
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: System Demonstrations, pages 185–193, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

185

CRSLab: An Open-Source Toolkit for Building Conversational
Recommender System

Kun Zhou1,3 †, Xiaolei Wang2 †, Yuanhang Zhou1,3, Chenzhan Shang1, Yuan Cheng4,
Wayne Xin Zhao2,3 ∗, Yaliang Li5, and Ji-Rong Wen1,2,3

1School of Information, Renmin University of China
2Gaoling School of Artificial Intelligence, Renmin University of China

3Beijing Key Laboratory of Big Data Management and Analysis Methods
4School of Statistics, Renmin University of China

5Alibaba Group

Abstract

In recent years, conversational recommender
systems (CRSs) have drawn a wide attention in
the research community, which focus on pro-
viding high-quality recommendations to users
via natural language conversations. How-
ever, due to diverse scenarios and data for-
mats, existing studies on CRSs lack unified
and standardized implementation or compar-
ison. To tackle this challenge, we release
an open-source toolkit CRSLab, which pro-
vides a unified and extensible framework with
highly-decoupled modules to develop CRSs.
Based on this framework, we collect 6 com-
monly used human-annotated CRS datasets
and implement 19 models that include ad-
vanced techniques such as graph neural net-
works and pre-training models. Besides, our
toolkit provides a series of automatic evalu-
ation protocols and a human-machine inter-
action interface to evaluate and compare dif-
ferent CRS methods. The project and doc-
uments are released at https://github.
com/RUCAIBox/CRSLab.

1 Introduction

Recent years have witnessed remarkable progress
in recommender systems, which aim to present
items (e.g., products or movies) of potential in-
terests to users based on their preferences (Sarwar
et al., 2001; Rendle et al., 2012). Traditional rec-
ommender systems mainly leverage the user his-
torical behavior data (e.g., click or purchase) to es-
timate user preferences implicitly. Recently, with
the rapid development of human-machine conver-
sation techniques (Shang et al., 2015; Zhang et al.,
2018a; Lee et al., 2019), conversational recom-
mender systems (CRSs) (Christakopoulou et al.,
2016; Sun and Zhang, 2018; Gao et al., 2021) is

†† Equal contribution.
∗∗ Corresponding author, Email: batmanfly@gmail.com.

gaining increasing attention in recent years. It re-
lies on multi-turn natural language conversations
to clarify explicit user preferences and generate
more appropriate recommendations.

To build an effective CRS, researchers have pro-
posed several datasets (Li et al., 2018; Kang et al.,
2019; Liu et al., 2020) and models (Liao et al.,
2020; Lei et al., 2020; Xu et al., 2020). However,
due to their diverse scenarios (e.g., E-commerce
or movie recommendation) and data formats (e.g.,
historical utterances or interacted items), it is chal-
lenging for users to quickly set up reasonable
baseline systems and compare their performances.

To alleviate the above issues, we have devel-
oped CRSLab, an open-source CRS toolkit for
research purpose. In CRSLab, we offer a uni-
fied and extensible framework to develop CRSs.
Based on this toolkit, users are able to quickly
train and evaluate CRS models via a few lines of
code, and easily design new CRS models using
the provided interfaces. To implement the overall
framework, we design six highly-decoupled mod-
ules (e.g., data module and model module), each
module provides clear interfaces for specific func-
tions. Besides, we encapsulate useful procedures
and common functions shared by different mod-
ules for users to add new datasets or develop new
models using our toolkit.

Based on the framework, we integrate com-
prehensive benchmark datasets and models in
CRSLab. So far, we have incorporated
6 commonly used human-annotated datasets
and implemented 19 models, including ad-
vanced techniques such as graph neural networks
(GNN) (Schlichtkrull et al., 2018; Chen et al.,
2019) and pre-training models (Devlin et al., 2019;
Zhou et al., 2020b). To support these mod-
els, we perform necessary preprocessing (e.g., en-
tity linking and word segmentation) on included
datasets, and release the processed version. Be-

https://github.com/RUCAIBox/CRSLab
https://github.com/RUCAIBox/CRSLab


186

sides, CRSLab supports both configuration files
and command-line instructions, which facilitate
running, comparing and testing models on differ-
ent datasets.

