
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2103–2115

August 1–6, 2021. ©2021 Association for Computational Linguistics

2103

BERTAC: Enhancing Transformer-based Language Models with
Adversarially Pretrained Convolutional Neural Networks

Jong-Hoon Oh§ Ryu Iida§¶ Julien Kloetzer§ Kentaro Torisawa§¶

Data-driven Intelligent System Research Center (DIRECT),
National Institute of Information and Communications Technology (NICT)§

Graduate School of Science and Technology, NAIST¶

{rovellia, ryu.iida, julien, torisawa}@nict.go.jp

Abstract

Transformer-based language models (TLMs),
such as BERT, ALBERT and GPT-3, have
shown strong performance in a wide range of
NLP tasks and currently dominate the field
of NLP. However, many researchers wonder
whether these models can maintain their dom-
inance forever. Of course, we do not have
answers now, but, as an attempt to find bet-
ter neural architectures and training schemes,
we pretrain a simple CNN using a GAN-style
learning scheme and Wikipedia data, and then
integrate it with standard TLMs. We show
that on the GLUE tasks, the combination of
our pretrained CNN with ALBERT outper-
forms the original ALBERT and achieves a
similar performance to that of SOTA. Fur-
thermore, on open-domain QA (Quasar-T and
SearchQA), the combination of the CNN with
ALBERT or RoBERTa achieved stronger per-
formance than SOTA and the original TLMs.
We hope that this work provides a hint for
developing a novel strong network architec-
ture along with its training scheme. Our
source code and models are available at
https://github.com/nict-wisdom/bertac.

1 Introduction

Transformer-based language models (TLMs) such
as BERT (Devlin et al., 2019), ALBERT (Lan
et al., 2020), and GPT-3 (Brown et al., 2020) have
shown that large-scale self-supervised pretraining
leads to strong performance on various NLP tasks.
Many researchers have used TLMs for various
downstream tasks, possibly as subcomponents of
their methods, and/or they have focused on scaling
up TLMs or improving their pretraining schemes.
As a result, other architectures like Recurrent Neu-
ral Networks (RNN) (Hochreiter and Schmidhu-
ber, 1997; Cho et al., 2014) and Convolutional
Neural Networks (CNN) (LeCun et al., 1999) are
fading away. In this work, we propose a method

!
!

!
"

!
#

!!!
" " !#

" "

!""

!""

!!!

#$%&'(

...

!!!

!"#$"#!"#$%&'()'*+

!!!

!"#$$%&%'(

)*+,-.&/(0-"

)*+,-.&/(0-1

)*+,-.&/(0-2

!"#

#$%&'(

%&$"#!"!"#$"#%"!#$!"#$"#%""

)!*+,-!"#$"#%"!)+./,-!"#$"#%"")+./,

!#!###"

01'(#1%2'"3-456#1'6-

78(6-'9:'66%;<$-

+34(%%5678

!""

!8;2'(1%;<-18-';1%13=

9#$>'6-$';1';?'$

!!!
$" !#

$"

!!!
%" !#

%"

Figure 1: Overall architecture of BERTAC under
the setting of classification for a two-sentence input
(sentencex and sentencey).

for improving TLMs by integrating a simple con-
ventional CNN to them. We pretrained this CNN
on Wikipedia using a Generative Adversarial Net-
work (GAN) style training scheme (Goodfellow
et al., 2014), and then combined it with TLMs.
Oh et al. (2019) similarly used GAN-style train-
ing to improve a QA model using a CNN, but
their training scheme was applicable only to QA-
specific datasets. On the other hand, similarly to
TLM, our proposed method for training the CNN
is independent of specific tasks. We show that the
combination of this CNN with TLMs can achieve
higher performance than that of the original TLMs
on publicly available datasets for several distinct
tasks. We hope that this gives an insight into how
to develop novel strong network architectures and
training schemes.

We call our combination of a TLM and a CNN
BERTAC (BERT-style TLM with an Adversari-
ally pretrained Convolutional neural network). Its
architecture is illustrated in Fig. 1. We do not
impose any particular restriction on the TLM in
BERTAC, so any TLM, ALBERT (Lan et al.,

2104

!"#$%"&"'()*% !

!" +')"),-&(#.+/0#+')+'$+0#10+')"),

2%+(340*%025(.+4

6+(3-+')"),-%+7%+#+')()"*'0

8+'+%()*%0"

9(.+-+')"),-%+7%+#+')()"*'0

8+'+%()*%0#

"!$"#$%+(30%+7%+#+')()"*'0
*50):+0+')"),0!

#!%"#$5(.+0%+7%+#+')()"*'0
*50):+0+')"),0!

!$%&'()'*+%!,-.,(/0(1" ![EM] ,2-3+',4')562-!',)-

,)1#()'1,0)'4-',(-+%*7"

Figure 2: GAN-style pretraining of CNNs. The dis-
criminator D takes either a real representation gener-
ated by R or a fake representation generated by F as
its input and then it predicts whether the input is a real
or fake representation.

s1 ::::::::::
Suvarnabhumi

:::::::
Airporte1 is Thailand’s main

international air hub.
m1 [EM] is Thailand’s main international air hub.
e1 Suvarnabhumi Airport

Table 1: Example of an entity-masked sentence (m1)
and the original sentence (s1)

2020) or RoBERTa (Liu et al., 2019) for example,
can be used as a subcomponent of BERTAC.

We used the CNN to compute representations
of a slightly modified version of the input given
to a TLM. To integrate these representations with
those of the TLM, we stacked on top of the TLM
several layers of Transformers for Integrating
External Representation (TIERs), which are our
modified version of normal transformers (Vaswani
et al., 2017). A TIER has the same architec-
ture as that of a normal transformer encoder ex-
cept for its attention: we replace the transformer’s
self-attention with an attention based on the rep-
resentation provided by the CNN. We expect that,
by keeping the basic architecture of transformer
encoders, the CNN’s representations can be inte-
grated more effectively with the TLM’s original
representations.

