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Abstract

It is a common belief that training deep trans-
formers from scratch requires large datasets.
Consequently, for small datasets, people usu-
ally use shallow and simple additional lay-
ers on top of pre-trained models during fine-
tuning. This work shows that this does not al-
ways need to be the case: with proper initial-
ization and optimization, the benefits of very
deep transformers can carry over to challeng-
ing tasks with small datasets, including Text-
to-SQL semantic parsing and logical reading
comprehension. In particular, we success-
fully train 48 layers of transformers, com-
prising 24 fine-tuned layers from pre-trained
RoBERTa and 24 relation-aware layers trained
from scratch. With fewer training steps and
no task-specific pre-training, we obtain the
state-of-the-art performance on the challeng-
ing cross-domain Text-to-SQL parsing bench-
mark Spider1. We achieve this by deriving
a novel Data-dependent Transformer Fixed-
update initialization scheme (DT-Fixup), in-
spired by the prior T-Fixup work (Huang et al.,
2020). Further error analysis shows that in-
creasing depth can help improve generaliza-
tion on small datasets for hard cases that re-
quire reasoning and structural understanding.

1 Introduction

In recent years, large-scale pre-trained language
models (Radford et al., 2019; Devlin et al.,
2018; Liu et al., 2019b) trained with transform-
ers (Vaswani et al., 2017) have become standard
building blocks of modern NLP systems to help
improve generalization when task-specific annota-
tions are limited. In practice, it has been found
that deeper transformers generally yield better re-
sults with sufficient training data (Lan et al., 2019),

∗Work done while the author was an intern in Borealis AI.
1The code to reproduce our results can be found in:

https://github.com/BorealisAI/DT-Fixup

especially on tasks involving reasoning and struc-
tural understanding. This suggests that additional
transformer layers should be employed in conjunc-
tion with pre-trained models, instead of simple and
shallow neural components, such as a classifier
head, currently used by models of many NLP tasks.
However, the common belief in the literature is that
training deep transformers from scratch requires
large datasets, and few attempts have been made on
small datasets, to the best of our knowledge. One
implication is that although extra transformer lay-
ers on top of pre-trained models should help with
more challenging problems in principle, it does
not work in practice due to limited training data.
We show that after resolving several optimization
issues with the method proposed in this work, it
is possible to train very deep transformers with
improved generalization even on small datasets.

One advantage of pre-trained models is the re-
duced computational resources needed when fine-
tuning on small datasets. For instance, it allows
practitioners to finetune on a single GPU and obtain
strong performance on a downstream task. How-
ever, the large size of pre-trained models limits the
batch size that can be used in training new trans-
former layers on a small computational budget. De-
spite their broad applications, training transformer
models is known to be difficult (Popel and Bojar,
2018). The standard transformer training approach
leverages learning rate warm-up, layer normaliza-
tion (Ba et al., 2016) and a large batch size, and
models typically fail to learn when missing any
one of these components. The restricted batch size
aggravates the training difficulties. Even if a large
batch size can be feasibly employed, poorer gener-
alization results are often observed (Keskar et al.,
2016), especially when the dataset size is only sev-
eral times larger than the batch size. Furthermore,
many recent works noticed a performance gap in
this training approach due to layer normalization

https://github.com/BorealisAI/DT-Fixup
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(Xu et al., 2019; Nguyen and Salazar, 2019; Zhang
et al., 2019a; Wang et al., 2019b; Liu et al., 2020;
Huang et al., 2020).

Inspired by the recent T-Fixup by Huang et al.
(2020), which eliminates the need for learning rate
warm-up and layer normalization to train vanilla
transformers, we derive a data-dependent initial-
ization strategy by applying different analyses to
address several key limitations of T-Fixup. We
call our method the Data-dependent Transformer
Fixed-update initialization scheme, DT-Fixup. In
the mixed setup of additional yet-to-be-trained
transformers on top of pre-trained models, DT-
Fixup enables the training of significantly deeper
transformers, and is generally applicable to differ-
ent neural architectures. Our derivation also ex-
tends beyond vanilla transformers to transformers
with relational encodings (Shaw et al., 2018), al-
lowing us to apply the results to one variant called
relation-aware transformer (Wang et al., 2019a).
By applying DT-Fixup on different tasks, we show
that the impression that deep transformers do not
work on small datasets stems from the optimization
procedure rather than the architecture. With proper
initialization and optimization, training extra trans-
former layers is shown to facilitate the learning of
complex relations and structures in the data.

We verify the effectiveness of DT-Fixup on Spi-
der (Yu et al., 2018), a complex and cross-domain
Text-to-SQL semantic parsing benchmark, and
ReColr (Yu et al., 2020b), a reading comprehension
dataset requiring logical reasoning. While Text-to-
SQL semantic parsing is inherently different from
reading comprehension, they share similar charac-
teristics which require certain levels of reasoning
and structural understanding ability. Meanwhile,
the sizes of both datasets are less than 10k training
samples, which is tiny by deep learning standards
and renders large-batch training undesirable due to
poor generalization2.

On both datasets, DT-Fixup consistently out-
performs the standard approach with better gen-
eralization and allows the training of significantly
deeper transformer models. For Spider, we suc-
cessfully apply DT-Fixup to train a Text-to-SQL
parser containing 48 transformer layers, with 24
relation-aware layers trained from scratch on top
of 24 pre-trained layers from pre-trained RoBERTa

2For a comparison, T-Fixup applies batch sizes of more
than 1k on machine translation to stabilize the training, which
would hurt the generalization significantly on our datasets
whose sizes are less than 10k.

(Liu et al., 2019b). Our parser achieves 70.9% ex-
act match accuracy on the Spider test set, which
is the state of the art at the time of writing. At the
same time, it requires less training steps and no
task-specific pre-training as compared to the prior
art (Yu et al., 2020a). For ReClor, we rank the
second on the public leaderboard by simply adding
4 transformer layers on top of RoBERTa. Further
error analysis shows that the performance improve-
ments by increasing the depth mainly come from
better generalization on the harder cases requiring
reasoning and structural understanding. Even the
failed predictions from the deep models are more
reasonable than from the shallow ones.

2 Background

In this section, we present the necessary back-
ground by first introducing the relation-aware trans-
former layer, which outperforms the vanilla trans-
former layer with limited data by injecting addi-
tional inductive bias (Wang et al., 2019a). Then,
we introduce the T-Fixup technique (Huang et al.,
2020) for optimizing deeper vanilla transformers
and discuss why it does not directly apply in the
mixed transformer optimization setup.