Furthermore, CRSLab provides a series of auto-
matic evaluation protocols for testing and compar-
ing different methods, covering commonly used
metrics in existing works. It makes our work use-
ful for the standardization of evaluation protocols
for conversational recommendations. In addition,
CRSLab provides a human-machine interactive in-
terface to perform quantitative analysis, which is
helpful for users to deploy their systems and con-
verse with the systems via graphical interfaces.

Our contributions are as follows:
• To the best of our knowledge, CRSLab is the

first open-source CRS toolkit covering 6 human-
annotated datasets and 19 models.
• CRSLab provides a unified and extensible

framework consisting of highly-decoupled mod-
ules, which helps users run and develop different
CRS models.
• CRSLab contains commonly used automatic

evaluation metrics and a human-machine interac-
tive interface for users to test CRS performance
from different perspectives.

2 Background

As aforementioned, the various scenarios and in-
put formats in earlier works lead to inconvenience
when applying existing CRS models on different
datasets. By surveying previous CRS works (Sun
and Zhang, 2018; Li et al., 2018; Lei et al., 2020),
we summarize two basic tasks and an auxiliary
task, namely recommendation task, conversation
task and policy task.

Given the dialog context (i.e., historical utter-
ances) and other useful side information (e.g., user
historical behaviors and knowledge graphs), the
recommendation sub-task is defined as predict-
ing user-preferred items (e.g., movies or prod-
ucts), and the conversation sub-task is to gener-
ate a proper response for conversing with the user.
In existing works, the recommendation and the
conversation sub-tasks are considered as the pri-
mary objective of the CRS. As a complementary
sub-task, policy sub-tasks are proposed by recent
works (Sun and Zhang, 2018; Lei et al., 2020;
Liu et al., 2020) to better control the overall CRS.
It usually focuses on selecting appropriate sys-
tem actions (e.g., recommendation or conversa-

Configuration

Data Model Evaluation

Utility …

Configuration File Command Line

Dataset

Evaluator

Model

SystemDataLoader

Metrics

Scheduler MultiGPUBeamSearchLayers

Figure 1: The overall framework of CRSLab.

tion) or tracking dialog states (topic prediction or
goal tracking) to proactively guide the conversa-
tion.

3 CRSLab

The overall framework of our toolkit CRSLab is
presented in Figure 1. The configuration mod-
ule provides a flexible interface for users to easily
set up the experiment environment (e.g., datasets,
models and hyperparameters). The data, model
and evaluation modules are built upon the config-
uration module, which forms the core part of our
toolkit. The bottom part is the utility module, pro-
viding auxiliary functions and interfaces for reuse
in other modules (e.g., Layers and Scheduler). In
the following part, we briefly present the design of
the above modules. More details can be found in
the toolkit documents.

3.1 Configuration Module

In CRSLab, we design the configuration module
for users to conveniently select or modify the ex-
periment settings (e.g., training data and hyperpa-
rameters). Specifically, we design the class Config
to store all the configuration settings, which spec-
ify the data, model, hyperparameters and other
necessary settings of a given experiment. To avoid
complicated command line parameters, we trans-
fer most of them into YAML configuration files,
while other commonly used ones (i.e., file path
and debug mode) are provided as command line
instructions. In this way, users can build and eval-
uate a variety of CRSs with only a few modifica-
tions in the configuration files.

