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Abstract

Although the existing Named Entity Recogni-
tion (NER) models have achieved promising
performance, they suffer from certain draw-
backs. The sequence labeling-based NER
models do not perform well in recognizing
long entities as they focus only on word-level
information, while the segment-based NER
models which focus on processing segment in-
stead of single word are unable to capture the
word-level dependencies within the segment.
Moreover, as boundary detection and type pre-
diction may cooperate with each other for the
NER task, it is also important for the two sub-
tasks to mutually reinforce each other by shar-
ing their information. In this paper, we pro-
pose a novel Modularized Interaction Network
(MIN) model which utilizes both segment-
level information and word-level dependen-
cies, and incorporates an interaction mecha-
nism to support information sharing between
boundary detection and type prediction to en-
hance the performance for the NER task. We
have conducted extensive experiments based
on three NER benchmark datasets. The per-
formance results have shown that the proposed
MIN model has outperformed the current state-
of-the-art models.

1 Introduction

Named Entity Recognition (NER) is one of the
fundamental tasks in natural language processing
(NLP) that intends to find and classify the type of a
named entity in text such as person (PER), location
(LOC) or organization (ORG). It has been widely
used for many downstream applications such as
relation extraction (Xiong et al., 2018), entity link-
ing (Gupta et al., 2017), question generation (Zhou
et al., 2017) and coreference resolution (Barhom
et al., 2019).

∗Corresponding authors.

Currently, there are two types of methods for the
NER task. The first one is sequence labeling-based
methods (Lample et al., 2016; Chiu and Nichols,
2016; Luo et al., 2020), in which each word in a sen-
tence is assigned a special label (e.g., B-PER or I-
PER). Such methods can capture the dependencies
between adjacent word-level labels and maximize
the probability of predicted labels over the whole
sentence. It has achieved the state-of-the-art perfor-
mance in various datasets over the years. However,
NER is a segment-level recognition task. As such,
the sequence labeling-based models which focus
only on word-level information do not perform well
especially in recognizing long entities (Ye and Ling,
2018). Recently, segment-based methods (Kong
et al., 2016; Li et al., 2020b; Yu et al., 2020b; Li
et al., 2021) have gained popularity for the NER
task. They process segment (i.e., a span of words)
instead of single word as the basic unit and assign
a special label (e.g., PER, ORG or LOC) to each
segment. As these methods adopt segment-level
processing, they are capable of recognizing long
entities. However, the word-level dependencies
within a segment are usually ignored.

NER aims at detecting the entity boundaries and
the type of a named entity in text. As such, the
NER task generally contains two separate and inde-
pendent sub-tasks on boundary detection and type
prediction. However, from our experiments, we
observe that the boundary detection and type pre-
diction sub-tasks are actually correlated. In other
words, the two sub-tasks can interact and mutually
reinforce each other by sharing their information.
Consider the following example sentence: “Emmy
Rossum was from New York University”. If we
know “University” is an entity boundary, it will be
more accurate to predict the corresponding entity
type to be “ORG”. Similarly, if we know an entity
has an “ORG” type, it will be more accurate to
predict that “University” is the end boundary of
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the entity “New York University” instead of “York”
(which is the end boundary for the entity “New
York”). However, sequence labeling-based models
consider the boundary and type as labels, and thus
such information cannot be shared between the sub-
tasks to improve the accuracy. On the other hand,
segment-based models first detect the segments and
then classify them into the corresponding types.
These methods generally cannot use entity type in-
formation in the process of segment detection and
may have errors when passing such information
from segment detection to segment classification.

In this paper, we propose a Modularized Inter-
action Network (MIN) model which consists of
the NER Module, Boundary Module, Type Mod-
ule and Interaction Mechanism for the NER task.
To tackle the issue on recognizing long entities in
sequence labeling-based models and the issue of
utilizing word-level dependencies within a segment
in segment-based models, we incorporate a pointer
network (Vinyals et al., 2015) into the Boundary
Module as the decoder to capture segment-level
information on each word. Then, these segment-
level information and the corresponding word-level
information on each word are concatenated as the
input to the sequence labeling-based models.

