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Abstract

Languages are dynamic systems: word usage
may change over time, reflecting various so-
cietal factors. However, all languages do not
evolve identically: the impact of an event, the
influence of a trend or thinking, can differ be-
tween communities. In this paper, we pro-
pose to track these divergences by compar-
ing the evolution of a word and its translation
across two languages. We investigate several
methods of building time-varying and bilin-
gual word embeddings, using contextualised
and non-contextualised embeddings. We pro-
pose a set of scenarios to characterize semantic
divergence across two languages, along with a
setup to differentiate them in a bilingual cor-
pus. We evaluate the different methods by gen-
erating a corpus of synthetic semantic change
across two languages, English and French, be-
fore applying them to newspaper corpora to
detect bilingual semantic divergence and pro-
vide qualitative insight for the task. We con-
clude that BERT embeddings coupled with a
clustering step lead to the best performance on
synthetic corpora; however, the performance
of CBOW embeddings is very competitive and
more adapted to an exploratory analysis on a
large corpus.

1 Introduction

Languages evolve throughout time: for many
words, their usages along with their frequent collo-
cations and associations can change, revealing the
evolution of the society (Aitchison, 2001). How-
ever, all languages do not evolve identically: the im-
pact of an event, the influence of a trend or thinking,
can differ between communities. Moreover, lan-
guages do not evolve independently; some words
can be inherited and borrowed between languages.
For example, cognates — words that have the same

∗ This work was carried out while the author was working
at LISN-CNRS.

etymological origin and similar meaning in two lan-
guages — can sometimes diverge into false friends,
due to particular features of one language and its
associated culture and history.

A more specific example is the Russian word
“ukrop”, meaning “dill”. It started to be used by
Russian people as an ethnic slur—a pejorative
term—to talk about Ukrainian soldiers at the be-
ginning of the Russian-Ukrainian conflict (Stewart
et al., 2017). Then, Ukrainian people started to
use it to designate their own patriots, in a positive
way. Analysing the evolution of this word can lead
to a better understanding of the evolution of the
conflict; on the contrary, without suitable tools and
methods to detect the divergence in its usage and
connotation between communities, one might draw
spurious results when analysing texts of this period.

Diachronic semantic change detection is an
emerging field in Natural Language Processing,
building upon the growing number of digitised
texts with temporal metadata publicly available
in various languages. It opens new perspectives
of improvement for downstream tasks (using time-
aware word representation for tasks ranging from
text classification to information retrieval in tem-
poral corpora) or for socio-linguistic and historical
linguistics analysis (Kutuzov et al., 2018).

The goal of this paper is to extend the analysis
of lexical semantic change across two languages,
aiming at estimating the degree of diachronic se-
mantic divergence between a word and its transla-
tion across time in a bilingual corpus. We propose
an experimental framework to learn word represen-
tations that are comparable across both time and
languages, and to detect and classify semantic di-
vergence in a bilingual setting. We compare: (i)
diachronic word embeddings, which allow static
embeddings such as CBOW (Mikolov et al., 2013)
to drift through time, and (ii) contextualised em-
beddings, relying on a pre-trained multilingual lan-
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guage model (M-BERT, Devlin et al., 2019).1 We
also propose an anchored-alignment strategy to
tackle the bilingual setting for non-contextual em-
beddings. Then, we suggest a metric to measure the
divergence of word usage between two languages,
the bilingual divergence. Given the lack of a bilin-
gual dataset annotated with semantic divergence,
we generate a corpus of synthetic semantic drift
across two languages using EuroSense (Delli Bovi
et al., 2017), a sense-disambiguated and aligned
bilingual corpus. To do so, we define a set of mono-
lingual and bilingual semantic change scenarios
and evaluate our different approaches on them. Fi-
nally, we apply our systems to newspaper corpora
in two languages, English and French, covering the
same time period, from 1987 to 2006. We classify
all words of a bilingual lexicon into the scenarios
defined for the synthetic drift generation.

To sum up, we extend the most appropriate
methods from the literature of diachronic semantic
change to build a framework for the measure of
semantic divergence across languages (Sections 3
and 4), for which we propose a definition of the
task, a measure of semantic divergence (Section 5),
and a process to evaluate the presented methods
(Section 6).

