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Abstract

In visual storytelling, a short story is gener-
ated based on a given image sequence. Despite
years of work, most visual storytelling models
remain limited in terms of the generated sto-
ries’ fixed length: most models produce sto-
ries with exactly five sentences because five
sentence stories dominate the training data.
The fix-length stories carry limited details and
provide ambiguous textual information to the
readers. Therefore, we propose to “stretch” the
stories, which create the potential to present
in-depth visual details. This paper presents
Stretch-VST, a visual storytelling framework
that enables the generation of prolonged sto-
ries by adding appropriate knowledge, which
is selected by the proposed scoring function.
We propose a length-controlled Transformer to
generate long stories. This model introduces
novel positional encoding methods to maintain
story quality with lengthy inputs. Experiments
confirm that long stories are generated without
deteriorating the quality. The human evalua-
tion further shows that Stretch-VST can pro-
vide better focus and detail when stories are
prolonged compared to the state of the art. The
demo video is available on Youtube1, and the
live demo can be found on website2.

1 Introduction

Visual storytelling (VIST) is an interdisciplinary
task that takes a sequence of photos as input
and produces a corresponding short story as out-
put (Huang et al., 2016). Prior work explores either
end-to-end or hierarchical methods for visual sto-
rytelling, but machine-generated stories still fall
far short of human-generated stories. One obvious
limitation is the inability to generate stories with

∗* denotes equal contribution
1Demo video: https://youtu.be/-uF8IV6T1NU
2Live demo website: https://doraemon.iis.

sinica.edu.tw/acldemo/index.html

diverse length, especially to prolong a story. In
real-world applications, when pictures accompany
textual stories, the number of sentences is often
much greater than the number of images. Recent
visual storytelling frameworks demonstrate the po-
tential in prolonging visual stories, such as KG-
Story (Hsu et al., 2020), a state-of-the-art frame-
work that uses a knowledge graph to generate one
additional sentence and attach it to 5-sentence vi-
sual stories for improved coherence. However, cur-
rent models, including KG-Story, are incapable of
further “stretching” stories beyond five or six sen-
tences. In short, generating prolonged visual sto-
ries faces three main hurdles: First, as VIST—the
only existing visual storytelling dataset—is mostly
constructed as 5-photo sequences paired with 5-
sentence stories, models trained on it easily overfit
to the dominant length. Second, in visual story-
telling, the quality of the textual story must be
maintained when asking the model for more con-
text. Third, the model’s generation function must
generate stories with the desired number of sen-
tences. That is, control of the continuation and ter-
mination of natural language generation depends
on a given length factor.

To meet these challenges, we introduce Stretch-
VST, a modification of the KG-Story framework
that greatly increases the number of sentences in
visual stories while maintaining the quality thereof.
Story coherence and detail are improved by using
cohesive and relevant information to generate addi-
tional sentences. Illustrated in Fig. 1, Stretch-VST
has three main stages: First, it extracts represen-
tative terms (e.g., actions or objects) from each
image. Second, it finds relations between consecu-
tive images using a knowledge graph, after which
a scoring model selects the most suitable subset of
terms (“term set” hereafter) given its length, term
semantics, and cohesion. The length of the term
set for the resultant term sequence hence depends

https://youtu.be/-uF8IV6T1NU
https://doraemon.iis.sinica.edu.tw/acldemo/index.html
https://doraemon.iis.sinica.edu.tw/acldemo/index.html
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Figure 1: Stretch-VST extracts representative key terms (e.g., objects, people, and actions) from each image, and
uses knowledge graphs to further expand the term set. For any arbitrary subset of terms, Stretch-VST can generate
a story for it: the longer the term set, the longer the output story. The framework generates stories from 5 to 9
sentences long, and selects the best story with the lowest term perplexity (PPL score).

on the score. Finally, a length-controlled Trans-
former is used to generate the story given the term
sequence.

The proposed work generates a variable num-
ber of sentences, and finds the optimal subset of
terms given the story length. The human evalua-
tion shows that Stretch-VST generates better stories
when prolonging stories, provides more detailed
information comparing 5-sentence stories, and is
more robust in cohering story context when the
images are incoherent.

