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Abstract

This paper is concerned with dialogue state
tracking (DST) in a task-oriented dialogue sys-
tem. Building a DST module that is highly
effective is still a challenging issue, although
significant progresses have been made recently.
This paper proposes a new approach to dia-
logue state tracking, referred to as Seq2Seq-
DU, which formalizes DST as a sequence-to-
sequence problem. Seq2Seq-DU employs two
BERT-based encoders to respectively encode
the utterances in the dialogue and the descrip-
tions of schemas, an attender to calculate atten-
tions between the utterance embeddings and
the schema embeddings, and a decoder to gen-
erate pointers to represent the current state of
dialogue. Seq2Seq-DU has the following ad-
vantages. It can jointly model intents, slots,
and slot values; it can leverage the rich rep-
resentations of utterances and schemas based
on BERT; it can effectively deal with cate-
gorical and non-categorical slots, and unseen
schemas. In addition, Seq2Seq-DU can also be
used in the NLU (natural language understand-
ing) module of a dialogue system. Experimen-
tal results on benchmark datasets in different
settings (SGD, MultiWOZ2.2, MultiWOZ2.1,
WOZ2.0, DSTC2, M2M, SNIPS, and ATIS)
show that Seq2Seq-DU outperforms the exist-
ing methods.

1 Introduction

A task-oriented dialogue system usually consists
of several modules: natural language understand-
ing (NLU), dialogue state tracking (DST), dialogue
policy (Policy), and natural language generation
(NLG). We consider DST and also NLU in this
paper. In NLU, a semantic frame representing the
content of user utterance is created in each turn

∗The work was done when the first author was an intern at
ByteDance AI Lab.

<start>, “FindFlight”, <sep>, 
“Depart”, #4, #4, <sep>, “Arrive”, 
#6, #7,<sep>, “Seating_class”, 
#Economy, <sep>, 
“Depart_Date”, #17,#18, <end>

<start>, “FindFlight”, <sep>, 
“Depart”, #4, #4, <sep>, “Arrive”, 
#6, #7, <sep>, “Seating_Class”, 
#Economy, <end>

Slots:
“Depart”:
Starting city for the trip.
“Arrive”:
Ending city for the trip.
“Seating_Class”: 
Seating class for the booking.
Possible_Values: ["Economy", "Business", 
"First Class”]
“Depart_Date”: 
Start date for the trip.

Intents:
“FindFlight”:
Search for one-way flights to a 
destination.
“ReserveFlight”:
Reserve a one-way flight.

Find economy flights from
Beijing to Los Angeles.

Sure, what dates are
you looking for?

Flying on May 2.

Ok, I found a Delta
flight for 3500 dollars.

User System State

Service:
“Flight”:
Find your next flight.

Schema

Figure 1: An example of dialogue state tracking. Given
a dialogue history that contains user utterances and sys-
tem utterances, and descriptions of schema that contain
all possible intents and slot-value pairs, a dialogue state
for the current turn is created which is represented by
intents and slot-value pairs. There are slot values ob-
tained from the schema (categorical) as well as slot val-
ues extracted from the utterances (non-categorical). #4,
#6, etc denote pointers.

of dialogue. In DST, several semantic frames rep-
resenting the ‘states’ of dialogue are created and
updated in multiple turns of dialogue. Domain
knowledge in dialogues is represented by a repre-
sentation referred to as schema, which consists of
possible intents, slots, and slot values. Slot values
can be in a pre-defined set, with the corresponding
slot being referred to as categorical slot, and they
can also be from an open set, with the correspond-
ing slot being referred to as non-categorical slot.
Figure 1 shows an example of DST.

We think that a DST module (and an NLU mod-
ule) should have the following abilities. (1) Global,
the model can jointly represent intents, slots, and
slot values. (2) Represenable, it has strong capa-
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bility to represent knowledge for the task, on top
of a pre-trained language model like BERT. (3)
Scalable, the model can deal with categorical and
non-categorical slots and unseen schemas.

Many methods have been proposed for DST
(Wu et al., 2019; Zhong et al., 2018; Mrkšić et al.,
2017; Goo et al., 2018). There are two lines of
relevant research. (1) To enhance the scalability of
DST, a problem formulation, referred to as schema-
guided dialogue, is proposed. In the setting, it is
assumed that descriptions on schemas in natural
language across multiple domains are given and
utilized. Consequently, a number of methods are
developed to make use of schema descriptions to in-
crease the scalability of DST (Rastogi et al., 2019;
Zang et al., 2020; Noroozi et al., 2020). The meth-
ods regard DST as a classification and/or an ex-
traction problem and independently infer the intent
and slot value pairs for the current turn. Therefore,
the proposed models are generally representable
and scalable, but not global. (2) There are also a
few methods which view DST as a sequence to se-
quence problem. Some methods sequentially infer
the intent and slot value pairs for the current turn
on the basis of dialogue history and usually employ
a hierarchical structure (not based on BERT) for
the inference (Lei et al., 2018; Ren et al., 2019;
Chen et al., 2020b). Recently, a new approach is
proposed which formalizes the tasks in dialogue
as sequence prediction problems using a unified
language model (based on GPT-2) (Hosseini-Asl
et al., 2020). The method cannot deal with un-
seen schemas and intents, however, and thus is not
scalable.