2.1 Relative Position and Relational
Encodings in Transformers

Consider a set of inputs X = [xxx1, . . . ,xxxn] where
xxxi ∈ Rdx . A transformer, introduced by Vaswani
et al. (2017), is a stack of blocks, with each block
consisting of a multi-head self-attention layer, layer
normalizations, a multi-layer perceptron and skip
connections. Each block (with one head in self-
attention for notational simplicity) transforms each
xxxi into yyyi ∈ Rdx as follows:

αij = softmax
(
xxxiqqq(xxxjkkk)>

/√
dz

)
(1)

zzzi =
∑n

j=1αijxxxjvvv; (2)

ỹ̃ỹyi = LayerNorm(xxxi + zzziwww
>) (3)

yyyi = LayerNorm(ỹ̃ỹyi + MLP(ỹ̃ỹyi)) (4)

where the softmax operation is applied across the
index j, MLP is a two-layer perceptron, Layer-
Norm is a layer normalization (Ba et al., 2016)
layer, and qqq,kkk,vvv ∈ Rdx×dz ,www ∈ Rdx×dz .

In order to bias the transformer toward some
pre-existing relational features between the inputs,
Shaw et al. (2018) described a way to represent rel-
ative position information in a self-attention layer



2091

by changing Equation 1-2 as follows:

αij = softmax

(
xxxiqqq(xxxjkkk + rrrkij)

>
√
dz

)
zzzi =

∑n
j=1αij(xxxjvvv + rrrvij)

(5)

Here the rrrij ∈ Rdz terms encode the known re-
lationship between two elements xxxi and xxxj in the
input. Wang et al. (2019a) adapted this framework
to effectively encode the schema information using
rrrij’s for Text-to-SQL parsers, and called it relation-
aware transformer (RAT).

2.2 T-Fixup and its Limitations
Huang et al. (2020) found that the requirement
for the warmup during the early stage training of
the transformers comes from a combined effect
of high variance in the Adam optimizer and back-
propagation through layer normalization. Bound-
ing the gradient updates would reduce the variance
and make training stable, which can be achieved
by appropriately initializing the model weights.

They derived a weight initialization scheme
called T-Fixup for the vanilla transformer that fully
eliminates the need for layer normalization and
learning rate warmup, and stabilizes the training
to avoid harmful plateaus of poor generalization.
T-Fixup requires the inputs xxx to be Gaussian ran-
domly initialized embeddings with variance d−

1
2

where d is the embedding dimension. Then, the
input and parameters of the encoder, xxx, vvv,www in the
vanilla self-attention blocks as well as the weight
matrices in the MLP blocks defined in Eq. 1-4 are
re-scaled by multiplying with a factor of 0.67N−

1
4 ,

where N are the number of transformer layers.
However, there are two restrictions of T-Fixup

narrowing down the range of its application. First,
T-Fixup is only designed for vanilla transformer
but not other variants like the relative position or
relation-aware version described previously. Sec-
ond, they make the critical assumption that the
inputs xxx can be freely initialized then scaled to
the same magnitude as vvv, www and MLP weights.
This renders the method inapplicable for the mixed
setup where the inputs to the yet-to-be-trained trans-
former layers depend on the outputs from the pre-
trained models. The first issue can be addressed by
re-deriving the scaling factor following the method-
ology of T-Fixup but taking into account the addi-
tional relational term. However, to lift the second
restriction requires changing the assumption and
more dramatic modification to the analysis.

Figure 1: Illustration of the general neural architecture
on which our method can be applied.

3 Our Approach

We now follow the analysis framework of T-Fixup
(Huang et al., 2020), but derive the conditions to
bound the gradient updates of the self-attention
block in the presence of a pre-trained model. Based
on the derivation, we propose a data-dependent
initialization strategy for the mixed setup of the
new transformers on pre-trained encodings.

3.1 Applicable Architectures
Our analysis applies to the general architecture
type illustrated in Figure 1, where the input passes
through a pre-transformer, a main transformer, and
a post-transformer module before outputting. The
pre and post transformer modules can be any ar-
chitectures that can be stably trained with Adam
(Kingma and Ba, 2014), including MLP, LSTM,
CNN, or a pre-trained deep transformer module
which can be stably fine-tuned with a learning rate
significantly smaller than the main learning rate
used for the main transformer module. For this
work, we will just consider the case of the main
transformer containing only the encoder for sim-
plicity, while our decoder will be an LSTM which
can be viewed as part of the post-transformer mod-
ule. Extending our analysis to include deep trans-
former decoder is straightforward following the
framework of Huang et al. (2020).

We use fe to denote the pre-transformer mod-
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ule (e for pre-trained encoder), and its parameters
θθθe; similarly fo for post-transformer module (o for
output) with parameters θθθo. The main transformer
module fG is a stack of L transformer blocks, each
consisting of a self-attention block and a MLP
block. Let Gl, l = 1, . . . , 2N denote individual
self-attention or MLP layers in the blocks (Gl’s do
not include the skip connections), with parameters
θθθl and let L = 2N , fG’s parameters are denoted

by θθθG =
L⋃
l=1

θθθl.

3.2 Theoretical Results for Stable Update
Let the whole model with the output softmax
layer(s) and all layer normalization blocks removed
be denoted by f(·;θθθ) and the loss function by L,
where θθθ are all the learnable parameters. Follow-
ing Huang et al. (2020), we aim to derive a condi-
tion under which, per each SGD update with learn-
ing rate η, the model output changes by Θ(η), i.e.
‖∆f‖ = Θ(η) where ∆f = f(·;θθθ−η ∂L

∂θθθ
)−f(·;θθθ).

By Taylor expansion, the SGD update is:

∆f =
∂f

∂θθθo
∆θθθo +

∂f

∂θθθG
∆θθθG +

∂f

∂θθθe
∆θθθe+

O(‖θθθo‖2 + ‖θθθG‖2 + ‖θθθe‖2)

=− η(
∂fo
∂θθθo

∂fo
∂θθθo

> ∂L
∂fo

>
+

∂fo
∂fG

∂fG
∂θθθG

∂fG
∂θθθG

> ∂fo
∂fG

> ∂L
∂fo

>
+

∂fo
∂fG

∂fG
∂fe

∂fe
∂θθθe

∂fe
∂θθθe

>∂fG
∂fe

> ∂fo
∂fG

> ∂L
∂fo

>
)

+O(η2) (6)

As assumed in Sec. 3.1, we can stably train fe
and fo coupled with L, i.e, ‖ ∂L

∂fo
‖ = ‖ ∂fo

∂θθθo
‖ =

‖ ∂fe
∂θθθe
‖ = ‖ ∂fo∂fG

‖ = ‖∂fG∂fe
‖ = Θ(1), we only

need to bound the magnitudes of ∂fG
∂θθθG

to bound
the overall SGD update. Since what we care
is the magnitude of the update as it relates to
the depth, we can assume all parameters to be
scalars, i.e, qqql, kkkl, vvvl,wwwl, rrr

k
l , rrr

v
l reduce to scalars

ql, kl, vl, wl, r
k
l , r

v
l ∈ R. The next theorem states

the condition under which, ‖ ∂fG
∂θθθG
‖ is bounded by

Θ(1), achieving the overall ‖∆f‖ = Θ(η).