2 Related Work

Visual storytelling was proposed by Huang et al.
(2016). Two lines of work explore this task: one
focuses on model architecture for better story gener-
ation (Hsu et al., 2018; Gonzalez-Rico and Pineda,
2018; Kim et al., 2018; Huang et al., 2019; Jung
et al., 2020; Wang et al., 2020), and the other uses
adversarial training to generate more diverse sto-
ries (Chen et al., 2017; Wang et al., 2018a,b; Hu
et al., 2020). However, these methods often overfit
to the number of sentences in the stories. Stretch-
VST modifies both the source and generation mod-
ules to generate variable-length stories. On the
source side, we use knowledge graphs to expand
the term set to represent the input image sequence.
Integrating a knowledge graph into language gen-
eration is beneficial (LoBue and Yates, 2011; Bow-
man et al., 2015; Hayashi et al., 2020; Zhang et al.,
2017; Zhou et al., 2018; Yang et al., 2019; Guan
et al., 2019). On the generation side, some explore
the use of relative positional encoding (Takase and
Okazaki, 2019), adding embedding layers, and ma-
nipulating the beam search process (Kikuchi et al.,
2016). However, these methods control only the

number of words and not the number of sentences.

3 Methodology

With variable-length visual sorytelling, Stretch-
VST brings two major contributions for VIST: en-
riching the ingredients as desired (Sect. 3.1) and
enabling story generation according to the term
sequence length (Sect. 3.2).

3.1 Expanding and Scoring Term Sequences

Prolonging Term Sequences Drawing from
KG-Story (Hsu et al., 2020), we utilize their
Transformer-based model to distill the represen-
tative terms (e.g., nouns and frames) for each
image. Stretch-VST manipulates term sequence
lengths to increase the story lengths. For every
two consecutive images, we choose whether to
insert a relation into the term sequence; hence,
the sequence length ranges from 5 to 9, as il-
lustrated in Fig. 1. Given 5 images, we define
the image-extracted original term sequence as
{m1

1, ...,m
t
i, ...,m

5
N5

}, where {m1
1, ...,m

1
N1

} de-
notes first image’s term set, mt

i denotes the i-
th term from image t and Nk is the number of
terms from image k. From consecutive images,
we explore all possible relations (mt

i, r,m
t+1
j )

and (mt
i, r1,mmiddle , r2,m

t+1
j ), where mmiddle

denotes a knowledge graph entity that bridges mt
i

and mt+1
j . The chosen relation is inserted into the

original term sequence. For every 5 term sets gen-
erated from the images, the model can insert an
additional 0 to 4 term sets, resulting in 5 to 9 term
sets in total. Moreover, if no relation can be found
between two consecutive images, we also attempt
to find a relation in the reverse direction, as well
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as relations between cross images. That is, we in-
clude (mt+1

i , r,mt
j), (m

t
i, r,m

t+n
j ), and also these

for two-hop relations. Furthermore, we also ap-
plied an image-grounded relation filtering, which
is to ensure the predicted terms appear in the image.
This prevents the model from generate irrelevant
terms. Note that KG-Story is unable to expand or
manipulate the size of the term set, and can only
produce 6-sentence stories.

Rating Prolonged Term Sequences We imple-
ment a Transformer with a masked language model
objective (Devlin et al., 2019). We use spaCy 3,
Open Sesame (Swayamdipta et al., 2017), and the
FrameNet parser (Baker et al., 1998) to convert the
story text to term sequences. We iteratively mask
one position in the overall term sequence to train
the Transformer model. Then, for every possible
term, we calculate the average perplexity of it with
a mask at each position. The term sequence with
the best (lowest) average perplexity is used in the
next stage to generate stories as

P(m′) = F(m′|m1
1, ...,m

NM
Nm

), (1)

PPL(m′) = P(m′)−
1

Nm , (2)

score =
1

Nm

Nm∑
i=1

PPL(mi), (3)

where m′ is the masked term, NM is the number
of term sets, Nm is the number of terms in the
sequence, F is the Transformer language model,
and PPL denotes perplexity.

3.2 Generating Stories From Term Sequences

Most story generation models generate only 5-
sentence stories, regardless of the input length;
story quality usually decays when generating
longer stories (Guo et al., 2018). To this end,
we propose a length-controlled Transformer model
structure with unique positional encoding and his-
tory embedding to reflect the prolonged input
length, prevent story decay, and maintain topic co-
herence. The model flowchart is shown in Fig. 2.

Length-Controlled Transformer To generate a
story depending on the term sequence length, a
Transformer (Vaswani et al., 2017) is used as a
next-sentence generator to generate a story sen-
tence by sentence. Generating sentence sx, the
model is given a history embedding Hx and all

3SpaCy: https://spacy.io/
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Figure 2: Flowchart for length-controlled Transformer.
When generating sentence sx, the model is input
(s0, s1, ..., sx−1), (M1,M2, ...,MNM ), and sx−1.

images’ term sets M1, ...,MNM , where Hx =
LSTM(s0, ..., sx−1), denotes a history embed-
ding for all previous sentences, generated from
a LSTM layer; M t = {mt

1, ...,m
t
Nm

} denotes the
set of Nm terms belonging to image t. Given an
expanded term sequence with NM term sets, the
model generates NM times to obtain a story con-
sisting of NM sentences.