We propose a novel approach to DST, referred
to as Seq2Seq-DU (sequence-to-sequence for dia-
logue understanding), which combines the advan-
tages of the existing approaches. To the best of
our knowledge, there was no previous work which
studied the approach. We think that DST should
be formalized as a sequence to sequence or ‘trans-
lation’ problem in which the utterances in the dia-
logue are transformed into semantic frames. In this
way, the intents, slots, and slot values can be jointly
modeled. Moreover, NLU can also be viewed as
a special case of DST and thus Seq2Seq-DU can
also be applied to NLU. We note that very recently
the effectiveness of the sequence to sequence ap-
proach has also been verified in other language
understanding tasks (Paolini et al., 2021).

Seq2Seq-DU comprises a BERT-based encoder

to encode the utterances in the dialogue, a BERT
based encoder to encode the schema descriptions,
an attender to calculate attentions between the utter-
ance embeddings and schema embeddings, and a
decoder to generate pointers of items representing
the intents and slots-value pairs of state.

Seq2Seq-DU has the following advantages. (1)
Global: it relies on the sequence to sequence frame-
work to simultaneously model the intents, slots,
and slot-values. (2) Representable: It employs
BERT (Devlin et al., 2019) to learn and utilize bet-
ter representations of not only the current utterance
but also the previous utterances in the dialogue. If
schema descriptions are available, it also employs
BERT for the learning and utilization of their repre-
sentations. (3) Scalable: It uses the pointer genera-
tion mechanism, as in the Pointer Network (Vinyals
et al., 2015), to create representations of intents,
slots, and slot-values, no matter whether the slots
are categorical or non-categorical, and whether the
schemas are unseen or not.

Experimental results on benchmark datasets
show that Seq2Seq-DU1 performs much better than
the baselines on SGD, MultiWOZ2.2, and Multi-
WOZ2.1 in multi-turn dialogue with schema de-
scriptions, is superior to BERT-DST on WOZ2.0,
DSTC2, and M2M, in multi-turn dialogue with-
out schema descriptions, and works equally well
as Joint BERT on ATIS and SNIPS in single turn
dialogue (in fact, it degenerates to Joint BERT).

2 Related Work

There has been a large amount of work on
task-oriented dialogue, especially dialogue state
tracking and natural language understanding
(eg., (Zhang et al., 2020; Huang et al., 2020; Chen
et al., 2017)). Table 1 makes a summary of existing
methods on DST. We also indicate the methods on
which we make comparison in our experiments.

2.1 Dialogue State Tracking

Previous approaches mainly focus on encoding
of the dialogue context and employ deep neu-
ral networks such as CNN, RNN, and LSTM-
RNN to independently infer the values of slots
in DST (Mrkšić et al., 2017; Xu and Hu, 2018;
Zhong et al., 2018; Ren et al., 2018; Rastogi et al.,
2017; Ramadan et al., 2018; Wu et al., 2019; Zhang
et al., 2019; Heck et al., 2020). The approaches

1The code is available at https://github.com/
sweetalyssum/Seq2Seq-DU.

https://github.com/sweetalyssum/Seq2Seq-DU
https://github.com/sweetalyssum/Seq2Seq-DU
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Model Characteristics Data Sets Comparison
FastSGD (Noroozi et al., 2020) BERT-based model, employs two carry-over procedures and multi-head atten-

tions to model schema descriptions.
SGD Yes

SGD Baseline (Rastogi et al., 2019) BERT-based model, predictions are made over a dynamic set of intents and
slots, using their descriptions.

SGD and MultiWOZ2.2 Yes

TripPy (Heck et al., 2020) BERT-based model, make use of various copy mechanisms to fill slots with
values.

MultiWOZ2.2 Yes

TRADE (Wu et al., 2019) Generate dialogue states from utterances using a copy mechanism, facilitating
knowledge transfer for new schema elements.

MultiWOZ2.2 Yes

DS-DST (Zhang et al., 2019) BERT-based model, to classify over a candidate list or find values from text
spans.

MultiWOZ2.2 Yes

BERT-DST (Chao and Lane, 2019) Use BERT as dialogue context encoder and makes parameter sharing across
slots.

DSTC2, WOZ2.0, and M2M Yes

StateNet (Ren et al., 2018) Independent of number of values, shares parameters across slots and uses
pre-trained word vectors.

DSTC2 and WOZ2.0 Yes

GLAD (Zhong et al., 2018) Use global modules to share parameters across slots and uses local modules to
retrain slot-specific parameters.

DSTC2 and WOZ2.0 Yes

Belief Tracking (Ramadan et al., 2018) Utilize semantic similarity between dialogue utterances and ontology, and
information is shared across domains.

DSTC2 and WOZ2.0 Yes

Neural Belief Tracker (Mrkšić et al., 2017) Conduct reasoning on pre-trained word vectors, and combines them into repre-
sentations of user utterance and dialogue context.