3.2 Data Module

For extensibility and reusability, we design an
elegant data flow that transforms raw dataset



187

Dataset Dialog Utterance Domain Policy Task Entity KG Word KG

ReDial (Li et al., 2018) 10,006 182,150 Movie – DB CNet
OpenDialKG (Moon et al., 2019) 13,802 91,209 Movie, Book Path Generation DB CNet

GoRecDial (Kang et al., 2019) 9,125 170,904 Movie Action Prediction DB CNet
DuRecDial (Liu et al., 2020) 10,200 156,000 Movie, Music Goal Planning CN-DB HNet

INSPIRED (Hayati et al., 2020) 1,001 35,811 Movie Strategy Prediction DB CNet
TG-ReDial (Zhou et al., 2020c) 10,000 129,392 Movie Topic Prediction CN-DB HNet

Table 1: The collected datasets in CRSLab. DB and CN-DB stand for the entity-oriented knowledge graph DBpedia
and CN-DBpedia, respectively. CNet and HNet stand for the word-oriented knowledge graph ConceptNet and
HowNet, respectively.

into the model input as follows: raw public
dataset−→ preprocessed dataset−→Dataset−→
DataLoader −→ System. Next, we detail the de-
sign of each component.

Data Preprocessing Since raw datasets vary in
formats and features, we preprocess them to sup-
port unified interfaces in data modules. Based on
the task description in Section 2, we first prepro-
cess CRS datasets to match the input and output
formats. Exactly, we organize the dialog contexts
and side information as the input, and extract the
recommended items, dialog actions and responses
as the output of recommendation, policy and con-
versation tasks, respectively. To support some ad-
vanced models (e.g., graph neural networks and
pre-training models), we incorporate useful side
data (e.g., knowledge graph) and conduct specific
data preprocessing (e.g., entity linking and BPE
segmentation).

As shown in Table 1, we collect 6 commonly
used human-annotated datasets and release the
preprocessed version with side data in CRSLab.
Besides, we also release the pre-trained word em-
beddings and other associated files, which ease the
use of integrated datasets and reduce the time cost.

Dataset Class To decouple the implementation
of data preparation in CRSLab, we design the
class Dataset for integrating the model-agnostic
data processing functions, while the rest functions
are implemented within the class DataLoader. In
this way, Dataset only focuses on processing the
input data into a unified format (i.e., a list of
python.dict), without considering specific mod-
els. In CRSLab, we design the class BaseDataset
which includes some common attributes (e.g.,
configurations and data paths) and basic functions
(e.g., data loading) of Dataset. Users can inherit
BaseDataset with very few modifications to intro-
duce new datasets.

DataLoader Class To support different input for-
mats, DataLoader further transforms data from the
Dataset module to support various models. It fo-
cuses on selecting input data from the processed
data to form tensor data (i.e., torch.Tensor) in a
batch or mini-batch, which can be directly used
for training or testing. To implement it, we design
the class BaseDataLoader to integrate commonly
used attributes and functions, and inherit it to pro-
duce new DataLoader for corresponding models.

3.3 Model Module
Based on the task descriptions and the above data
modules, we reorganize the implementations of
different CRSs in the model module. Existing
works either integrate specific models to accom-
plish the recommendation, conversation and pol-
icy task, respectively (Chen et al., 2019; Zhou
et al., 2020a), or only focus on one of the above
tasks (Kang and McAuley, 2018; Hayati et al.,
2020). Therefore, we divide commonly used mod-
els into four categories, namely CRS models (con-
taining several sub-models to complete the cor-
responding tasks), recommendation models, con-
versation models and policy models. Besides,
we also consider some classic heuristic methods
(e.g., Popularity and PMI) and several popular
models which can be utilized to solve one of the
above tasks, such as TextCNN (Kim, 2014) and
BERT (Devlin et al., 2019). As illustrated in Ta-
ble 2, we have implemented 19 models in the first
released version, including some advanced mod-
els such as graph neural networks and pre-training
models.

