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Abstract

One of the difficulties in training dialogue sys-
tems is the lack of training data. We ex-
plore the possibility of creating dialogue data
through the interaction between a dialogue sys-
tem and a user simulator. Our goal is to de-
velop a modelling framework that can incorpo-
rate new dialogue scenarios through self-play
between the two agents. In this framework,
we first pre-train the two agents on a collec-
tion of source domain dialogues, which equips
the agents to converse with each other via nat-
ural language. With further fine-tuning on a
small amount of target domain data, the agents
continue to interact with the aim of improv-
ing their behaviors using reinforcement learn-
ing with structured reward functions. In exper-
iments on the MultiWOZ dataset, two practi-
cal transfer learning problems are investigated:
1) domain adaptation and 2) single-to-multiple
domain transfer. We demonstrate that the pro-
posed framework is highly effective in boot-
strapping the performance of the two agents
in transfer learning. We also show that our
method leads to improvements in dialogue sys-
tem performance on complete datasets.

1 Introduction

This work aims to develop a modelling framework
in which dialogue systems (DSs) converse with
user simulators (USs) about complex topics us-
ing natural language. Although the idea of joint
learning of two such agents has been proposed be-
fore, this paper is the first to successfully train both
agents on complex multi-domain human-human di-
alogues and to demonstrate a capacity for transfer
learning to low-resource scenarios without requir-
ing re-redesign or re-training of the models.

One of the challenges in task-oriented dialogue
modelling is to obtain adequate and relevant train-
ing data. A practical approach in moving to a
new domain is via transfer learning, where pre-

training on a general domain with rich data is first
performed and then fine-tuning the model on the
target domain. End-to-end DS (Wen et al., 2017; Li
et al., 2017; Dhingra et al., 2017) are particularly
suitable for transfer learning, in that such models
are optimised as a single system. By comparison,
pipe-lined based DSs with multiple individual com-
ponents (Young et al., 2013) require fine-tuning of
each component system. These separate steps can
be done independently, but it becomes difficult to
ensure optimality of the overall system.

A similar problem arises in the data-driven US as
commonly used in interaction with the DS. Though
many USs have been proposed and been widely
studied, they usually operate at the level of seman-
tic representation (Kreyssig et al., 2018; El Asri
et al., 2016). These models can capture user intent,
but are otherwise somewhat artificial as user sim-
ulators in that they do not consume and produce
natural language. As discussed above for DSs, the
end-to-end architecture for the US also offers sim-
plicity in transfer learning across domains.

There are also potential advantages to continued
joint training of the DS and the US. If a user model
is less than perfectly optimised after supervised
learning over a fixed training corpus, further learn-
ing through interaction between the two agents
offers the US the opportunity to refine its behavior.
Prior work has shown benefits from this approach
to dialogue policy learning, with a higher success
rate at dialogue level (Liu and Lane, 2017b; Pa-
pangelis et al., 2019; Takanobu et al., 2020), but
there has not been previous work that addresses
multi-domain end-to-end dialogue modelling for
both agents. Takanobu et al. (2020) address refine-
ment of the dialogue policy alone at the semantic
level, but do not address end-to-end system archi-
tectures. Liu and Lane (2017b); Papangelis et al.
(2019) address single-domain dialogues (Hender-
son et al., 2014), but not the more realistic and
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complex multi-domain dialogues.
This paper proposes a novel learning frame-

work for developing dialogue systems that per-
forms Joint Optimisation with a User SimulaTor
(JOUST).1 Through the pre-training on complex
multi-domain datasets, two agents are able to in-
teract using natural language, and further create
more diverse and rich dialogues. Using reinforce-
ment learning (RL) to optimise both agents enables
them to depart from known strategies learned from
a fixed limited corpus, to explore new, potentially
better policies. Importantly, the end-to-end designs
in the framework makes it easier for transfer learn-
ing of two agents from one domain to another. We
also investigate and compare two reward designs
within this framework: 1) the common choice of
task success at dialogue level; 2) a fine-grained
reward that operates at turn level. Results on Mul-
tiWOZ dataset (Budzianowski et al., 2018) show
that our method is effective in boosting the per-
formance of the DS in complicated multi-domain
conversation. To further test our method in more
realistic scenarios, we design specific experiments
on two low-resource setups that address different
aspects of data sparsity. Our contributions can be
summarised as follows:

• Novel contributions in joint optimisation of
a fully text-to-text dialogue system with a
matched user simulator on complex, multi-
domain human-human dialogues.

• Extensive experiments, including exploring
different types of reward, showing that our
framework with a learnable US boost overall
performance and reach new state-of-the-art
performance on MultiWOZ.

• Demonstration that our framework is effective
in two transfer learning tasks of practical ben-
efit in low-resources scenarios with in-depth
analysis of the source of improvements.

2 Pre-training the Dialogue System and
User Simulator

In our joint learning framework, we first pre-train
the DS and US using supervised learning so that
two models are able to interact via natural lan-
guage. This section presents the architectures of

1The code is released at https://github.com/
andy194673/joust.

two agents, illustrated in Fig. 1, and the objectives
used for supervised learning.

2.1 Dialogue system

Dialogue state tracking (DST) The first task of
a DS is to process the dialogue history in order to
maintain the belief state which records essential
information of the dialogue. A DST model is uti-
lized to predict the set of slot-value pairs which
constitute the constraints of the entity for which the
user is looking for, e.g. {hotel_area=north,
hotel_name=gonville_hotel}.

The DST model used here is an encoder-decoder
model with attention mechanism (Bahdanau et al.,
2015). The set of slot-value pairs is formulated
as a slot sequence together with a value sequence.
For the tth dialogue turn, the DST model first en-
codes the dialogue context and the most recent
user utterance xust−1 using a bi-directional LSTM
(Graves et al., 2005) to obtain hidden statesHenc

t =
{henc1 , ..., hencj , ...}. At the ith decoding step of turn
t, the previous decoder hidden state hdeci−1 is used
to attend over Henc

t to obtain the attention vector
ai. The decoder takes ai, hdeci−1 and the embedding
of the slot token predicted at i− 1 to produce the
current hidden state hdeci . The hdeci is then passed
through separate affine transforms followed by the
softmax function to predict a slot token and value
for step i. The final belief state is the aggregation
of predicted slot-value pairs of all decoding steps.