DSTC2 and WOZ2.0 Yes

DST+LU (Rastogi et al., 2018) Select candidates for each slot, while candidates are generated by NLU. M2M Yes
Joint BERT (Chen et al., 2019) A joint intent classification and slot filling model based on BERT. ATIS and SNIPS Yes
Slot-Gated (Goo et al., 2018) Use a slot gate, models relation between intent and slot vectors to create

semantic frames.
ATIS and SNIPS Yes

Atten.-BiRNN (Liu and Lane, 2016) Attention-based model, explores several strategies for alignment between intent
classification and slot labeling.

ATIS and SNIPS Yes

RNN-LSTM (Hakkani-Tür et al., 2016) Use RNN with LSTM cells to create complete semantic frames from user
utterances.

ATIS and SNIPS Yes

Sequicity (Lei et al., 2018) Two-stage sequence-to-sequence model based on CopyNet, conducts both
dialogue state tracking and response generation.

CamRest676 and KVRET No

COMER (Ren et al., 2019) BERT-based hierarchical encoder-decoder model, generates state sequence
based on user utterance

WOZ2.0 and MultiWOZ2.0 Yes

CREDIT (Chen et al., 2020b) Hierarchical encoder-decoder model, views DST as a sequence generation
problem.

MultiWOZ2.0 and MultiWOZ2.1 No

SimpleTOD (Hosseini-Asl et al., 2020) A unified sequence-to-sequence model based on GPT-2, conducts dialogue state
tracking, dialogue action prediction, and response generation.

MultiWOZ2.0 and MultiWOZ2.1 Yes

Table 1: Summary of existing methods on DST.

cannot deal with unseen schemas in new domains,
however. To cope with the problem, a new direc-
tion called schema-guided dialogue is proposed
recently, which assumes that natural language de-
scriptions of schemas are provided and can be used
to help transfer knowledge across domains. As
such, a number of methods are developed in the
recent dialogue competition SGD (Rastogi et al.,
2019; Zang et al., 2020; Noroozi et al., 2020; Chen
et al., 2020a). Our work is partially motivated by
the SGD initiative. Our model Seq2Seq-DU is
unique in that it formalizes schema-guided DST as
a sequence-to-sequence problem using BERT and
pointer generation.

In fact, sequence-to-sequence models are also
utilized in DST. Sequicity (Lei et al., 2018) is a
two-step sequence to sequence model which first
encodes the dialogue history and generates a be-
lief span, and then generates a language response
from the belief span. COMER (Ren et al., 2019)
and CREDIT (Chen et al., 2020b) are hierarchi-
cal sequence-to-sequence models which represent
the intents and slot-value pairs in a hierarchical
way, and employ a multi-stage decoder. Simple-
TOD (Hosseini-Asl et al., 2020) is a unified ap-
proach to task-oriented dialogue which employs

a single and causal language model to perform
sequence prediction in DST, Policy, and NLG.
Our proposed approach also uses a sequence-to-
sequence model. There are significant differences
between our model Seq2Seq-DU and the existing
models. First, there is no hierarchy in decoding
of Seq2Seq-DU. A flat structure on top of BERT
appears to be sufficient for jointly capturing the
intents, slots, and values. Second, the decoder in
Seq2Seq-DU generates pointers instead of tokens,
and thus can easily and effectively handle categor-
ical slots, non-categorical slots, as well as unseen
schemas.

2.2 Natural Language Understanding

Traditionally the problem of NLU is decomposed
into two independent issues, namely classifica-
tion of intents and sequence labeling of slot-value
pairs (Liu and Lane, 2016; Hakkani-Tür et al.,
2016). For example, deep neural network com-
bined with conditional random field is employed
for the task (Yao et al., 2014). Recently the pre-
trained language model BERT (Chen et al., 2019) is
exploited to further enhance the accuracy. Methods
are also proposed which can jointly train and utilize
classification and sequence labeling models (Chen
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Figure 2: The architecture of Seq2Seq-DU, containing utterance encoder, schema encoder, utterance-schema atten-
der, and state decoder.

et al., 2019; Goo et al., 2018). In this paper, we
view NLU as special case of DST and employ our
model Seq2Seq-DU to perform NLU. Seq2Seq-DU
can degenerate to a BERT based NLU model.

3 Our Approach

Our approach Seq2Seq-DU formalizes dialogue
state tracking as a sequence to sequence problem
using BERT and pointer generation. As shown
in Figure 2, Seq2Seq-DU consists of an utterance
encoder, a schema encoder, an utterance schema
attender, and a state decoder. In each turn of dia-
logue, the utterance encoder transforms the current
user utterance and the previous utterances in the
dialogue into a sequence of utterance embeddings
using BERT; the schema encoder transforms the
schema descriptions into a set of schema embed-
dings also using BERT; the utterance schema at-
tender calculates attentions between the utterance
embeddings and the schema embeddings to cre-
ate attended utterance and schema representations;
finally, the state decoder sequentially generates a
state representation on the basis of the attended rep-
resentations using LSTM and pointer generation.