For implementation of these models, we de-
velop the model class to provide functions and
interfaces of specific models for corresponding
tasks. In the model class, we focus on provid-
ing a basic structure and highly-decoupled useful
functions or procedures for further development.
In detail, we unify the basic attributes and func-



188

Category Model GNN PTM Reference

CRS model

ReDial × × (Li et al., 2018)
KBRD

√
× (Chen et al., 2019)

KGSF
√

× (Zhou et al., 2020a)
TG-ReDial ×

√
(Zhou et al., 2020c)

Recommendation model

Popularity × × –
GRU4Rec × × (Hidasi et al., 2016)
SASRec × × (Kang and McAuley, 2018)
TextCNN × × (Kim, 2014)
R-GCN

√
× (Schlichtkrull et al., 2018)

BERT ×
√

(Devlin et al., 2019)

Conversation model
HERD × × (Serban et al., 2016)

Transformer × × (Vaswani et al., 2017)
GPT-2 ×

√
(Radford et al., 2019)

INSPIRED ×
√

(Hayati et al., 2020)

Policy model

PMI × × –
MGCG × × (Liu et al., 2020)

Conv-BERT ×
√

(Zhou et al., 2020c)
Topic-BERT ×

√
(Zhou et al., 2020c)

Profile-BERT ×
√

(Zhou et al., 2020c)

Table 2: The implemented models in CRSLab. The CRS models integrate several sub-models to complete the over-
all conversational recommendation process, while recommendation, policy and conversation models only focus on
one individual task. GNN and PTM stand for the graph neural networks and pre-training models, respectively.

tions of various models (e.g., parameter initializa-
tion and model loading) into the class BaseModel.
A user can inherit BaseModel and implement a
few functions to design and develop new models.
In this way, we re-implement the above models in
our toolkit and unify the implementation of com-
monly used layers and components into the Utility
Module for future usage. For all the implemented
models, we have tested their performance on sev-
eral datasets, and invited a code reviewer to ex-
amine the correctness of implementation. In the
future, more methods will be incorporated along
with regular updates.

3.4 System Module

In the system module, we build, train and evalu-
ate contained models for accomplishing the over-
all conversational recommendation task. We aim
to integrate the dataloader, model and evaluator
modules into a complete system. To support flex-
ible architectures for CRSs at the system level,
we devise the system class with several func-
tions for various usage. In detail, we design the
class BaseSystem to unify the structures and inter-
faces, where we develop basic attributes and func-
tions in the process. Among them, we develop
the init () function to set up the required dat-
aloader, contained models and evaluation proto-
cols, which can be implemented by users for build-
ing new systems. Besides, we also implement a se-

ries of useful functions, such as optimizer initial-
ization, learning ratio adjustment and early stop
strategy. These functions and tiny tricks ease the
developing process of a new system and greatly
improve the user experience with our toolkit.

Based on the above settings, we design the fit()
and step() functions in BaseSystem. The fit()
function is used to train the whole system and then
conduct evaluation, in which users need to devise
the overall training process of all the models in
the system, including data distribution, training or-
ders and so on. In the step() function, users im-
plement the detailed learning process for specific
models, and functions within the corresponding
models can be utilized to optimize model parame-
ters.

3.5 Evaluation Module

The evaluation module implements the evaluation
protocols for CRSs. In CRSLab, we implement
some commonly used automatic evaluation met-
rics, and design a human-machine interactive in-
terface for users to perform an end-to-end qualita-
tive analysis.

Automatic Evaluation Since the CRS task is di-
vided into three sub-tasks, we develop automatic
evaluation metrics for each one. All the supported
metrics are summarized in Table 3.

For the recommendation task, following exist-



189

Category Metrics

Recommendation
Metrics

Hit@{1,10,50}, MRR@{1,10,50},
NDCG@{1,10,50}

Conversation
Metrics

Perplexity, BLEU-{1,2,3,4}, Em-
bedding Average/Extreme/Greedy,
Distinct-{1,2,3,4}

Policy Metrics Accuracy, Hit@{1,3,5}

Table 3: The implemented automatic evaluation met-
rics in CRSLab.

ing CRSs (Sun and Zhang, 2018; Zhang et al.,
2018b), we develop ranking-based metrics (i.e.,
Hit, MRR and NDCG) to measure the ranking
performance of the generated recommendation
lists. For the conversation task, CRSLab supports
both relevance-based (i.e., BLEU (Papineni et al.,
2002) and embedding-based metrics (Liu et al.,
2016)) and diversity-based evaluation metrics (i.e.,
Distinct-{1,2,3,4} (Li et al., 2016)). For the policy
task, we implement commonly used metrics (i.e.,
Accuracy and Hit@K) for evaluation.