Theorem 3.1 Assuming ‖xxx‖ = Θ(µ) for some
µ � 1, then ‖ ∂fG

∂θθθG
‖ = Θ(1) if ‖vl‖ = ‖wl‖ =

‖rvl ‖ = Θ
(

((4µ2 + 2µ+ 2)N)−
1
2

)
for all en-

coder layers l in relation-aware transformers; and

‖vl‖ = ‖wl‖ = Θ
(

(4µ2N)−
1
2

)
in the case of

vanilla transformers.

The proof is in Appendix A. One important imme-
diate observation is that our scaling as the depth
N is to the power of −1/2, whereas T-Fixup has a
scaling with power of −1/4.

While this theorem is all we need for deriving
our DT-Fixup approach, it is not immediately in-
tuitive. So next we inspect what it takes to bound
the change in a individual layer output ‖∆Gl‖ to
Θ(η/L) in each gradient update. This will shine
some light on the particular form of the expressions
in Theorem 3.1:

Theorem 3.2 Let xxxxxxxxxl = [xl1, . . . , x
l
n] be the input

into l-th layer, and assume that ‖∂L/∂Gl‖ = Θ(1),
i.e. the gradient signal from the layers above is
bounded, then ∆Gl = Gl(xxxl−η ∂L

∂xxxl
;θθθl−η ∂L

∂θθθl
)−

Gl(xxxl;θθθl) satisfies ‖∆Gl‖ = Θ(η/L) when for all
i = 1, . . . , n:

2‖vl‖2‖xli‖2 + 2‖vl‖‖rvl ‖‖xli‖+ ‖rvl ‖2

+ ‖wl‖2(1 + 2‖xli‖2) = Θ(1/N)
(7)

for relation-aware transformers. Alternatively, in
the case of vannilla transformers:

‖vl‖2‖xli‖2 + ‖wl‖2‖xli‖2 = Θ(1/L) (8)

In this case, the proof is straightforward by taking
partial derivatives ofGl with respect to each param-
eter, and keep the terms with the lowest powers as
they dominate the norm when the scale is smaller
than one. Appendix B gives the detailed proof. The
insight from this theorem is: if the input xxxl has
the same norm as xxx, setting parameters vl, wl, r

v
l to

have the same norm and solve the equations would
yield the scale factors in Theorem 3.1.

Remark: In T-Fixup, the corresponding condi-
tion to Eq. 8 keeps the term ‖vl‖2‖wl‖2 which is
dropped by ours. It is due to the fact that T-Fixup
assumes ‖xi‖ can be controlled to be the same scale
as vl and wl, so the lowest power terms (which are
dominating the norms here) are the quartic (4th
power) ones. For us, ‖xxx‖ is treated separately by
a constant to be estimated from data, so the lowest
power terms are the quadratic ones in vl, wl, r

v
l in

Eq. 7 and 8, and ‖vl‖2‖wl‖2 are dropped. Another
important distinction from T-Fixup is that we as-
sume the estimated ‖xxx‖ to be much larger than the
scale of vl and wl, unlike the case when they are
also controlled to be the same scale. As we will
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see next, these changes imply our proposed method
employs more aggressive scaling for initialization
as compared to T-Fixup, and the assumption that
‖xxx‖ has larger scale is satisfied naturally.

3.3 Proposed Method: DT-Fixup

Unlike previous works (Zhang et al., 2019b; Huang
et al., 2020), appropriate initialization is not enough
to ensure Eq. 7 and 8 during the early stage of the
training. This is due to the fact that the input xxx
often depends on the pre-trained model weights
instead of being initialized by ourselves. Empiri-
cally, we observe that the input norm ‖xxx‖ are rela-
tively stable throughout the training but difficulty
to control directly by re-scaling. Based on this ob-
servation, we treat ‖xxx‖ as a constant and estimate
it by a forward pass on all the training examples
as µ = maxj [‖xxxj‖]. We then use this estimated µ
in the factors of Theorem 3.1 to obtain the scaling
needed for initialization. Since parameters of all
layers are initialized to the same scale, we drop
index l for brevity in this section. In practice, µ is
on the order of 10 for pre-trained models, hence
v, w and rvi are naturally two orders of magnitude
smaller. DT-Fixup is described as follows:

• Apply Xavier initialization (Glorot and Ben-
gio, 2010) on all free parameters except
loaded weights from the pre-training models;

• Remove the learning rate warm-up and all
layer normalization in the transformer layers,
except those in the pre-trained transformer;

• Forward-pass on all the training examples to
get the max input norm µ = maxj [‖xxxj‖];

• Inside each transformer layer, scale v, w, rv

in the attention block and weight matrices in
the MLP block by (N ∗ (4µ2 + 2µ + 2))−

1
2

for relation-aware transformer layer; or scale
v, w in the attention block and weight ma-
trices in the MLP block by N−

1
2 /(2µ) for

vanilla transformer layer.

4 Applications

4.1 Text-to-SQL Semantic Parsing

We first apply DT-Fixup on the task of cross-
domain Text-to-SQL semantic parsing. Given an
unseen schema S for a database during training,
our goal is to translate the natural question Q to
the target SQL T . The correct prediction depends

on the interplay between the questions and the
schema structures and the generalization over un-
seen schemas during inference. As a result, rea-
soning and structural understanding are crucial to
perform well on this task, especially for the more
challenging cases. We denote our baseline model
as SQL-SP3 and henceforth.

Implementation. For modeling Text-to-SQL
generation, we adopt the encoder-decoder frame-
work which can be directly fit into the architecture
shown in Fig. 1. First, the pre-transformer module
fe is a pre-trained language model which embeds
the inputs Q and S into joint representations xxxi
for each column, table si ∈ S and question word
qi ∈ Q respectively. The joint representations are
passed into a sequence of N relation-aware trans-
former layers. The post-transformer module fo is
a grammar-guided LSTM decoder, which uses the
transformer output yyyi to predict the target SQL T .
We follow prior arts (Wang et al., 2019a; Guo et al.,
2019; Yin and Neubig, 2018) to implement SQL-
SP. The implementation details and hyperparameter
settings are described in Appendix C.