2 Related Work

Diachronic embedding models. The first ap-
proaches to diachronic modeling were based on
relative word frequencies and distributional sim-
ilarities (Gulordava and Baroni, 2011). Follow-
ing the generalisation of word embeddings, di-
achronic word embeddings models emerged (Tah-
masebi et al., 2018). A first line of work, led by
Kim et al. (2014), learns an embedding matrix on
the first time slice of a temporal corpus, and in-
crementally fine-tune it at each time step. This
method has the advantage of simplicity but face a
greater sensitivity to noise (Shoemark et al., 2019;
Kaiser et al., 2020). Another method, proposed by
Hamilton et al. (2016) and Kulkarni et al. (2015),
train word embeddings on each time slice indepen-
dently and align the representation spaces to make
the embeddings comparable. Finally, Rudolph and
Blei (2018); Jawahar and Seddah (2019) and Bam-
ler and Mandt (2017) define probabilistic models
of word embeddings, able to capture the drifts by
training embeddings jointly on all time slices.

1Code is available at https://github.com/
smontariol/BilingualSemanticChange

These methods average all the senses of a word
into a unique vector at each time step. Pre-trained
language models such as BERT (Devlin et al.,
2019) allow each occurrence of a word to have
a contextualised vector representation. These mod-
els, pre-trained on large datasets, improved the state
of the art on numerous NLP tasks. Similarly, con-
textualised embeddings can be applied to semantic
change detection (Giulianelli et al., 2020; Mon-
tariol et al., 2021) using several aggregation tech-
niques to measure the degree of semantic change of
a word from all its contextualised representations
over time. However, these methods are still outper-
formed by non-contextualised embeddings for this
task (Schlechtweg et al., 2020).

Semantic change across languages. While this
topic is actively researched in the linguistic and
sociology research communities (Boberg, 2012), it
is fairly new in the NLP literature. Many authors
apply diachronic embeddings models to more than
one language (Hamilton et al., 2016; Schlechtweg
et al., 2020). However, prior work comparing the
evolution of word usage across languages is very
limited. Some work studies variations between
languages or dialects, without looking into the tem-
poral dimension (Hovy and Purschke, 2018; Bein-
born and Choenni, 2020). Uban et al. (2019) com-
pare present meanings of cognate words across 5
Romance languages to differentiate true cognates
from false friends and measure the divergence be-
tween languages. In a temporal fashion, Martinc
et al. (2020a) study the evolution of 4 word pairs in
an English-Slovenian corpus of newspaper articles.
Finally, Frossard et al. (2020) propose a list of cog-
nates for analysing the similarities in the evolution
of English and French, along with a preliminary
analysis focusing on the differences in word fre-
quency over time.

3 Diachronic Words Embeddings

Before presenting systems based on contextualised
embeddings, we introduce two methods using non-
contextualised ones, as they are known to per-
form best for the task of semantic change detection
(Schlechtweg et al., 2020). We use the continuous
bag of words (CBOW) architecture of Word2Vec
(Mikolov et al., 2013); we apply two different train-
ing methods to train it in a diachronic way. Then,
we describe an anchored-alignment method to ob-
tain bilingual diachronic word embeddings.

https://github.com/smontariol/BilingualSemanticChange
https://github.com/smontariol/BilingualSemanticChange
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3.1 Diachronic Training
In this section, we consider a monolingual corpus
divided into T time slices. We rely on a fine-tuning
method rather than an alignment-based method,
where a new model would be trained from scratch
at each time step (Hamilton et al., 2016). Indeed,
for our cross-lingual task an alignment is already
needed to map the embedding spaces of the two
languages together; it would not be desirable to
multiply this type of transformation, as each align-
ment introduces uncertainty in the system.

To begin with, as advised by Rudolph and Blei
(2018), we pre-train our CBOW models on a shuf-
fled version of the full corpus for each language.
We use two methods for diachronic training. The
first on is incremental training (Kim et al., 2014):
we incrementally fine-tune the model on each time
slice by initialising the weights with those of the
previous time slice. The second variant is inde-
pendent training: the model is fine-tuned on each
time slice independently by initialising it with the
pre-trained embeddings. Compared to the incre-
mental method, the latter does not take into account
the chronology of the corpus and can lead to less
directed drifts. However, the fact that the embed-
dings do not go through a large amount of succes-
sive training updates, contrarily to the incremental
method, prevents the embeddings from undergoing
too extreme drifts (Shoemark et al., 2019).

3.2 Bilingual Alignment
We now consider a bilingual corpus, and embed-
dings trained separately on each language. We
want to align the representation spaces to make the
embeddings comparable.