To enable interaction information, we propose
to separate the NER task into the boundary detec-
tion and type prediction sub-tasks to enhance the
performance of the two sub-tasks by sharing the
information from each sub-task. Specifically, we
use two different encoders to extract their distinct
contextual representations from the two sub-tasks
and propose an Interaction Mechanism to mutually
reinforce each other. Finally, these information are
fused into the NER Module to enhance the perfor-
mance. In addition, the NER Module, Boundary
Module and Type Module share the same word rep-
resentations and we apply multitask training when
training the proposed MIN model.

In summary, the main contributions of this paper
include:

• We propose a novel Modularized Interaction
Network (MIN) model which utilizes both
the segment-level information from segment-
based models and word-level dependencies
from sequence labeling-based models in order
to enhance the performance of the NER task.

• The proposed MIN model consists of the NER
Module, Boundary Module, Type Module and

Interaction Mechanism. We propose to sepa-
rate boundary detection and type prediction
into two sub-tasks and the Interaction Mech-
anism is incorporated to enable information
sharing between the two sub-tasks to achieve
the state-of-the-art performance.

• We conduct extensive experiments on
three NER benchmark datasets, namely
CoNLL2003, WNUT2017 and JNLPBA, to
evaluate the performance of the proposed
MIN model. The experimental results have
shown that our MIN model has achieved the
state-of-the-art performance and outperforms
the existing neural-based NER models.

2 Related Work

In this section, we review the related work on the
current approaches for Named Entity Recognition
(NER). These approaches can be categorized into
sequence labeling-based NER and segment-based
NER.

2.1 Sequence Labeling-based NER
Sequence labeling-based NER is regarded as a se-
quence labeling task, where each word in a sen-
tence is assigned a special label (e.g., B-PER, I-
PER). Huang et al. (Huang et al., 2015) utilized
the BiLSTM as an encoder to learn the contextual
representation of words, and then Conditional Ran-
dom Fields (CRFs) was used as a decoder to label
the words. It has achieved the state-of-the-art re-
sults on various datasets for the past many years.
Inspired by the success of the BiLSTM-CRF ar-
chitecture, many other state-of-the-art models have
adopted such architecture. Chiu and Nichols (Chiu
and Nichols, 2016) used Convolutional Neural Net-
work (CNN) to capture spelling features, and the
character-level and word-level embeddings are con-
catenated as the input of BiLSTM with CRF net-
work. Further, Lample et al. (Lample et al., 2016)
proposed RNN-BiLSTM-CRF as an alternative.
More recently, pretrained language models such
as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) have been adopted to further enhance
the performance of NER.

2.2 Segment-based NER
Segment-based NER identifies segments in a sen-
tence and classifies each segment with a special
label (e.g., PER, ORG or LOC). Kong et al. (Kong
et al., 2016) used BiLSTM to map arbitrary-length



202

segment into a fixed-length vector, and then these
vectors were passed to Semi-Markov Conditional
Random Fields (Semi-CRFs) for labeling the seg-
ments. Zhuo et al. (Zhuo et al., 2016) adopted
a gated recursive Convolutional Neural Network
instead of BiLSTM to build a pyramid-like struc-
ture for extracting segment-level features in a hi-
erarchical way. In recent years, Ye et al. (Ye
and Ling, 2018) exploited the weighted sum of
word-level within segment to learn segment-level
features with Semi-CRFs which was then trained
jointly on word-level with the BiLSTM-CRF net-
work. Li et al. (Li et al., 2020a) used a recurrent
neural network encoder-decoder framework with
a pointer network to detect entity segments. Li
et al. (Li et al., 2020b) treated NER as a machine
reading comprehension (MRC) task, where entities
were extracted as retrieved answer spans. Yu et
al. (Yu et al., 2020b) ranked all the spans in terms
of the pairs of start and end tokens in a sentence
using a biaffine model.

3 Proposed Model

This section presents our proposed Modularized
Interaction Network (MIN) for NER. The overall
model architecture is shown in Figure 1(a), which
consists of the NER Module, Boundary Module,
Type Module and Interaction Mechanism.