Similarly, we design the class BaseEvaluator
with common attributes and functions. Then,
we inherit this class to implement RecEvaluator,
ConvEvaluator and PolicyEvaluator for evalu-
ating recommendation, conversation and policy
tasks, respectively. Note that we implement the
report() function in these classes. With this, users
can print and monitor the performance of models
evaluating on validation or test set.

Human-Machine Interaction Interface To eval-
uate CRSs qualitatively, CRSLab offers a human-
machine interaction interface to help perform an
end-to-end evaluation. The human-machine inter-
action interface is implemented within the system
module, where the interaction strategy can be eas-
ily adapted to a specific policy model. In this way,
a user can converse with a CRS or diagnose the
system, which provides a direct approach to eval-
uating the overall performance of a CRS. Besides,
the interaction interface enables users to correct
errors by modifying intermediate results.

For end-to-end evaluation, users first need to set
up the background of a simulated user (e.g., in-
teraction history and user profile), then freely chat
with the CRS through the interface. During a con-
versation, the dialog history and the output of each
component (e.g., the recommended items and gen-
erated responses) are stored within a dictionary
(i.e., python.dict), helping users get a better un-

derstanding of how the system works.

3.6 Utility Module

To facilitate the usage of our toolkit, we design the
utility module to include a series of useful func-
tions (e.g., layers() and scheduler()). We collect
commonly used functions in various models (e.g.,
CNN, RNN and Transformer layers) to constitute
Layers, which can be easily used to develop new
CRSs. Besides, we also decouple commonly used
functions or procedures in other modules to form
the utility file (i.e., utils.py) for reuse.

Another particularly useful function is
scheduler(), which provides a set of strategies for
training large-scale models, such as warming-up
strategy and weight decay. In addition, we also
implement other functions to enhance user ex-
periences, such as BeamSearch() to improve the
inference performance, MultiGPU() for parallel
training, logger() to print and monitor the running
process, save model() and load model() to store
and reuse the pre-trained models.

4 System Demonstration

In this section, we show how to use our CRSLab
with code examples. We detail the usage descrip-
tions in two parts, namely running an existing
CRSs in our toolkit and implementing a new CRS
based on the interfaces provided in our toolkit.

4.1 Running an Existing CRS

Our CRSLab enables quickly building a CRS with
a few lines of code. Figure 2 presents a gen-
eral procedure for running an existing CRS in our
toolkit. To begin with, the whole procedure relies
on the configurations to prepare the dataset and
build the system. In the configurations, the user
selects a dataset to use and specifies the tokenizer.
Then, the Dataset class will automatically down-
load the dataset and perform necessary process-
esing steps (e.g., tokenization and converting to-
kens to IDs) based on the configurations. This pro-
cedure is executed by the function get dataset().
Based on the processed datasets, users can use
the function get dataloader() to generate training,
validation and test sets, in which the configura-
tions specify the batch size and other necessary
parameters for data processing. After that, the
function get system() can be adopted to leverage
the prepared data for building a CRS. Similarly,
the configurations specify the hyperparameters of



190

import ... #import necessary modules

#Get configs from file and command line
args, _ = parser.parse_known_args()
config = Config(args.config)

#Build dataset, get processed side data and vocab
Dataset = get_dataset(config, config['tokenize'])
side_data = Dataset.side_data
vocab = Dataset.vocab

