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Abstract

We present skweak, a versatile, Python-based
software toolkit enabling NLP developers to
apply weak supervision to a wide range of
NLP tasks. Weak supervision is an emerging
machine learning paradigm based on a simple
idea: instead of labelling data points by hand,
we use labelling functions derived from do-
main knowledge to automatically obtain anno-
tations for a given dataset. The resulting labels
are then aggregated with a generative model
that estimates the accuracy (and possible con-
fusions) of each labelling function.
The skweak toolkit makes it easy to implement
a large spectrum of labelling functions (such
as heuristics, gazetteers, neural models or lin-
guistic constraints) on text data, apply them
on a corpus, and aggregate their results in a
fully unsupervised fashion. skweak is espe-
cially designed to facilitate the use of weak
supervision for NLP tasks such as text classi-
fication and sequence labelling. We illustrate
the use of skweak for NER and sentiment anal-
ysis. skweak is released under an open-source
license and is available at:
https://github.com/NorskRegnesentral/skweak

1 Introduction

Despite ever-increasing volumes of text documents
available online, labelled data remains a scarce
resource in many practical NLP scenarios. This
scarcity is especially acute when dealing with
resource-poor languages and/or uncommon textual
domains. This lack of labelled datasets is also com-
mon in industry-driven NLP projects that rely on
domain-specific labels defined in-house and can-
not make use of pre-existing resources. Large pre-
trained language models and transfer learning (Pe-
ters et al., 2018, 2019; Lauscher et al., 2020) can to
some extent alleviate this need for labelled data, by
making it possible to reuse generic language repre-
sentations instead of learning models from scratch.

Start: corpus of raw (unlabelled) 
documents from target domain

Step 1: 
labelling functions

(heuristics, gazetteers, etc.)

Step 2: aggregation 
(EM with generative model)

Step 3: Training of 
final NLP model    

(on aggregated labels) …

…

O O B-PER …

Figure 1: General overview of skweak: labelling func-
tions are first applied on a collection of texts (step 1)
and their results are then aggregated (step 2). A dis-
criminative model is finally trained on those aggregated
labels (step 3). The process is illustrated here for NER,
but skweak can in principle be applied to any type of
sequence labelling or classification task.

However, except for zero-shot learning approaches
(Artetxe and Schwenk, 2019; Barnes and Klinger,
2019; Pires et al., 2019), they still require some
amounts of labelled data from the target domain to
fine-tune the neural models to the task at hand.

The skweak framework (pronounced /skwi:k/) is a
new Python-based toolkit that provides solutions to
this scarcity problem. skweak makes it possible to
bootstrap NLP models without requiring any hand-
annotated data from the target domain. Instead
of labelling data by hand, skweak relies on weak
supervision to programmatically label data points
through a collection of labelling functions (Fries
et al., 2017; Ratner et al., 2017; Lison et al., 2020;
Safranchik et al., 2020a). The skweak framework
allows NLP practitioners to easily construct, apply
and aggregate such labelling functions for classifi-
cation and sequence labelling tasks. skweak comes
with a robust and scalable aggregation model that
extends the HMM model of Lison et al. (2020). As

https://github.com/NorskRegnesentral/skweak
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detailed in Section 4, the model now includes a
feature weighting mechanism to capture the corre-
lations that may exist between labelling functions.
The general procedure is illustrated in Figure 1.

Another novel feature of skweak is the ability to
create labelling functions that produce underspeci-
fied labels. For instance, a labelling function may
predict that a token is part of a named entity (but
without committing to a specific label), or that a
sentence does not express a particular sentiment
(but without committing to a specific sentiment cat-
egory). This ability greatly extends the expressive
power of labelling functions and makes it possible
to define complex hierarchies between categories –
for instance, COMPANY may be a sub-category of
ORG, which may be itself a sub-category of ENT.
It also enables the expression of “negative” signals
that indicate that the output should not be a par-
ticular label. Based on our experience applying
weak supervision to various NLP tasks, we expect
this ability to underspecify output labels to be very
useful in NLP applications.