3.1 Utterance Encoder
The utterance encoder takes the current user utter-
ance as well as the previous utterances (user and
system utterances) in the dialogue (a sequence of
tokens) as input and employs BERT to construct a
sequence of utterance embeddings. The relations
between the current utterance and the previous ut-
terances are captured by the encoder.

The input of the encoder is a sequence of tokens
with length N , denoted as X = (x1, ..., xN ). The

first token x1 is [CLS], followed by the tokens of
the current user utterance and the tokens of the pre-
vious utterances, separated by [SEP]. The output
is a sequence of embeddings also with length N ,
denoted as D = (d1, ..., dN ) and referred to as ut-
terance embeddings, with one embedding for each
token.

3.2 Schema Encoder

The schema encoder takes the descriptions of in-
tents, slots, and categorical slot values (a set of com-
bined sequences of tokens) as input and employs
BERT to construct a set of schema embeddings.

Schema Sequence 1 Sequence 2
Intent service description intent description
Slot service description slot description

Value slot description value

Table 2: Descriptions for a dialogue schema. Two com-
bined descriptions are used for describing an intent, a
slot, or a value in the schema.

Suppose that there are I intents, S slots, and
V categorical slot values in the schemas. Each
schema element is described by two descriptions as
outlined in Table 2. The input is a set of combined
sequences of tokens, denoted as Y = {y1, ..., yM}.
Note that M = I + S + V . Each combined se-
quence starts with [CLS], followed by the tokens of
the two descriptions with [SEP] as a separator. The
final representation of [CLS] is used as the embed-
ding of the input intent, slot, or slot value. The out-
put is a set of embeddings, and all the embeddings
are called schema embeddings E = {e1, ..., eM}.
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The schema encoder in fact adopts the same ap-
proach of schema encoding as in (Rastogi et al.,
2019). There are two advantages with the ap-
proach. First, the encoder can be trained across
different domains. Schema descriptions in differ-
ent domains can be utilized together. Second, once
the encoder is fine-tuned, it can be used to process
unseen schemas with new intents, slots, and slot
values.

3.3 Utterance-Schema Attender
The utterance-schema attender takes the sequence
of utterance embeddings and the set of schema em-
beddings as input and calculates schema-attended
utterance representations and utterance-attended
schema representations. In this way, informa-
tion from the utterances and information from the
schemas are fused.

First, the attender constructs an attention matrix,
indicating the similarities between utterance em-
beddings and schema embeddings. Given the i-th
utterance token embedding di and j-th schema em-
bedding ej , it calculates the similarity as follows,

A(i, j) = rᵀtanh(W1di +W2ej), (1)

where r, W1, W2 are trainable parameters.
The attender then normalizes each row of matrix

A as a probability distribution, to obtain matrix
A. Each row represents the attention weights of
schema elements with respect to an utterance to-
ken. Then the schema-attended utterance represen-
tations are calculated as Da = EA

ᵀ. The attender
also normalizes each column of matrix A as a prob-
ability distribution, to obtain matrix Ã. Each col-
umn represents the attention weights of utterance
tokens with respect to a schema element. Then
the utterance-attended schema representations are
calculated as Ea = DÃ.

3.4 State Decoder
The state decoder sequentially generates a state rep-
resentation (semantic frame) for the current turn,
which is represented as a sequence of pointers to el-
ements of the schemas and tokens of the utterances
(cf., Figure 1). The sequence can then be either
re-formalized as a semantic frame in dialogue state
tracking2,

[intent; (slot1, value1); (slot2, value2); ...],

2For simplicity, we assume here that there is only one
semantic frame in each turn. In principle, there can be multiple
frames.

or a sequence of labels in NLU (intent-labeling
and slot-filling). The pointers point to the elements
of intents, slots, and slot values in the schema de-
scriptions (categorical slot values), as well as the
tokens in the utterances (non-categorical slot val-
ues). The elements in the schemas can be either
words or phrases, and the tokens in the utterances
form spans for extraction of slot values.

The state decoder is an LSTM using
pointer (Vinyals et al., 2015) and attention (Bah-
danau et al., 2015). It takes the two representations
Da and Ea as input. At each decode step t, the
decoder receives the embedding of the previous
item wt−1, the utterance context vector ut, the
schema context vector st, and the previous hidden
state ht−1, and produces the current hidden state
ht:

ht = LSTM(wt−1, ht−1, ut, st). (2)

We adopt the attention function in (Bahdanau
et al., 2015) to calculate the context vectors as fol-
lows,

ut = attend(ht−1, Da, Da), (3)

st = attend(ht−1, Ea, Ea). (4)

The decoder then generates a pointer from the set
of pointers in the schema elements and the tokens
of the utterances on the basis of the hidden state
ht. Specifically, it generates a pointer of item w
according to the following distribution,

zw = qᵀtanh(U1ht + U2kw), (5)

P (#w) = softmax(zw), (6)

where #w is the pointer of item w, kw is the repre-
sentation of item w either in the utterance represen-
tations Da or in the schema representations Ea, q,
U1, and U2 are trainable parameters, and softmax
is calculated over all possible pointers.