We pretrained the CNN using a GAN-style
training scheme in order to generate represen-
tations of sentences rather freely without the
constraint of token embedding prediction in the
masked language modeling used for TLMs, as we
explain later. For the training, we used masked
sentences autogenerated from Wikipedia. As in
the masked language modeling, neither human in-
tervention nor downstream task-specific hacking
is required. As illustrated in Fig. 2, the GAN-
style training requires three networks, namely, a

discriminator D and two CNN-based generators R
and F . Once the training is done, we use the gen-
erator F as CNN in BERTAC. The training data
consists of pairs of an entity mention and a sen-
tence in which the entity mention is masked with
a special token [EM]. For example, the entity-
masked sentence m1 in Table 1 is obtained by
masking the entity mention e1, “Suvarnabhumi
Airport,” in the original text s1. The network F
generates a vector representation of the masked
sentence (m1), while R produces a representation
of the masked entity (e1). The discriminator D
takes representations generated by either R or F
as the input, and it predicts which generator actu-
ally gave the representation.

In the original GAN, a generator learns to gen-
erate an artificial image from random noise so that
the resulting artificial image is indistinguishable
from given real images. By analogy, we used an
entity-masked sentence as “random noise” and a
masked entity as a “real image.” In our GAN-style
training, we regard the vector representation of a
masked entity given by generator R as a real rep-
resentation of the entity (or the representation of
the “real image” in the above analogy). On the
other hand, we regard the representation of the
masked sentence, generated by F , as a fake rep-
resentation of the entity (or the representation of
the “artificial image” generated from the “random
noise” in the above analogy). This representation
is deemed fake because the entity is masked in the
masked sentence, and F does not know what the
entity is exactly. During the training, F should try
to deceive the discriminator D by mimicking the
real representation and generating a fake represen-
tation that is indistinguishable from the real rep-
resentation of the entity generated by R. On the
other hand, R and D, as a team, try to avoid being
mimicked by F and also to make the mimic prob-
lem harder for F . If everything goes well, once
the training is over, F should be able to generate
a fake representation of the entity that is similar to
its real representation.

An interesting point is that F ’s output can be
interpreted in two ways: it is a representation of a
masked sentence because it is computed from the
sentence, and at the same time it is a representation
of the masked entity because it is indistinguishable
from R’s representation of the entity. This duality
suggests that F ’s output can be seen as a represen-
tation of the entire sentence.

2105

We exploit F as a CNN in BERTAC as follows:
first, we use F to compute a representation of a
masked version of the sentence originally given as
input to a TLM. The entity mention to be masked
is chosen by simple rules and, if the input consists
of multiple sentences, we generate a representa-
tion of each (masked) input sentence and concate-
nate these together into a single one. Then, this
representation is integrated to the output of the
TLM through multiple TIER layers.

Our GAN-style pretraining is conceptually sim-
ilar to TLM pretraining with masked language
modeling (predicting what a masked word in a
sentence should be). However, it was designed to
pretrain a model that is able to rather freely gen-
erate entity representations without strongly stick-
ing to the prediction of token embeddings. Our hy-
pothesis is that such freely generated representa-
tions may be useful for improving the performance
of downstream tasks. Moreover, we assumed that
using multiple text representations computed from
different perspectives (i.e., predicting token em-
beddings and freely generating entity representa-
tions) would help to improve the performance of
downstream tasks.

In our experiments, we show that for the GLUE
tasks (Wang et al., 2018), BERTAC’s average
performance on the development set was 0.7%
higher than that of ALBERT, which was used as
a subcomponent of BERTAC, leading to a perfor-
mance on the test set comparable to that of SOTA
(90.3% vs 90.8% (SOTA)). It also outperformed
the SOTA method of open-domain QA (Chen
et al., 2017) on Quasar-T (Dhingra et al., 2017)
and SearchQA (Dunn et al., 2017) using either
ALBERT or RoBERTa. We also compared our
method with alternative models using a CNN pre-
trained in a self-supervised (non GAN-style) man-
ner to directly predict embeddings of the entity
mentions. Consequently, we confirmed that our
method worked better: only the CNN trained by
our GAN-style pretraining gave significant perfor-
mance improvement over base TLMs.

Note that the computational overhead of
BERTAC is reasonably small. It took 20 hours
with 16 GPUs to pretrain a single CNN model and
180 hours for the nine models tested with differ-
ent parameter settings in this work (cf., 480 hours
with 96 GPUs for pretraining DeBERTa (He et al.,
2021), for example). Moreover, once pretrained,
the CNN models can be re-used for various down-

stream tasks and combined with various TLMs,
including potentially future ones. As for the pa-
rameter number, BERTAC had just a 14% increase
in parameters when ALBERT-xxlarge was used as
its base TLM (268 M parameters for BERTAC
vs. 235 M for ALBERT-xxlarge). We confirmed
from these results that BERTAC could improve
pretrained TLMs with reasonably small computa-
tional overhead.

The code and models of BERTAC are available
at https://github.com/nict-wisdom/bertac.

2 Related Work

Pretraining TLMs with entity information:
There have been attempts to explicitly learn entity
representation from text corpora using TLMs (He
et al., 2020; Peters et al., 2019; Sun et al., 2020;
Wang et al., 2020a; Xiong et al., 2020; Zhang
et al., 2019). Our proposed method is a comple-
mentary alternative to these existing methods in
the sense that entity representations are integrated
into TLMs via CNNs and not directly produced by
the TLMs.
Fine-tuning TLMs with external resources or
other NNs: Yang et al. (2019a) and Liu et al.
(2020) have used knowledge graphs for augment-
ing TLMs with entity representations during fine-
tuning. Unlike these approaches, BERTAC uses
unstructured texts rather than clean structured
knowledge, such as knowledge graphs, to adver-
sarially train a CNN. Other previous works have
proposed combining CNNs or RNNs with BERT
for NLP tasks (Lu et al., 2020; Safaya et al., 2020;
Shao et al., 2019; Zhang et al., 2020), but their use
of CNNs/RNNs was task-specific, so their models
were not directly applicable to other tasks.
Adversarial learning for improving TLMs: Oh
et al. (2019) proposed a CNN-based answer rep-
resentation generator for QA that can guess the
vector representation of answers from given why-
type questions and answer passages. The gen-
erator was trained in a GAN-style manner using
QA datasets. We took inspiration from their ad-
versarial training scheme to train task-independent
representation generators from unsupervised texts
(i.e., Wikipedia sentences in which an entity was
masked in a cloze-test style).