Anchoring. The supervision signal for the align-
ment is key to the performance of the overall sys-
tem, even more than the model architecture itself
(Ruder et al., 2019). Anchoring is a form of su-
pervision commonly used in NLP to obtain cross-
lingual word embeddings. The supervision comes
from a bilingual dictionary, whose words – the an-
chors – are used as seeds during the alignment. It
can be transparent words such as named entities,
or an exhaustive bilingual dictionary with the full
vocabulary. However, aligning the vectors of the
whole vocabulary is not appropriate for semantic
change detection, as it tends to lower the dispari-
ties between the different vector spaces (Tsakalidis
et al., 2019). In our case, the alignment forces
the embeddings of the word pairs from the super-

vision dictionary to be the same in the two lan-
guages. This might hide some behavior such as a
high disparity at the beginning of the full period
and a convergence of meanings over time. Con-
sequently, we use a seed dictionary with only the
words that we assume are stable during the period
in both languages. A first set of “stable” words
are stopwords (Azarbonyad et al., 2017; Martinc
et al., 2020b); however, by definition they do not
carry much meaning. Relying only on them for the
supervision might result in a poor alignment. We
complement the list of seed words with word pairs
that have the same relative frequency in the cor-
pora of each language; with this frequency being in
the top 10% of the full corpus (Azarbonyad et al.,
2017; Zhang et al., 2015). For all experiments in
this paper, we use the bilingual dictionary from the
MUSE tool2 (Lample et al., 2018). It includes 5000
word pairs and handles word polysemy.

Alignment. First, we train monolingual CBOW
embeddings on each language independently, with-
out dividing the corpora into time slices. To pre-
pare for the alignment, we apply mean-centering to
the embeddings of each language, as Schlechtweg
et al. (2019) showed the positive impact of this
preprocessing step for vector space alignment.
For the alignment, we use Orthogonal Procrustes
(Schönemann, 1966). It consists in finding the map-
ping W between two embedding spaces E1 and E2

which minimizes the sum of squared Euclidean dis-
tances between the image of the source embeddings
space E1 ∗W and the target embedding space E2

for the set of selected anchor words in both spaces.
These aligned embedding vectors are used to ini-
tialise the diachronic embeddings, which can then
be trained on all the time slices in both languages,
incrementally or independently.

4 Contextualised Embeddings

To challenge the systems based on aligned CBOW
embeddings, we use M-BERT, the multilingual ver-
sion of BERT (Devlin et al., 2019). It is trained on
Wikipedia content on 104 languages, without any
additional multilingual mechanism nor language
identifier.

Applying a pre-trained multilingual model on a
bilingual temporal corpus enables immediate com-
parison without requiring any alignment. Each se-
quence is labelled with the time it was written and

2https://github.com/facebookresearch/
MUSE

https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
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its language. We extract contextualised represen-
tations for each token of a sequence by summing
the top four hidden layers of the pre-trained model.
BERT representation relies on a system of word-
pieces; if a word is divided into several wordpieces,
we take the average of all the wordpiece embed-
dings as representation for the word. To sum up
all the information about a word from the set of
contextual embeddings of all its occurrences in a
time slice, we experiment with two aggregation
techniques: averaging and clustering.

Averaging : Proposed by Martinc et al. (2020a),
this method averages all the token embeddings of a
word for each time period and each language. We
end up with a set of time-specific and language-
specific vector representations of a word. They can
be compared using the cosine distance (Shoemark
et al., 2019).3

Clustering: This method, first used by Giu-
lianelli et al. (2020), groups the set of token em-
beddings of a word into types of usages. We apply
a clustering algorithm, k-means, to all the embed-
dings of a word and its translation, on all the time
periods jointly. Then, we compute the normalised
distributions of clusters, for each language and pe-
riod. More precisely, for a given word, we extract
the number of tokens in each cluster and for each
pair (period, language); we normalise it by the total
number of occurrences of the word in the corpus.
We obtain the probability distributions of the us-
ages of this word at each time slice and in both
languages. These distributions can be compared
between two periods or two languages using the
Jensen-Shannon divergence (JSD, Lin, 2006).

5 Drift Measures

After applying the described systems to a bilingual
corpus divided into T time slices, for a given tar-
get word in a given language l, we obtain either a
sequence of T embeddings u(t)

l in each language
(for CBOW and m-BERT with averaging), or a
vector of T cluster distributions c(t)l (for m-BERT
with clustering). We compute the distance between
representations: the cosine distance between non-
contextual embeddings and the JSD between clus-

3We define the cosine distance as (1 - cosine similarity).

ters distributions.

d(t1, t2, l1, l2) =

cos(u
(t1)
l1

,u
(t2)
l2

)
(averaging

or CBOW)
JSD(c

(t1)
l1

, c
(t2)
l2

) (clustering)
(1)

In a monolingual setting, we use two metrics
commonly used to measure the drifts of a word
in each language (Rodina et al., 2019): the incre-
mental drift, from each time slice to the next one,
and the inceptive drift, from the beginning of the
period to each time slice. We obtain drift vectors
in RT−1 for each word in each language, by com-
puting d(t1, t2, l, l).