Database Query Based on the updated belief
state, the system searches the database and retrieves
the matched entities. In addition, a one-hot vector
of size 3 characterises the result of every query.

Context Encoding To capture the dialogue flow,
a hierarchical LSTM (Serban et al., 2016) encodes
the dialogue context from turn to turn throughout
the dialogue. At each turn t, the most recent user
utterance xust−1 is encoded by an LSTM-based sen-
tence encoder to obtain a sentence embedding eust
and hidden states Hus

t . Another LSTM is used
as the context encoder, which encodes eust as well
as the output of the context encoder on the user
side cust−1 from the previous turn (see Fig. 1). The
context encoder produces the next dialogue context
state cdst for the downstream dialogue manager.

Policy The dialogue manager determines the sys-
tem dialogue act based on the current state of the
dialogue. The system dialogue act is treated as
a sequence of tokens in order to handle cases in

https://github.com/andy194673/joust
https://github.com/andy194673/joust
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Figure 1: Overall architecture of the proposed framework, where the dialogue system (DS) and user simulator (US)
discourse with each other. t denotes dialogue turn index. The context encoder is shared between the two agents.

which multiple system actions exist in the same
turn.The problem is therefore formulated as a se-
quence generation task using an LSTM. At each
decoding step, the inputs to the policy decoder are:
1) the embedding of the act token predicted at the
previous step; 2) the previous hidden state; 3) the
attention vector obtained by attending over the hid-
den states of the user utterance Hus

t using 2) as
query; 4) the database retrieval vector; 5) the sum-
marized belief state, which is a binary vector where
each entry corresponds to a domain-slot pair. The
output space contains all possible act tokens. For
better modeling of the dialogue flow, the initializa-
tion of the hidden state is set to the context state
cdst obtained by the context encoder.

Natural language generation (NLG) The final
task of the DS is to generate the system response,
based on the predicted system dialogue act. To gen-
erate the word sequence another LSTM is used as
the NLG model. At each decoding step, the previ-
ous hidden state serves as a query to attend over the
hidden states of the policy decoder. The resulting
attention vector and the embedding of the previ-
ous output word are the inputs to an LSTM whose
output is the word sequence with delexicalized to-
kens. These delexicalized tokens will be replaced
by retrieval results to form the final utterance.

2.2 User Simulator

As in the DS, the proposed US has a dialogue man-
ager, an NLG model and a dialogue context en-
coder. However, in place of a DST to maintain the
belief state, the US maintains an internal goal state
to track progress towards satisfying the user goals.

Goal State The goal state is modelled as a binary
vector that summarises the dialogue goal. Each
entry of the vector corresponds to a domain-slot
pair in the ontology. At the beginning of a dialogue,

goal state entries are turned on for all slots that
make up the goal. At each dialogue turn, the goal
state is updated based on the previous user dialogue
act. If a slot appears in the previous dialogue act,
either as information from the user or as a request
by the US, the corresponding entry is turned off.

Context encoding, Policy & NLG in the US
These steps follow their implementations in the
DS. For context encoding in the US, a sentence
encoder first encodes the system response using an
LSTM to obtain hidden states Hds

t and sentence
embedding edst . The context encoder takes edst and
DS context state cdst as inputs to produce the dia-
logue context state cust which is passed to the DS
at the next turn.

Also as in the DS, the policy and the NLG model
of the US are based on LSTMs. The input to the
policy are goal state, hidden states of the sentence
encoder Hds

t and context state cust , to produce the
user dialogue act, represented as in the DS as a
sequence of tokens. The NLG model takes the
hidden states of policy decoder as input to generate
the user utterance, which is then lexicalised by
replacing delexicalised tokens using the user goal.

2.3 Supervised Learning

For each dialogue turn, the ground truth dialogue
acts and the output word sequences are used as
supervision for both the DS and the US. The losses
of the policy and the NLG model are the cross-
entropy losses of the predicted sequence probability
p and the ground-truth y:

L∗pol =

|A|∑
i=1

−y∗a,i log p∗a,i

L∗nlg =

|W |∑
i=1

−y∗w,i log p∗w,i

(1)
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In the above, * can be either ds or us, referring
either to the DS or the US: e.g. pdsa,i is the probabil-
ity of the system act token at the ith decoding step
in a given turn. The ground-truth y contains both
word sequences and act sequences with W and A
as their lengths.

The DST annotations are also used as supervi-
sion for the DS. The loss of the DST model is
defined as the sum of the cross-entropy losses for
slot and value:

Ldsdst =

|SV |∑
i=1

−ydss,i log pdss,i − ydsv,i log pdsv,i (2)

where |SV | is the number of slot-value pairs in a
turn; i is the decoding step index. pdss,i and pdsv,i are
the predictions of slot and value at the ith step.

The overall losses for the DS and the US are:

Lds(θds) = Ldsdst + Ldspol + Ldsnlg

Lus(θus) = Luspol + Lusnlg
(3)

where θds and θus are the parameters of DS and US,
respectively. The two agents are updated jointly to
minimize the sum of the losses (Lds+Lus). The
success rate of the generated dialogues is used as
the stopping criterion for supervised learning.

3 RL Optimisation of the Dialogue
System and User Simulator

After the DS and US models are pre-trained from
the corpus using supervised learning, they are fine-
tuned using reinforcement learning (RL) based on
the dialogues generated during their interactions.
Two reward designs are presented after which the
optimisation strategy is given.

3.1 Dialogue-Level Reward

Following common practice (El Asri et al., 2014;
Su et al., 2017; Casanueva et al., 2018; Zhao et al.,
2019), the success of the simulated dialogues is
used as the reward, which can only be observed at
the end of the dialogue. A small penalty is given at
each turn to discourage lengthy dialogues. When
updating the US jointly with the DS during inter-
action using RL, the reward is shared between two
agents.