Dataset. We evaluate SQL-SP on Spider (Yu
et al., 2018), a complex and cross-domain Text-
to-SQL semantic parsing benchmark. The dataset
size is relatively small by deep learning standards,
with only 10,181 questions and 5,693 queries cov-
ering 200 databases in 138 domains.

4.2 Logical Reading Comprehension

The second task where we apply DT-Fixup is multi-
choice reading comprehension requiring logical
reasoning. Given a context, a question and four op-
tions, the task is to select the right or most suitable
answer. Rather than extracting relevant informa-
tion from a long context, this task relies heavily on
the logical reasoning ability of the models.

Implementation. On top of the pre-trained en-
codings of the input context, question and options,
a stack of N vanilla transformer layers are added
before the final linear layer which gives the pre-
dictions. The implementation details and hyper-
paramter settings are described in Appendix D

Dataset. We evaluate on ReClor (Yu et al.,
2020b), a newly curated reading comprehension
dataset requiring logical reasoning. The dataset
contains logical reasoning questions taken from

3SQL Semantic Parser.
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standardized exams (such as GMAT and LSAT)
that are designed for students who apply for admis-
sion to graduate schools. Similar to Spider, this
dataset is also small, with only 6,139 questions.

5 Experiments

All the experiments in this paper are conducted
with a signle 16GB Nvidia P100 GPU.

5.1 Semantic Parsing: Spider Results

As the test set of Spider is only accessible through
an evaluation server, most of our analyses are per-
formed on the development set. We use the exact
match accuracy4 on all examples following Yu et al.
(2018), which omits evaluation of generated values
in the SQL queries.

Model Dev Test
RAT-SQL v3 + BERT (Wang et al., 2019a) 69.7 65.6
RAT-SQL + GraPPa (Yu et al., 2020a) 73.4 69.6
RAT-SQL + GAP (Shi et al., 2020) 71.8 69.7
RAT-SQL + GraPPa + GP (Zhao et al., 2021) 72.8 69.8
SGA-SQL + GAP (Anonymous) 73.1 70.1
RAT-SQL + GraPPa + Adv (Anonymous) 75.5 70.5
DT-Fixup SQL-SP + RobERTa (ours) 75.0 70.9

Table 1: Our accuracy on the Spider development and
test sets, as compared to the other approaches at the top
of the Spider leaderboard as of May 27th, 2021.

Model N Pretrain Epochs Acc.
RAT-SQL + BERT 8 ∼ 200 69.7
RAT-SQL + RoBERTa 8 ∼ 200 69.6
RAT-SQL + GraPPa 8 X ∼ 100 73.4
RAT-SQL + GAP 8 X ∼ 200 71.8
SQL-SP + RoBERTa 8 60 66.9
+ More Epochs 8 100 69.2
+ DT-Fixup 8 60 73.5
+ DT-Fixup & More Layers 24 60 75.0
+ T-Fixup∗ & More Layers 24 60 Failed

Table 2: Comparisons with the models leveraging re-
lational transformers on the Spider development set.
Pretrain here denotes task-specific pre-training, which
leverges additional data and tasks, and is orthorgonal
to our contribution. Not only we converge faster and
reach better solution, simply training longer from the
same baseline cannot close the performance gap. ∗We
drop the constraints on the inputs to allow the applica-
tion of T-Fixup in the mixed setup.

We present our results on the Spider leader-
board5 in Table 1, where SQL-SP trained with DT-
Fixup outperforms all the other approaches and

4We use the evaluation script provided in this repo:
https://github.com/taoyds/spider

5https://yale-lily.github.io/spider

achieves the new state of the art performance. No-
tably, the top four submissions on the previous
leaderboard are all occupied by models leveraging
relation-aware transformers and task-specific pre-
training. Table 2 compares our proposed models
with the publicly available works. With enough
training steps, our baseline model trained with the
standard optimization strategy achieves the same
level of performance as compared to RAT-SQL.
However, models trained with standard optimiza-
tion strategy obtain much lower performance with
the same epochs6 of training as compared to models
trained with DT-Fixup and require more training
steps to achieve the best accuracy. At the same
time, by adding more relation-aware transformer
layers, further gains can be obtained for models
trained with DT-Fixup, which achieves the state-
of-the-art performance without any task-specific
pre-training on additional data sources. As men-
tioned in Section 2.2, in the mixed setup, there is
no way to apply T-Fixup as it was originally pro-
posed. The closest thing to compare is to drop its
constraints on the inputs, but training then becomes
highly unstable and fails to converge 4 times out
of 5 runs. These results demonstrate the necessity
and effectiveness of DT-Fixup to improve and ac-
celerate the transformer training for Text-to-SQL
parsers.

Model Easy Medium Hard Extra All
Dev
RAT-SQL 86.4 73.6 62.1 42.9 69.7
Bridge (ensemble) 89.1 71.7 62.1 51.8 71.1
DT-Fixup SQL-SP 91.9 80.9 60.3 48.8 75.0
Test
RAT-SQL 83.0 71.3 58.3 38.4 65.6
Bridge (ensemble) 85.3 73.4 59.6 40.3 67.5
DT-Fixup SQL-SP 87.2 77.5 60.9 46.8 70.9

Table 3: Breakdown of Spider accuracy by hardness.

Table 3 shows the accuracy of our best model
as compared to other approaches7 with different
level of hardness defined by Yu et al. (2018). We
can see that a large portion of the improvement of
our model comes from the medium level on both
dev and test set. Interestingly, while our model
obtains similar performance for the extra hard level
on the dev set, our model performs significantly
better on the unseen test set. As most of the extra

6One epoch iterates over the whole training set once. Wang
et al. (2019a) trained with a batch size of 20 for 90,000 steps,
which is around 200 epochs on the Spider training set. Yu
et al. (2020a) trained with a batch size of 24 for 40, 000 steps,
which is around 100 epochs on the Spider training set.

7We choose the top two submissions which also report the
breakdown of the accuracy on the test set.
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hard cases involves implicit reasoning steps and
complicated structures, it shows that our proposed
models possess stronger reasoning and structural
understanding ability, yielding better generalization
over unseen domains and database schemas.

5.2 Reading Comprehension: ReClor Results

Model Dev Test
no extra layers∗ (Yu et al., 2020b) 62.6 55.6
no extra layers 63.6 56.2
4 extra layers 66.2 58.2
4 extra layers + DT-Fixup 66.8 61.0

Table 4: Our accuracy on ReClor. Star∗ is the best base-
line model result reported in (Yu et al., 2020b) without
using the additional RACE dataset (Lai et al., 2017).

