTrans can only generate sen-
tences corresponding to a given posterior, we com-
pare them only for style inversion.

4.3.1 Sentiment control

We report controlled generation accuracy and style
inversion accuracy for Yelp, Amazon and GAB in
Table 2. It can be observed that CTVAE outper-
forms all competing methods across three datasets
for controlled generation. The superior perfor-
mance of CTVAE stems from the fact that attribute
supervision on disentangled representation helps to
achieve better control of attributes than the semi su-
pervised ctrlGen. DAE which is also an attribute
supervised technique performs exactly same like
ours. CTVAE effectively generates more related
content than others and achieves best accuracy for
style inversion in Amazon and both hateful to non-
hateful (H-NH) and non-hateful to hateful (NH-H)
transitions for GAB. It is the second best in Yelp.
DAE, along with ctrlGen, uses disentangled gener-
ative space which often causes content information
loss. Hence, they generate less related content with
respect to other methods which leads to a drop
in accuracy for style inversion. entangleGen per-
forms best for style inversion for Yelp and second
best in other datasets. It achieves relatively low
accuracy even after producing larger amount of re-
lated content. It uses BERT embedding space to
search for a candidate embedding closest to the
original sentence for style inversion. As Yelp con-
tains shorter coherent sentences it is easy to find
related yet opposite polarity sentence embedding
whereas for GAB the H and NH sets are quite dif-
ferent and their representation spaces are far from
each other causing poor performance. The unsu-
pervised method probTrans performs well in rel-
atively simpler dataset Yelp and Amazon however,
fails to generate related content for complex GAB
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Figure 2: The variation of relatedness (R) and attribute polarity scores (AP) with respect to attribute control
grades in F across datasets. As we move from f1 to right CTVAE generate sentences with monotonic increase in
AP maintaining high R. −f1 the AP decreases monotonically. For Music the variation of AP is not consistent.

and scores the lowest. As converting a counter-
hatespeech to hateful content is difficult, all meth-
ods perform poorly. The performance of CTVAE-
NR is significantly inferior compared to CTVAE.
Close inspection reveals that even though at train-
ing we achieve very low KL between qφ(zf |zs)
and pθ(zs|zf ), the decoded zs is not exactly the
same as the encoded distribution. Thus, it performs
poorly in style inversion.

4.3.2 Formality control

From the Table 2, we can see that CTVAE per-
forms best in bothMusic and Family datasets for
all metrics. Conversion of a casual sentence into
formal (C-F) is more difficult as it would require
some structural change of the sentence, whereas
the reverse transformation (F-C) is easy. Though
the disentangled based methods perform better for
C-F relatively than F-C conversion, overall they
perform poorly as they are unable to generate re-
lated content after perturbing disentangled gener-
ative space for the same. entangleGen also per-
forms poorly in both the datasets for both C-F and
F-C. As a pair of formal and corresponding infor-
mal sentences have very high content overlap, only
structure, capitalization etc are different, in the
BERT representation space they become very close.
The generative model for entangleGen generates
sentences from this representation space, hence it
cannot distinguish much on smaller change of rep-
resentation. It confuses the generative model and it
generates the original sentence as it is very often.
Unlike GAB, probTrans performs better than all
semi-supervised methods along with entangleGen
even though formality is a difficult attribute like

hatred. As the formality datasets are parallel data,
probTrans can accurately estimate the latent vari-
ables for them which otherwise is difficult. Hence,
they learn to successfully generate style inverted
text given parallel sentence.

4.4 Significance test

We perform student t-test with significance level
0.05 and report expected p-values with closest
baseline following Reimers et al. (Reimers and
Gurevych, 2018) for two tasks i.e controlled gener-
ation and style inversion.

For controlled generation we find the p-values
per dataset as follows. For Yelp the p-value is 0.009
compared against ctrlGen, for Amazon 0.019 with
respect to ctrlGen, GAB 0.015 with ctrlGen, Mu-
sic 0.012 against DAE and for Family the p-value
is 0.008 compared with DAE. In first three datasets,
DAE and CTVAE performs exactly same. Simi-
larly, for style transfer we obtain the p-values as
follows. For Amazon it is 0.028 in comparison to
entangleGen, in GAB for (H-NHS) we get 0.028
compared against entangleGen and for (NHS-HS)
it is 0.032 in comparison to ctrlGen. Music (C-
F) yields 0.002 and (F-C) yields 0.017 with prob-
Trans, for Family (C-F) for 0.024 against ctrlGen
and for (F-C) 0.030 compared against probTrans.