3.2 Turn-Level Reward

While the dialogue-level reward is straight-forward,
it only considers the final task success rate of the

dialogues and neglects the quality of the individ-
ual turns. For complex multi-domain dialogues
there is a risk that this will make it difficult for the
system to learn the relationship between actions
and rewards. We thus propose a turn-level reward
function that encapsulates the desired behavioural
features of fundamental dialogue tasks. The re-
wards are designed separately for the US and the
DS according to their characteristics.

DS Reward A good DS should learn to refine
the search by requesting needs from the user and
providing the correct entities, with their attributes,
that the user wishes to know. Therefore at the
current turn a positive reward is assigned to DS
if: 1) it requests slots that it has not requested
before; 2) it successfully provides an entity; or 3) is
answers correctly all additional attributes requested
by the user. Otherwise, a negative reward is given.

US Reward A good US should not repeatedly
give the same information or request attributes that
have already been provided by the DS. Therefore,
a positive reward is assigned to the US if: 1) it
provides new information about slots; 2) it asks
new attributes about a certain entity, or 3) it replies
correctly to a request from the DS. Otherwise a
penalty is given.

3.3 Optimization

We apply the Policy Gradient Theorem (Sutton
et al., 2000) to the space of (user/system) dialogue
acts. In the tth dialogue turn, the reward rdst or rust
is assigned to the two agents at final last step of
their generated act sequence. The return for the
action at the ith step is R∗i = γ|A

∗|−ir∗t , where ∗
denotes ds or us, and |A∗| is the length of the act
sequence of each agent. γ∈ [0, 1] is a discounting
factor. The policy gradient of each turn can then be
written as:

∇θ∗J∗(θ∗) =
|A∗|∑
i

R∗i∇θ∗ log p∗a,i (4)

where p∗a,i is the probability of the act token at the
ith step in the predicted dialogue act sequence. The
two agents are updated using Eqn. (4) at each turn
within the entire simulated dialogue.

4 Experiments

Dataset The MultiWOZ 2.0 dataset
(Budzianowski et al., 2018) is used for all
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experiments. It contains 10.4k dialogues with an
average of 13.6 turns. Each dialogue can span up to
three domains. Compared to previous benchmark
corpora such as DSTC2 (Williams et al., 2016) or
WOZ2.0 (Wen et al., 2017), MultiWOZ is more
challenging because 1) its rich ontology contains
39 slots across 7 domains; 2) the DS can take
multiple actions in a single turn; 3) the complex
dialogue flow makes it difficult to hand-craft a
rule-based DS or an agenda-based US. Lee et al.
(2019) provided the user act labels.

Training Details The positive and negative RL
rewards of Sec. 3 are tuned in the range [-5, 5]
based on the dev set. The user goals employed
for interaction during RL are taken from the train-
ing data without synthesizing new goals. Further
training details can be found in Appendix A.1.

Evaluation Metrics The proposed model is eval-
uated in terms of the inform rate (Info), the success
rate (Succ), and BLEU.2 The inform rate measures
whether the DS provides the correct entity match-
ing the user goal, while the success rate further
requires the system to answer all user questions
correctly. Following (Mehri et al., 2019), the com-
bined performance (Comb) is also reported, calcu-
lated as 0.5 ∗ (Info + Succ) + BLEU.

4.1 Interaction Quality

First, it is examined whether the proposed learn-
ing framework improves the discourse between di-
alogue system and user simulator. Several vari-
ants of our model are examined: 1) two agents are
pre-trained using supervised learning, serving as
baseline; 2) RL is used to fine-tune only the DS
(RL-DS) or both agents (RL-Joint). In each RL
case, we can either use rewards at the dialogue
level (dial-R, Sec. 3.1) or rewards at the turn-level
(turn-R, Sec. 3.2). The two trained agents interact
based on 1k user goals from the test corpus, with
the generated dialogues being evaluated using the
metrics above.

From Table 1, we can see that the application
of RL in our framework improves the success rate
by more than 10% (b-e vs. a). This indicates that
the DS learns through interaction with the learned
US, and the designed rewards, to be better at com-
pleting the task successfully. Moreover, the joint

2For a fair comparison to previously proposed models, the
same evaluation script provided by the MultiWOZ organizers
https://github.com/budzianowski/multiwoz
is used and the official data split for train/dev/test is followed.

Model Info Succ
(a) Supervised Learning 69.77 58.02
(b) RL-DS w/ dial-R 81.38 70.67
(c) RL-Joint w/ dial-R 82.83 71.57
(d) RL-DS w/ turn-R 85.62 70.34
(e) RL-Joint w/ turn-R 86.49 73.04

Table 1: Quality for dialogues generated by two agents
in JOUST using the test corpus user goals. BLEU is
not reported since no reference sentences are available
for these interactions.

Model Info Succ BLEU Comb
HRED-TS (Peng et al., 2019) 70.0 58.0 17.5 81.5
DAMD (Zhang et al., 2019) 76.3 60.4 16.6 85.0
SimpleTOD∗(Hosseini-Asl et al., 2020) 84.4 70.1 15.0 92.3
SOLOIST∗ (Peng et al., 2020) 85.5 72.9 16.5 95.7
MinTL-BART∗ (Lin et al., 2020a) 84.9 74.9 17.9 97.8
JOUST Supervised Learning 77.4 66.7 17.4 89.5
JOUST RL-Joint w/ dial-R 80.6 69.4 17.5 92.5
JOUST RL-Joint w/ turn-R 83.2 73.5 17.6 96.0

Table 2: Empirical comparison with state-of-the-art di-
alogue systems using the predicted belief state. ∗ indi-
cates leveraging of pre-trained transfomer-based mod-
els.

optimisation of both the US and the DS provides
dialogues with higher success rate than only opti-
mising the DS (c&e vs. b&d). It shows that the
behaviour of the US is realistic enough and diverse
enough to interact with the DS, and its behavior
can be improved together during RL optimisation.
Finally, by comparing two reward designs, the fine-
grained rewards at the turn level seem to be more
effective towards guiding two agents’ interaction
(b&c vs. d&e), which is reasonable since they re-
flect more than simple success rate in terms of the
nature of the tasks. Some real, generated dialogues
through the interactions are provided in Appendix
A.6; we note that after RL, both agents respond to
requests more correctly and also learn not to repeat
the same information, leading to a more successful
and smooth interaction without loops in the dia-
logue. The corresponding error analysis of each of
the agents is provided later in Sec. 4.4.1.