3.1 NER Module

In the NER Module, we adopt the RNN-BiLSTM-
CRF model (Lample et al., 2016) as our backbone,
which consists of three components: word repre-
sentation, BiLSTM encoder and CRF decoder.
Word Representation Given an input sentence
S =< w1, w2, · · · , wn >, each word wi(1 ≤ i ≤
n) is represented by concatenating a word-level em-
bedding xwi and a character-level word embedding
xci as follows:

xi = [xwi ;x
c
i ] (1)

where xwi is the pre-trained word embedding, and
the character-level word embedding xci is obtained
with a BiLSTM to capture the orthographic and
morphological information. It considers each char-
acter in the word as a vector, and then inputs them
to a BiLSTM to learn the hidden states. The final
hidden states from the forward and backward out-
puts are concatenated as the character-level word
information.

BiLSTM Encoder The distributed word embed-
dings X =< x1, x2, · · · , xn > are then fed into
the BiLSTM encoder to extract the hidden se-
quences H =< h1, h2, · · · , hn > of all words
as follows:

hi =
[−→
hi ;
←−
hi

]
−→
hi = LSTM

(
xi,
−−→
hi−1

)
←−
hi = LSTM

(
xi,
←−−
hi−1

) (2)

In the NER Module, we fuse the distinct contextual
boundary representation and type representation
for the NER task. In addition, we also fuse the
segment information from the Boundary Module
to support the recognition of long entities. Note
that the boundary information and type information
can mutually reinforce each other. Thus, we use
an interaction mechanism to reinforce them before
fusing these information in the NER Module. In-
stead of directly concatenating these information
with hidden representations in the NER module,
we follow the previous studies (Zhang et al., 2018;
Yu et al., 2020a) to use a gate function to dynam-
ically control the amount of information flowing
by infusing the expedient part while excluding the
irrelevant part. The gate function uses the informa-
tion from the NER Module to guide the process,
which is described formally as follows:

H
Bdy

, H
Type

= interact(HBdy, HType)

HB = σ
(
W>1 H +W>BH

Bdy
)
⊗HBdy

HT = σ
(
W>2 H +W>T H

Type
)
⊗HType

HS = σ
(
W>3 H +W>S H

Seg
)
⊗HSeg

(3)

where HBdy and HType represent the distinct rep-
resentations of hidden sequences from the Bound-
ary Module and Type Module respectively, and
HSeg represents the segment information from the
Boundary Module. We will discuss them in Sec-
tion 3.2 and Section 3.3. HBdy and HType rep-
resent the distinct representations of hidden se-
quences from the Boundary Module and Type Mod-
ule respectively after the interaction using an in-
teraction mechanism interact(·, ·), and we will
discuss them in Section 3.4. HB , HT and HS

represent the boundary, type and segment informa-
tion respectively to be injected into the NER Mod-
ule from the gate function. σ denotes the logistic
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Figure 1: The architecture of our proposed Modularized Interaction Network.

sigmoid function and ⊗ denotes the element-wise
multiplication.

The final hidden representations in the NER
Module are as follows:

HNER =W>[H;HB;HT ;HS ] + b (4)

CRF Decoder CRF has been widely used in the
state-of-the-art NER models (Chiu and Nichols,
2016; Lample et al., 2016) to model tagging de-
cisions when considering strong connections be-
tween output tags. For an input sentence S =<
w1, w2, · · · , wn >, the score of a predicted se-
quence of labels y =< y1, y2, · · · , yn > is defined
as follows:

sc (S, y) =

n∑
i=0

Tyi,yi+1 +

n∑
i=1

Pi,yi (5)

where Tyi,yi+1 represents the score of a transition
from yi to yi+1, and Pi,yi is the score of the yi tag
of the ith word in a sentence.

The CRF model describes the probability of pre-
dicted labels y over all possible tag sequences in
the set Y , that is:

p (y|S) = esc(S,y)∑
ỹ∈Y e

sc(S,ỹ)
(6)

We maximize the log-probability of the correct se-
quence of labels during the training. During decod-
ing, we predict the label sequence with the maxi-
mum score:

y∗ = argmax
ỹ∈Y

sc (S, ỹ) (7)

3.2 Boundary Module
The Boundary Module needs to provide not only
distinct contextual boundary information but also

segment information for the NER Module. Here,
we use another BiLSTM as encoder to extract dis-
tinct contextual boundary information. And in-
spired by BDRYBOT (Li et al., 2020a), a recurrent
neural network encoder-decoder framework with a
pointer network is used to detect entity segments
for segment information. The BDRYBOT model
processes the starting boundary word in an entity to
point to the corresponding ending boundary word.
The other entity words in the entity are skipped.
The non-entity words are pointed to a specific posi-
tion. This method has achieved promising results
in the boundary detection task. However, due to the
variable length of entities, this model is deprived of
the power of batch training. In addition, as the seg-
ment information of each word in an entity is the
same as the starting boundary word, the segment
information for all the words within a segment will
be incorrect if the starting boundary word is de-
tected wrongly. To avoid this problem, we improve
the training process and propose a novel method to
capture the segment information of each word.