ELECTRA (Clark et al., 2020) also employed
an adversarial technique (not a GAN) to pretrain
two TLMs: A generator was trained to perform
masked language modeling and a discriminator

2106

was trained to distinguish tokens in the training
data from tokens replaced by the generator. On
downstream tasks, only the discriminator was fine-
tuned. In BERTAC, the GAN-style pretraining
was applied only to the CNN, thus reducing the
training cost. Furthermore, the CNN can be com-
bined easily with any available TLM, even poten-
tially future ones, without having to re-do the pre-
training. In this work, we show that BERTAC out-
performed ELECTRA on the GLUE task.

Vernikos et al. (2020) proposed a method that
used an adversarial objective and an adversarial
classifier for regularizing the fine-tuning process
of TLMs, inspired by adversarial learning for do-
main adaptation (Ganin et al., 2016). Our work
uses a GAN-style training scheme only for pre-
training CNNs, not for fine-tuning TLMs.

3 Pretraining of CNNs

This section describes the training data and train-
ing algorithm for our CNN.

3.1 Training data

We pretrained our CNN with an entity-masked
version of Wikipedia sentences. WikiExtractor1

was used to extract, from the English Wikipedia2,
sentences that have at least one entity mention,
i.e., an entity with an internal Wikipedia link.
Then we randomly selected one entity mention ei
in each sentence and generated an entity-masked
sentence mi by replacing the entire selected men-
tion with [EM]. For example, we generated the
masked sentence m1, “[EM] is Thailand’s main
international air hub,” (in Table 1) by replacing
the entity mention e1, Suvarnabhumi Airport, in
the sentence s1, “

:::::::::::::
Suvarnabhumi

:::::::
Airport is Thai-

land’s main international air hub,” with [EM]. We
obtained about 43.3 million pairs of an entity men-
tion and a masked sentence ({(ei, mi)}) in this
way and used 10% of them (randomly sampled)
as the pretraining data for our CNN.

3.2 GAN-style pretraining

As illustrated in Fig. 2, the adversarial train-
ing is done using three subnetworks: R (real-
entity-representation generator), F (fake-entity-
representation generator), and D (discriminator).
R and F are CNNs with average pooling and D

1https://github.com/samuelbroscheit/wikiextractor-
wikimentions

2We used the September 2020 version.

is a feedforward neural network. Once the train-
ing is done, we use the generator F as CNN in
BERTAC. In the training, we regard the represen-
tation of a masked entity output by generator R
as a real representation of the entity that the fake-
entity-representation generator F should mimic.
F is trained so that, taking an entity-masked sen-
tence as its input, it can generate a representation
of the masked entity mention (called a fake repre-
sentation of the entity in this work) that D cannot
distinguish from the real representation. The rep-
resentation generated by F is fake in the sense that
the entity mention is masked in the input sentence
and F cannot know what it is exactly.

As mentioned in the Introduction, our GAN-
style pretraining was designed to train a model ca-
pable of freely generating entity representations.
We assumed that using multiple text representa-
tions computed from different perspectives (i.e.,
prediction of token embeddings in TLMs and
generation of entity representations in our CNN)
would help to improve the performance of down-
stream tasks.

Algorithm 1: Adversarial Training Scheme
Input: Training examples {(e,m)}, training epochs t,

mini-batch steps b, mini-batch size n
Output: Real representation generator R, fake

representation generator F , discriminator D
1 j ← 1
2 Initialize θR, θF , and θD (parameters of R, F , and D)

with random weights
3 while j ≤ t do
4 k ← 1
5 while k ≤ b do
6 Sample mini-batch of n examples {(ei,mi)}ni=1

7 Generate word embeddings {(ei,mi)}ni=1 of the
examples.

8 Update D and R by ascending their stochastic
gradient:

∇θD,θR

1

n

n∑
i=1

[logD(R(ei)) + log
(
1−D(F (mi))

)
]

9 Update F by descending its stochastic gradient:

∇θF

1

n

n∑
i=1

log
(
1−D(F (mi))

)
10 k ← k + 1
11 end
12 j ← j + 1
13 end

For each pair of an entity mention (ei) and an
entity-masked sentence (mi) in the training data,
we first generate two matrices of word embed-
dings ei and mi using word embeddings pretrained
on Wikipedia with fastText (Bojanowski et al.,
2017). Then, R and F generate, respectively, a

2107

real entity representation from ei and a fake entity
representation from mi. Finally, they are given
to D, which is a feed-forward network that judges
whether F or R generated the representations, i.e.,
whether the representations are real or fake, us-
ing sigmoid outputs by the final logistic regression
layer.

The pseudo code of the training scheme is given
in Algorithm 1. The training proceeds as fol-
lows: R and D as a team try to avoid the possi-
bility that D misjudges F’s output (i.e., a fake en-
tity representation) as a real entity representation.
More precisely, R and D are trained so that D
can correctly judge the representation R(ei) given
by generator R as real (i.e., D(R(ei)) = 1) and
the representation F (mi) given by generator F as
fake (i.e., D(F (mi)) = 0). Therefore, the train-
ing is carried out with the objective of maximizing
logD(R(ei))+ log

(
1−D(F (mi))

)
(line 8 in Al-

gorithm 1). On the other hand, F tries to generate
representation F (mi) so that D judges it as real
(i.e., D(F (mi)) = 1). Thus, F is trained to mini-
mize log

(
1−D(F (mi))

)
(line 9 in Algorithm 1).

This minmax game is iterated for the pre-specified
t training epochs.

3.3 Pretraining settings

We extracted 43.3 million pairs of an entity men-
tion and a masked sentence from Wikipedia and
randomly sampled 10% of them to use as train-
ing data (4.33 million pairs, around 700 MB in
file size). We used word-embedding vectors in
300 dimensions (for 2.5 million words) pretrained
on Wikipedia using fastText (Bojanowski et al.,
2017). The embedding vectors were fixed during
the training.