In a bilingual setting, drift measures can be com-
puted for each word pair (one word and its transla-
tion). First, we compute the distance inside each
word pair at each time step. We call it the bilingual
distance: s

(t)
B = d(t, t, l1, l2) for t = 1, 2, . . . , T .

Second, the temporal drift of this distance is mea-
sured similarly to the monolingual drift, either in-
crementally or inceptively. The distance is the
norm between the bilingual distance s

(t)
B at two

time steps, measuring the divergence of the usage
of a word and its translation. We call it bilingual
divergence. For example, the incremental bilingual
divergence is computed as follows:

Dincr
B =


|s(0)B − s

(1)
B |

|s(1)B − s
(2)
B |

...
|s(T−1)

B − s
(T )
B |

 (2)

Various information can be extracted from the
vector of bilingual divergence of a word DB: the
trend (no trend i.e. stable distance between a word
and its translation, decreasing i.e. convergence, or
increasing i.e. divergence), the degree of diver-
gence (e.g. by summing all its elements), and the
speed of divergence (by estimating the slope).

6 Synthetic Drift Generation

The study of semantic change faces the issue of
evaluation, as few labeled corpora exist for this
task. Recent initiatives from the NLP community
start to produce more annotated data (Schlechtweg
et al., 2020); however, no corpus is available for
bilingual analysis. Consequently, we generate a
corpus of bilingual synthetic semantic change, fol-
lowing common practice in the literature of mono-
lingual semantic change detection (Shoemark et al.,
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2019; Schlechtweg and Schulte im Walde, 2020).
It allows us to control exactly the shape and de-
gree of semantic change in the corpus and thus
gain a deeper understanding of the impact of each
modeling choice.

To create synthetic semantic change, common
practice involve to merge two words that do not
share a common sense, creating a pseudo-word;
then, generate synthetic change by controlling the
proportion of sentences using each of the two orig-
inal words in the successive time slices of a tem-
poral corpus (Rosenfeld and Erk, 2018; Shoemark
et al., 2019). However, as advised by Schlechtweg
and Schulte im Walde (2020), it is preferable to
use the natural polysemy of words for the synthetic
drift to be as close as possible to reality: instead
of controlling the proportion of sentences contain-
ing two unrelated words merged as a pseudo-word,
we use sentences containing several senses of a
unique word. To this end, we need a bilingual
sense-annotated corpus with consistent annotations
between languages (Pasini and Camacho-Collados,
2020). The EuroSense corpus4 (Delli Bovi et al.,
2017) is derived from the Europarl corpus, a large
public corpus of proceedings of the European Par-
liament. It has a full and a refined version. We
use the latter to build our synthetic corpus; it is
half the size of the first one but more reliable. The
framework BabelNet (Navigli and Ponzetto, 2012)
is used for annotation. EuroSense contains parallel
text in 21 European languages. We focus on the
two languages with the highest amount of annota-
tions in the refined corpus: English and French. An
example of aligned sentences in these languages
can be found in Table 1.

6.1 Semantic change Scenarios
In order to generate and capture variations of dis-
tributions of word senses through time and across
two languages, we define several scenarios of word
usage variations. First, we choose two monolin-
gual scenarios of semantic change (labeled “M”)
and generate them using sentences extracted from
the EuroSense corpus. Assuming we have a target
word with at least two senses, the scenarios are:

• M0: all senses are fully stable.
• M1: one sense gradually appears / disappears,

the others stay stable.

Second, we define scenarios of semantic diver-
gence (bilingual scenarios, labeled “B”) derived

4http://lcl.uniroma1.it/eurosense/

English French

Sentence

The best tools
for this are lib-
eralisation and
freer competition
, which causes
train compa-
nies to take a
greater interest
in the wishes of
customers .

Les meilleurs
moyens d’y
parvenir sont la
libéralisation et
une concurrence
plus libre , qui
incite les compag-
nies ferroviaires
à se soucier
davantage des
souhaits de leurs
clients .

Lemma customer client
Sense bn:00019763n bn:00019763n

Table 1: Example of aligned sentences in English and
French in the EuroSense corpus, with annotated anchor
and corresponding sense in the BabelNet framework.

from the monolingual scenarios. Assuming we
have a target words w1 and its translation w2 with
at least two senses in common:

• B0: w1 and w2 are M0.
• B1: w1 is M0, w2 is M1.
• B2: w1 and w2 are the same M1 (they

gain/lose the same sense, drifting in the same
direction).

• B3: w1 and w2 are different M1 (one
gains/loses one sense, the other gains/loses
another sense: they diverge).