2 Related Work

Weak supervision aims to replace hand-annotated
‘ground truths’ with labelling functions that are
programmatically applied to data points – in our
case, texts – from the target domain (Ratner et al.,
2017, 2019; Lison et al., 2020; Safranchik et al.,
2020b; Fu et al., 2020). Those functions may take
the form of rule-based heuristics, gazetteers, an-
notations from crowd-workers, external databases,
data-driven models trained from related domains,
or linguistic constraints. A particular form of weak
supervision is distant supervision, which relies on
knowledge bases to automatically label documents
with entities (Mintz et al., 2009; Ritter et al., 2013;
Shang et al., 2018). Weak supervision is also re-
lated to models for aggregating crowd-sourced an-
notations (Kim and Ghahramani, 2012; Hovy et al.,
2013; Nguyen et al., 2017).

Crucially, labelling functions do not need to pro-
vide a prediction for every data point and may
“abstain” whenever certain conditions are not met.
They may also rely on external data sources that
are unavailable at runtime, as is the case for labels
obtained by crowd-workers. After being applied
to a dataset, the results of those labelling functions
are aggregated into a single, probabilistic annota-
tion layer. This aggregation is often implemented
with a generative model connecting the latent (un-

observed) labels to the outputs of each labelling
function (Ratner et al., 2017; Lison et al., 2020;
Safranchik et al., 2020a). Based on those aggre-
gated labels, a discriminative model (often a neural
architecture) is then trained for the task.

Weak supervision shifts the focus away from
collecting manual annotations and concentrates the
effort on developing good labelling functions for
the target domain. This approach has been shown
to be much more efficient than traditional annota-
tion efforts (Ratner et al., 2017). Weak supervision
allows domain experts to directly inject their do-
main knowledge in the form of various heuristics.
Another benefit is the possibility to modify/extend
the label set during development, which is a com-
mon situation in industrial R&D projects.

Several software frameworks for weak supervi-
sion have been released in recent years. One such
framework is Snorkel (Ratner et al., 2017, 2019)
which combines various supervision sources using
a generative model. However, Snorkel requires
data points to be independent, making it difficult
to apply to sequence labelling tasks as done in
skweak. Swellshark (Fries et al., 2017) is another
framework optimised for biomedical NER. Swell-
shark, is however, limited to classifying already
segmented entities, and relies on a separate, ad-hoc
mechanism to generate candidate spans.

FlyingSquid (Fu et al., 2020) presents a novel ap-
proach based on triplet methods, which is shown to
be fast enough to be applicable to structured predic-
tion problems such as sequence labelling. However,
compared to skweak, the aggregation model of Fly-
ingSquid focuses on estimating the accuracies of
each labelling function, and is therefore difficult
to apply to problems where labelling sources may
exhibit very different precision/recall trade-offs. A
labelling function may for instance rely on a pattern
that has a high precision but a low recall, while the
opposite may be true for other labelling functions.
Such difference is lost if accuracy is the only met-
ric associated for each labelling function. Finally
Safranchik et al. (2020b) describe a weak supervi-
sion model based on an extension of HMMs called
linked hidden Markov models. Although their ag-
gregation model is related to skweak, they provide
a more limited choice of labelling functions, in par-
ticular regarding the inclusion of document-level
constraints or underspecified labels.

skweak is also more distantly related to ensemble
methods (Sagi and Rokach, 2018), as those meth-
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ods also rely on multiple estimators whose results
are combined at prediction time. However, a major
difference lies in the fact that labelling functions
only need to be aggregated once in skweak, in or-
der to generate labelled training data for the final
discriminative model (Step 3 of Figure 1). This
difference is important as labelling functions may
be computationally costly to run or rely on external
resources that are not available at runtime, as is the
case for annotations from crowd-workers.