4.2 Benchmark Results

We conduct experiments on the official test set
for comparison to existing end-to-end DSs. The
trained DS is used to interact with the fixed test
corpus following the same setup of Budzianowski
et al. (2018). Results are reported using a predicted
belief state (Table 2) and using an oracle belief state
(Table 3). In general, we can observe similar perfor-
mance trends as in Sec. 4.1 with RL optimization

https://github.com/budzianowski/multiwoz
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Model Info Succ BLEU Comb
SimpleTOD∗(Hosseini-Asl et al., 2020) 88.9 67.1 16.9 94.9
MoGNet (Pei et al., 2020) 85.3 73.3 20.1 99.4
ARDM∗ (Wu et al., 2019) 87.4 72.8 20.6 100.7
DAMD (Zhang et al., 2019) 89.2 77.9 18.6 102.2
SOLOIST∗ (Peng et al., 2020) 89.6 79.3 18.3 102.5
PARG (Gao et al., 2020) 91.1 78.9 18.8 103.8
MarCo∗ (Wang et al., 2020) 92.3 78.6 20.0 105.5
JOUST Supervised Learning 88.5 79.4 18.3 102.3
JOUST RL-Joint w/ dial-R 93.9 85.7 16.9 106.7
JOUST RL-Joint w/ turn-R 94.7 86.7 18.7 109.4

Table 3: Empirical comparison with state-of-the-art di-
alogue systems using oracle belief state. ∗ indicates
leveraging of pre-trained transfomer-based models.

of our model. Joint learning of two agents using
RL with the fine-grained rewards reaches the best
combined score and success rate. This implies that
the exploration of more dialogue states and actions
in the simulated interactions reinforces the behav-
iors that lead to higher success rate, and that these
generalise well to unfamiliar states encountered in
the test corpus.

Our best RL model produces competitive results
in Table 2 when using predicted belief state, and
can further outperform the previous work in Table 3
when using oracle belief state. Note that we do
not leverage the powerful pre-trained transformer-
based models like SOLOIST or MinTL-BART
model. We found that with RL optimisation, our
LSTM-based models can still perform competi-
tively. In terms of DS model structure, the most
similar work would be the DAMD model. The
performance gain found in comparing "JOUST Su-
pervised Learning" to DAMD is partially due to
the better performance of our DST model.3

We also conduct experiments using only 50% of
the training data for supervised learning to verify
the efficacy of the proposed method under differ-
ent amounts of data. As shown in Table 4, it is
observed that our method also improves the model
upon supervised learning when trained with less
data and the improvements are consistent with the
complete data scenario.

4.3 Transfer Learning

In this section, we demonstrate the capability of
transfer learning of the proposed framework un-
der two low-resource setups: Domain Adaptation
and Single-to-Multiple Domain Transfer. Two fine-
tuning methods are adopted: the straightforward
fine-tuning without any constraints (Naive) and

3In correspondence, the DAMD authors report a DST
model with joint accuracy of ca. 35%, while ours is 45%.

Model Info. Succ. BLEU Comb.
Belief State = Predicted

Supervised Learning 70.37 55.43 17.29 80.19
RL-Joint w/ turn-R 74.83 60.60 17.41 85.12

Belief State = Oracle
Supervised Learning 89.67 74.5 16.96 99.04
RL-Joint w/ turn-R 94.27 81.47 17.20 105.06

Table 4: Results of JOUST using 50% training data in
supervised learning.

elastic weight consolidation (EWC) (Kirkpatrick
et al., 2017). We show that the proposed RL can
be further applied to both methods and produces
significantly improved results. Here we experiment
the best RL variants using turn-level rewards (same
as (e) in Table 1).

Domain Adaptation In these experiments, each
of five domains is selected as the target domain.
Taking the hotel domain for example, 300 dia-
logues4 involving the hotel domain are sampled
from the training corpus as adaptation data. The
rest of the dialogues, not involving the hotel do-
main, form the source data. Both the DS and the
US are first trained on the source data (Source),
and then fine-tuned on the limited data of the tar-
get domain (Naive, EWC). Afterwards, the pair of
agents is trained in interaction using the proposed
RL training regime (+RL).

Results in the form of the combined score are
given in Table 5 (corresponding success rates are
provided in Appendix A.5). As expected, mod-
els pre-trained on source domains obtain low com-
bined scores on target domains. Fine-tuning using
Naive or EWC method significantly bootstraps the
systems, where the regularization in EWC benefits
more for the low-resource training. By applying
our proposed framework to the two sets of fine-
tuned models, the performance can be further im-
proved by 7-10% in averaged numbers, with both
predicted and oracle belief states. This indicates
that through the interaction with the US, the DS is
not constrained by having seen only a very limited
amount of target domain data, and that it can learn
effectively from the simulated dialogues using the
simple reward structure (the RL learning curve is
presented in Sec. 4.4.3). With a better initializa-
tion points such as EWC models, the models can
learn from a higher quality interaction and produce
better results (EWC+RL vs Naive+RL). On aver-

4For each domain, 300 dialogues accounts for 10% of all
target-domain data. Refer to Appendix A.2 for data statistics.
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Model Restaurant Hotel Attraction Train Taxi Avg.
Belief State = Predicted

Source 21.1 28.6 25.2 59.6 48.7 36.6
Naive 46.7 56.2 66.1 68.5 66.3 60.8
EWC 56.7 58.2 71.6 69.3 78.7 66.9
Naive+RL 57.0 66.8 72.5 72.3 75.4 68.8
EWC+RL 64.6 67.8 75.8 71.6 87.6 73.5

Belief State = Oracle
Source 33.2 40.1 34.3 70.7 55.4 46.7
Naive 85.6 84.2 77.9 96.7 93.4 87.5
EWC 84.1 85.1 89.8 101.7 97.5 91.6
Naive+RL 97.6 99.2 88.5 104.0 103.4 98.5
EWC+RL 97.5 100.7 96.0 104.9 106.3 101.1

Table 5: Combined scores in domain adaptation. 300
dialogues are used for each target domain adaptation.

age, the final performance obtained by EWC+RL
model doubles that of Source model, which demon-
strates the efficacy of the proposed method in do-
main adaptation.