4.5 Fine grained attribute control

Experimental Setup: We evaluate the perfor-
mance of fine grained attribute control as follows.
We create a set with n equidistant values between
zmin to zero denoted as {−fi} and another n val-
ues between zero to zmax denoted as {fi}. The
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entangleGen ctrlGen CTVAE
F Original sentence: every encounter i have had with her ... she is always rude or angry .

Attribute transfer: Negative to Positive sentiment
f1 every encounter i have had with her ... she is always

friendly or angry.
i always get the burger because i have
liked it.

she is always angry and she has with her ... and
she is rude.

f2 i love purchasing i have easy with her who has al-
ways friendly and fun.

i have always have vegetarian suite. she is always friendly and she is her ... i think
that it is absolutely outstanding ..

f3 i love purchasing i have easy with her who has al-
ways friendly and fun.

excellent, their food is always.. she is always outstanding and i completely rec-
ommend her ... with her food.

F Original sentence: yep, full retard .. political grandstanding
Attribute transfer: Hateful to non-hateful

f1 .. in order for little, the biggest straight humans
who think it really does n’t help anyone to clean up
their offensive terms.

its inappropriate behavior prior to use
those phrases that.

lol, full retard on politics ... thanks.

f2 .. in order for little, the biggest straight humans
who think it really does n’t help anyone to clean up
their offensive terms.

its inappropriate behavior prior to use ’
retarded ’ ..

lol, no. please know your political opinions.
thanks.

f3 .. in order for little, the biggest straight humans who
think it really does n’t help anyone to clean up their
offensive terms.

a word is highly offensive to those com-
pletely uncalled for.

not sure of your political points. thanks.

Table 3: Sentences generated corresponding to sentiment control grades F . Greater i denotes greater perturbation.

union set F represents attribute control grades.
Greater indices indicate higher perturbation in the
attribute representation space and the sign denotes
the direction. Given a posterior representation zf
of a sentence x, we assign za to a value from F
keeping zu fixed and decode a zs from that. We
generate 10 sentences from it and select the sen-
tence whose BERT embedding is closest to the orig-
inal sentence as well as bears target attribute value.
We repeat this for all values in F . We consider
equivalent set F with n values for entangleGen
with different increasing modification weights w
which they used for fine grained attribute control
in the original paper and generate sentences corre-
sponding to that. Though ctrlGen does not support
fine-grained transfer, we extended it by interpolat-
ing between two structured attribute representation
vector [0,1] and [1, 0] and generating real valued
vectors inF where each vector summed to one. For
each attribute representation vector, we generate
sentences from them similar to CTVAE. As, other
models cannot be extended for the same, we do not
compare their performance here.
Metrics: We report attribute polarity score AP
which estimates degree of attribute polarity of a
generated sentence and a relatedness scoreR cap-
turing the relatedness with the original sentence.

For review datasets Yelp and Amazon, AP is
obtained from a pre-trained Stanford regressor
model (Socher et al., 2013) normalized between
0 (most negative) and 1 (most positive). A pi-
lot study on randomly picked 25 sentences shows
that the pre-trained regression score is highly co-
related (Spearman’s rank correlation 0.68) with hu-
man judgements. We reportR as Jaccard overlap
(Tustison and Gee, 2009) of unigrams between orig-
inal and generated sentence excluding stop words

for these datasets. However, for other three datasets
the correlation observed is low. Hence, we resort
to human evaluation via crowdflower platform 2.

Given a test sentence, we generate n sentences
corresponding to n different grades in the set F
and ask three annotators to rank these sentences
from 1 to n. We get the average rank for this in-
stance and repeat for all test sentences to obtain
average ranks as AP corresponding to each of the
n values. We ask them to provide an absolute score
for relatedness (R) of the generated sentences with
respect to the original sentence in a scale of 1 to
10, 1 being least related, we rescale it and present
the result in the scale of 0 to 1. A coherent scheme
would see monotonic change in value of AP with
attribute control grades varying from −fn to fn
and the value ofR staying close to one throughout.