We train the starting boundary word to point
to the corresponding ending boundary word, and
the other words in the sentence to a sentinel word
inactive. The process is shown in Figure 1(b).
Specifically, we use another BiLSTM as encoder
to obtain the distinct boundary hidden sequences
HBdy =< hBdy

1 , hBdy
2 , · · · , hBdy

n >, and a sen-
tinel vector is padded into the last positions of
hidden sequences HBdy for the sentinel word in-
active. Then, a unidirectional LSTM is used as a
decoder to generate the decoded state dj at each
time step j. To add extra information to the input
of the LSTM, we follow (Fernández-González and
Gómez-Rodrı́guez, 2020) and use the sum of the
hidden states of current (hBdy

i ), previous (hBdy
i−1 )

and next (hBdy
i+1 ) words instead of word embedding
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as the input to the decoder as follows:

sj = hBdy
j−1 + hBdy

j + hBdy
j+1

dj = LSTM (sj , dj−1)
(8)

Note that the first word and last word do not have
hidden states of previous and next, we use zero
vectors to represent it which are shown as grey
blocks in Figure 1(b).

After that, we use the biaffine attention mech-
anism (Dozat and Manning, 2017) to generate a
feature representation for each possible boundary
position i at time step j, and the Softmax func-
tion is used to obtain the probability of word wi

for determining an entity segment that starts with
word wj and ends with word wi.

uji = dj
TWhBdy

i + UTdj + V ThBdy
i + b

p (wi|wj) = Softmax
(
uji

)
, i ∈ [j, n+ 1]

(9)

where W is the weight matrix of bi-linear term,
U and V are the weight matrices of linear terms,
b is the bias vector and i ∈ [j, n+ 1] indicates a
possible position in decoding.

Different from the existing methods (Zhuo et al.,
2016; Sohrab and Miwa, 2018) that enumerate all
segments starting with word wj with equal impor-
tance, we use the probability p (wi|wj) as the con-
fidence of the segment that starts with word wj and
ends with word wi, and then all these segments
under the probability p (wi|wj) are summed as the
segment information of word wj .

HSeg
j =

n∑
i=j

p (wi|wj)h
p
j,i

hpj,i = [hBdy
j ;hBdy

i ;hBdy
i − hBdy

j ;hBdy
i � hBdy

j ]

(10)

where hpj,i is the representation of the segment that
starts with word wj and ends with word wi, and �
is element-wise product.

3.3 Type Module

For the Type Module, we use the same network
structure as in the NER Module. Given the shared
input X =< x1, x2, · · · , xn >, BiLSTM is used
to extract distinct contextual type information
HType =< hType

1 , hType
2 , · · · , hType

n >, and then
CRF is used to tag type labels.

3.4 Interaction Mechanism
As discussed in Section 1, the boundary informa-
tion and type information can mutually reinforce
each other. We first follow (Cui and Zhang, 2019;
Qin et al., 2021) and use a self-attention mechanism
over each sub-task labels to obtain the explicit la-
bel representations. Then, we concatenate these
representations and contextual information of cor-
responding sub-tasks to get label-enhanced contex-
tual information. For the ith label-enhanced bound-
ary contextual representation hB−Ei , we first use
the biaffine attention mechanism (Dozat and Man-
ning, 2017) to grasp the attention scores between
hB−Ei and the label-enhanced type contextual in-
formation < hT−E1 , hT−E2 , · · · , hT−En >. The at-
tention scores < αB−E

i,1 , αB−E
i,2 , · · · , αB−E

i,n > are
computed in the same way as in Equation (9). Then,
we concatenate the ith label-enhanced boundary
representation hB−Ei and the interaction represen-
tation rB−Ei by considering the type information
as its updated boundary representation:

rB−Ei =

n∑
j=1

αB−E
i,j hT−Ej

h
Bdy
i = [hB−Ei , rB−Ei ]

(11)

Similarity, we can obtain the updated type repre-
sentation h

Type
i by considering the boundary infor-

mation.