We set the training epochs to 200 (t = 200 in
Algorithm 1) and did not use any early-stopping
technique. We chose t = 200 from the results
of our preliminary experiments in which we used
10% of the training data and set training epochs t
to either of 100, 200, or 300; the loss robustly con-
verged for t = 200 and t = 300, and thus the ear-
liest point t = 200 was chosen. We used the Rm-
sProp optimizer (Tieleman and Hinton, 2012) with
a batch size of 4,000 (n = 4, 000 and b = 1, 084
in Algorithm 1) and a learning rate of 2e-4. We
trained nine CNN models with all combinations
of the filter’s window sizes ∈ {“1,2,3”, “2,3,4”,
“1,2,3,4”} and number of filters ∈ {100, 200, 300}
for the generators F and R. All of the weights in

the CNNs were initialized using He’s method (He
et al., 2015). We used a logistic regression layer
with sigmoid outputs as discriminator D. The
training of a single CNN model took around 20
hours using 16 Nvidia V100 GPUs with 32 GB of
memory (180 hours in total for the nine models).

We tested all nine CNN models for BERTAC
in our GLUE and open-domain QA experiments
(Section 5). For each task, the parameters in-
side the CNNs (as well as the word-embedding
vectors) were fixed during the fine-tuning of
BERTAC.

4 BERTAC

As illustrated in Fig. 1, BERTAC (BERT-style
TLM with an Adversarially pretrained Convolu-
tional neural network) incorporates the representa-
tion provided by the adversarially pretrained CNN
to the representation generated by a TLM. For the
integration, we use several layers of TIERs (Trans-
formers for Integrating External Representation)
stacked on top of the TLM.

4.1 CNN in BERTAC
For simplicity, we describe how the CNN is inte-
grated in BERTAC using the task of recognizing
textual entailment (RTE) as an example. BERTAC
for the RTE task takes two sentences sx and sy
as input and predicts whether sx entails sy. First,
we explain how the adversarially pretrained CNN
(generator F in Section 3.2) generates the repre-
sentation of the two input sentences. We regard
the longest common noun phrase3 of the two sen-
tences as the entity mention to be masked and cre-
ate entity-masked sentences mx and my from sx
and sy by masking the noun phrase with [EM]
(we use mx = sx and my = sy if no common
noun phrase is found). Then each of the masked
sentences mx and my is given to the CNN. Our
expectation here is that the CNN generates similar
representations from the masked sentences if they
have an entailment relation and that this helps to
recognize the entailment relation.

Note that the CNN in BERTAC is connected to
several TIER layers and that, as shown in Fig. 1,
its input is iteratively updated so that it provides
updated representations to the TIER layers. Let
mi

x ∈ R|mx|×dw and mi
y ∈ R|my |×dw be the ma-

trices of word embeddings of mx and my given
3For single-sentence tasks such as CoLA (Wang et al.,

2018), we regard the longest noun phrase in a sentence as
an entity.

2108

to the CNN connected to the i-th TIER layer,
where dw is the dimension of a word embed-
ding. We denote the representation generated by
the CNN when the matrix of word embeddings
m was used as the input by CNN(m). The i-
th TIER layer is given the concatenation of the
two CNN representations of mx and my, ri =
[rix, riy] ∈ R2×de , where rix = CNN(mi

x) ∈ Rde ,
riy = CNN(mi

y) ∈ Rde and de is the dimension
of the CNN representation. Note that, for single-
sentence tasks, ri = rix, the CNN representation
of mx, is given to the TIER layers.

The initial matrices of word embeddings m1
x

and m1
y are obtained using the fastText word em-

beddings (Bojanowski et al., 2017), the same as
that used in our adversarial learning. Then, the up-
dated input matrices mi+1

x and mi+1
y for the (i+1)-

th CNN are obtained from the i-th input matrices
mi

x and mi
y as described below. For the word em-

bedding mi
x,j of the j-th word in mx, we compute

its bilinear score to rix (Sutskever et al., 2009):

m̄i
x,j = softmaxj(miT

x Bi
xrix)m

i
x,j ,

where Bi
x ∈ Rdw×de is a trainable matrix and

softmaxj(v) denotes the j-th element of the soft-
maxed vector of v. The bilinear score indicates
how much the corresponding token should be
highlighted as one associated with the CNN repre-
sentation rix during the update process. We expect
that this allows the CNN in the next TIER layer
to generate further refined representations with the
updated embeddings.

We then compute word embeddings mi+1
x in a

highway network manner (Srivastava et al., 2015)
as follows:

mi+1
x = Hx(m̄i

x)⊙Tx(mi
x)+mi

x⊙(1−Tx(mi
x)),

where Hx(mi
x) = Wi

hmi
x + bi

h, Tx(mi
x) =

σ(Wi
tmi

x + bi
t), σ is the sigmoid function, ⊙ rep-

resents the element-wise product, and Wi
h, Wi

t,
bi
h, and bi

t are layer-specific trainable parameters.
mi+1

y is also computed from mi
y and riy in the

same way. During the fine-tuning of BERTAC
for downstream tasks, we fix the parameters of the
pretrained CNN but train these parameters for up-
dating CNN’s input alongside those of TLMs and
TIERs.

4.2 Transformers for integrating external
representation (TIERs)

As explained in the Introduction, the main differ-
ence between a TIER and a normal transformer

!"#$#%&'()*#+,-./01&

2.3&$45

64*7

214"#

r K V

MatMul

64&60"J

2.3&$45

64*7

214"#

Q K V

64&60"

64&60"

!"#$%&&'(&)*($)($

(*+,"-$&+"(./*+,'+.

!0#$%&&'(&)*($)($*1+$

2345.

Figure 3: Attention in normal transformers and TIERs

encoder (Vaswani et al., 2017) lies in the attention
mechanism. In the TIER attention mechanism, the
query representation, which is one of the three in-
puts of the transformer’s self-attention, is replaced
with the representation given by the CNN.

Fig. 3 shows the difference between the TIERs’
attention computation and that of normal trans-
formers. Attention in normal transformers is com-
puted in the following way:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V.

Q, K, and V are query, key, and value matrices in
Rlk×dk , where lk is the length of an input sequence
and dk is a dimension of keys. Q, K, and V all
come from the same representation of the token
sequence provided from the previous transformer
layer. The attention should specify how much the
corresponding tokens in V should be highlighted,
so we designed ours in the same way.

In TIERs, we use the following attention. We
basically replace the matrix Q with the CNN’s rep-
resentation r ∈ Ru×dk while keeping the original
K and V, where u is the number of sentences in
the input of the model (u ∈ {1, 2} in this paper).