For ReClor, we choose the best model in Yu
et al. (2020b) as the baseline which employs a lin-
ear classifier on top of RoBERTa. From the re-
sults presented in Table 4, we can see that simply
stacking additional vanilla transformer layers out-
performs the baseline and adding DT-Fixup further
improves the accuracy, which ranks the second on
the public leaderboard at the time of this submis-
sion8. The result further validates the benefit of
adding extra transformer layers and the effective-
ness of DT-Fixup.

5.3 Ablation Studies
For fair comparisons and better understanding, we
conduct multiple sets of ablation with the same
architecture and implementation to validate the ad-
vantages of DT-Fixup over the standard optimiza-
tion strategy. Note that, the batch sizes in our exper-
iments are relatively small (16 for Spider and 24 for
ReClor) due to the size of the pre-trained models,
while batch sizes for masked language modelling
(Liu et al., 2019b) and machine translation (Huang
et al., 2020) are commonly larger than 1024.

Deeper Models. As we can see from Table 5, the
standard optimization strategy fails completely to
train deep transformers whose depths are larger
than 8 on both Spider and ReClor, showing that it
struggles to properly train the transformer model
as the depth increases. At the same time, DT-Fixup
can successfully train deeper transformers up to 32
layers and consistently achieves better performance
than models trained by the standard optimization
strategy with the same depth on both Spider and
ReClor. With DT-Fixup, deep models generally

8https://eval.ai/web/challenges/challenge-page/503/

achieve better performance than the shallow ones
even there are only thousands of training exam-
ples. It contradicts the common belief that increas-
ing depth of the transformer model is helpful only
when there are enough training data.

Faster Convergence. Demonstrated by the vali-
dation curves on Spider plotted in Figure 2, models
trained with DT-Fixup converges to the same level
of performance much faster than models trained
with the standard optimization strategy. While stan-
dard optimization strategy struggles as the models
become deeper, DT-Fixup can keep the model train-
ing smooth, showing that DT-Fixup can effectively
accelerate the convergence of the transformer train-
ing, especially for the deep ones.

Batch Sizes When Dataset Size is Small. As
shown in Table 7, increasing batch size on Spi-
der from 16 to 120, the average performance from
five runs drops from 73.24 to 71.08 and the gap
with the standard training approach becomes much
narrower. It empirically verifies that large-batch
training has a negative impact on the generalization
when the dataset size is small, confirming the need
to stablize small batch training.

5.4 Source of the Improvements
From the results on the Spider benchmark, we
can see significant improvements by applying DT-
Fixup and increasing the depth of the transformer
model. However, why and where they help Text-
to-SQL semantic parsing are still unclear. As an
attempt to answer these questions, we investigate
into the predicted results from three variants of our
proposed model: Baseline, the best model (N = 4)
trained with the standard training approach; Shal-
low, a shallow model (N = 4) trained with DT-
Fixup; Deep, our best model (N = 24) trained
with DT-Fixup, which is much deeper.

To better understand the models’ behavior, we
manually examine all the failed cases predicted by
these models and classify the errors into four cat-
egories: 1) Correct: equivalent in meaning but
with different SQL syntax (e.g., ORDER BY X
LIMIT 1 and SELECT MIN(X)); 2) Column:
the SQL structure is correct but there existed mis-
predicted columns; 3) Sketch: the SQL structure
is predicted different from the ground truth, while
the aligned column prediction are correct; 4) Both:
there exist both sketch and column errors in the
prediction. Table 6 presents the overall statistics
of our error analysis. Due to logically equivalent
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N Standard DT-Fixup
Spider

2 69.47± 0.30 70.73± 0.18
4 70.04± 0.33 72.22± 0.61
8 66.86± 0.16 73.24± 0.51

16 20.44± 1.11 73.52± 0.47
24 19.37± 0.16 73.79± 0.49
32 19.57± 0.43 73.02± 0.52

ReClor
4 64.05± 0.44 64.31± 0.68
8 56.96± 6.12 65.31± 0.62

16 27.10± 1.50 65.68± 1.12

Table 5: Ablation on the number of
transformer layers N . The means and
standard deviations are reported based
on 5 runs with different random seeds.

Figure 2: Validation curves on Spider for models trained with different
settings.

Base Shallow Deep
False neg. 39 35 42
Column err. only 51 60 53
Sketch err. only 92 83 77
Both err. 124 105 88
All 306 283 260

Table 6: Failures in each category.
Figure 3: Error breakdown on exam-
ples where all models are wrong.

Figure 4: Error breakdown on exam-
ples where any model is wrong.

Model Batch Size Acc
8 extra layers + Standard 16 69.60± 0.40
8 extra layers + DT-Fixup 16 73.24± 0.51
8 extra layers + DT-Fixup 120 71.08± 0.37

Table 7: Ablation on the batch sizes for the Spider
dataset. To enable large-batch training, we implement
the trick of gradient accumulation at the expense of
training speed. The means and standard deviations are
reported based on 5 runs with different random seeds.

queries, there are a number of false negatives for
all three models, confirming that the current Spi-
der evaluation metric is not ideal. At first glance,
the improvements by applying DT-Fixup and in-
creasing the depth seem to come from correcting
Sketch and Both errors, while the three models
make similar number of Column only errors. It
provides evidence that applying DT-Fixup and in-
creasing the depth can help the transformer model
handle hard examples which are mispredicted com-
pletely (errors in Both category) by the baseline
model. Typically, correct predictions on these hard
examples require a certain level of reasoning and
structural understanding ability.

Fine-grained Error Analysis. In order to better
understand the errors made, we look into the com-

position of error types by each model on mistaken
examples common to all models, as well as on ex-
amples where at least one model is wrong. In Fig.
3-4, “Column” means “proportion with column er-
rors” (i.e., Column or Both); “Sketch” means “pro-
portion with sketch errors” (i.e., Sketch or Both).
There are 190 examples mispredicted by all the
three models and 387 examples which at least one
of the three models mispredict. Fig. 3-4 exclude
false negatives due to equivalent logic queries, we
can see the real improvements from the deep model
are even more significant than what the exact match
accuracy shows. Furthermore, among the common
mistakes to all three models, the deep model has
a much smaller proportion in the sketch mistakes
which usually involve more logic and structure un-
derstanding. Some of column mistakes are due
to missing domain knowledge or common sense,
which is harder to improve without external data or
knowledge. This shows that even among the failed
cases, deeper transformer model can make more
reasonable predictions.