3.5 Joint Training
There are three modules in our proposed MIN
model: NER Module, Boundary Module and Type
Module. They share the same word representations.
Thus, the whole model can be trained with mul-
titask training. During training, we minimize the
negative log-probability of the correct sequence of
labels in Equation (6) for the NER Module and
Type Module, while the cross-entropy loss is used
for the Boundary Module:

LNER = −log
(
p
(
ŷNER|X

))
LType = −log

(
p
(
ŷType|X

))
LBdy = − 1

n

n∑
i=1

ŷBdy
i logpBdy

i

(12)

where X represents input sequence, and ŷNER and
ŷType represent the correct sequence of labels for
the NER Module and Type Module respectively.
pBdy
i is the probability distribution of the gold la-

bel and ŷBdy
i is the gold one-hot vector for the
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Boundary Module. Then, the final multitask loss is
a weighted sum of the three losses:

L = LNER + LType + LBdy (13)

4 Experiments

In this section, we first introduce the datasets, base-
line models and implementation details. Then, we
present the experimental results on three bench-
mark datasets. Moreover, an ablation study is also
conducted. Finally, we give some insights on fur-
ther analysis.

4.1 Datasets

We evaluate the proposed model on three bench-
mark NER datasets: CoNLL2003 (Sang and
De Meulder, 2003), WNUT2017 (Derczynski
et al., 2017) and JNLPBA (Kim et al., 2004).

• CoNLL2003 - It is collected from Reuters
news articles. Four different types of named
entities including PER, LOC, ORG and MISC
are defined by the CoNLL 2003 NER shared
task.

• WNUT2017 - It is a set of noisy user-
generated text including YouTube comments,
StackExchange posts, Twitter text, and Red-
dit comments. Six types of entities including
PER, LOC, Group, Creative work, Corpora-
tion and Product are annotated.

• JNLPBA - It is collected from MEDLINE ab-
stracts. Five types of entities including DNA,
RNA, protein, cell line and cell type are anno-
tated.

Table 1 presents the statistics of these datasets.

4.2 Baseline Models

We compare the proposed MIN model with several
baseline models including sequence labeling-based
models and segment-based models.

The compared sequence labeling-based models
include:

• CNN-BiLSTM-CRF (Chiu and Nichols,
2016) - This model utilizes CNN to capture
character-level word features, and then the
character-level and word-level embeddings
are concatenated as the input to the BiLSTM-
CRF network. It is a classical baseline for
NER.

Dataset train dev test

CoNLL2003 #sentences 14,987 3,466 3,684
#entities 23,499 5,942 5,648

WNUT2017 #sentences 3,394 1,009 1,287
#entities 3,160 1,250 1,589

JNLPBA #sentences 16,691 1,853 3,855
#entities 46,388 4,902 8,657

Table 1: Statistics of CoNLL2003, WNUT2017, and
JNLPBA datasets.

• RNN-BiLSTM-CRF (Lample et al., 2016) -
This model uses RNN instead of CNN in
CNN-BiLSTM-CRF.

• ELMo (Peters et al., 2018) - This model uses
a deep bidirectional language model to learn
contextualized word representation on a large
text corpus, which is then fed into BiLSTM-
CRF for NER.

• Flair (Akbik et al., 2018) - This model uses
BiLSTM-CRF with character-level contextu-
alized representations for NER.

• BERT (Devlin et al., 2019) - This model learns
contextualized word representation based on
a bidirectional Transformer, which is then fed
into BiLSTM-CRF for NER.

• HCRA (Luo et al., 2020) - This model uses
sentence-level and document-level represen-
tations to augment the contextualized repre-
sentation based on a funnel-shaped CNN with
BiLSTM-CRF for NER.

The compared segment-based models include:

• BiLSTM-Pointer1 (Li et al., 2020a) - This
model uses BiLSTM as the encoder and an-
other unidirectional LSTM with pointer net-
works as the decoder for entity boundary de-
tection. Then, the entity segments generated
by the decoder are classified with the Softmax
classifier for NER.

• HSCRF (Ye and Ling, 2018) - This model ex-
ploits the weighted sum of word-level within
segment to learn segment-level features with
Semi-CRFs which is then trained jointly on
word-level with the BiLSTM-CRF network.