#Build train/valid/test dataloader
train_loader = get_dataloader(config, Dataset.train_data, vocab)
valid_loader = get_dataloader(config, Dataset.valid_data, vocab)
test_loader = get_dataloader(config, Dataset.test_data, vocab)

#Build CRS system
CRS = get_system(config, train_loader, valid_loader, 

test_loader, vocab, side_data)

#Train and evaluate CRS system
CRS.fit()

Get Configuration

Build DataLoader

Build Dataset

Build System

Command lineConfig file

Initialize 
model

Valid 
Dataloader

Side dataDataset Vocab

Train 
Dataloader

Test
Dataloader

Build 
model

Evaluate 
model

Train 
model

Figure 2: An illustrative usage flow of our CRSLab.

models and set up the training and evaluation pro-
cedures. Finally, users can start the running pro-
cess by the function System.fit().

4.2 Developing a New CRS

Based on our toolkit, it is convenient to implement
a new CRS with the provided interfaces. Users
only need to inherit a few basic classes and im-
plement some interface functions. In this part, we
will introduce the detailed implementation process
of adding a new dataset and model, respectively.

4.2.1 New Dataset
To add a new dataset, users need to inherit
BaseDataset to design a new Dataset class for
preparing the dataset into a unified format. In
Dataset, the following functions are required
to be implemented: init (), load data() and
data preprocess().

In init (), users set up parameters and links
for downloading data. In load data(), the train-
ing, validation, test data and other side data are
loaded from corresponding files. If users follow
our naming protocol, all they need is to reuse the
functions from the Dataset class. The function
data preprocess() is to prepare the loaded data,

and we have integrated useful functions in the util-
ity module to ease the implementation.

4.2.2 New Model
To add a new model, users should inherit
BaseModel to design a new Model class, in which
they need to implement the build model() and
forward() functions. In build model(), users build
the model, initialize the parameters and set up the

loss function, while in forward() users use the
model to predict the result or calculate the loss
given the input data. Indeed, users can leverage the
encapsulated layers and functions from Layers or
the utility files to implement these two functions.

4.3 Performance Evaluation

To evaluate CRSLab, we train and test var-
ious implemented models on the TG-ReDial
dataset (Zhou et al., 2020c), and compare their
performance on recommendation, conversation
and policy tasks. In our experiments, we have
tuned the hyperparameters of these models to
achieve their best performance on this dataset.
Due to the space limit, we present the results in our
GitHub page 1. As we can see, our toolkit provides
a possibility to compare the performance of vari-
ous CRS models under different evaluation proto-
cols. Among them, GNN-based models and pre-
training methods achieve consistent and remark-
able performance on the above tasks. These results
are compatible with our expectations.

5 Conclusion

In this paper, we released a toolkit called
CRSLab, which is the first open-source conver-
sational recommender systems (CRSs) toolkit for
research purpose. In CRSLab, we offered a unified
and extensible framework with highly-decoupled
modules to develop CRSs. Based on this frame-
work, we have incorporated 6 datasets and im-
plemented 19 models in our toolkit. Besides, we
also provided extensive automatic evaluation pro-

1https://github.com/RUCAIBox/CRSLab



191

tocols and a human-machine interactive interface
in CRSLab, to help evaluate and compare differ-
ent CRSs. For demonstration, we illustrated how
to run or implement a CRS using our toolkit.

With this toolkit, we expect to help users
quickly run existing CRSs, ease the development
of new CRSs, and set up a benchmark framework
for the research of CRSs. In the future, we will
make continuous efforts to add more datasets and
models. We will also consider adding more utili-
ties for improving the usage of our toolkit, such as
result visualization and algorithm debugging.

Acknowledgement

This work was partially supported by the Na-
tional Natural Science Foundation of China un-
der Grant No. 61872369 and 61832017, Bei-
jing Academy of Artificial Intelligence (BAAI)
under Grant No. BAAI2020ZJ0301, Beijing Out-
standing Young Scientist Program under Grant
No. BJJWZYJH012019100020098, the Funda-
mental Research Funds for the Central Univer-
sities, and the Research Funds of Renmin Uni-
versity of China under Grant No.18XNLG22 and
19XNQ047. Xin Zhao is the corresponding au-
thor.