6 Related Work

Many research efforts have been devoted to un-
derstanding the training and improving the opti-
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mization of the transformer models. In particu-
lar, transformer models often fail to learn unless
a gradual learning rate warm-up is applied at the
beginning of training. Chen et al. (2018); Nguyen
and Salazar (2019); Wang et al. (2019b) noticed a
performance gap due to layer normalization, and
introduced various architecture changes as remedy.
Zhang et al. (2019b,a); Liu et al. (2020) proposed
initialization schemes to stabilize training, allow-
ing either to remove layer normalization or learning
rate warmup. Liu et al. (2019a) demonstrated the in-
stability of the Adam optimizer during early stages
of optimization. Based on these results, Huang et al.
(2020) proposed a weight initialization schema for
the transformer that eliminates the need for layer
normalization and warmup completely.

7 Conclusion

Despite the broad applications of the transformer
model, it struggles to perform well for some NLP
tasks with limited training data. In this work, we
propose a theoretically justified optimization strat-
egy DT-Fixup to train deeper transformer model
with improved generalization and faster conver-
gence speed on small datasets, which is generally
applicable to different neural architectures. On
two important tasks, Text-to-SQL semantic pars-
ing and logical reading comprehension that require
reasoning and structural understanding, applying
DT-Fixup achieves SOTA or near-SOTA results by
simplying using extra transformer layers on top of
the pre-trained models. Such observations suggest
even boarder applicability of deeper transformers.
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A Full Proof
Theorem 3.1 Assuming ‖xxx‖ = Θ(µ) for some µ � 1, then ‖ ∂fG

∂θθθG
‖ = Θ(1) if ‖vl‖ = ‖wl‖ = ‖rvl ‖ =

Θ
(

((4µ2 + 2µ+ 2)N)−
1
2

)
for all encoder layers l in relational transformers; and ‖vl‖ = ‖wl‖ =

Θ
(

(4µ2N)−
1
2

)
in the case of vanilla transformers.

Proof. First, let’s inspect the feedforward pass through the transformer blocks, which have nonlinear
layers Gl’s and skip connections: xxx1 = xxx; xxx2 = xxx1 +G1(xxx1, θθθ1); . . . ; xxxl+1 = xxxl +Gl(xxxl, θθθl) For
l%2 = 1 (i.e. odd layers), Gl is a (relational) self-attention layer, whereas for even layers, Gl is a MLP
layer. Using Θ

= to denote bounded in norm as in Huang et al. (2020), then at initialization:

xxxl+1
Θ
= xxxl + vlwlxxxl + wlr

v
l For relational self-attention (9)

xxxl+1
Θ
= xxxl + vlwlxxxl For vanilla self-attention and MLP (10)

This is due to the fact that the probability from softmax sums to one, so does not alter the overall norm;
at initialization, values are at the linear identity range of the nonlinearities. Therefore, for all three
types of layers: ∂xxxl+1

∂xxxl

Θ
= 1 + vlwl and ∂Gl

∂xxxl

Θ
= vlwl. And for relational self-attention: ∂xxxl+1

∂θθθl
= ∂Gl

∂θθθl
Θ
=

[wlxxxl, vlxxxl + rvl , wl,000], where 000 are due to q, k, rrrk which appear only inside the softmax and do not
asymptotically affect the norm. And for vanilla self-attention and MLP, ∂xxxl+1

∂θθθl
= ∂Gl

∂θθθl
Θ
= [wlxxxl, vlxxxl,000].

Next, let’s look at ∂fG
∂θθθG

= [∂fG
∂θθθ1

, . . . , ∂fG
∂θθθl

, . . . , ∂fG
∂θθθL

]. First note that:

fG(xxx,θθθG) = xxx1 +G1(xxx1, θθθ1) +G2(xxx2, θθθ2) + . . .+GL(xxx2, θθθL) (11)

Working backwards, for the last layer, ∂fG
∂θθθL

= ∂GL

∂θθθL
. For ∂fG

∂θθθl
, terms with index lower than l vanish, so:

∂fG/∂θθθl = ∂Gl/∂θθθl + ∂Gl+1/∂xxxl+1∂xxxl+1/∂θθθl + . . .+ ∂GL/∂xxxL∂xxxL/∂xxxL−1 . . . ∂xxxl+1/∂θθθl (12)
Θ
= (1 + vl+1wl+1 + . . .+ vLwL(1 + vL−1wL−1) . . . (1 + vl+1wl+1)) ∂Gl/∂θθθl (13)

Assuming v1
Θ
= v2 . . .

Θ
= vL and w1

Θ
= w2 . . .

Θ
= wL, and both� 1, then the above reduces to:

∂fG/∂θθθl
Θ
= (1 + (L− l)vlwl)∂Gl/∂θθθl (14)

Recall that we want to bound ∂fG
∂θθθG

∂fG
∂θθθG

>
=
∑

l
∂fG
∂θθθl

∂fG
∂θθθl

>
. For vanilla self-attention or MLP layers:

∂fG
∂θθθl

∂fG
∂θθθl

>
Θ
=
(
‖wl‖2‖xxxl‖2 + ‖vl‖2‖xxxl‖2

)
(1 + (L− l)‖vl‖‖wl‖)2 (15)

And for relational self-attention:

∂fG
∂θθθl

∂fG
∂θθθl

>
Θ
=
(
‖wl‖2‖xxxl‖2+‖vl‖2‖xxxl‖2+2‖vl‖‖xxxl‖‖rvl ‖+‖rvl ‖2+‖wl‖2

)
(1+(L−l)‖vl‖‖wl‖)2 (16)

At initialization, we want vl, wl, rvl of all layers to have the same norm, i.e. ‖vl‖
Θ
= ‖wl‖

Θ
= ‖rvl ‖

Θ
=

‖vj‖
Θ
= ‖wj‖

Θ
= ‖rvj ‖ for all l and j, so denoting them using ξ. And recall that N is the number of

transformer blocks, with each block containing two layers, so that 2N = L. So we have:

∂fG
∂θθθG

∂fG
∂θθθG

>
Θ
=
∑

l%2=0

(
2ξ2‖xxxl‖2

) (
1+(L−l)ξ2

)
+
∑

l%2=1

(
2ξ2‖xxxl‖2+2ξ2‖xxxl‖+2ξ2

)(
1+(L−l)ξ2

)
Θ
=
∑N

l=1

(
4ξ2‖xxxl‖2 + 2ξ2‖xxxl‖+ 2ξ2

)
(1 + (2N − l)ξ2) (17)

Similarly if fG is vanilla transformer instead of a relational one, we have:

∂fG
∂θθθG

∂fG
∂θθθG

>
Θ
=
∑N

l=1

(
4ξ2‖xxxl‖2

)
(1 + (2N − l)ξ2) (18)
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The only variable that still depends on l is xxxl, which by expanding the recursion in Eq. 9-10, gives:

xxxl
Θ
= (1 + ξ2)lxxx

Θ
= (1 + lξ2 + Θ(ξ4))xxx For vanillla transformer (19)

xxxl
Θ
= (1 + ξ2)lxxx+ l/2ξ2

Θ
= (1 + lξ2 + Θ(ξ4))xxx+ l/2ξ2 For relational transformer (20)

Now let ‖xxx‖ Θ
= µ , and we have assumed that µ � 1, which is very common for output of pre-trained

encoders, and due to the high dimensionality. And let

ξ =
(
N(4µ2 + 2µ+ 2)

)− 1
2 (21)

Then substituting it into Eq. 19-20, we have xxxl
Θ
= xxx for all types of layers. Similarly, plugging Eq. 21 into

the expression (1 + (2N − l)ξ2) in Eq. 17 yields (1 + (2N − l)ξ2) Θ
= 1, together with xxxl

Θ
= xxx, and Eq.