Positional Encoding In 5-sentence VIST train-
ing dataset, most stories only contain sentence
position up to 5. When generating such sto-
ries, naive absolute positional encoding (Vaswani
et al., 2017) doesn’t handle positions larger than
5, thus, story quality decays accordingly. To this
end, we introduce term positional encoding and
beginning-inside-ending (BIE) positional encoding
to reflect diverse input lengths. Term positional
encoding is implemented in the Transformer en-
coder to inform the model of the current term po-
sition. While generating sentence x, the model
sets input term set Mx’s position to 1 and masks
M1, ...,Mx−1,Mx+1, ...,MNM as 0. In addition,
BIE positional encoding is implemented in the
Transformer decoder to focus on the beginning
and the end of the story while generalizing the
sentences in between. Specifically, we assign po-
sition 1 and 3 to the first and last sentence, and
position 2 to the sentences in the middle.

4 System Interface

Fig. 3 illustrates the user interface of Stretch-VST.
We create a webpage for users to (A) search a story
by story ID or (B) search for stories by keyword.

In Fig.4(a), our user interface displays five im-
ages of the selected album and the visual story
with recommended length generated by Stretch-
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Figure 3: User interface of Stretch-VST. User can (A)
select an story ID from the drop-down menu or (B)
search a stories by keywords.

Figure 4: (a) The panel will show 5 images and visual
story with recommended length. User can (b) drag the
bar-slider and select the desired length of visual story.

VST. The recommended story length is decided
by our scoring model (Sect. 3.1). Users can also
drag the bar-slider to select the desired story length
(Fig. 4(b)). For the keyword search, the user in-
terface displays several images and story snippets
for search results, and the searching algorithm is
an elastic search.(Fig. 5(a)). Likewise, the panel
will display the images, visual story, and the rec-
ommended story length (Fig. 5(b)), and users can
also select the desired story length.

5 Experimental Results

5.1 Evaluation Methods and Baselines
Per the literature (Wang et al., 2018a), human eval-
uation is the most reliable way to evaluate the qual-
ity of visual stories; automatic metrics often do

Figure 5: (a) The panel will provide several snippets
of visual stories that contain the keyword (e.g, dinner
in the story). (b) Selected a snippet, the panel will
show the visual story with the recommended length.
User can also drag the bar-slider to select desired story
length.

not align faithfully to human judgment (Hsu et al.,
2019). Therefore, we conducted human evalua-
tions to assess the quality of stories generated by
Stretch-VST. We randomly selected 250 stories and
evaluated each by five different workers on Ama-
zon Mechanical Turk. Each worker was presented
with the image sequence and its corresponding sto-
ries generated by different models and asked to
rank the stories. In addition, we also conduct a
questionnaire asking annotators “what makes the
story better”, based on the 6 criteria set by VIST
dataset (Huang et al., 2016). These criteria include
focus, coherence, shareability, humanness, ground-
ing, and detail. We used the same datasets and
knowledge graphs as Hsu et al. (2020), and com-
pared the proposed method with three baselines
for visual storytelling: AREL (Wang et al., 2018a),
GLAC (Kim et al., 2018), and KG-Story (Hsu et al.,
2020). Note that we did not compare the results
with KG-Story in Sect. 5.3 and 5.4, as its gen-
eration model neither handles diverse inputs nor
controls the length.

5.2 Generating Optimal-Length Stories

First, we evaluate the ability of Stretch-VST to gen-
erate better and longer stories. Given 5 candidate
sequences with distinct lengths from 5 to 9, we
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Rank #1st rank #Sentences #Tokens
VIST(Sect. 4.1)
AREL 2.47 274 5.00 41.99
GLAC 2.60 258 5.00 35.32
KG-Story 2.51 297 5.81 44.13
Stretch-VST 2.41 421 6.22 69.74
VIST w/ incoherent image (Sect. 4.2)
AREL 2.04 364 3.00 25.41
GLAC 2.08 375 3.00 22.37
Stretch-VST 1.87 511 3.83 41.56

Table 1: Average rankings (1 to 4, lower is better) and
number 1st ranked stories (larger is better) rated by hu-
man judges, along with average number of sentences
and tokens per story. (ρ value < 0.05, N=250)

selected the best sequence of terms with the lowest
perplexity as the material to tell the visual story,
as described in Sect. 3.1. The resulting average
number of sentences in the generated stories was
6.22; that is, the proposed model tends to add one
or two relations to enrich the original story.