Single-to-Multiple Domain Transfer Another
transfer learning scenario is investigated where
only limited multi-domain data is accessible but
sufficient single-domain dialogues are available.
This setup is based on a practical fact that single-
domain dialogues are often easier to collect than
multi-domain ones. All single-domain dialogues in
the training set form the source data. For each tar-
get multi-domain combination, 100 dialogues5 are
sampled as adaptation data. As before, the DS and
the US are first pre-trained on the source data and
then fine-tuned on the adaptation data. Afterwards,
two agents improve themselves through interac-
tion. The models are tested using the multi-domain
dialogues of the test corpus.

Results in the form of the combined score are
given in Table 6 (refer to Appendix A.5 for success
rates). Although the Source models capture indi-
vidual domains, they cannot manage the complex
flow of multi-domain dialogues and hence produce
poor combined scores, with worst results on com-
binations of three domains. Fine-tuning improves
performance significantly, as the systems learn to
transition between domains in the multi-domain
dialogue flow. Finally, applying our RL optimiza-
tion further increases the performance by 6-9% on
average. This indicates that the dialogue agents can
learn more complicated policies through exploring
more dialogue states and actions while interacting
with user simulator. We analyse the sources of
improvements in the following section.

5There are 6 types of domain combinations in MultiWOZ,
as shown in Table 6. For each multi-domain combination, 100
dialogues accounts for 11% of its multi-domain data.

Model H+T R+T A+T A+H+X H+R+X A+R+X Avg.
Belief State = Predicted

Source 46.0 55.4 34.3 22.0 26.6 19.9 34.0
Naive 57.2 69.2 65.0 40.3 36.0 42.8 51.7
EWC 57.4 72.1 66.1 43.7 39.0 45.0 53.9
Naive+RL 63.2 74.4 68.4 47.4 42.7 48.7 57.5
EWC+RL 64.7 77.6 67.6 46.6 43.2 48.5 58.0

Belief State = Oracle
Source 82.3 93.3 76.2 36.8 55.4 42.4 64.4
Naive 88.8 98.4 85.9 72.2 79.8 76.7 83.6
EWC 95.5 96.9 89.6 70.0 81.5 79.6 85.5
Naive+RL 99.7 104.3 92.0 80.6 97.2 89.3 93.9
EWC+RL 100.2 103.0 93.9 82.6 95.0 89.2 94.0

Table 6: Combined scores in single-to-multiple domain
transfer where 100 dialogues on each target scenario
are used for adaptation. R, H, A, T, X represent Restau-
rant, Hotel, Attraction, Train, Taxi domain.

Model Dialogue System User Simulator
Miss Ent. Wrong Ans. Rep. Att. Miss Ans.

Naive 17.59 36.99 10.12 47.27
Naive+RL 2.73 9.54 1.47 32.60

Table 7: Error analysis (%) of the US and the DS agents
averaged over 5 adaptation domains. Lower is better.

4.4 Analysis

4.4.1 Error Analysis
We first examine the behavior of the US and the DS
to understand the improved success rate in trans-
fer learning. The models are those of Table 5
and are examined after fine-tuning using Naive
method (Naive) and then after reinforcement learn-
ing (Naive+RL). For the DS, the rates of missing
entities (Miss Ent.) and of wrong answers (Wrong
Ans.) are reported. For the US, rates of repeti-
tions of attributes (Rep. Att.) and of missing an-
swers (Miss Ans.) are reported. The results shown
in Table 7 are averaged over the five adaptation
domains6. We see that with RL optimisation the
errors made by the two agents are reduced signifi-
cantly. Notably, the user model learns not to repeat
the information already provided and attempts to
answer more of the questions from the dialogue
agent. These are the behaviors the reward structure
of Sec. 3.2 are intended to encourage, and they lead
to more successful interactions in policy learning.

4.4.2 Exploration of States and Actions
We now investigate whether our framework encour-
ages exploration through increased interaction in
transfer learning. We report the number of unique
belief states in the training corpus and in the di-
alogues generated during RL interaction, as well
as the unique action sequences per state that each

6Results for each domain can be found in Appendix A.3.
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Domain adaptation Single-to-Multiple
states actions states actions

Corpus 614 3.34 223 3.61
Interact. 1425 6.22 399 15.33

Table 8: Number of unique dialogue states and average
dialogue actions per state in the training corpus and in
the RL interactions in two transfer learning setups.

Figure 2: Learning curves observed on the dev set dur-
ing RL optimization. Two domain adaptation cases are
presented, with restaurant (left) and hotel (right) as tar-
get domain respectively.

agent predicts.
As shown in Table 8, the DS encounters more

states in interaction with the US and also takes
more unique actions in reinforcement learning rela-
tive to what it sees in supervised learning. In this
way the DS considers additional strategies during
the simulated training dialogues, with the oppor-
tunity to reach better performance even with only
limited supervised data. Detailed results for each
adaptation case are provided in Appendix A.4.

4.4.3 RL Learning Curve
Here we show that the designed reward structure
is indeed a useful objective for training. Figure 2
shows learning curves of the model performance
and the received (turn-level) rewards during RL
training. The two examples are from the domain
adaptation experiments in Sec. 4.3, where restau-
rant (left) and hotel (right) are the target domain.
We can see that both the reward value and model
performance are consistently improved during RL,
and their high correlation verifies the efficacy of the
proposed reward design for training task-oriented
dialogue systems.

4.5 Human Evaluation

The human assessment of dialogue quality is per-
formed to confirm the improvements of the pro-
posed methods. 400 dialogues, generated by the
two trained agents, are evaluated by 14 human as-
sessors. Each assessor is shown a comparison of
two dialogues where one dialogue is generated by

Win Ratio (%) SL RL
DS Success 26.0 74.0
US Human-like 29.5 70.5
Dialogue Flow 21.0 79.0

Table 9: Human assessment of the system quality under
supervised learning and reinforcement learning.

the models using supervised learning (SL) and an-
other is generated by the models after RL optimiza-
tion. Note that here we are evaluating the perfor-
mance gain during interactions between two agents
(Sec. 4.1), instead of the gain in benchmark results
by interacting with the static corpus (Sec. 4.2). This
is why the baseline is our SL model instead of the
existing state-of-the-art systems.