During decoding, the decoder employs beam
search to find the best sequences of pointers in
terms of probability of sequence.

3.5 Training

The training of Seq2Seq-DU follows the standard
procedure of sequence-to-sequence. The only dif-
ference is that it is always conditioned on the
schema descriptions. Each instance in training
consists of the current utterance and the previous
utterances, and the state representation (sequence
of pointers) for the current turn. Two pre-trained
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Characteristics SGD MultiWOZ2.2 MultiWOZ2.1 WOZ2.0 DSTC2 M2M ATIS SNIPS
No. of domains 16 8 7 1 1 2 - -
No. of dialogues 16,142 8,438 8438 1,612 600 1,500 4,478 13,084
Total no. of turns 329,964 113,556 113,556 23,354 4,472 14,796 4,478 13,084
Avg. turns per dialogue 20.44 13.46 13.46 14.49 7.45 9.86 1 1
Avg. tokens per turn 9.75 13.13 13.38 8.54 11.24 8.24 11.28 9.09
No. of categorical slots 53 21 37 3 3 0 0 0
No. of non-categorical slots 162 40 0 0 0 14 120 72
Have schema description Yes Yes Yes No No No No No
Have unseen schemas in test set Yes No No No No No No No

Table 3: Statistics of datasets in experiments. Numbers are those of training datasets.

BERT models are used for representations of utter-
ances and schema descriptions respectively. The
BERT models are then fine-tuned in the training
process. Cross-entropy loss is utilized to measure
the loss of generating a sequence.

4 Experiments

4.1 Datasets
We conduct experiments using the benchmark
datasets on task-oriented dialogue. SGD (Rastogi
et al., 2019) and MultiWOZ2.2 (Zang et al., 2020)
are datasets for DST; they include schemas with
categorical slots and non-categorical slots in multi-
ple domains and natural language descriptions on
the schemas, as shown in Table 2. In particular,
SGD includes unseen schemas in the test set. Mul-
tiWOZ2.1 (Eric et al., 2020) is the previous version
of MultiWOZ2.2, which only has categorical slots
in multiple domains. WOZ2.0 (Wen et al., 2017)
and DSTC2 (Henderson et al., 2014) are datasets
for DST; they contain schemas with only categor-
ical slots in a single domain. M2M (Shah et al.,
2018) is a dataset for DST and it has span annota-
tions for slot values in multiple domains. ATIS (Tur
et al., 2010) and SNIPS (Coucke et al., 2018) are
datasets for NLU in single-turn dialogues in a sin-
gle domain. Table 3 gives the statics of datasets in
the experiments.

4.2 Baselines and Variants
We make comparison between our approach and
the state-of-the-art methods on the datasets.
SGD, MultiWOZ2.2 and MultiWOZ2.1: We
compare Seq2SeqDU with six state-of-the-art meth-
ods on SGD, MultiWOZ2.2 and MultiWOZ2.1,
which utilize schema descriptions, span-based
and candidate-based methods, unified seq2seq
model and BERT: FastSGT (Noroozi et al., 2020),
SGDbaseline (Rastogi et al., 2019), TripPy (Heck
et al., 2020), SimpleTOD (Hosseini-Asl et al.,

2020), TRADE (Wu et al., 2019), and DS-
DST (Zhang et al., 2019).
WOZ2.0 and DSTC2: Our approach is compared
against the state-of-the-art methods on WOZ2.0
and DSTC2, including those using a hierarchi-
cal seq2seq model and BERT: COMER (Ren
et al., 2019), BERT-DST (Chao and Lane, 2019),
StateNet (Ren et al., 2018), GLAD (Zhong et al.,
2018), Belief Tracking (Ramadan et al., 2018), and
Neural Belief Tracker (Mrkšić et al., 2017).
M2M: We evaluate our approach and the state-
of-the-art methods on M2M, which respectively
employ a BERT-based architecture and a jointly-
trained language understanding model, BERT-
DST (Chao and Lane, 2019) and DST+LU (Rastogi
et al., 2018).
ATIS and SNIPS: We make comparison between
our approach and the state-of-the-art methods on
ATIS and SNIPS for NLU within the sequence la-
beling framework, including Joint BERT (Chen
et al., 2019), Slot-Gated (Goo et al., 2018),
Atten.-BiRNN (Liu and Lane, 2016), and RNN-
LSTM (Hakkani-Tür et al., 2016).

We also include two variants of Seq2Seq-DU.
The differences are whether to use the schema de-
scriptions, and the formation of dialogue state.
Seq2Seq-DU-w/oSchema: It is used for datasets
that do not have schema descriptions. It only con-
tains utterance encoder and state decoder.
Seq2Seq-DU-SeqLabel: It is used for NLU in a
single-turn dialogue. It views the problem as se-
quence labeling, and only contains the utterance
encoder and state decoder.