These 4 scenarios can be linked with distinct
phenomena. Examples of words for each of them,
extracted from a bilingual English-French corpus
of newspaper articles spanning 20 years, can be
found in Table 3. First, scenario B0 deals with
words which have a stable meaning and an equiva-
lent word with equally stable meaning in the other
language (e.g. dinosaurs). Scenario B1 can be
caused by a word being borrowed from one lan-
guage to another: a loanword. After the borrowing,
its usage can evolve, for example due to socio-
cultural specificity impacting the second language,
while it stays stable in the source language. Simi-
larly, an example of B3 scenario are cognate words
whose usage evolve in their respective languages,
diverging into false friends. For example, the En-
glish noun affair has common etymology with old
French and used to mean “what one has to do, or-
dinary business”. Its usage evolved across time,

http://lcl.uniroma1.it/eurosense/
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gaining in English the new sense of “a love rela-
tionship, usually secret” while it often refers in
French to “a business case”. The word ukrop pre-
sented in the introduction is also an example of B3
scenario. Finally, scenario B2 deals with words
that go through the same semantic change as their
equivalent in another language. Among other phe-
nomenon, a common cause is when a language
evolution is triggered by a cultural or technological
change that is common to the societies speaking
the two languages. For example, the sense of the
word confinement related to pandemic became the
majority meaning in many languages worldwide
following the COVID-19 pandemic.

6.2 Building the Synthetic Corpus
Step 1: selection of target lemma pairs.

For all the sense-annotated lemmas in English
and French in EuroSense, we extract their sets of
senses. We only keep the senses with more than
200 occurrences per language. We associate En-
glish and French lemmas together if they have at
least two senses in common, creating a bilingual
dictionary. From these lemma pairs, we extract the
set of sentences annotated with one of the senses in
common to build the pool of sentences for the next
step. In total, we have 115 English-French lemma
pairs, of which 66 have 2 senses (low polysemy)
and 49 have between 3 and 5 senses. For example,
a low-polysemy lemma pair is (project, projet) and
a high-polysemy one is (measure, mesure).

Step 2: creation of sense distributions.
For each monolingual scenario, we create prob-

ability distributions of senses at each time slice.
We denote by p(S | T ,W,L) the probability that
the lemma W conveys the sense S at time T in
language L. We generate T = 10 time slices and
apply each scenario to all the target lemmas pairs.
Since our variables are discrete, for a given lemma
w in language l, the probability distribution of a set
of 2 senses {s1, s2} over time can be characterised
by a 2× T stochastic matrix, where the lines sum
to 1:

p(s1 | T = 1, w, l) p(s2 | T = 1, w, l)
p(s1 | T = 2, w, l) p(s2 | T = 2, w, l)

· · · · · ·
p(s1 | T = T,w, l) p(s2 | T = T,w, l)

 .

For a given target lemma, for the M0 scenario,
we randomly draw an initial distribution over the
set of senses and repeat it at each time slice:
p(S | T = t, w, l) = p(S | T = 1, w, l) for

t = 2, 3, . . . , T . For the M1 scenario, we gradu-
ally increase or decrease the probability of appear-
ance through time of one of the senses, either lin-
early or logarithmically, following Shoemark et al.
(2019). The other senses have a stable distribution
across time.

Step 3: creation of the synthetic corpus.
For each monolingual scenario, we build the syn-

thetic corpus time slice after time slice, using the
set of target lemmas, the pool of sense-annotated
sentences and the generated distributions of senses.

For each target lemma, at each time step t, we
sample 200 sentences for each of its senses. Then,
we add each sampled sentence to time step t with
the probability specified in the corresponding dis-
tribution of senses of the scenario. To avoid the
synthetic sense distribution for a target lemma to be
disturbed by noise from its appearance as a context
word in other sentences, when adding a sentence to
the synthetic corpus, we attach the suffix “ l” to its
target lemma. Note that the 200 sentences sampled
for each sense of a lemma can appear only once in
each time slice, but can appear in other time slices
of the corpus.

All the bilingual scenarios are built from the
monolingual ones. Generating them reduces to us-
ing the right monolingual scenarios for each word
and its translation. For example in the B3 sce-
nario, we generate a corpus using the M1 scenario
for both the target lemma and its translation, but
select a different sense to appear or disappear in or-
der to induce a divergence. The synthetic corpora,
for each scenario and each language, have around
7.5M words distributed into the 10 time slices.

6.3 Evaluation Method

To sum up, at each time t, a word w in a language
l is characterised by its sense distribution in the
synthetic corpus p(S | t, w, l). This information is
similar to the cluster distributions extracted when
applying clustering to contextualised embeddings;
we can compute the drift measures defined in Sec-
tion 5, using the JSD to compare the sense distribu-
tions. The drifts obtained from these measures can
then be used as gold standard for the evaluation of
our systems.