The assessor offers judgement regarding:
• Which dialogue system completes the task

more successfully (DS Success)?

• Which user simulator behaves more like a real
human user (US Human-like)?

• Which dialogue is more natural, fluent and
efficient (Dialogue Flow)?

The results with relative win ratio, shown in Ta-
ble 9, are consistent with the automatic evaluation.
With the proposed RL optimisation, the DS is more
successful in dialogue completion. More impor-
tantly, joint optimisation of the US is found to pro-
duce more human-like behavior. The improvement
under the two agents leads to a more natural and
efficient dialogue flow.

5 Related Work

In the emerging field of end-to-end DSs, in which
all components of a system are trained jointly (Liu
and Lane, 2017a; Wen et al., 2017; Lei et al., 2018).
RL methods have been used effectively to optimize
end-to-end DSs in (Dhingra et al., 2017; Liu et al.,
2017; Zhao et al., 2019), although using rule-based
USs or a fixed corpus for interaction. Recent works
utilise powerful transformers such as GPT-2 (Peng
et al., 2020; Hosseini-Asl et al., 2020) or T5 (Lin
et al., 2020b) for dialogue modeling and reach state-
of-the-art performance; however, the area of having
a user simulator involved during training is unex-
plored. By comparison, this work uses a learned
US as the environment for RL. The two agents we
propose are able to generate abundant high-quality
dialog examples and they can be extended easily to
unseen domains. By utilizing an interactive envi-
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ronment instead of a fixed corpus, more dialogue
strategies are explored and more dialogue states are
visited.

There have been various approaches to building
USs. In the research literature of USs, one line
of research is rule-based simulation such as the
agenda-based user simulator (ABUS) (Schatzmann
and Young, 2009; Li et al., 2016). The ABUS’s
structure is such that it has to be re-designed for dif-
ferent tasks, which presents challenges in shifting
to new scenarios. Another line of work is data-
driven modelling. El Asri et al. (2016) modelled
user simulation as a seq2seq task, where the out-
put is a sequence of user dialogue acts the level
of semantics. Gur et al. (2018) proposed a vari-
ational hierarchical seq2seq framework to intro-
duce more diversity in generating the user dia-
logue act. Kreyssig et al. (2018) introduced the
Neural User Simulator (NUS), a seq2seq model
that learns the user behaviour entirely from a cor-
pus, generates natural language instead of dialogue
acts and possesses an explicit goal representation.
The NUS outperformed the ABUS on several met-
rics. Kreyssig (2018) also compared the NUS and
ABUS to a combination of the ABUS with an NLG
component. However, none of these prior works
are suitable for modelling complex, multi-domain
dialogues in an end-to-end fashion. By contrast,
the user model proposed here consumes and gener-
ates text and so can be directly employed to interact
with the DS, communicating via natural language.

The literature on joint optimization of the DS and
the US is line of research most relevant to our work.
Takanobu et al. (2020) proposed a hybrid value net-
work using MARL (Lowe et al., 2017) with role-
aware reward decomposition used in optimising the
dialogue manager. However, their model requires
separate NLU/NLG models to interact via natural
language, which hinders its application in the trans-
fer learning to new domains. Liu and Lane (2017b);
Papangelis et al. (2019) learn both the DS and the
US in a (partially) end-to-end manner. However,
their systems are designed for the single-domain
dataset (DSTC2) and cannot handle the complexity
of multi-domain dialogues: 1) their models can
only predict one dialogue act per turn, which is
not sophisticated enough for modelling multiple
concurrent dialogue acts; 2) the simple DST com-
ponents cannot achieve satisfactory performance in
the multi-domain setup; 3) the user goal change is
not modelled along the dialogue proceeds, which

we found in our experiments very important for
learning complex behaviors of user simulators. Rel-
ative to these three publications, this paper focuses
on joint training of two fully end-to-end agents that
are able to participate in complex multi-domain
dialogues. More importantly, it is shown that the
proposed framework is highly effective for transfer
learning, which is a novel contribution relative to
previous work.

6 Conclusion and Future Work

We propose a novel joint learning framework of
training both the DS and the US for complex multi-
domain dialogues. Under the low-resource sce-
narios, the two agents can generate more dialogue
data through interacting with each other and their
behaviors can be significantly improved using RL
through this self-play strategy. Two types of reward
are investigated and the turn-level reward benefits
more due to its fine-grained structure. Experiments
shows that our framework outperforms previously
published results on the MultiWOZ dataset. In two
transfer learning setups, our method can further im-
proves the well-performed EWC models and boot-
straps the final performance largely. Future work
will focus on improving the two agents’ underly-
ing capability with the powerful transformer-based
models.
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A Appendices

A.1 Training Details

Both the DS and the US are trained in an end-to-end
fashion using the Adam optimizer. The sizes of the
embedding and of the hidden layers are set to 300.
During supervised training, the batch size is 100
and the learning rate is 0.001, while during RL, 10
is used as the batch size and 0.0001 as the learning
rate for stability. We set the discounting factor γ to
1. The computing infrastructure used is Linux 4.4.0-
138-generic x86_64 with the NVIDIA GPU GTX-
1080. Average run time per model using 100%
training data is around 6 hours. Model parameters
is around 11M in total.

The turn-level rewards used for the best models
in benchmark results are reported in Table 10 below.
All rewards are tuned based on the combined score
of the validation performance averaged over three
seeds. As for dialogue-level rewards, a positive
reward 1.0 will be given if a dialogue is successful.

Model
Rewards on DS Rewards on US

rreq rpro rans rreq rinf rans

RL-DS 0, -1 0, -5 2.5, -5 0, 0 0, 0 0, 0
RL-Joint 0, -1 0, -5 2.5, -5 0, -1 1, -1 1, -1

Table 10: The configuration of turn-level rewards for
each best model in the reported benchmark results.
Each reward has positive and negative values.