3 Labelling functions

Labelling functions in skweak can be grouped in
four main categories: heuristics, gazetteers, ma-
chine learning models, and document-level func-
tions. Each labelling function is defined in skweak
as a method that takes SpaCy Doc objects as in-
puts and returns text spans associated with labels.
For text classification tasks, the span simply corre-
sponds to the full document itself.

The use of SpaCy greatly facilitates downstream
processing, as it allows labelling functions to oper-
ate on texts that are already tokenised and include
linguistic features such as lemma, POS tags and
dependency relations.1 skweak integrates several
functionalities on top of SpaCy to easily create,
manipulate, label and store text documents.

Heuristics
The simplest type of labelling functions integrated
in skweak are rule-based heuristics. For instance,
one heuristic to detect entities of type COMPANY is
to look for text spans ending with a legal company
type (such as “Inc.”). Similarly, a heuristic to detect
named entities of the (underspecified) type ENT is
to search for sequences of tokens tagged as NNPs.
Section 6 provides further examples of heuristics
for NER and Sentiment Analysis.

The easiest way to define heuristics in skweak
is through standard Python functions that take a
SpaCy Doc object as input and returns labelled
spans. For instance, the following function detects
entities of type MONEY by searching for numbers
preceded by a currency symbol like $ or e:

def money_detector(doc):
"""Searches for occurrences of
MONEY entities in text"""

for tok in doc[1:]:
if (tok.text[0].isdigit() and

1For languages not yet supported in SpaCy, the multi-
language model from SpaCy can be applied.

tok.nbor(-1).is_currency):
yield tok.i-1, tok.i+1, "MONEY"

skweak also provides functionalities to easily
construct heuristics based on linguistic constraints
(such as POS patterns or dependency relations) or
the presence of neighbouring words within a given
context window.

Labelling functions may focus on specific labels
and/or contexts and ”abstain” from giving a predic-
tion for other text spans. For instance, the heuristic
mentioned above to detect companies from legal
suffixes will only be triggered in very specific con-
texts, and abstain from giving a prediction other-
wise. More generally, it should be stressed that
labelling functions do not need to be perfect and
should be expected to yield incorrect predictions
from time to time. The purpose of weak supervi-
sion is precisely to combine together a set of weak-
er/noisier supervision signals, leading to a form of
denoising (Ratner et al., 2019).

Labelling functions in skweak can be constructed
from the outputs of other functions. For instance,
the heuristic tagging NNP chunks with the label
ENT may be refined through a second heuristic that
additionally requires the tokens to be in title case –
which leads to a lower recall but a higher precision
compared to the initial heuristic. The creation of
such derived labelling functions through the com-
bination of constraints is a simple way to increase
the number of labelling sources and therefore the
robustness of the aggregation mechanism. skweak
automatically takes care of dependencies between
labelling functions in the backend.

Machine learning models

Labelling functions may also take the form of ma-
chine learning models. Typically, those models
will be trained on data from other, related domains,
thereby leading to some form of transfer learning
across domains. skweak does not impose any con-
straint on type of model that can be employed.

The support for underspecified labels in skweak
greatly facilitates the use of models across datasets,
as it makes it possible to define hierarchical re-
lations between distinct label sets – for instance,
the coarse-grained LOC label from CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) may be
seen as including both the GPE and LOC labels in
Ontonotes (Weischedel et al., 2011).
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Gazetteers

Another group of labelling functions are gazetteers,
which are modules searching for occurrences of a
list of words or phrases in the document. For in-
stance, a gazetteer may be constructed using the ge-
ographical locations from Geonames (Wick, 2015)
or names of persons, organisations and locations
from DBPedia (Lehmann et al., 2015)

As gazetteers may include large numbers of en-
tries, skweak relies on tries to efficiently search for
all possible occurrences within a document. A trie,
also called a prefix tree, stores all entries as a tree
which is traversed depth-first. This implementation
can scale up to very large gazetteers with more than
one million entries. The search can be done in two
distinct modes: a case-sensitive mode that requires
an exact match between the entity in the trie and
the occurrence and a case-insensitive mode that
relaxes this constraint.