For each system described in sections 3 and 4
and for each target lemma pair, we output the vec-
tors of monolingual drift computed on the mono-
lingual scenario synthetic corpora and the vectors
of bilingual divergences computed for the bilin-
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Stable Drift Both stable Stable&drift Same drift Diverge
Model Diachrony M0 M1 B0 B1 B2 B3

CBOW incremental 0.65 - 0.16 0.54 - 0.96 0.87 - 0.82 0.66 - 0.46 0.76 - 0.68 0.63 - 0.47
independent 0.84 - 0.83 0.63 - 0.86 0.83 - 0.89 0.70 - 0.45 0.80 - 0.66 0.67 - 0.50

BERT averaging 0.86 - 0.87 0.34 - 0.55 0.84 - 0.90 0.79 - 0.4 0.71 - 0.69 0.63 - 0.47
k-means 5 0.85 - 0.86 0.61 - 0.19 0.86 - 0.97 0.78 - 0.41 0.77 - 0.91 0.66 - 0.40

Table 2: Accuracy measure of each system for the different semantic change scenarios. The numbers on the left
are incremental drift while the ones on the right are inceptive drift.

gual scenarios (see Section 5). We wish to evaluate
whether these series have the same trend as the
gold standard. For this, we use the Mann-Kendall
(MK) Trend Test (Mann, 1945; Kendall, 1975), a
non-parametric statistical test used to detect trends
of variables. It is particularly suited to monotonic
trends, which is how we designed the semantic drift
in our data.

The null hypothesis of the test is the absence of
monotonic trend. The Mann-Kendall test statistic
ZMK relies on comparing every value in the time
series with all the values preceding it. The sign of
the statistic test indicates the trend of the data, given
a confidence level of 0.05: no monotonic trend (the
null hypothesis), increasing trend (ZMK > 0), or
decreasing trend (ZMK < 0). For a given target
lemma, if the direction of the detected trend in our
data is the same as the one from the gold standard
drift, we consider that the semantic change has
been correctly identified. We compute the accuracy
as the proportion of correctly identified trends in
the full list of target lemmas.

7 Experiments on Synthetic Data

We compare the accuracy of our systems on the
synthetic corpora generated in the previous section.

7.1 Experimental Setup

CBOW processing. As we rely on stopwords
(on top of frequent words) for the alignment, we do
not discard them during preprocessing. The con-
text size is set to 5 words, and the dimension of
word embeddings to 50. Preliminary experiments
with larger embedding dimensions exhibited no sig-
nificant improvement. We posit this is due to the
small size of the dataset. Moreover, the accuracy
of incremental fine-tuning of CBOW embeddings
for semantic change detection is very sensitive to
dimensionality (Kaiser et al., 2020); the optimal
embedding dimension is usually quite low, with a
clear drop in performance with high embeddings

dimensions. We train all models using 10 epochs.
For each language, a static model is first trained
on the set of all sentences containing the target
lemmas. Then, we proceed with incremental an
independent training.

BERT processing. We use the pre-trained
bert-base-multilingual-uncased model from the
transformers library. We extract the contextu-
alised embeddings from the corpus and apply the
two aggregation methods, averaging and clustering.
We choose k = 5 clusters for k-means, as it is the
maximum number of senses that can be found in
our list of target lemmas. Experiments with higher
values of k did not improve the accuracy. We re-
move the “ l” suffix of the target lemmas before
extracting their embeddings.

7.2 Results on synthetic data
Table 2 summarises the accuracies measured using
the Mann-Kendall trend test (Hussain and Mah-
mud, 2019) on the 115 lemma pairs. It compares
the trend of the drift of all systems with the gold
standard trend, for each scenario. We have three
scenarios with stable monolingual drift or stable
bilingual divergence (M0 and B0, with all the
senses being stable; and B2, where a word and
its translation drift in the same direction) and three
drifting scenarios (M1 and B1, where one sense
drifts; and B3, where a word and its translation
drift in different directions). The results show that
stable scenarios are generally easier to detect accu-
rately compared to the changing ones, especially
in the monolingual analysis.

The best results are obtained with BERT using
k-means clustering. This system focuses on the
variation of proportion of the different usages, in-
stead of the evolution of the average word represen-
tation; it provides a better focus on the meaningful
changes in word usage. In the case of CBOW, inde-
pendent training leads to better performances than
incremental training. This is in line with the find-
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ings of Shoemark et al. (2019): the large amount of
training updates, especially in such a small corpus,
is harmful for the quality of the representation.

Overall, the inceptive drift measure leads to bet-
ter accuracy for stable scenarios, while the incre-
mental drift is more suited to scenarios where the
sense distributions change across time. Thus, we
advise towards always computing both measures
for diachronic studies.