A.2 Details of Dataset

As noted in the paper, we follow the original split
of the MultiWOZ dataset and the number of dia-
logues for train/dev/test split is 8420/1000/1000.
Data statistics of the number of dialogues in the
two transfer learning scenarios are provided in Ta-
bles 11 and 12.

Data Restaurant Hotel Attraction Train Taxi
Train 300 300 300 300 300
Dev 438 415 400 484 206
Test 437 394 396 495 195

Table 11: Number of dialogues of the splits in each
domain adaptation

Data H+T R+T A+T A+H+X H+R+X A+R+X
Train 100 100 100 100 100 100
Dev 149 157 148 110 100 131
Test 144 155 163 92 91 129

Table 12: Number of dialogues of the splits in each
scenario in single-to-multi domain transfer learning.

A.3 Error Analysis
The error analysis of each domain adaptation cases
are provided in Tables 13 and 14.

Model Restaurant Hotel Attraction Train Taxi Average
Missing provision rate (%)

SL 14.84 24.74 29.08 8.61 10.68 17.59
RL 1.45 2.33 7.83 0.41 1.62 2.73

Missing answer rate (%)
SL 44.39 61.52 32.33 11.95 34.78 36.99
RL 5.64 20.04 10.35 2.58 9.09 9.54

Table 13: Error analysis on dialogue system on each
domain in terms of two behaviors. Lower the better.

Model Restaurant Hotel Attraction Train Taxi Average
Repeat inform rate (%)

SL 8.45 9.15 16.81 9.69 6.48 10.12
RL 1.84 1.28 0.70 1.47 2.05 1.47

Missing answer rate (%)
SL 27.84 56.41 64.68 35.41 52.00 47.27
RL 24.44 40.74 22.95 26.44 48.42 32.60

Table 14: Error analysis on user simulator on each do-
main in terms of two behaviors. Lower the better.

A.4 Exploration
The detailed numbers of explored dialogue states
and the average of unique dialogue actions per state
in each case of two transfer learning scenarios are
provided in Tables 15 and 16.

Model Restaurant Hotel Attraction Train Taxi Average
Number of dialogue states

SL 514 726 545 513 774 614
RL 1458 1666 1087 601 2313 1425

Average of dialogue actions per state
SL 3.51 3.10 3.74 3.70 2.65 3.34
RL 4.92 5.49 7.61 7.98 5.10 6.22

Table 15: Number of dialogue states and average of
dialogue actions per state in each domain adaptation
case.

Model H+T R+T A+T A+H+X H+R+X A+R+X Average
Number of dialogue states

SL 250 184 118 263 352 172 223
RL 523 294 208 348 636 383 399

Average of dialogue actions
SL 2.84 3.95 5.40 3.00 2.43 4.05 3.61
RL 6.98 13.56 17.90 21.03 11.30 21.20 15.33

Table 16: Number of dialogue states and average of di-
alogue actions per state in each single-to-multi domain
case.
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A.5 Transfer Learning
Here we provide the results in success rate in two
transfer learning setups.

Model Restaurant Hotel Attraction Train Taxi Avg.
Belief State = Predicted

Source 5.0 10.9 5.4 36.2 0.0 11.5
Naive 26.4 35.8 41.0 48.0 35.0 37.2
EWC 35.9 37.8 47.6 47.7 55.2 44.9
Naive+RL 36.8 46.0 46.2 49.8 41.4 44.1
EWC+RL 42.3 47.7 51.9 48.5 63.9 50.8

Belief State = Oracle
Source 11.8 18.6 9.1 45.3 0.0 17.0
Naive 60.7 62.1 46.8 73.9 67.2 62.1
EWC 59.3 62.4 64.5 79.5 74.5 68.0
Naive+RL 73.1 76.2 58.5 82.6 81.4 74.4
EWC+RL 73.3 79.3 70.5 82.8 84.6 78.1

Table 17: Success rate in domain adaptation. 300 dia-
logues are used for each target domain adaptation.

Model H+T R+T A+T A+H+X H+R+X A+R+X Avg.
Belief State = Predicted

Source 30.8 40.7 15.1 5.1 8.8 4.9 17.6
Naive 40.7 48.8 37.8 16.3 15.8 19.9 29.9
EWC 41.0 50.5 42.3 19.6 17.2 20.4 31.8
Naive+RL 47.2 53.8 42.9 18.1 22.0 24.0 34.7
EWC+RL 45.8 57.9 44.6 20.7 20.2 24.6 35.6

Belief State = Oracle
Source 60.4 74.6 41.3 13.4 28.2 19.9 39.6
Naive 67.1 76.6 54.4 48.2 53.9 46.3 57.7
EWC 74.5 78.1 60.3 43.8 57.9 50.4 60.8
Naive+RL 79.6 83.4 60.3 57.3 68.1 60.2 68.2
EWC+RL 79.2 84.5 66.1 55.4 70.0 61.5 69.4

Table 18: Success rate in single-to-multiple domain
transfer where 100 dialogues on each target scenario
are used for adaptation. R, H, A, T, X represent Restau-
rant, Hotel, Attraction, Train, Taxi domain.

A.6 Generated Dialogue Examples
Here we provides two dialogue pairs examples that
are generated by the two agents’ interaction using
supervised learning (SL) and using RL respectively
in the following pages. As seen in the Table 19 first
dialogue, since the SL user model answers wrong
to the system’s request, the system keeps asking
the unsolved question, leading to an unsuccessful
dialogue with loop (highlighted in color). On the
other hand, the interaction between RL models
(second dialogue) is much smoother and efficient
since both agents answer correctly to each other.
This indicates the designed rewards are useful to
improve the agents’ behaviors. Similar trend can be
observed in Table 20, where the user model keeps
stating the same information about restaurant.
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User Goal
Train: destination: cambridge; day: wednesday; arriveBy: 18:15;

departure: kings lynn; request=[trainID, price, leaveAt]
Attraction: name: club salsa; request=[address]

Dialogue generated by two agents trained using SL
(Dialogue has a loop and fails as the provided train is incorrect due to the wrong departure)