Document-level functions

Unlike previous weak supervision frameworks,
skweak also provides functionalities to create
document-level labelling functions that rely on the
global document context to derive new supervision
signals. In particular, skweak includes a labelling
function that takes advantage of label consistency
within a document. Entities occurring multiple
times through a document are highly likely to be-
long to the same category (Krishnan and Manning,
2006). One can take advantage of this phenomenon
by estimating the majority label of each entity in
the document and then creating a labelling function
that applies this majority label to each mention.

Furthermore, when introduced for the first time
in a text, entities are often referred univocally,
while subsequent mentions (once the entity is
salient) frequently rely on shorter references. For
instance, the first mention of a person in a text will
often take the form of a full name (possibly com-
plemented with job titles), but mentions that follow
will often rely on shorter forms, such as the fam-
ily name. skweak provides functionalities to easily
capture such document-level relations.

4 Aggregation model

After being applied to a collection of texts, the out-
puts of labelling functions are aggregated using
a generative model. For sequence labelling, this
model is expressed as a Hidden Markov Model
where the states correspond to the “true” (unob-

served) labels, and the observations are the predic-
tions of each labelling function (Lison et al., 2020).
For document classification, this model reduces to
Naive Bayes since there are no transitions.

This generative model is estimated using the
Baum-Welch algorithm (Rabiner, 1990), which a
variant of EM that uses the forward-backward al-
gorithm to compute the statistics for the expecta-
tion step. For efficient inference, skweak combines
Python with C-compiled routines from the hmm-
learn package2 employed for both parameter esti-
mation and decoding.

4.1 Probabilistic Model
We assume a list of J labelling functions
{λ1, ..., λJ}. Each labelling function produces a
label for each data point (including a special “void”
label denoting that the labelling function abstains
from a concrete prediction, as well as underspeci-
fied labels). Let {l1, ..., lL} be the set of labels that
can be produced by labelling functions.

The aggregation model is represented as a hidden
Markov model (HMM), in which the states corre-
spond to the true underlying mutually exclusive
class labels {l1, ..., lS}.3 This model has multiple
emissions (one per labelling function). For the time
being, we assume those emissions to be mutually
independent conditional on the latent state (see next
section for a more refined model).

Formally, for each token i ∈ {1, ..., n} and la-
belling function λj , we assume a multinomial dis-
tribution for the observed labels Yij . The param-
eters of this multinomial are vectors P si

j ∈ RL[0,1].
The latent states are assumed to have a Markovian
dependence structure along the tokens {1, ..., n}.
As depicted in Figure 2, this results in an HMM
expressed as a dependent mixture of multinomials:

p(λ
(i)
j = Yij |P si

j ) = Multinomial
(
P si
j

)
, (1)

p(si = k|si−1 = l) = τlk. (2)

where τlk ∈ R[0,1] are the parameters of the transi-
tion matrix controlling for a given state si−1 = l
the probability of transition to state si = k.

The likelihood function includes a constraint that
requires latent labels to be observed in at least one
labelling function to have a non-zero probability.

2https://hmmlearn.readthedocs.io/
3Note that the set of observed labels {l1, ..., lL} produced

by the labelling functions may be larger than the set of la-
tent labels {l1, ..., lS}, since those observed labels may also
include underspecified labels such as ENT.

https://hmmlearn.readthedocs.io/
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This day in 1918 ...

si−1 si si+1 si+2 ...

P si
j Y ij

Labelling function j ∈ {1, ..., J}

Figure 2: Aggregation model using a hidden Markov
model with multiple multinomial emissions.

This constraint reduces the search space to a few
labels at each step, and greatly facilitates the con-
vergence of the forward-backward algorithm.

To initialise the model parameters, we run a ma-
jority voter that predicts the most likely latent labels
based on the “votes” for each label (also includ-
ing underspecified labels), each labelling function
corresponding to a voter. Those predictions are
employed to derive the initial transition and emis-
sion probabilities, which are then refined through
several EM passes.