4.3 Evaluation Measures

We make use of the following metrics in evaluation.
Intent Accuracy: percentage of turns in dialogue
for which the intent is correctly identified.
Joint Goal Accuracy: percentage of turns for
which all the slots are correctly identified. For non-
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categorical slots, a fuzzy matching score is used on
SGD and exact match are used on the other datasets
to keep the numbers comparable with other works.
Slot F1: F1 score to evaluate accuracy of slot se-
quence labeling.

4.4 Training

We use the pre-trained BERT model
([BERT-Base, Uncased]), which has 12 hid-
den layers of 768 units and 12 self-attention heads
to encode utterances and schema descriptions.
The hidden size of LSTM decoder is also 768.
The dropout probability is 0.1. We also use beam
search for decoding, with a beam size of 5. The
batch size is set to 8. Adam (Kingma and Ba,
2014) is used for optimization with an initial
learning rate of 1e-4. Hyper parameters are chosen
using the validation dataset in all cases.

The training curves of all models are shown in
Appendix A.

4.5 Experimental Results

Tables 4, 5, 6, and 7 show the results. One can see
that Seq2Seq-DU performs significantly better than
the baselines in DST and performs equally well as
the baselines in NLU.

DST is carried out in different settings in SGD,
MultiWOZ2.2, MultiWOZ2.1, WOZ2.0, DSTC2,
and M2M. In all cases, Seq2Seq-DU works sig-
nificantly better than the baselines. The results
indicate that Seq2Seq-DU is really a general and
effective model for DST, which can be applied to
multiple settings. Specifically, Seq2Seq-DU can
leverage the schema descriptions for DST when
they are available (SGD and MultiWOZ2.2, Multi-
WOZ2.1)3. It can work well in zero-shot learning
to deal with unseen schemas (SGD). It can also
effectively handle categorical slots (MultiWOZ2.1,
WOZ2.0 and DSTC2) and non-categorical slots
(M2M). It appears that the success of Seq2Seq-
DU is due to its suitable architecture design with
a sequence-to-sequence framework, BERT-based
encoders, utterance-schema attender, and pointer
generation decoder.

NLU is formalized as sequence labeling in
ATIS and SNIPS. Seq2Seq-DU is degenerated to
Seq2Seq-DU-SeqLabel, which is equivalent to the
baseline of Joint Bert. The results suggest that it is

3There are better performing systems in the SGD competi-
tion. The systems are not based on single methods and thus
are not directly comparable with our method.

the case. Specially, the performances of Seq2Seq-
DU are comparable with Joint BERT, indicating
that Seq2Seq-DU can also be employed in NLU.

Model SGD MultiWOZ2.2 MultiWOZ2.1
Joint GA Int Acc Joint GA Int Acc Joint GA Int Acc

SGD-baseline 0.254 0.906 0.420 - 0.434 -
TRADE - - 0.454 - 0.460 -
DS-DST - - 0.517 - 0.512 -
FastSGT 0.292 0.903 - - - -
SimpleTOD - - - - 0.514 -
TripPy - - 0.535 - 0.553 -
Seq2Seq-DU 0.301 0.910 0.544 0.909 0.561 0.911

Table 4: Accuracies of Seq2Seq-DU and baselines
on SGD, MultiWOZ2.2 and MultiWOZ2.1 datasets.
Seq2Seq-DU outperforms baselines in terms of all met-
rics.

Model WOZ2.0 DSTC2
Joint GA Joint GA

Neural Belief Tracker 0.842 0.734
Belief Tracking 0.855 -
GLAD 0.881 0.745
StateNet 0.889 0.755
BERT-DST 0.877 0.693
COMER 0.886 -
Seq2Seq-DU-w/oSchema 0.912 0.850

Table 5: Accuracies of Seq2Seq-DU and baselines
on WOZ2.0 and DSTC2 datasets. Seq2Seq-DU-
w/oSchema performs significantly better than the base-
lines.

Model M2M
Joint GA Int Acc

DST+LU 0.767 -
BERT-DST 0.869 -
Seq2Seq-DU-w/oSchema 0.909 0.997

Table 6: Accuracies of Seq2Seq-DU and baselines on
M2M dataset. Seq2Seq-DU-w/oSchema significantly
outperforms the baselines.

Model ATIS SNIPS
Slot F1 Int Acc Slot F1 Int Acc

RNN-LSTM 0.943 0.926 0.873 0.969
Atten.-BiRNN 0.942 0.911 0.878 0.967
Slot-Gated 0.952 0.941 0.888 0.970
Joint BERT 0.961 0.975 0.970 0.986
Seq2Seq-DU-SeqLabel 0.955 0.968 0.965 0.990

Table 7: Accuracies of Seq2Seq-DU and baselines on
ATIS and SNIPS datasets. Seq2Seq-DU-SeqLabel per-
forms comparably with Joint BERT.
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4.6 Ablation Study

We also conduct ablation study on Seq2Seq-DU.
We validate the effects of three factors: BERT-
based encoder, utterance-schema attention, and
pointer generation decoder. The results indicate
that all the components of Seq2Seq-DU are indis-
pensable.