00-usr: i am looking for a train that leaves on wednesday and arrives at cambridge .
01-sys: there are few trains that meet your criteria . what time would you like to leave ?
02-usr: i would like to arrive by 18:15 .
03-sys: there are few trains leaving london kings cross to cambridge on wednesday .

what time would you like to leave ?
04-usr: i would like to arrive by 18:15 .
05-sys: there are few trains leaving london kings cross to cambridge .

is there a particular time you would like to leave ?
06-usr: i would like to arrive by 18:15 .
07-sys: there are few trains leaving london kings cross to cambridge .

is there a particular time you would like to leave ?
08-usr: i would like to arrive by 18:15 .
09-sys: there are few trains leaving london kings cross to cambridge .

is there a particular time you would like to leave ?
10-usr: i would like to arrive by 18:15 .
11-sys: there are few trains leaving london kings cross to cambridge . what time would you like to leave ?
12-usr: i would like to arrive by 18:15 .
13-sys: there are few trains leaving london kings cross to cambridge . what time would you like to leave ?
14-usr: i would like to arrive by 18:15 .
15-sys: there are few trains leaving london kings cross to cambridge . what time would you like to leave ?
16-usr: i would like to arrive by 18:15 .
17-sys: there are few trains leaving london kings cross to cambridge . what time would you like to leave ?
18-usr: i would like to arrive by 18:15 .
19-sys: TR0269 arrives at 18:15 . would you like me to book it for you ?
20-usr: yes , please . i need the price and travel time .
21-sys: the train id is TR0269 , the price is 10 and the travel time is 50 .
22-usr: i am also looking for a particular attraction called club salsa .
23-sys: club salsa is a nightclub in the centre . the address is 1 station road . entrance is free .

is there anything else i can help you with ?
24-usr: that is all i need . thank you for your help .
25-sys: thank you for using our system !

Dialogue generated by two agents trained using RL
(Dialogue is smooth and successful)

00-usr: i am looking for a train from kings lynn on wednesday .
01-sys: what is your destination ?
02-usr: i need to arrive in cambridge by 18:15 .
03-sys: i have train TR0415 that leaves at 17:11 and arrives at 17:58 . would you like me to book it for you ?
04-usr: yes , please book 2 tickets .
05-sys: booking was successful , the total fee is 9.80 pounds payable at the station .

reference number is fztwszhh . is there anything else i can help you with ?
06-usr: yes , i am also looking for a particular attraction called club salsa .
07-sys: club salsa is located at 1 station road , postcode cb12jb . is there anything else i can help you with ?
08-usr: no , that s all i need today . thank you .
09-sys: thank you for using our service . have a great day !

Table 19: Example 1: two dialogues generated by SL system and RL system respectively. The dialogue loop with
repeated information is highlighted. Output utterances are lexicalised with corresponding slot values (belief state
for system; user goal for user). If the system generates attributes that has not existing in the belief state, the values
are randomly sampled from the ontology, e.g., the train departure "london kings cross" in the first dialogue.
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User Goal
Restaurant: pricerange=expensive; area=west; request=[phone, postcode]

Train: destination: cambridge; day: friday; arriveBy: 21:30;
departure: norwich; request=[price, leaveAt]

Dialogue generated by two agents trained using SL
(Dialogue has a loop and fails as the involved restaurant is cheap instead of expensive)

00-usr: i am looking for a expensive restaurant in the west .
01-sys: there are few restaurant -s that meet your criteria . what type of food would you like ?
02-usr: i would like to book a table for 1 at 1 . can i get the phone number for thanh binh ?
03-sys: thanh binh phone number is 01223362456 .
04-usr: i am also looking for a restaurant called thanh binh .
05-sys: thanh binh is located at 17 Magdalene Street City Centre , phone number is 01223362456 .
06-usr: i am also looking for a restaurant called thanh binh .
07-sys: thanh binh is located at 17 Magdalene Street City Centre , phone number is 01223362456 .
08-usr: i am also looking for a restaurant called thanh binh .
09-sys: thanh binh is located at 17 Magdalene Street City Centre , phone number is 01223362456 .
10-usr: i am also looking for a restaurant called thanh binh .
11-sys: thanh binh is located at 17 Magdalene Street City Centre , phone number is 01223362456 .
12-usr: thank you . i am also looking for a restaurant called thanh binh .
13-sys: thanh binh is located at 17 Magdalene Street City Centre , phone number is 01223362456 .
14-usr: can you give me the postcode for thanh binh ?
15-sys: the postcode is cb21ab . is there anything else i can help you with ?
16-usr: i am also looking for a train from norwich to cambridge on friday .
17-sys: there are 1 trains that fit your criteria . what time would you like to leave or arrive by ?
18-usr: i need to arrive by 21:30 .
19-sys: None arrives at 21:30 . would you like me to book it for you ?
20-usr: no , but can you give me the departure time and departure time ?
21-sys: the departure time is 05:16 .
22-usr: thank you so much . that s all i need today .
23-sys: thank you for using our service . have a great day !

Dialogue generated by two agents trained using RL
(Dialogue is smooth and successful)

00-usr: i am looking for a expensive restaurant in the west .
01-sys: tandoori palace is a expensive indian restaurant in the west .
02-usr: what is the phone number and postcode ?
03-sys: the phone number is 01223506055 and the postcode is cb43le .
04-usr: thank you . i also need a train from norwich to cambridge on friday .
05-sys: i can help you with that . what time would you like to leave or arrive by ?
06-usr: i need to arrive by 21:30 .
07-sys: TR8009 arrives at 21:30 .
08-usr: what is the travel time and price ?
09-sys: the travel time is 79 minutes and the price is 17.60 pounds .
10-usr: what is the departure time ?
11-sys: the train leaves at 18:16 .
12-usr: what is the train id ?
13-sys: the train id is TR8009 .
14-usr: thank you very much .
15-sys: thank you , goodbye .

Table 20: Example 2: two dialogues generated by SL system and RL system respectively. The dialogue loop with
repeated information is highlighted. Output utterances are lexicalised with corresponding slot values (belief state
for system; user goal for user). If the user generates attributes beyond the given user goal, the values are randomly
sampled from the ontology, e.g., the restaurant name "thanh binh" in the first dialogue.