Performance-wise, skweak can scale up to large
collections of documents. The aggregation of all
named entities from the MUC-6 dataset (see Sec-
tion 6.1) based on a total of 52 labelling functions
only requires a few minutes of computation time,
with an average speed of 1000-1500 tokens per
second on a modern computing server.

4.2 Weighting

One shortcoming of the above model is that it fails
to account for the fact that labelling functions may
be correlated with one another, for instance when
a labelling function is computed from the output
of another labeling function. To capture those de-
pendencies, we extend the model with a weighting
scheme – or equivalently, a tempering of the densi-
ties associated with each labelling function.

Formally, for each labelling function λj and ob-
served label k we determine weights {wjk} with
respect to which the corresponding densities of the
labelling functions are annealed. This flattens to
different degrees the underlying probabilities for
the components of the multinomials. The observed
process has then a tempered multinomial distribu-

tion with a density of form:

p(λ
(i)
j = Yij |P si

j ,wj) ∝
L∏
k=1

P sijk
Yijkwjk . (3)

The temperatures {wjk} are determined using a
scheme inspired by delution priors widely used in
Bayesian model averaging (George, 1999; George
et al., 2010). The idea relies on redundancy as the
measure of prior information on the importance of
features. Formally, we define for each λj a neigh-
bourhood N(λj) consisting of labelling functions
known to be correlated with λj , as is the case for la-
belling functions built on top of another function’s
outputs. The weights are then specified as:

wjk = exp

−γ ∑
l∈N(λj)

Rjlk

, (4)

where γ is a hyper-parameter specifying the
strength of the weighting scheme, and Rjlk is the
recall between labelling functions λj and λl for
label k. Informally, the weight wjk of a labelling
function λj producing the label k will decrease if
λj exhibits a high recall with correlated sources,
and is therefore at least partially redundant.

Also, the temperatures can be interpreted as
weights of the log-likelihood function and Dim-
itroff et al. (2013) have shown that under some reg-
ularity conditions there exist weights that allow to
maximize F1 score when optimising the weighted
log-likelihood (Field and Smith, 1994).

5 Example

With skweak, one can apply and aggregrate la-
belling functions with a few lines of code:

import spacy, re
from skweak import heuristics,

gazetteers, aggregation, utils

# First heuristic (see Section 3)
lf1 = heuristics.FunctionAnnotator

("money", money_detector)

# Detection of years
lf2= heuristics.TokenConstraintAnnotator

("years", lambda tok: re.match
("(19|20)\d{2}$", tok.text), "DATE")

# Gazetteer with a few names
NAMES = [("Barack", "Obama"), ("Donald",

"Trump"), ("Joe", "Biden")]
trie = gazetteers.Trie(NAMES)
lf3 = gazetteers.GazetteerAnnotator

("presidents", trie, "PERSON")
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# We create a simple text
nlp = spacy.load("en_core_web_md")
doc = nlp("Donald Trump paid $750 in

federal income taxes in 2016")

# apply the labelling functions
doc = lf3(lf2(lf1(doc)))

# aggregate them
hmm = aggregation.HMM("hmm",

["PERSON", "DATE", "MONEY"])
hmm.fit_and_aggregate([doc])

# and visualise the result (in Jupyter)
utils.display_entities(doc, "hmm")

skweak’s repository provides Jupyter Notebooks
with additional examples and explanations.

6 Experimental Results

We describe below two experiments demonstrating
how skweak can be applied to sequence labelling
and text classification. We refer the reader to Lison
et al. (2020) for more results on NER.4 It should
be stressed that the results below are all obtained
without using any gold labels.

6.1 Named Entity Recognition

We seek to recognise named entities from the MUC-
6 corpus (Grishman and Sundheim, 1996), which
contains 318 Wall Street Journal articles annotated
with 7 entity types: LOCATION, ORGANIZATION,
PERSON, MONEY, DATE, TIME, PERCENT.