The average ranking results, shown in the first
row of Table 1 are better than baseline models.
This indicates the proposed stories are superior to
those from the baseline. Figure 6 shows the ques-
tionnaire result for the best-ranked stories. For
Stretch-VST and KG-Story’s best-ranked stories,
the Stretch-VST story counts are generally higher
in all aspects; specifically, Detailed, Coherence,
and Focused are significantly higher. As our stories
contain more sentences than KGStory, the stories
are undoubtedly more detailed. Additionally, the
increase of stories’ coherence indicates the advan-
tage of our multiple term set insertion as compare
to KGStory’s single insertion. While the prolong-
ing stories are beneficial to detailed and coherence,
we also found that story prolongation is beneficial
to topic-focus. We presume the increase number
of relevant sentences can improve the focus. Note
that we did not use automatic metrics for evaluation
because these metrics do not indicate the quality
of visual stories (Wang et al., 2018b; Hsu et al.,
2019). Figure 7(a) compares stories generated from
Stretch-VST to stories from the baselines.

5.3 Robustness to Incoherent Images

Next, we evaluated the robustness of the proposed
method story coherence by deleting the second and
fourth of the five input images. The second column
of Table 1 shows that Stretch-VST brings together
the diverse contents to generate the best story con-
text even when the input is disrupted. Figure 7(b)
is an example of such input disruption. Although

98
78

107 94
79

110

26 31

68 78
62 62

Stretch-VST KG-Story

Focus Coherence Shareability Humanness Grounding Detail

Figure 6: Aspect-wise votes for Stretch-VST and KG-
Story’s first-place stories collected via the question-
naire.

(a) Classic Example

(b) Delete 2 images

GLAC: the family was having a great time at the wedding. they were very happy
to be there. the bride was very excited.
Stretch-VST: one day my parents came to meet family members and brother
for a photo. we took a photo of it all day. [male] loved the park and today was
his big day. he got to spend more time with his dad and enjoyed it.

AREL: it was graduation day at the graduation ceremony. the students were
excited to receive their diplomas. the students were very proud of their
diplomas. i was so proud of me. the students were very proud of their diplomas.
GLAC: the graduation ceremony was a lot of fun. there were many people
there. they were all eager to receive their diplomas. everyone was very excited.
afterward we took pictures with each other.
KG-Story: the students were very excited to be graduating. they played in a
local band. the lady stood on stage and attached her band. afterwards , they all
left the stage. all of their friends were there to play. the family was very happy to
be together.
Stretch-VST: the graduates were waiting to get ready for their graduation
ceremony. [female] took pictures of everyone on their way to the stage. the man
began getting bored and said he could n't impress his diplomas. he walked
down the road. he posed for a picture with his family. he was walking along the
road. everyone seemed to have a lot of family and friends in support.

AREL: the family was so excited to be together. [male] and [male] were having
a great time. we had a great time at the party.

Figure 7: (a) Example visual stories generated by base-
lines and Stretch-VST. (b) Stories with fewer images
from baseline models and Stretch-VST.

removing two images creates an incoherence in the
photo sequence, Stretch-VST makes the best of
the knowledge graph to fill this gap and generate a
coherent story.

5.4 Robustness to Overstretched Stories
Without changing the input image sequences, does
forcing a model to generate longer stories decrease
the story quality? As no existing method generates
longer visual stories with a fixed number of input
images, we selected a strong Transformer baseline
that incorporates the length-controlling mechanism
proposed in (Kikuchi et al., 2016) as a baseline for
comparison. The baseline model takes the term se-
quence and the desired length as the encoder input.
After forwarding the encoder output to the decoder,
we obtain the baseline story from the decoder’s out-
put. The result in Fig. 8 shows that Stretch-VST is
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Figure 8: Average rankings between Stretch-VST and
baseline for prolonged stories.

better at generating longer sentence story than our
baseline model.

6 Conclusion

We propose a novel method for generating length-
controlled visual stories which includes an en-
hanced knowledge-graph reasoning module and
a length-controlled Transformer architecture. Us-
ing human evaluations, we show that the method
tells longer and better stories.

7 Ethical Considerations

Although our research aims to produce stories that
are vivid, engaging, and innocent, we are aware
of the possibilities of utilizing a similar approach
to generate inappropriate text (e.g., violent, racial,
or gender-insensitive stories). The proposed visual
storytelling technology enables people to gener-
ate stories rapidly based on photo sequences at
scale, which could also be used with malicious
intent, for example, to concoct fake stories using
real images. Finally, as the proposed methods use
external knowledge graphs, they reflect the issues,
risks, and biases of such information sources. Miti-
gating these potential risks will require continued
research.
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