8 Experiment on Newspaper Corpora

We analyse the semantic divergence of word-
translation pairs in a bilingual corpus of news arti-
cles. Our goal is to classify all words of a bilingual
lexicon into the semantic divergence scenarios de-
fined in Section 6.1.

8.1 Data Description & Experimental Setup

The New York Times Annotated Corpus (Sandhaus,
2008) gathers around 1 855 000 articles from Jan-
uary 1987 to June 2007. We scrape Le Monde, one
of the most read daily newspapers in France, on
the same time period. We divide both corpora into
T = 20 yearly time steps, as a trade-off between
getting precise information on semantic drift thanks
to a low granularity and reducing noise that appears
due to a too low granularity. Finally, we select a
vocabulary containing the V = 40 000 most fre-
quent words for each corpora. The average number
of words is around 3.5 M for one time step in the
French corpus and 9 M in the English one. First,
a bilingual lexicon is built using the intersection
of the MUSE bilingual dictionary with the French
and English vocabularies from our corpora. We
manually update the bilingual lexicon with domain-
specific vocabulary such as named entities, in order
to improve the coverage on the corpora. The final
bilingual dictionary has 27 351 words.

To obtain bilingual diachronic embeddings, we
use CBOW with incremental training. Indeed, even
though BERT with k-means clustering lead to bet-
ter results overall on synthetic corpora, the extrac-
tion of each token embedding and the clustering
step are computationally heavy. Moreover, in a
large corpus such as ours, saving in memory as
many embedding vectors as occurrences of words
from the bilingual lexicon is not feasible. Thus, the
clustering method is more suited for a fine-grained
analysis of the divergence of senses of a limited set
of target words, rather than an exploratory analysis
on the full vocabulary.

The experimental setup is the same as the one
used on the synthetic corpus; the volume of data
being much higher in the newspaper corpus, we
increase the capacity of our model by setting the
dimension of CBOW embeddings to 100, in order
to retain more information. We pre-train CBOW
models on the English and French corpora and
normalise the embeddings to prepare for the align-
ment. The French corpus being the smallest, its
embeddings are mapped to the English embedding
space. Then, we incrementally update the aligned
embeddings on both corpora. For each word of
the bilingual vocabulary, we compute its monolin-
gual drift and its bilingual divergence, following
the methodology applied on the synthetic corpora.
It allows us to identify the words belonging to each
of the bilingual scenarios.

8.2 Results on Bilingual Divergence

On top of classifying all words into the different
bilingual divergence scenarios, we quantify the de-
gree of divergence by summing up the elements of
the vectors of inceptive drift and of inceptive bilin-
gual divergence respectively. The proportion of
each scenario as well as examples selected among
the words with the most extreme drifts are in Ta-
ble 3. For example, words belonging to scenario
B3 have the highest monolingual drifts in both the
English and French corpora, while their bilingual
divergence is among the lowest.

Words that are stable in both languages (B0) are
mostly daily life words (e.g. mayonnaise). Words
that drift in the same direction in both languages
(B2) are concepts related to technology and society
that are common to the English and French culture
(e.g. renewable); while the words that diverge be-
tween the two languages (B1-fr (English stable,
French drifting), B1-en and B3) belong to more
culture-specific concepts (e.g. francs) or contro-
versial topics (e.g. terrorist). For example, francs
drifts in French, while it is stable in English. This
is probably due to the change of currency in France
in 2002 that had much lower media coverage in the
US. Similarly, terrorist drifts in both languages but
in different directions. Indeed, the two countries
went through many terrorist attacks during the pe-
riod under study, but from very different groups,
leading to different contexts for this word.

Overall, the exploratory results on the bilingual
newspaper corpora offer interesting insights on per-
spectives for many applications; both for long-term
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B0: both stable B1-fr: stable&drift B1-en: drift&stable B2: same drift B3: different drifts
58.2% 15.5% 16.2% 4.9% 5.2%

dinosaurs reforms bush genomics steroid
pottery delinquency horrific renewable rockets

anniversaries francs maid condom gay
mayonnaise feminine hostages cinemas katrina

joke provincial dealers robotic terrorist

Table 3: Proportion and example words for the different categories of bilingual divergence.

semantic change, studying the joint evolution of
cognate words and borrowings; and for short-term
change in word usage, for example when studying
the disparity in the media resonance of an event in
different countries.

9 Discussion

In this paper, we define an experimental framework
to measure and classify the semantic divergence of
a word and its translation in a bilingual corpus. We
compare different kinds of word embeddings on
various bilingual divergence scenarios generated
in a synthetic corpus. We apply our conclusions
to a bilingual newspaper corpus to identify words
undergoing different types of semantic divergence.
BERT embeddings coupled with a clustering step
lead to the best performance on synthetic corpora.
The performance of CBOW embeddings is never-
theless very competitive, and more adapted to an
exploratory analysis on a large corpus.