1In (Li et al., 2020a), the pointer networks is used for
detecting entity boundaries only. We reproduce this work and
add a Softmax layer for the NER task.
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• MRC+BERT (Li et al., 2020b) - This model
formulates the NER task as a machine reading
comprehension task.

• Biaffine+BERT (Yu et al., 2020b) - This
model ranks all the spans in terms of the pairs
of start and end tokens in a sentence using a
biaffine model.

4.3 Implementation Details

Our proposed MIN model is implemented with
the PyTorch framework. We use 100-dimensional
pre-trained Glove word embeddings 2 (Pennington
et al., 2014). The char embeddings is initialized
randomly as 25-dimensional vectors. When train-
ing the model, both of the embeddings are updated
along with other parameters. We use Adam opti-
mizer (Kingma and Ba, 2014) for training with a
mini-batch. The initial learning rate is set to 0.01
and will shrunk by 5% after each epoch, dropout
rate to 0.5, the hidden layer size to 100, and the
gradient clipping to 5. We report the results based
on the best performance on the development set.
All of our experiments are conducted on the same
machine with 8-cores of Intel(R) Xeon(R) E5-1630
CPU@3.70GHz and two Nvidia GeForce-GTX
GPU. Following the work in (Ye and Ling, 2018),
the maximum segment length for segment informa-
tion discussed in Section 3.2 is set to 6 for better
computational efficiency.

4.4 Experimental Results

Table 2 shows the experimental results of our pro-
posed MIN model and the baseline models. In
Table 2, when compared with models without us-
ing any language models or external knowledge,
we observe that our MIN model outperforms all the
compared baseline models in terms of precision,
recall and F1 scores, and achieves 0.57%, 4.77%
and 3.26% improvements on F1 scores for the
CoNLL2003, WNUT2017 and JNLPBA datasets
respectively.

Among the compared models, the F1 scores of
the BiLSTM-Pointer model are generally lower
than other models. This is because it does not
utilize the word-level dependencies within a seg-
ment and also suffers from the problem on bound-
ary error propagation during boundary detection
and type prediction. The CNN-BiLSTM-CRF and

2http://nlp.stanford.edu/projects/
glove/

RNN-BiLSTM-CRF models have achieved similar
performance results on the three datasets, which
perform worse than that of HCRA and HSCRF. The
HCRA model uses sentence-level and document-
level representations to augment the contextualized
word representation, while the HSCRF model con-
siders the segment-level and word-level informa-
tion with multitask training. However, the HCRA
model does not consider the segment-level informa-
tion, and the HSCRF model does not model directly
the word-level dependencies within a segment. In
addition, all the above models do not share infor-
mation between the boundary detection and type
prediction sub-tasks. Our MIN model has achieved
the best performance as it is capable of considering
all these information.

When pre-trained language models such as
ELMo and BERT are incorporated, all the mod-
els have achieved better performance results. In
particular, we observe that our MIN model has
achieved 0.95%, 3.83% and 2.73% improvements
on the F1 scores for the CoNLL2003, WNUT2017
and JNLPBA datasets respectively when compared
with the other models. The results are consistent
with what have been discussed in models without
using any pre-trained language models.

4.5 Ablation Study

To show the importance of each component in our
proposed MIN model, we conduct an ablation ex-
periment on the Boundary Module, Type Module
and Interaction Mechanism. As shown in Table 3,
we can see that all these components contribute sig-
nificantly to the effectiveness of our MIN model.

The discussion on the effectiveness of each com-
ponent is given with respect to the three datasets.
The Boundary Module improves the F1 scores
by 1.13%, 3.58% and 2.1% for CoNLL2003,
WNUT2017 and JNLPBA respectively. This is
because it not only provides segment-level infor-
mation for the NER Module but also provides the
boundary information for the Type Module. As
such, it helps recognize long entities and predict
the entity types more accurately.