Attention(r,K,V) = (softmax(
rKT

√
dk

))TJu,dk⊙V.

Since r is a matrix with a different size from
Q, we needed to adapt the attention computa-
tion. We first multiply r to KT, and then its soft-
maxed results are converted into a lk × dk dimen-
sional matrix using the all-one matrix Ju,dk ∈
Ru×dk . Let the resulting matrix be A =

(softmax(rKT
√
dk
))TJu,dk ∈ Rlk×dk . We apply the at-

tention score to V by using the element-wise prod-
uct between matrices: A ⊙ V.

2109

In addition, the actual CNN’s representation
rCNN ∈ Ru×de given by our CNNs usually have
a size that does not match the size requirement
for r. Thus, we convert it to r ∈ Ru×dk , a dk-
column matrix as follows: r = rCNNW + b,
where W ∈ Rde×dk and b are trainable.

5 Experiments

We tested our model on GLUE and on open-
domain QA. In this section, we report the results.

5.1 GLUE
GLUE (Wang et al., 2018) is a multi-task bench-
mark composed of nine tasks including two single-
sentence tasks (CoLA and SST-2) and seven
two-sentence tasks of similarity/paraphrase tasks
(MRPC, QQP, and STS-B) and natural language
inference tasks (MNLI, QNLI, RTE, and WNLI).
Following the previous work of ALBERT (Lan
et al., 2020), we performed single-task fine-tuning
for each task under the following settings: single-
model for the development set and ensemble for
test set submissions. As in Liu et al. (2019) and
Lan et al. (2020), we report the performance on
the development set for each task by averaging
over five runs with different random initialization
seeds. As in Lan et al. (2020), for test set sub-
missions, we fine-tuned the models for the RTE,
STS-B, and MRPC tasks by initializing them with
the fine-tuned MNLI single-task model, and we
also used task-specific modification for CoLA and
WNLI to improve scores (see Appendix A for de-
tails). We explored ensemble settings between 6
and 30 models per task for our test set submission.

5.1.1 Fine-tuning details of BERTAC for
GLUE

We used ALBERT-xxlarge-v2 (Lan et al., 2020)
as the pretrained TLM. As hyperparameters for
BERTAC, for each task we tested learning rates
∈ {8e-6, 9e-6, 1e-5, 2e-5, 3e-5}, a linear warmup
for the first 6% of steps followed by a linear de-
cay to 0, a maximum sequence length of 128, and
all nine CNNs pretrained with different filter set-
tings. We set the batch size to 128 for MNLI
and QQP and 16 for the other tasks. Further-
more, we trained our model with the following set
of training epochs: {1,2,3,4,5} for MNLI, QQP,
and QNLI, {6,7,8,9,10} for CoLA, MRPC, RTE,
SST-2, and STS-B, and {90,95,100,105,110} for
WNLI. We set the number of TIER layers to 3 af-
ter preliminary experiments. See Table 9 in Ap-

pendix B for a summary of the hyperparameters
tested in the GLUE experiments.

During the fine-tuning of BERTAC, the parame-
ters inside the CNNs (as well as word embeddings
of fastText) were fixed as explained in Section 3.3,
while those used to update the input to the CNNs
were optimized. For each task, we selected the
pretrained CNN (out of nine) and the BERTAC hy-
perparameters that gave the best performance on
the development data.

5.1.2 Results
Table 2 shows the results of eight tasks on the
GLUE development set: all of them are single-
model results. Our BERTAC consistently out-
performed the previous TLM-based models over
seven tasks, except for QQP, and, as a result,
showed the best average performance on the de-
velopment set. Crucially, our model improved
the average performance around 0.7% over AL-
BERT, the base TLM in our model. This indicates
the effectiveness of adversarially trained CNNs
and TIERs in BERTAC. The test set results ob-
tained from the GLUE leaderboard are summa-
rized in Table 3. Our model showed comparable
performance to SOTA, DeBERTa/TuringNLRv4,
and achieved state-of-the-art results on 3 out of 9
task. It also showed better performance than AL-
BERT, our base TLM, in most tasks.

To investigate whether our GAN-style pretrain-
ing of CNNs contributed to the performance im-
provement, we also tested the following alter-
native training schemes for the CNN used in
BERTAC.

Self-supervised CNN: We pretrained the CNN
to generate representations of a masked sentence
in a self-supervised way as follows: For an entity
mention e and an entity-masked sentence m in the
training data (Section 3.1), the CNN generates a
representation r from the masked sentence trying
to minimize MSE (mean squared error) between r
and the entity mention’s representation e (average
word embedding of all tokens in e).

Randomly initialized CNN: We did not pre-
trained the CNNs, but trained them alongside the
TLMs during the fine-tuning of BERTAC (the
CNNs were randomly initialized).

We trained both the self-supervised and ran-
domly initialized CNNs using the same hyperpa-
rameter settings as GAN-style CNNs (see Sec-
tion 3.3). We confirm from the results in Table 4

2110

Models MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.
RoBERTaLARGE 90.2/90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9
XLNETLARGE 90.8/90.8 94.9 92.3 85.9 97.0 90.8 69.0 92.5 89.2
ELECTRALARGE 90.9/- 95.0 92.4 88.0 96.9 90.8 69.1 92.6 89.5
ALBERTXXLARGE 90.8/- 95.3 92.2 89.2 96.9 90.9 71.4 93.0 90.0
DeBERTaLARGE 91.1/91.1 95.3 92.3 88.3 96.8 91.9 70.5 92.8 90.0
BERTACXXLARGE 91.3/91.1 95.7 92.3 89.9 97.2 92.4 73.7 93.1 90.7

Table 2: GLUE dev set results. The results of RoBERTa (Liu et al., 2019), XLNET (Yang et al., 2019b), ELEC-
TRA (Clark et al., 2020), ALBERT (Lan et al., 2020), and DeBERTa (He et al., 2021) were taken from their papers.
We omit the results of the WNLI task, since many previous works did not report the dev set results.