21, Eq. 17 becomes:

∂fG
∂θθθG

∂fG
∂θθθG

>
Θ
=
∑N

l=1

4µ2

N (4µ2 + 2µ+ 2)
+

2µ

N (4µ2 + 2µ+ 2)
+

2

N (4µ2 + 2µ+ 2)

Θ
=
∑N

l=11/N = Θ(1)

This concludes the proof for relational transformers. For vanilla transformers, with ξ =
(
N(4µ2)

)− 1
2 ,

and following the same steps, but plugging into Eq. 18, we have ∂fG
∂θθθG

∂fG
∂θθθG

> Θ
= 1. Q.E.D.

B Proof of Theorem 3.2
For brevity, we drop the layer index. But for the relation embeddings, for clarity, we will consider the
individual components of rrrv, rrrk instead of considering the scalar case.

Proof. We will focus the self-attention layer, as the skip connection and MLP layers are analyzed in
Huang et al. (2020). As mentioned in the main text, since what we care is the magnitude of the update,
we assume dx = 1 and drop layer index l without loss of generality. In this case, the projection matrices
qqq,kkk,vvv,www reduce to scalars q, k, v, w ∈ R. The input xxx and the relational embeddings rrrk, rrrv are n × 1
vectors. For a single query input x′ ∈ xxx, the attention layer (without skip connection) is defined as follows:

G(x′) = softmax
(

1√
dx
x′q(kxxx+ rrrk)>

)
(xxxv + rrrv)w =

∑n
i=1

ex
′q(kxi+rki )∑n

j=1e
x′q(kxj+rkj )

(xiv + rvi )w

Note that we are abusing the notation and take G to be just the self-attention layer output here. Let
si = ex

′q(kxi+rki )/
∑n

j=1e
x′q(kxj+rkj ) and δij = 1 if i = j and 0 otherwise, we can get:

∂G/∂k = x′qw
∑n

i=1(xiv + rvi )si

(
xi −

∑n
j=1xjsj

)
∂G/∂q = x′w

∑n
i=1(xiv + rvi )si

(
kxi + rki −

∑n
j=1(kxj + rkj )sj

)
∂G/∂rki = x′qw

(
−(xiv + rvi )si +

∑n
j=1(xjv + rvj )sj

)
; ∂G/∂v = w

∑n
i=1xisi

∂G/∂w =
∑n

i=1(xiv + rvi )si ; ∂G/∂rvi = wsi ; ∂G/∂xi = vwsi + w
∑n

j=1∂sj/∂xi(xjv + rvj )

When xi 6= x′, we have: ∂sj
∂xi

= sj(δij − si)x
′qk; When xi = x′, we have: ∂sj

∂xi
=

q
(
(1 + δij)kxi + rki

)
sj −

∑n
t=1q

(
(1 + δit)kxt + rkt

)
sjst Using Taylor expansion, we get that the

SGD update ∆G is proportional to the magnitude of the gradient:

∆G = −η ∂L
∂G

(
∂G

∂k

∂G

∂k

>
+
∂G

∂q

∂G

∂q

>
+
∂G

∂v

∂G

∂v

>
+
∂G

∂w

∂G

∂w

>

+
∑n

i=1

∂G

∂rki

∂G

∂rki

>
+
∑n

i=1

∂G

∂rvi

∂G

∂rvi

>
+
∑n

i=1

∂G

∂xi

∂G

∂xi

>
)

+O(η2)
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By the assumption that ‖η ∂L
∂G‖ = Θ(η), we need to bound the term inside the main parentheses by

Θ(1/L). The desired magnitude Θ(1/L) is smaller than 1 so terms with lower power are dominating.
With si ≥ 0 and

∑
si = 1, the following terms have the lowest power inside the main parentheses:

∂G

∂v

∂G

∂v

>
= w2(

∑n
i=1xisi)

2 = Θ(‖w‖2‖xi‖2), i = 1, . . . , n

∂G

∂w

∂G

∂w

>
= (

∑n
i=1(xiv + rvi )si)

2 = Θ(‖v‖2‖xi‖2) + 2Θ(‖v‖‖rvi ‖‖xi‖) + Θ(‖rvi ‖2), i = 1, . . . , n

∑n
i=1

∂G

∂rvi

∂G

∂rvi

>
= w2∑n

i=1s
2
i = Θ(‖w‖2).

For the MLP layer, all terms related to rvi disappear, including the single Θ(‖w‖2) in the last row. By
combining the update norm terms from both the self-attention and the MLP layers give the result. Q.E.D.
Note: The above theorem and analysis applies to a single layer, not the whole transformer module of
many layers. In order to derive the scaling factor, one needs ensure that the output scale for each block is
bounded by its input scale. This indeed holds for our scheme, but the complete proof is in Sec. A.

C Implementation Details of SQL-SP
Given a schema S for a relational database, our goal is to translate the natural question Q to the target
SQL T . Here the question Q = q1 . . . q|Q| is a sequence of words, and the schema S = {s1, . . . , s|S|}
consists of tables and their columns. s ∈ S can be either a table name or a column name containing
words si,1, . . . , si,|si|. Following Wang et al. (2019a), a directed graph G = 〈V, E〉 can be constructed to
represent the relations between the inputs. Its nodes V = Q ∪ S include question tokens (each labeled
with a corresponding token) and the columns and tables of the schema (each labeled with the words in its
name). The edges E are defined following Wang et al. (2019a). The target SQL T is represented as an
abstract syntax tree in the context-free grammar of SQL.