Effect of BERT
To investigate the effectiveness of using BERT in
the utterance encoder and schema encoder, we re-
place BERT with Bi-directional LSTM and run the
model on SGD and MultiWOZ2.2. As shown in
Figure 3, the performance of the BiLSTM-based
model Seq2Seq-DU-w/oBert in terms of Joint GA
and Int. Acc decreases significantly compared with
Seq2Seq-DU. It indicates that the BERT-based en-
coders can create and utilize more accurate repre-
sentations for dialogue understanding.

Effect of Attention
To investigate the effectiveness of using atten-
tion, we compare Seq2Seq-DU with Seq2Seq-DU-
w/oAttention which eliminates the attention mecha-
nism, Seq2Seq-DU-w/SchemaAtt which only con-
tains the utterance-attended schema representa-
tions, and Seq2Seq-DU-w/UtteranceAtt which only
contains the schema-attended utterance represen-
tations. Figure 3 shows the results on SGD and
MultiWOZ2.2 in terms of Joint GA and Int. Acc.
One can observe that without attention the perfor-
mances deteriorate considerably. In addition, the
performances of unidirectional attentions are infe-
rior to the performance of bidirectional attention.
Thus, utilization of bidirectional attention between
utterances and schema descriptions is desriable.

Effect of Pointer Generation
To investigate the effectiveness of the pointer gen-
eration mechanism, we directly generate words
from the vocabulary instead of generating pointers
in the decoding process. Figure 3 also shows the
results of Seq2Seq-DU-w/oPointer on SGD and
MultiWOZ2.2 in terms of Joint GA and Int. Acc.
From the results we can see that pointer gener-
ation is crucial for coping with unseen schemas.
In SGD which contains a large number of unseen
schemas in the test set, there is significant perfor-
mance degradation without pointer generation. The
results on MultiWOZ2.2, which does not have un-
seen schemas in the test set, show pointer gener-
ation can also make significant improvement on

Figure 3: Ablation study results of Seq2Seq-DU with
respect to BERT, attention, and pointer generation on
SGD and MultiWOZ2.2.

already seen schemas by making full use of schema
descriptions.

4.7 Discussions
Case Study
We make qualitative analysis on the results of
Seq2Seq-DU and SGD-baseline on SGD and Mul-
tiWOZ2.2. We find that Seq2Seq-DU can make
more accurate inference of dialogue states by lever-
aging the relations existing in the utterances and
schema descriptions. For example, in the first case
in Table 8, the user wants to find a cheap guest-
house. Seq2Seq-DU can correctly infer that the
hotel type is “guesthouse” by referring to the rela-
tion between “hotel-pricerange” and “hotel-type”.
In the second case, the user wants to rent a room
with in-unit laundry. In the dataset, a user who in-
tends to rent a room will care more about the laun-
dry property. Seq2Seq-DU can effectively extract
the relation between “intent” and “in-unit-laundry”,
yielding a correct result. In contrast, SGD-baseline
does not model the relations in the schemas, and
thus it cannot properly infer the values of “hotel-
type” and “in-unit-laundry”.

Dealing with Unseen Schemas
We analyze the zero-shot learning ability of
Seq2Seq-DU. Table 9 presents the accuracies of
Seq2Seq-DU in different domains on SGD. (Note
that only SGD has unseen schemas in test set.) We
observe that the best performances can be obtained
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ID Dialogue Utterance Dialogue State State Predictions of
SGD-baseline

State Predictions of
Seq2Seq-DU

1 User: I wanna rent a place in
Campbell. Sys: How many
baths? User: One bath is fine.
Sys: How many bedrooms? User:
One bedroom is fine. It also
needs in-unit laundry.

“area”: Campbell;
“in-unit-laundry”: True;
“intent”: rent; “number-
of-baths”: 1; “number-of-
beds”: 1; “active-intent”:
FindHomeByArea;

“area”: Campbell; “in-unit-
laundry”: – ; “intent”:
rent; “number-of-baths”:
1; “number-of-beds”: 1;
“active-intent”: FindHome-
ByArea;

“area”: Campbell; “in-
unit-laundry”: True; “in-
tent”: rent; “number-of-
baths”: 1; “number-of-
beds”: 1; “active-intent”:
FindHomeByArea;

2 User: The location isn’t really
important. It does need to be
cheap though, and preferably a
guesthouse.

“hotel-area”: dontcare ;
“hotel-pricerange”: cheap;
“ hotel-type”: guesthouse;
“active intent”: find-hotel;

“hotel-area”: dontcare ;
“hotel-pricerange”: cheap;
“hotel-type”: hotel; “active
intent”: find-hotel;

“hotel-area”: dontcare;
“hotel-pricerange”: cheap;
“hotel-type”: guesthouse;
“active intent”: find-hotel;

Table 8: Case study on Seq2Seq-DU and SGD-baseline on SGD and MultiWOZ2.2. The first example is from
SGD and the second is from MultiWOZ2.2. The underlined slot-value pairs represent the ground truth states. The
slot-value pairs in blue are correctly predicted ones, while the slot-value pairs in red are incorrectly predicted ones.

in the domains with all seen schemas. The domains
that have more partially seen schemas achieve
higher accuracies, such as ”Hotels”, ”Movies”,
”Services”. The accuracies decline in the domains
with more unseen schemas, such as ”Messaging”
and ”RentalCars”. We conclude that Seq2Seq-DU
can perform zero-shot learning across domains.
However, the ability still needs enhancement.