Models MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B WNLI Score
Ensembles on test (from leaderboard as of Feb. 1, 2021)
ALBERT 91.3/91.0 - 90.5 89.2 97.1 91.2 69.1 92.0 91.8 -
ELECTRA+Standard Tricks 91.3/90.8 95.8 90.8 89.8 97.1 90.7 71.7 92.5 91.8 89.4
ERNIE 91.4/91.0 96.6 90.9 90.9 97.5 91.4 74.4 92.6 94.5 90.4
StructBERT+TAPT 90.9/90.7 97.4 91.0 91.2 97.3 91.9 75.3 92.7 94.5 90.6
MacALBERT+DKM 91.3/91.1 97.8 90.6 92.0 97.0 92.6 74.8 92.6 94.5 90.7
DeBERTa/TuringNLRv4 91.9/91.6 99.2 90.8 93.2 97.5 92.0 71.5 92.6 94.5 90.8
BERTAC 91.1/91.6 97.9 90.6 90.4 97.5 91.7 72.3 92.8 94.5 90.3

Table 3: GLUE test set results. Our model for test set results incorporates task-specific modification for CoLA and
WNLI to improve scores (see Appendix A for details). All results are from the GLUE leaderboard.

that only the proposed method with our GAN-
style CNNs showed a higher average score than
ALBERT. This suggests the effectiveness of our
GAN-style pretraining scheme of CNNs.

5.2 Open-domain QA

We also tested BERTAC on open-domain
QA (Chen et al., 2017) with the publicly available
datasets Quasar-T (Dhingra et al., 2017) and
SearchQA (Dunn et al., 2017). We used the
pre-processed version4 of the datasets provided
by Lin et al. (2018), which contains passages
retrieved for all questions, and followed their data
split as described in Table 5.

5.2.1 BERTAC for open-domain QA

We implemented our QA model following the ap-
proach of Lin et al. (2018), which combines a pas-
sage selector to choose relevant passages from re-
trieved passages and an answer span selector to
identify the answer span in the selected passages.
For the given question q and the set of retrieved
passages P = {pi}, we computed the probability
Pr(a|q, P) of extracting answer span a to ques-
tion q from P in the following way, and then we
extracted the answer span â with the highest prob-
ability:

Pr(a|q, P) =
∑
i

Pr(a|q, pi)Pr(pi|q, P),

4Available at https://github.com/thunlp/OpenQA

where Pr(pi|q, P) and Pr(a|q, pi) are computed
by the passage selector and answer span selector,
respectively.

We input “[CLS] question [SEP] passage
[SEP]” to both the passage selector and answer
span selector, where [CLS] and [SEP] are spe-
cial tokens. In the passage selector, the represen-
tation of [CLS] in the top TIER layer is fed into
a linear layer with a softmax, which computes the
probability that the passage contains a correct an-
swer to the question. Our BERTAC answer span
selector identifies answer spans from passages by
computing start and end probabilities of each to-
ken in passages, where we feed the representation
of each token in the top layer of TIERs to two lin-
ear layers, each with a softmax for the probabili-
ties (Devlin et al., 2019).

5.2.2 Training details for open-domain QA
We used all nine pretrained CNNs, as in the
GLUE experiments. As pretrained TLMs, we
used ALBERT-xxlarge-v2 (Lan et al., 2020) and
RoBERTa-large (Liu et al., 2019). We set the
learning rate to 1e-5, the number of epochs to
2, the maximum sequence length to 384, and the
number of TIER layers to 3. We used a linear
warmup for the first 6% of steps followed by a lin-
ear decay to 0 with a batch size of 48 for Quasar-
T and 96 for SearchQA. We tested all of the pre-
trained CNNs and chose for each dataset the one
that maximizes EM (the percentage of the predic-
tions matching exactly one of the ground truth an-

2111

CNNs used in BERTAC MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.
Proposed (GAN-style CNN) 91.3/91.1 95.7 92.3 89.9 97.2 92.4 73.7 93.1 90.7
Self-supervised CNN 91.0/90.8 95.3 91.5 88.4 96.6 90.9 71.1 93.0 89.8
Randomly initialized CNN 91.0/90.7 95.4 91.4 87.4 96.3 91.2 71.5 93.1 89.8
ALBERTXXLARGE 90.8/- 95.3 92.2 89.2 96.9 90.9 71.4 93.0 90.0

Table 4: Comparison of BERTAC results in different CNN settings on GLUE dev set.

Train Dev Test #p
Quasar-T 37,012 3,000 3,000 100
SearchQA 99,811 13,893 27,247 50

Table 5: Number of questions in each dataset. #p is the
number of retrieved passages for each question.

Non-TLM-based methods
OPENQA (Lin et al., 2018): An RNN-based method
that jointly learns passage-selection and answer extrac-
tion.
OPENQA+ARG (Oh et al., 2019): An extension of
OPENQA that additionally uses an answer representation
generator (ARG) trained by adversarial learning.
TLM-based methods
WKLM (Xiong et al., 2020): This uses a TLM pre-
trained with a weakly supervised objective for learning
Wikipedia entity information. BERT-base was used for
the training.
MBERT (Wang et al., 2019): A BERT-based method
that extracts answers using globally normalized answer
scores across all the passages retrieved by the same ques-
tion. BERT-large was used for the training.
CFORMER (Wang et al., 2020b): It uses a clustering-
based sparse transformer for long-range dependency en-
coding. The method was trained using RoBERTa-large.

Table 6: Compared QA methods

swers) on the development set. See Table 10 in
Appendix B for a summary of the hyperparame-
ters tested for open-domain QA.

5.2.3 Results
We compared BERTAC with the previous works
described in Table 6. Table 7 shows the per-
formance of all of the methods. The sub-
scripts of the TLM-based methods represent the
type of pretrained TLM used by each method.
All the methods were evaluated using EM and
F1 score (average overlap between the predic-
tion and gold answer). BERTACALBERT-xxlarge

outperformed all of the baselines including the
SOTA method (CFORMER) on both EM and F1.
BERTACRoBERTa-large in the same TLM setting
as the SOTA method showed a better performance
than SOTA except for F1 in Quasar-T. These re-
sults suggest that our framework is effective for
QA tasks as well.