C.1 Encoder
Following (Wang et al., 2019a; Guo et al., 2019), our pre-transformer module fe leverages pre-trained
language models to obtain the input X to the main transformer module. First, the sequence of words in
the question Q are concatenated with all the items (either a column or a table) in the schema S. In order
to prevent our model from leveraging potential spurious correlations based on the order of the items, the
items in the schema are concatenated in random order during training. We feed the concatenation into the
pre-trained model and extract the last hidden states xxx(q)i and hhhi = hhhi,1, . . . ,hhhi,|si| for each word in Q and
each item in S respectively. For each item si in the schema, we run an additional bidirectional LSTM
(BiLSTM) (Hochreiter and Schmidhuber, 1997) over the hidden states of the words in its name hhhi. We
then add the average hidden state and the final hidden state of the BiLSTM as the schema representations
xxx
(s)
i . X is the set of all the obtained representations from Q ∪ S: X = (xxx

(q)
1 , . . . ,xxx

(q)
|Q|,xxx

(s)
1 , . . . ,xxx

(s)
|S|).

Along with the relational embeddings rrrk, rrrv specified by G, X is passed into the main transformer module.

C.2 Schema Linking
The goal of schema linking is to identify the implicit relations between Q and S. The relations are
defined by whether there exist column/table references in the question to the corresponding schema
columns/tables, given certain heuristics. Following Wang et al. (2019a), possible relations for each (i, j)
where xi ∈ Q, xj ∈ S (or vice versa) can be ExactMatch, PartialMatch, or NoMatch, which
are based on name-based linking. Depending on the type of xi and xj , the above three relations are
further expanded to four types: Question-Column, Question-Table, Column-Question, or
Table-Question. We also use the value-based linking from Wang et al. (2019a) and Guo et al. (2019)
to augment the ExactMatch relation by database content and external knowledge.

C.3 Decoder
For our decoder (as the post-transformer module) fo, we employ a transition-based abstract syntax decoder
following Yin and Neubig (2018). It requires a transition system to converts between the surface SQL
and a AST-tree constructing action sequences, and can ensure grammarticality of generation. The neural
model then predicts the action sequences. There are three types of actions to generate the target SQL T ,
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including (i) ApplyRule which applies a production rule to the last generated node; (ii) Reduce which
completes a leaf node; (iii) SelectColumn which chooses a column from the schema. For our transition
system, each column is attached with their corresponding table so that the tables in the target SQL T
can be directly inferred from the predicted columns. As a result, action SelectTable can be omitted
from the generation. Formally, the generation process can be formulated as Pr(T |Y) =

∏
t Pr(at|a<t,Y)

where Y is the outputs of the last layer of the relational transformers. We use a parent-feeding LSTM
as the decoder. The LSTM state is updated as mmmt,hhht = fLSTM([aaat−1‖zzzt−1‖hhhpt‖aaapt‖nnnpt ],mmmt−1,hhht−1),
wheremmmt is the LSTM cell state, hhht is the LSTM output at step t, aaat−1 is the action embedding of the
previous step, zzzt−1 is the context feature computed using multi-head attention on hhht−1 over Y , pt is the
step corresponding to the parent AST node of the current node, and nnn is the node type embedding. For
ApplyRule[R], we compute Pr(at = ApplyRule[R]|a<t, y) = softmaxR(g(zzzt)) where g(·) is a
2-layer MLP. For SelectColumn, we use the memory augmented pointer net Guo et al. (2019).

C.4 Regularization
Besides using dropout (Srivastava et al., 2014) employed on X and zzzt to help regularize the model,
we further apply uniform label smoothing (Szegedy et al., 2016) on the objective of predicting
SelectColumn. Formally, the cross entropy for a ground-truth column c∗ we optimize becomes:
(1− ε) ∗ log p(c∗) + ε/K ∗

∑
c log p(c), where K is the number of columns in the schema, ε is the weight

of the label smoothing term, and p(·) , Pr(at = SelectColumn[·]|a<t, y).

C.5 Experiment Configuration
We choose RoBERTa (Liu et al., 2019b) as the pre-trained language models. A sequence of 24 relation-
aware transformer layers are stacked on top of fe. The Adam optimizer (Kingma and Ba, 2014) with the
default hyperparameters is used to train the model with an initial learning rate η of 4×10−4. η is annealed
to 0 with 4× 10−4(1− steps/max steps)0.5. A separate learning rate is used to fine-tune the RoBERTa
by multiplying η a factor of 8× 10−3. The BiLSTM to encode the schema representations has hidden
size 128 per direction. For each transformer layer, dx = dz = 256, H = 8 and the inner layer dimension
of the position-wise MLP is 1024. For the decoder, we use action embeddings of size 128, node type
embeddings of size of 64, and LSTM hidden state of size 512. We apply dropout rate of 0.6 on the input
to the relational transformers X and the context representation zzzt. The weight of the label smoothing term
is set to be 0.2. We use a batch size of 16 and train 60 epochs (around 25, 000 steps). During inference,
beam search is used with beam size as 5. Most of the hyperparameters are chosen following Wang et al.
(2019a). We only tune the learning rate (4 × 10−4 to 8 × 10−4 with step size 1 × 10−4), dropout (0.3,
0.4, 0.5, 0.6), the weight of the label smoothing ε (0.0, 0.1, 0.2) by grid search. The average runtime is
around 30 hours and the number of parameters is around 380 millions.

D Implementation Details for Logical Reading Comprehension
We build on the code9 by Yu et al. (2020b) and use it for evaluation. For each example, the encoder
embeds the input context, question and options which are then passed to the linear layer for classification.
The exact input format to the encoder is “〈s〉 Context 〈/s〉〈/s〉 Question || Option 〈pad〉 . . . ”, where “||”
denotes concatenation. The linear layer uses the embedding of the first token 〈s〉 for classification.

D.1 Experimental Configuration
RoBERT is chosen as the pre-trained model, and we stack 4 transformer layers on top. The Adam
optimizer (Kingma and Ba, 2014) with ε = 10−6 and betas of (0.9, 0.98) is used. The learning rate to
finetune RoBERTa is 1× 10−5 while the learning rate for the additional transformer layers is 3× 10−4.
For all models in our ablation study, the learning rate for the additional transformer layers is 1×10−4. The
learning rate is annealed linearly to 0 with weight decay of 0.01. We use a batch size of 24 and fine-tune
for 12 epochs. For each transformer layer, dx = dz = 1024, H = 8 and the inner layer dimension of the
position-wise MLP is 2048. We use dropout rate of 0.4 on the input to the additional transformer layers
and 0.1 for the linear layer. We follow the hyperparameters used in Yu et al. (2020b) for the pretrained
language model. For the additional transformer layers, we only tune the dropout values (0.3, 0.4, 0.5, 0.6).
The average runtime is around 6 hours and the number of parameters is around 39 millions.

9https://github.com/yuweihao/reclor