Labelling functions
We apply the following functions to the corpus:

• Heuristics for detecting dates, times and per-
cents based on handcrafted patterns

• Heuristics for detecting named entities based
on casing, NNP part-of-speech tags or com-
pound phrases. Those heuristics produced
entities of underspecified type ENT

• One probabilistic parser (Braun et al., 2017)
for detecting dates, times, money amounts,
percents, and cardinal/ordinal values

• Heuristics for detecting person names, based
on honorifics (such as Mr. or Dr.) along with
a dictionary of common first names

• One heuristic for detecting company names
with legal suffixes (such as Inc.)

4See also Fries et al. (2017) for specific results on applying
weak supervision to biomedical NER.

Model Token F1 Entity F1

Majority vote 0.61 0.57
(all labelling functions)
HMM-aggregated labels:
- only heuristics 0.57 0.43
- only gazetteers 0.36 0.35
- only NER models 0.60 0.56
- all but doc-level 0.80 0.71
- all labelling functions 0.81 0.72
Neural NER trained on 0.82 0.72
HMM-aggregated labels

Table 1: Micro-averaged F1 scores on MUC-6.

• Gazetteers for detecting persons, organisa-
tions and locations based on Wikipedia, Geon-
ames (Wick, 2015) and Crunchbase

• Neural models trained on CoNLL 2003 & the
Broad Twitter Corpus (Tjong Kim Sang and
De Meulder, 2003; Derczynski et al., 2016)

• Document-level labelling functions based on
(1) majority labels for a given entity or (2) the
label of each entity’s first mention.

All together (including multiple variants of the
functions above, such as gazetteers in both case-
sensitive and case-insensitive mode), this amounts
to a total of 52 labelling functions.

Results
The token and entity-level F1 scores are shown in
Table 1. As baselines, we provide the results ob-
tained by aggregating all labelling functions using
a majority voter, along with results using the HMM
on various subsets of labelling functions. The final
line indicates the results using a neural NER model
trained on the HMM-aggregated labels (with all
labelling functions). The neural model employed
in this particular experiment is a transformer archi-
tecture based on a large pretrained neural model,
RoBERTa (Liu et al., 2019).

See Lison et al. (2020) for experimental details
and results for other aggregation methods.

6.2 Sentiment Analysis

We consider the task of three class (positive, nega-
tive, neutral) sentiment analysis in Norwegian as a
second case study. We use sentence-level annota-
tions5 from the NoReCfine dataset (Øvrelid et al.,

5Data: https://github.com/ltgoslo/norec sentence

 https://github.com/ltgoslo/norec_sentence
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2020). These are created by aggregating the fine-
grained annotations for sentiment expressions such
that any sentence with a majority of positive sen-
timent expressions is assumed to be positive, and
likewise with negative expressions. Sentences with
no sentiment expressions are labelled neutral.

Labelling functions
Sentiment lexicons: NorSent (Barnes et al.,
2019) is the only available lexicon in Norwegian
and contains tokens with their associated polarity.
We also use MT-translated English lexicons: SoCal
(Taboada et al., 2011), the IBM Debater lexicon
(Toledo-Ronen et al., 2018) and the NRC word
emotion lexicon (NRC emo.) (Mohammad and
Turney, 2010). Automatic translation introduces
some noise but has been shown to preserve most
sentiment information (Mohammad et al., 2016).

Heuristics: For sentences with two clauses con-
nected by ‘but’, the second clause is typically more
relevant to the sentiment, as for instance in “the
food was nice, but I wouldn’t go back there”. We
include a heuristic to reflect this pattern.

Machine learning models: We create a
document-level classifier (Doc-level) by training a
bag-of-words SVM on the NoReC dataset (Velldal
et al., 2018), which contains ‘dice labels’ ranging
from 1 (very negative) to 6 (very positive). We map
predictions to positive (>4), negative (<3), and
neutral (3 and 4). We also include two multilingual
BERT models mBERT-review6 (trained on
reviews from 6 languages) and mBERT-SST
(trained on the Stanford Sentiment Treebank). The
predictions for both models are again mapped to 3
classes (positive, negative, neutral).