The Type Module improves the F1 scores
by 1.02%, 2.81% and 1.42% for CoNLL2003,
WNUT2017 and JNLPBA respectively. This is
because it provides the type information for the
Boundary Module which can help detect entity
boundaries more accurately. In addition, it can also
help obtain more effective segment information.

http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
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Model CoNLL2003 WNUT2017 JNLPBA
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

CNN-BiLSTM-CRF 91.35 91.06 91.21 57.54 32.90 41.86 73.96 70.52 72.20
RNN-BiLSTM-CRF 91.12 90.76 90.94 50.86 35.50 41.81 73.08 71.56 72.31
HCRA 92.20 91.71 91.96 - - - - - -
BiLSTM-Pointer 90.34 90.31 90.32 54.23 30.43 38.98 67.72 74.90 71.13
HSCRF - - 91.53 - - - 69.67 75.33 72.39
MIN (ours) 92.91 92.15 92.53 59.17 38.48 46.63 74.91 76.24 75.57
+ Language Models/External Knowledge
ELMo - - 92.22 - - 45.33 71.18 77.68 74.29
Flair 92.37 93.12 92.74 - - 45.96 71.18 77.68 74.29
BERT - - 92.80 - - 46.10 70.73 80.36 75.24
HCRA+BERT - - 93.37 - - - - - -
BiLSTM-Pointer+BERT 92.02 92.45 92.23 56.82 36.87 44.72 68.56 77.32 72.68
MRC+BERT 92.33 94.61 93.04 - - - - - -
Biaffine+BERT 93.70 93.30 93.50 - - - - - -
MIN+BERT (ours) 94.75 94.15 94.45 60.54 42.48 49.93 75.00 81.19 77.97

Table 2: Experimental results on three benchmark datasets.

Model CoNLL2003 WNUT2017 JNLPBA
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

MIN 92.91 92.15 92.53 59.17 38.48 46.63 74.91 76.24 75.57
NER Module only 91.12 90.76 90.94 50.86 35.50 41.81 73.08 71.56 72.31
w/o Boundary Module 91.62 91.18 91.40 53.35 36.08 43.05 73.39 73.55 73.47
w/o Type Module 91.79 91.23 91.51 54.47 36.65 43.82 74.04 74.26 74.15
w/o Interaction Mechanism 92.15 91.83 91.99 56.45 37.09 44.77 74.68 75.02 74.85

Table 3: Experimental results of the ablation study of the MIN model.

The Interaction Mechanism has achieved 0.54%,
1.86% and 0.72% improvements on F1 scores for
CoNLL2003, WNUT2017 and JNLPBA respec-
tively. As it bridges the gap between the Boundary
Module and Type Module for information interac-
tion and sharing, it can help improve the perfor-
mance of boundary detection and type prediction
simultaneously.

Overall, the different components of the pro-
posed model can work effectively with each other
with multitask training and enable the model
achieve the state-of-the-art performance for the
NER task.

4.6 Performance Against Entity Length

As our proposed MIN model is capable of recog-
nizing long entities, we compare the performance
of our MIN model with RNN-BiLSTM-CRF and
HSCRF. Note that the RNN-BiLSTM-CRF model
is the base model used in our MIN model. And
the HSCRF model also considers the segment-level
and word-level information with multitask training.
The results are shown in Figure 2. The experi-
ment is conducted on the CoNLL2003 test dataset.
We follow the setting in (Ye and Ling, 2018) and
group the data according to the number of entities
from 1 to ≥ 6 in a sentence. We observe that our
MIN model and the HSCRF model consistently
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Figure 2: Performance against entity length.

outperform RNN-BiLSTM-CRF in each group. In
particular, the improvement is obvious when the
entity length is longer than 4 because both our MIN
model and the HSCRF model consider the segment-
level information. However, our MIN model per-
forms better than the HSCRF model in each group.
More specifically, when the entity length is longer
than 4, our MIN model has great improvement
over HSCRF. This is because the HSCRF model di-
rectly uses segment-level features with Semi-CRFs
to tag the segments, which ignore word-level de-
pendencies within the segment. In contrast, our
MIN model combines segment-level information
with word-level dependencies within a segment for
the NER task.
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5 Conclusion

In this paper, we have proposed a novel Modu-
larized Interaction Network (MIN) model for the
NER task. The proposed MIN model utilizes both
segment-level information and word-level depen-
dencies, and incorporates an interaction mechanism
to support information sharing between boundary
detection and type prediction to enhance the per-
formance for the NER task. We have conducted
extensive experiments on three NER benchmark
datasets. The experimental results have shown that
our proposed MIN model has achieved the state-of-
the-art performance.
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