References

Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding,
Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. To-
wards knowledge-based recommender dialog sys-
tem. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages
1803–1813.

Konstantina Christakopoulou, Filip Radlinski, and
Katja Hofmann. 2016. Towards conversational rec-
ommender systems. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 815–824.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

Chongming Gao, Wenqiang Lei, Xiangnan He,
Maarten de Rijke, and Tat-Seng Chua. 2021. Ad-
vances and challenges in conversational recom-
mender systems: A survey. CoRR, abs/2101.09459.

Shirley Anugrah Hayati, Dongyeop Kang, Qingxi-
aoyang Zhu, Weiyan Shi, and Zhou Yu. 2020. IN-
SPIRED: toward sociable recommendation dialog
systems. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
pages 8142–8152.

Balázs Hidasi, Alexandros Karatzoglou, Linas Bal-
trunas, and Domonkos Tikk. 2016. Session-based
recommendations with recurrent neural networks.
In 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings.

Dongyeop Kang, Anusha Balakrishnan, Pararth Shah,
Paul Crook, Y-Lan Boureau, and Jason Weston.
2019. Recommendation as a communication game:
Self-supervised bot-play for goal-oriented dialogue.
In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 1951–
1961.

Wang-Cheng Kang and Julian J. McAuley. 2018. Self-
attentive sequential recommendation. In IEEE In-
ternational Conference on Data Mining, ICDM
2018, Singapore, November 17-20, 2018, pages
197–206.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Zheng Zhang,
Yaoqin Zhang, Xiang Li, Jinchao Li, Baolin Peng,
Xiujun Li, Minlie Huang, and Jianfeng Gao. 2019.
Convlab: Multi-domain end-to-end dialog system
platform. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28 - August 2, 2019, Vol-
ume 3: System Demonstrations, pages 64–69.

Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun
Wu, Richang Hong, Min-Yen Kan, and Tat-Seng
Chua. 2020. Estimation-action-reflection: Towards
deep interaction between conversational and recom-
mender systems. In WSDM ’20: The Thirteenth
ACM International Conference on Web Search and
Data Mining, Houston, TX, USA, February 3-7,
2020, pages 304–312.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In

https://doi.org/10.18653/v1/D19-1189
https://doi.org/10.18653/v1/D19-1189
https://doi.org/10.18653/v1/D19-1189
https://doi.org/10.1145/2939672.2939746
https://doi.org/10.1145/2939672.2939746
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/2101.09459
http://arxiv.org/abs/2101.09459
http://arxiv.org/abs/2101.09459
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
https://doi.org/10.18653/v1/D19-1203
https://doi.org/10.18653/v1/D19-1203
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.18653/v1/p19-3011
https://doi.org/10.18653/v1/p19-3011
https://doi.org/10.1145/3336191.3371769
https://doi.org/10.1145/3336191.3371769
https://doi.org/10.1145/3336191.3371769
https://doi.org/10.18653/v1/n16-1014
https://doi.org/10.18653/v1/n16-1014


192

NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, San Diego California, USA, June 12-17,
2016, pages 110–119.

Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz,
Vincent Michalski, Laurent Charlin, and Chris Pal.
2018. Towards deep conversational recommenda-
tions. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, 3-
8 December 2018, Montréal, Canada, pages 9748–
9758.

Lizi Liao, Ryuichi Takanobu, Yunshan Ma, Xun Yang,
Minlie Huang, and Tat-Seng Chua. 2020. Topic-
guided relational conversational recommender in
multi-domain. IEEE Transactions on Knowledge
and Data Engineering.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How NOT to evaluate your dialogue sys-
tem: An empirical study of unsupervised evaluation
metrics for dialogue response generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages
2122–2132.