Results
Table 2 provides results on the NoReC sentence
test split. As baseline, we include a Majority class
which always predicts the neutral class. As upper
bounds, we include a linear SVM trained on TF-
IDF weighted (1-3)-grams (Ngram SVM), along
with Norwegian BERT (NorBERT) models (Ku-
tuzov et al., 2021) fine-tuned on the gold training
data. Those two models are upper bounds as they
have access to in-domain labelled data, which is
not the case for the other models.

Again, we observe that the HMM-aggregated
labels outperform all individual labelling functions

6https://huggingface.co/nlptown/
bert-base-multilingual-uncased-sentiment

Source Macro F1

baseline Majority class 22.4

upper bounds
Ngram SVM 55.2
NorBERT 68.5

lexicons

NorSent 45.3
NorSent lemmas 33.7
NRC VAD 8.2
SoCal 46.1
SoCal adv. 43.8
SoCal Google 45.0
SoCal Int. 36.5
SoCal verb 37.2
IBM 35.9
NRC Emo. 41.7

heuristics BUT 25.3
BUT lemmas 24.0

trained models
Doc-level 33.0
mBERT-review 44.3
mBERT-SST 32.3

Aggregation
Majority vote 40.0
HMM 49.1

Trained on agg. NorBERT 51.2

Table 2: Macro F1 on sentence-level NoReC data.

as well as a majority voter that aggregates those
functions. The best performance is achieved by a
neural model (in this case NorBERT) fine-tuned on
those aggregated labels.

7 Conclusion

The skweak toolkit provides a practical solution
to a problem encountered by virtually every NLP
practitioner: how can I obtain labelled data for my
NLP task? Using weak supervision, skweak makes
it possible to create training data programmatically
instead of labelling data by hand. The toolkit pro-
vides a Python API to apply labelling functions
and aggregate their results in a few lines of code.
The aggregation relies on a generative model that
express the relative accuracy (and redundancies) of
each labelling function.

The toolkit can be applied to both sequence la-
belling and text classification and comes along a
range of novel functionalities such as the integra-
tion of underspecified labels and the creation of
document-level labelling functions.

https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
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2020. Fast and three-rious: Speeding up weak super-
vision with triplet methods. In Proceedings of the
37th International Conference on Machine Learning
(ICML 2020).

E George. 1999. Discussion of “model averaging and
model search strategies” by m. clyde. In Bayesian
Statistics 6–Proceedings of the Sixth Valencia Inter-
national Meeting.

Edward I George et al. 2010. Dilution priors: Com-
pensating for model space redundancy. In Bor-
rowing Strength: Theory Powering Applications–A
Festschrift for Lawrence D. Brown, pages 158–165.
Institute of Mathematical Statistics.

Ralph Grishman and Beth Sundheim. 1996. Message
understanding conference-6: A brief history. In Pro-
ceedings of the 16th Conference on Computational
Linguistics - Volume 1, COLING ’96, page 466–471,
USA. Association for Computational Linguistics.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120–1130, Atlanta, Georgia.
Association for Computational Linguistics.

Hyun-Chul Kim and Zoubin Ghahramani. 2012.
Bayesian classifier combination. In Proceedings of
the Fifteenth International Conference on Artificial
Intelligence and Statistics, volume 22 of Proceed-
ings of Machine Learning Research, pages 619–627,
La Palma, Canary Islands. PMLR.

Vijay Krishnan and Christopher D. Manning. 2006. An
effective two-stage model for exploiting non-local
dependencies in named entity recognition. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1121–1128, Sydney, Australia. Associa-
tion for Computational Linguistics.

Andrey Kutuzov, Jeremy Barnes, Erik Velldal, Lilja
Øvrelid, and Stephan Oepen. 2021. Large-scale
contextualised language modelling for Norwegian.
In Proceedings of the 23rd Nordic Conference on
Computational Linguistics (NoDaLiDa), pages 30–
40, Reykjavik, Iceland (Online). Linköping Univer-
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