There is a large margin for future work; be it
in terms of quality of diachronic bilingual repre-
sentation, metric to measure semantic divergence,
and evaluation method. Our evaluation focuses on
the trend of the drift, but its degree and its speed
can also be quantified and analysed. In addition,
the underlying bilingual representation learning ap-
proach is key for the detection of drifts. The trans-
formations applied to create a cross-lingual word
embedding space might result in information loss
or generation of spurious drifts in the embeddings.
To compare word embeddings with the purpose of
detecting semantic divergence, the anchored align-
ment method presented here is not the only option;
promising candidates are Temporal Referencing
(Schlechtweg et al., 2019) and the Global Anchor
method (Yin et al., 2018).

A limitation of our work is the use of an injec-
tion to define word pairs. In his general linguistics
course, De Saussure (1916) states that there is no

bijective relationship between words in different
languages. The different meanings and uses of a
word in a language cannot have a perfectly identi-
cal equivalent in another language. Moreover, as
noted by Frossard et al. (2020), a word can have
synonyms in one language while the word bearing
the same meaning in another language has none; in
that case, the usage of the word in the first language
is divided into all its synonyms.

Another limitation is evaluation with synthetic
data. This method is common in monolingual se-
mantic change analysis, but there is no guarantee
that the generated phenomenon is similar to real-
world data. For example, a degree of freedom is
the shape of the synthetic drifts generated. In this
paper, we used logarithmic and linear shapes; but
some literature hint that a logistic shape is also a
good match for semantic drift (Bailey, 1973; Blythe
and Croft, 2012). Furthermore, in real data the
granularity (the size of the periods used to divide
the corpus) might have an important impact on the
shape of the semantic evolution.

Finally, as we build all bilingual scenarios from
combinations of two monolingual scenarios, the
flaws of the monolingual scenarios are inherited
by the bilingual scenarios. It can potentially mul-
tiply the noise by propagation of uncertainty. We
wished to overcome the limitations of synthetic
evaluation with the application on real corpora,
but more thorough interpretation would be neces-
sary for a solid qualitative evaluation. To perform
quantitative evaluation on real data, an annotated
dataset similar to the ones for monolingual seman-
tic change (e.g. Schlechtweg et al., 2020) would be
necessary. However, the annotation task would be
even more complex than for monolingual data. An
easier entrance point towards annotating data for
this task could be loanwords and cognate words.
Overall, this is a challenging task and we hope to
attract more people to work on it in the future.
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Word translation without parallel data. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Jianhua Lin. 2006. Divergence measures based on
the shannon entropy. IEEE Trans. Inf. Theor.,
37(1):145–151.

Henry B. Mann. 1945. Nonparametric tests against
trend. Econometrica: Journal of the econometric
society, pages 245–259.

Matej Martinc, Petra Kralj Novak, and Senja Pollak.
2020a. Leveraging contextual embeddings for de-
tecting diachronic semantic shift. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 4811–4819, Marseille, France. Euro-
pean Language Resources Association.

Matej Martinc, Syrielle Montariol, Elaine Zosa, and
Lidia Pivovarova. 2020b. Discovery team at
SemEval-2020 task 1: Context-sensitive embed-
dings not always better than static for semantic
change detection. In Proceedings of the Four-
teenth Workshop on Semantic Evaluation, pages 67–
73, Barcelona (online). International Committee for
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119. Curran Associates,
Inc.

Syrielle Montariol, Matej Martinc, and Lidia Pivo-
varova. 2021. Scalable and interpretable semantic
change detection. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 4642–4652, Online. As-
sociation for Computational Linguistics.

Roberto Navigli and Simone Ponzetto. 2012. Babel-
net: The automatic construction, evaluation and ap-
plication of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

Tommaso Pasini and Jose Camacho-Collados. 2020. A
short survey on sense-annotated corpora. In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 5759–5765, Marseille,
France. European Language Resources Association.

Julia Rodina, Daria Bakshandaeva, Vadim Fomin, An-
drey Kutuzov, Samia Touileb, and Erik Velldal.
2019. Measuring diachronic evolution of evaluative
adjectives with word embeddings: the case for En-
glish, Norwegian, and Russian. In Proceedings of
the 1st International Workshop on Computational
Approaches to Historical Language Change, pages
202–209, Florence, Italy. Association for Computa-
tional Linguistics.

Alex Rosenfeld and Katrin Erk. 2018. Deep neural
models of semantic shift. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 474–484, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
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