For ablation studies, we evaluated some vari-
ants of BERTACALBERT-xxlarge: “w/o CNN and

Model Quasar-T SearchQA
EM F1 EM F1

OPENQA 42.2 49.3 58.8 64.5
OPENQA+ARG 43.2 49.7 59.6 65.3
WKLMBERT-base 45.8 52.2 61.7 66.7
MBERTBERT-large 51.1 59.1 65.1 70.7
CFORMERRoBERTa-large 54.0 63.9 68.0 75.1
BERTACRoBERTa-large 55.8 63.7 71.9 77.1
BERTACALBERT-xxlarge 58.0 65.8 74.0 79.2

Table 7: QA test set results. Figures of the previous
works were taken from their original papers.

Model Quasar-T SearchQA
EM F1 EM F1

BERTACALBERT-xxlarge 58.0 65.8 74.0 79.2
w/o CNN and TIER 55.6 63.5 72.7 78.0
w/o GAN-style CNN 56.1 63.9 73.1 78.4
w/o update 56.8 65.0 73.3 78.5

Table 8: Ablation test results.

TIER,” which uses ALBERT-xxlarge alone with-
out using our CNN and TIER, “w/o GAN-style
CNN,” which does not use our CNN pretrained
by the GAN-style training scheme but uses self-
supervised CNNs (the same as used in the GLUE
experiments, see Table 4), “w/o update,” which
does not perform layer-wise update of the CNN
inputs. The results in Table 8 suggest that all of
the following contributed to the performance im-
provement: the combination of TLMs and GAN-
style CNNs, our GAN-style training of CNNs, and
the layer-wise update of the CNN inputs.

6 Conclusion

We proposed BERTAC (BERT-style TLM with an
Adversarially pretrained Convolutional neural net-
work), a combination of a TLM and a CNN, where
the CNN was pretrained using a novel GAN-style
training scheme and masked sentences obtained
automatically from Wikipedia. Using this CNN,
we improved the performance of standard TLMs.
We confirmed that BERTAC could achieve com-
parable performance with the SOTA and outper-
formed the base TLM used as a subcomponent
of BERTAC in the GLUE task. We also show
that BERTAC outperformed the SOTA method of
open-domain QA on Quasar-T and SearchQA.

2112

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Siddhartha Brahma. 2018. Unsupervised learning
of sentence representations using sequence consis-
tency. CoRR, abs/1808.04217.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot
learners. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open–
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre–
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Bhuwan Dhingra, Kathryn Mazaitis, and William W
Cohen. 2017. Quasar: Datasets for question an-
swering by search and reading. arXiv preprint
arXiv:1707.03904.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
Güney, Volkan Cirik, and Kyunghyun Cho.

2017. SearchQA: A new Q&A dataset aug-
mented with context from a search engine. CoRR,
abs/1704.05179.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario March, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks.
Journal of Machine Learning Research, 17(59):1–
35.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems, volume 27, pages 2672–2680.
Curran Associates, Inc.

Bin He, Di Zhou, Jinghui Xiao, Xin Jiang, Qun
Liu, Nicholas Jing Yuan, and Tong Xu. 2020.
BERT-MK: Integrating graph contextualized knowl-
edge into pre-trained language models. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2281–2290.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classifica-
tion. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ICCV ’15,
pages 1026–1034, Washington, DC, USA. IEEE
Computer Society.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-
enhanced BERT with Disentangled Attention. In
International Conference on Learning Representa-
tions.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.

Yann LeCun, Patrick Haffner, Léon Bottou, and
Yoshua Bengio. 1999. Object recognition with
gradient-based learning. In Shape, contour and
grouping in computer vision, pages 319–345.
Springer.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun.
2018. Denoising distantly supervised open-domain
question answering. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2018, pages 1736–1745.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-BERT:
Enabling language representation with knowledge
graph. In Proceedings of AAAI 2020.

2113

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhibin Lu, Pan Du, and Jian-Yun Nie. 2020. VGCN-
BERT: augmenting BERT with graph embedding for
text classification. In Advances in Information Re-
trieval - 42nd European Conference on IR Research,
ECIR 2020, Lisbon, Portugal, April 14-17, 2020,
Proceedings, Part I, volume 12035 of Lecture Notes
in Computer Science, pages 369–382. Springer.

Jong-Hoon Oh, Kazuma Kadowaki, Julien Kloetzer,
Ryu Iida, and Kentaro Torisawa. 2019. Open–
domain why-question answering with adversarial
learning to encode answer texts. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4227–4237.

Matthew E. Peters, Mark Neumann, Robert Logan,
Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. 2019. Knowledge enhanced con-
textual word representations. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 43–54.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research,
21(140):1–67.

Ali Safaya, Moutasem Abdullatif, and Deniz Yuret.
2020. KUISAIL at SemEval-2020 task 12: BERT-
CNN for offensive speech identification in social
media. In Proceedings of the Fourteenth Workshop
on Semantic Evaluation, pages 2054–2059.

Bo Shao, Yeyun Gong, Weizhen Qi, Nan Duan, and
Xiaola Lin. 2019. Aggregating bidirectional en-
coder representations using MatchLSTM for se-
quence matching. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6059–6063.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmid-
huber. 2015. Training very deep networks. In Ad-
vances in Neural Information Processing Systems,
volume 28, pages 2377–2385.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. ERNIE
2.0: A continual pre-training framework for lan-
guage understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 8968–
8975.

Ilya Sutskever, Joshua B. Tenenbaum, and Ruslan R
Salakhutdinov. 2009. Modelling relational data us-
ing bayesian clustered tensor factorization. In Ad-
vances in Neural Information Processing Systems
22, pages 1821–1828. Curran Associates, Inc.

T. Tieleman and G. Hinton. 2012. Lecture 6.5—
RmsProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Giorgos Vernikos, Katerina Margatina, Alexandra
Chronopoulou, and Ion Androutsopoulos. 2020.
Domain Adversarial Fine-Tuning as an Effective
Regularizer. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 3103–
3112. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2020a. K-adapter: Infusing
knowledge into pre-trained models with adapters.
CoRR, abs/2002.01808.

Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun
Chen, Yuwei Fang, Siqi Sun, Yu Cheng, and
Jingjing Liu. 2020b. Cluster-former: Clustering-
based sparse transformer for long-range dependency
encoding. arXiv preprint arXiv:2009.06097.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nalla-
pati, and Bing Xiang. 2019. Multi-passage BERT:
A globally normalized BERT model for open-do-
main question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5878–5882. Association
for Computational Linguistics.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020.