4.5.1 Fine-grained sentiment control
We demonstrate the performance of generative
models on one review dataset Yelp and hatespeech
dataset GAB in Figure 2(a), (b) respectively. We
show the variation of attribute polarity AP and re-
latedness scoreR with n = 4. We can observe that
there is a smooth increase in AP as we move from
f1 to f4 (denoting greater shift from original za
values towards zmax ) while achieving consistently
high R for CTVAE in both the datasets. Simi-
larly as we move from −f1 to −f4 CTVAE shows
monotonic decrease in AP still achieving highest
R. Though a similar pattern is observed in ctrl-
Gen in Yelp, it has extremely poorR score which
denotes that it generates unrelated sentences in the
process of fine-grained attribute regulation. More-
over, it shows minimum variation in sentiment
score thoughout the process. In contrast, entan-

2www.appen.com
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gleGen achieves highestR score as they focus on
content preservation, however, the sentiment score
transition is uneven and doesn’t follow the desired
coherency. ctrlGen shows minimum variation in
sentiment score thoughout the process. In contrast,
CTVAE successfully maintains a balance for re-
latedness and attribute control. It can be observed
that CTVAE shows a monotonic transition as we
move from left to right denoting higher degree of
attribute representation change for Amazon while
other methods show haphazard changes.

In GAB ctrlGen shows abrupt change in AP
and lowest score for R which demonstrates very
less control towards fine-tuned attribute regulation
for hatred filtering. Though entangleGen achieved
lowest score in AP , signifying it can more accu-
rately remove hateful content than CTVAE, the
variation is not monotonic. Further inspection re-
veals that entangleGen mostly generates counter
hate-speech as BERT representation clusters H and
NH for GAB locate in two distant spaces. Hence,
the relatednessR of the generated sentences is low.
In contrast, CTVAE successfully maintains a bal-
ance for relatedness and attribute control in both.

4.5.2 Fine-grained formality control

We experiment with n = 3 equidistant values in
each direction in F and report the performance on
Music and Family dataset in Figure 2 (d,e). It
can be observed from the figure that all the methods
received a similar AP score, around 2.0, for C-F
transformation from f1 to f3. Also, as we move to
right after f1, the changes in AP are inconsistent
for CTVAE and entangleGen. However CTVAE
achieves relatively better formality score thoughout.
entangleGen achieves bestR and low AP due to
generation of original content verbatim very often.
ctrlGen shows lowest relatedness and achieves a
transfer score AP = 1.5 on average, that is, overall
it fails to generate formal sentences. Moving to-
wards casual transition, i.e., from −f1 to −f3 we
observe a similar trend for CTVAE and entangle-
Gen. Though the variation with respect to attribute
control grades in F is abrupt, we achieve the low-
est AP , i.e., most informal sentences. ctrlGen
performs very poor with respect to all the methods.
for Family there is no trend in AP found. CT-
VAE maintains highR, whereas ctrlGen was able
to achieve lowest relatedness score.

4.6 Fluency

We also investigate the fluency of these methods
across datasets reported in Table 4 and found that
CTVAE produces very high percentage fluent sen-
tences similar to entangleGen. As we have ob-
served, entangleGen tends to copy the content for
formality datasets because the formal and casual
sentences lie close in the representation space, the
fluency is high. Similarly for GAB dataset, as it
tends to generate counter-hatespeech the fluency
remains high.

Methods Yelp Amazon GAB Music Family
ctrlGen 0.70 0.59 0.43 0.60 0.32

entangleGen 0.80 0.71 0.64 0.80 0.80
CTVAE 0.79 0.71 0.58 0.80 0.75

Table 4: Percentage of fluent sentences generated in the
fine grained attribute transition process

Finally, Table 3 provides examples of fine
grained sentiment and hatred regulated sentences
generated by CTVAE, entangleGen, and ctrlGen.
We observe that entangleGen generally produces
long sentences, sometimes copies the original con-
tent. It produces same sentence multiple times.
On the other hand, ctrlGen mostly generates sen-
tences hardly related with the original content. In
contrast, CTVAE can generate related sentences
and provides finer attribute variation, controlled by
fi.