Zeming Liu, Haifeng Wang, Zheng-Yu Niu, Hua Wu,
Wanxiang Che, and Ting Liu. 2020. Towards
conversational recommendation over multi-type di-
alogs. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 1036–1049.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
jen Subba. 2019. Opendialkg: Explainable conver-
sational reasoning with attention-based walks over
knowledge graphs. In Proceedings of the 57th Con-
ference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 845–854.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Steffen Rendle, Christoph Freudenthaler, Zeno Gant-
ner, and Lars Schmidt-Thieme. 2012. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618.

Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. 2001. Item-based collaborative filtering

recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web,
pages 285–295.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, pages
593–607.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In Pro-
ceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, pages 3776–3784.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conver-
sation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-
31, 2015, Beijing, China, Volume 1: Long Papers,
pages 1577–1586.

Yueming Sun and Yi Zhang. 2018. Conversational rec-
ommender system. In The 41st International ACM
SIGIR Conference on Research & Development in
Information Retrieval, SIGIR 2018, Ann Arbor, MI,
USA, July 08-12, 2018, pages 235–244.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Hu Xu, Seungwhan Moon, Honglei Liu, Bing Liu,
Pararth Shah, and Philip S. Yu. 2020. User mem-
ory reasoning for conversational recommendation.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 5288–5308.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018a.
Personalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 1: Long Papers, pages 2204–2213.

Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang,
and W. Bruce Croft. 2018b. Towards conversational
search and recommendation: System ask, user re-
spond. In Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge

http://papers.nips.cc/paper/8180-towards-deep-conversational-recommendations
http://papers.nips.cc/paper/8180-towards-deep-conversational-recommendations
https://doi.org/10.18653/v1/d16-1230
https://doi.org/10.18653/v1/d16-1230
https://doi.org/10.18653/v1/d16-1230
https://www.aclweb.org/anthology/2020.acl-main.98/
https://www.aclweb.org/anthology/2020.acl-main.98/
https://www.aclweb.org/anthology/2020.acl-main.98/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.3115/v1/p15-1152
https://doi.org/10.3115/v1/p15-1152
https://doi.org/10.1145/3209978.3210002
https://doi.org/10.1145/3209978.3210002
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.18653/v1/2020.coling-main.463
https://doi.org/10.18653/v1/2020.coling-main.463
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.1145/3269206.3271776
https://doi.org/10.1145/3269206.3271776
https://doi.org/10.1145/3269206.3271776


193

Management, CIKM 2018, Torino, Italy, October
22-26, 2018, pages 177–186.

Kun Zhou, Wayne Xin Zhao, Shuqing Bian, Yuan-
hang Zhou, Ji-Rong Wen, and Jingsong Yu. 2020a.
Improving conversational recommender systems via
knowledge graph based semantic fusion. In KDD
’20: The 26th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Virtual Event, CA,
USA, August 23-27, 2020, pages 1006–1014.

Kun Zhou, Wayne Xin Zhao, Hui Wang, Sirui Wang,
Fuzheng Zhang, Zhongyuan Wang, and Ji-Rong
Wen. 2020b. Leveraging historical interaction data

for improving conversational recommender system.
In CIKM ’20: The 29th ACM International Confer-
ence on Information and Knowledge Management,
Virtual Event, Ireland, October 19-23, 2020, pages
2349–2352.

Kun Zhou, Yuanhang Zhou, Wayne Xin Zhao, Xi-
aoke Wang, and Ji-Rong Wen. 2020c. Towards
topic-guided conversational recommender system.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 4128–4139.

https://dl.acm.org/doi/10.1145/3394486.3403143
https://dl.acm.org/doi/10.1145/3394486.3403143
https://doi.org/10.1145/3340531.3412098
https://doi.org/10.1145/3340531.3412098
https://www.aclweb.org/anthology/2020.coling-main.365/
https://www.aclweb.org/anthology/2020.coling-main.365/