Domain Joint GA Int Acc Domain Joint GA Int Acc
Messaging* 0.0489 0.3510 Media* 0.2307 0.9065
RentalCars* 0.0625 0.7901 Events* 0.3186 0.9327
Payment* 0.0719 0.5835 Hotels** 0.3396 0.9891
Music* 0.1234 0.9438 Movies** 0.4386 0.7836
Restaurants* 0.1295 0.9627 Travel 0.4490 0.9966
Flights* 0.1589 0.9649 Services** 0.4774 0.9842
Trains* 0.1683 0.9257 Alarm* 0.5567 0.5768
Buses* 0.1684 0.8805 Weather 0.5792 0.9965
Homes 0.2275 0.9081 RideSharing 0.6702 0.9991

Table 9: Accuracy of Seq2Seq-DU in each domain on
SGD test set. Domains marked with ‘*’ are those for
which the schemas in the test set are not present in
the training set. Domains marked with ‘**’ have both
the unseen and seen schemas. For other domains, the
schemas in the test set are also seen in the training set.

Categorical Slots and Non-categorical Slots
Table 10 shows the accuracies of Seq2Seq-DU and
the baselines with respect to categorical and non-
categorical slots on SGD and MultiWOZ2.2. (We
did not compare with FastSGT on SGD dataset
due to unavailability of the codes.) One can see
that Seq2Seq-DU can effectively deal with both
categorical and non-categorical slots. Furthermore,
Seq2Seq-DU demonstrates higher accuracies on
categorical slots than non-categorical slots. We
conjecture that it is due to the co-occurrences of
categorical slot values in both the dialogue history
and the schema descriptions. The utterance-schema

attention can more easily capture the relations be-
tween the values.

Model SGD MultiWOZ2.2
Categorical-
Joint-GA

Noncategorical-
Joint-GA

Categorical-
Joint-GA

Noncategorical-
Joint-GA

TRADE - - 0.628 0.666
SGD-baseline 0.513 0.361 0.570 0.661
DS-DST - - 0.706 0.701
FastSGT not available not available - -
TripPy - - 0.684 0.733
Seq2Seq-DU 0.578 0.393 0.758 0.711

Table 10: Accuracies of Seq2Seq-DU and baselines
with respect to categorical and non-categorical slots on
SGD and MultiWOZ2.2.

5 Conclusion

We have proposed a new approach to dialogue state
tracking. The approach, referred to as Seq2Seq-
DU, takes dialogue state tracking (DST) as a prob-
lem of transforming all the utterances in a dia-
logue into semantic frames (state representations)
on the basis of schema descriptions. Seq2Seq-DU
is unique in that within the sequence to sequence
framework it employs BERT in encoding of ut-
terances and schema descriptions respectively and
generates pointers in decoding of dialogue state.
Seq2Seq-DU is a global, reprentable, and scalable
model for DST as well as NLU (natural language
understanding). Experimental results show that
Seq2Seq-DU significantly outperforms the state-of-
the-arts methods in DST on the benchmark datasets
of SGD, MultiWOZ2.2, MultiWOZ2.1, WOZ2.0,
DSTC2, M2M, and performs as well as the state-
of-the-arts in NLU on the benchmark datasets of
ATIS and SNIPS.
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Milica Gašić. 2020. TripPy: A triple copy strategy
for value independent neural dialog state tracking.
In ACL.

Matthew Henderson, Blaise Thomson, and Jason D
Williams. 2014. The second dialog state tracking
challenge. In SIGDIAL.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. arXiv
preprint arXiv:2005.00796.

Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. 2020.
Challenges in building intelligent open-domain di-
alog systems. ACM Transactions on Information
Systems (TOIS).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In CoRR.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequic-
ity: Simplifying task-oriented dialogue systems with
single sequence-to-sequence architectures. In ACL.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In INTERSPEECH.
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A Training Curves

Figure 4 shows the training losses of Seq2Seq-DU
on the training datasets, while Figure 5 shows the
accuracies of Seq2Seq-DU on the test sets during
training. We regard training convergence when the
fluctuation of loss is less than 0.01 for consecutive
20 thousand steps. Seq2Seq-DU converges at the
180k-th step on SGD, MultiWOZ2.2, and Multi-
WOZ2.1. Seq2Seq-DU-w/oSchema converges at
the 150k-th step on WOZ2.0 and at the 140k-th step
on DSTC2, and M2M. Furthermore, Seq2Seq-DU-
SeqLabel converges at the 130k-th step on ATIS
and SNIPS. These are consistent with the general
trends in machine learning that more complex mod-
els are more difficult to train.
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Figure 4: Training losses of Seq2Seq-DU on all train-
ing datasets.
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Figure 5: Accuracies of Seq2Seq-DU in terms of Join
GA / Slot F1 on all test sets.