5 Conclusion

The major contribution of this paper is to propose
CTVAE which consists of a carefully designed
hierarchical architecture facilitating disentangled
representation to control attribute without affecting
context as well as enriched entangled generative
representation for meaningful sentence generation.
The invertible normalizing flow as a transforma-
tion module between the two representation of CT-
VAE enables learning of complex interdependency
between attribute and context without the loss of
information. Such a design choice is key to achiev-
ing accurate fine tuning of attributes (be it senti-
ment or formality) while keeping the content intact.
This is a key achievement considering the diffi-
culty of the problem and modest performance of
state-of-the-art techniques. Extensive experiments
on real-world datasets emphatically establish the
well-rounded performance of CTVAE and its su-
periority over the baselines.
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A Analysis of attribute supervision

Here we perform an ablation study by demonstrat-
ing the importance of the last dimension za of the
representation zf in capturing sentiment. As we
ensure independence of every dimension, we calcu-
late the correlation of every dimension of zf with
the sentiment labels in the test data. We observe
that za achieves the highest correlation of 0.72 in
Yelp and 0.42 in Amazon. We further train a logis-
tic regression classifier with za of training data as a
feature to predict sentiment labels, and we achieve
a high accuracy of 0.85 and 0.64 on test data in
Yelp and Amazon respectively. While training with
the most correlated dimension of zf other than za,
with a correlation of 0.12 for Yelp and 0.14 for
Amazon, we achieve an accuracy of only 0.52 and
0.58 respectively. This implies that za is the most
expressive dimension for capturing sentiment in
comparison to any other dimension.

B Parameter Setting

The sentence encoder is designed using pre-trained
BERT-base-uncased model (embedding dim = 768)
followed by 2-layer feed-forward network with hid-
den dim 200. The output of the same is the sen-
tence embedding which is of dimension 256 for
every dataset. The flow network is designed as R-
NVP with T = 3 and each ψt is designed as three
layer feed forward network with tanh activation
function for the initial two layers and hidden di-
mension is 100 for the intermediate layers. The
scaling network for sentiment classification is de-
signed as a two dimensional vector [−1, 1]. The
sentence decoder is designed as a gated recurrent
unit where output of each step is passed through
a fully connected feed-forward network to convert
it to a logit of length of the vocabulary size. The
weighing parameters β and γ are set to 10 for fea-
ture supervision and disentanglement.

C Qualitative Examples

In Table 5 we provide some examples of Casual to
Formal conversion. We can see with increase of
the perturbation CTVAE introduces more formal
notions to the sentences as proper capitalization or
not using any abbreviation etc. Whereas entangle-
Gen fails to introduce such changes to keep content
intact and ctrlGen generates unrelated content.

Original sentence: i ’ve got a crush on him, like, forever !
Attribute transfer: Casual to Formal transfer

F entangleGen
f1 i ’ve got a crush on him, like forever, which is wrong !
f2 i ’ve got a crush on him, like forever, which is wrong !
f3 i ’ve got a crush on him, like forever, because in real

movie.
ctrlGen

f1 you would have to say yes, but you are such a favorite
artists.

f2 he is great, unfortunately.
f3 you would have to say yes, but you are such a favorite

artists.
CTVAE

f1 i have a crush, about him, so I have a crush on him !
f2 I have a crush on him, like an crush on him.
f3 I have a crush on him, like a crush.

Table 5: Sentences generated corresponding to attribute
control grades fi. Greater i denotes larger change in
representation.
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Figure 3: (a) the time taken (per epoch) for training by
CTVAE and entangleGen on different datasets. (b) the
time taken to generate 1K sentences by CTVAE and
entangleGen on different datasets.

D Training time comparison

In this section we provide a comparative analysis
of training time and sampling time of CTVAE with
entangleGen. Fig 3 shows that CTVAE is much
faster than that of entangleGen for both cases.