2114

An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu,
Hua Wu, Qiaoqiao She, and Sujian Li. 2019a. En-
hancing pre-trained language representations with
rich knowledge for machine reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2346–2357.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019b. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. In Advances in
Neural Information Processing Systems 32, pages
5754–5764.

Shaohua Zhang, Haoran Huang, Jicong Liu, and Hang
Li. 2020. Spelling error correction with soft-masked
BERT. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2020, Online, July 5-10, 2020, pages 882–
890. Association for Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 1441–1451.

A Task-specific Modification for GLUE
Test-set Submission

We applied task-specific modification to WNLI
and CoLA in the GLUE tasks to achieve com-
petitive GLUE leaderboard results, i.e., the test
set submission results presented in Table 3. For
WNLI, we followed Raffel et al. (2020), while, for
CoLA, we propose our own modification. Note
that we did not apply the tricks in obtaining the re-
sults on the development set results shown in Ta-
ble 2. In the following, we describe the tricks.

A.1 WNLI
WNLI is a coreference resolution task with a two-
sentence input. The first sentence has an ambigu-
ous pronoun and the second sentence is generated
from the first sentence by replacing the pronoun
with one of the possible referents (noun phrases)
in the first sentence (Wang et al., 2018). In this
task, we must predict whether the candidate ref-
erent in the second sentence is the correct refer-
ent of the pronoun. Since the format of WNLI
is known for being difficult to learn by a model,
many previous works, including those using AL-
BERT, RoBERTa, or T5 (Liu et al., 2019; Lan
et al., 2020; Raffel et al., 2020), converted the data
to a simpler format before training their WNLI
model for GLUE test-set submission.

Following these approaches, we also converted
the data in the same way as Raffel et al. (2020).
First, we extract candidate referents for an am-
biguous pronoun as follows. Suppose that the
following sentence pair of s1 and s2 is from the
WNLI task’s data and has the label correct (mean-
ing that Susan in s2 is the correct referent of the
pronoun she in s1).

s1: Jane knocked on Susan’s door but she
did not get an answer.

s2: Susan did not get an answer.

We first find all of the pronouns in the first sen-
tence (“she” in s1). For each pronoun, we find
the longest sequence of words that precedes or
follows the pronoun in the first sentence and that
also appears in the second sentence (“did not get
an answer” underlined in s1 and s2). We then
choose the pronoun that precedes or follows the
longest matching word sequence and obtain a can-
didate referent by deleting the matched sequence
of words from the second sentence. In the exam-
ple sentence pair (s1, s2), we choose the pronoun
she from the first sentence (since there is a single
pronoun) and obtain the candidate referent Susan
from the second sentence through this process. Fi-
nally, we convert the original sentence pair into a
pair of a masked sentence and a candidate refer-
ent by replacing the pronoun in the first sentence
with [MASK] and replacing the second sentence
with the extracted referent. The (s1, s2) pair is
thus changed to the following (s′1, s′2):

s′1: Jane knocked on Susan’s door but [MASK]
did not answer.

s′2: Susan

Note that [MASK] in the sentence is different
from the entity mask [EM] used in our GAN-
style training for CNNs. For the input to our
CNNs, we further replaced [MASK] with [EM].
Since the format of this converted data is simi-
lar to that of the training data for the GAN-style
training scheme of our CNN, we expect that by
using this data conversion, BERTAC can more ef-
fectively predict whether the candidate referent for
the masked pronoun is correct.

A.2 CoLA
In the CoLA task, we need to predict whether a
given sentence is grammatically acceptable. For

2115

MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B WNLI
Learning rate {8e-6, 9e-6,1e-5, 2e-5, 3e-5}
Batch size 128 16
Training epoch {1,2,3,4,5} {6,7,8,9,10} {90,95,100, 105,110}
TIER layer 3
Max sequence length 128
Warmup step linear warmup for the first 6% of steps
CNN 9 models pretrained with different filter settings

Table 9: Hyperparameters of BERTAC tested for GLUE experiments.

Quasar-T SearchQA
Learning rate 1e-5
Batch size 48 96
Training epoch 2
TIER layer 3
Max sequence length 384
Warmup step linear warmup for the first 6% of steps
CNN 9 models pretrained with different filter settings

Table 10: Hyperparameters of BERTAC tested for open-domain QA experiments.

this task, we conducted a two-step fine-tuning. In
the first step, we fine-tuned BERTAC with au-
tomatically generated pseudo-training data. This
data was prepared as described below, and does
not include the original CoLA training data. In
the second step, we further fined-tuned the model
obtained in the first step using the original CoLA
training data. The BERTAC model obtained at this
second step was used for the test-set submission.

To automatically generate pseudo-training data,
we regarded all of the sentences in the training
data of MNLI, QQP, and QNLI as grammatically
acceptable and used them as positive examples
in the pseudo-training data. After removing du-
plicate sentences, for each positive example, we
generated one negative example by modifying the
positive example under the assumption that the
modification makes the generated example gram-
matically unacceptable. As a modification, we
randomly applied one of the following three op-
erations: permutation (of four words randomly se-
lected), insertion (of two random words to random
positions), and deletion (of two randomly selected
words) (Brahma, 2018).

We obtained about 2.14 million examples in this
way, half of them positives and the other half neg-
atives. We used all of the training samples auto-
matically generated in this way for the first-step
fine-tuning of BERTAC, with a learning rate of
8e-6, a single training epoch, and a batch size of
128, while applying the same settings for the other
hyperparameters as those used for the other tasks.
The model obtained by the first-step fine-tuning is

then used as a starting point for the second-step
fine-tuning, using the original CoLA training data
this time, of our final model for CoLA.

B Hyperparameters

Hyperparameters of BERTAC tested for GLUE
and open-domain QA experiments are summa-
rized in Tables 9 and 10, where CNN represents
CNN models pretrained with different filter set-
tings (filter’s window sizes ∈ {“1,2,3”, “1,2,3,4”,
“2,3,4”} and number of filters ∈ {100, 200, 300})
described in Section 3.3. We tested all combina-
tions of these hyperparameters and chose the best
one using the development set of each task.

