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Abstract

There is a long history of research related to
automated story generation, dating back as far
as the 1970s. Recently, the rapid development
of pre-trained language models has spurred
great progresses in this field. Equipped with
GPT-2 and the latest GPT-3, AI Dungeon has
been seen as a famous example of the power-
ful text generation capabilities of large-scale
pre-trained language models, and a possibil-
ity for future games. However, as a game,
AI Dungeon lacks incentives to players and
relies entirely on players to explore on their
own. This makes players’ enthusiasm decline
rapidly. In this paper, we present an open-
ended text adventure game in Chinese, named
as KuiLeiXi1. In KuiLeiXi, players need to
interact with the AI until the pre-determined
plot goals are reached. By introducing the
plot goals, players have a stronger incentive
to explore ways to reach plot goals, while
the AI’s abilities are not abused to generate
harmful contents. This limited freedom allows
this game to be integrated as a part of a ro-
mance simulation mobile game, Yu Jian Love2.
Since KuiLeiXi was launched, it has received
a lot of positive feedbacks from more than
100,000 players. A demo video is available at
https://youtu.be/DyYZhxMRrkk.

1 Introduction

The past few years have seen a significant improve-
ment in the capabilities of neural networks for text
generation(Radford et al., 2019; Brown et al., 2020;
Zhang et al., 2020b). Large-scale pre-trained lan-
guage models with tens of billions of parameters
are capable of producing human-like text. This
capability has spawned a range of revolutionary ap-
plications(Roller et al., 2020; Zhang et al., 2020a;
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Guan et al., 2020). AI Dungeon is a typical ex-
ample of them. It is an open-ended text adventure
game, where players are allowed to create their
own adventures in any way they like. The original
AI Dungeon is based on GPT-2 large, fintuned on a
dataset of text adventures collected online3. Since
the launch of its Colab version, AI Dungeon has
gained a lot of attention on social networks.

However, from the point of view of game devel-
opers, AI Dungeon suffers from several problems,
hindering it from becoming mainstream gaming.
The first problem is that it relies entirely on players
to explore on their own. The lack of incentives
may lead to a rapid decline of players’ enthusiasm.
The second problem is the boundaryless nature of
generated contents. Every game is associated with
a certain series of world settings where the stories
take place. To integrate AI Dungeon-like technol-
ogy in a game, considerable adaptation works are
necessary. On the other hand, in the absence of
necessary guidance and restraints, players tend to
abuse AI Dungeon to create malicious or offensive
contents4. In areas with more conservative values,
it is of high risk to launch an AI Dungeon-like
feature in a commercial product.

Considering the problems described above, we
extended the original AI Dungeon so that it could
be accommodated in a commercial game. When
playing AI Dungeon, depending on the player’s
choice of different topics, the AI will generate a
story beginning, and then the player is free to ex-
plore the development of the story. Unlike AI Dun-
geon, in our game, players need to play a fixed
character of their choice and interact with the AI
to develop the story according to the pre-defined
story background until they reach the specified plot
goal to obtain the mission rewards. Multiple plot

3https://chooseyourstory.com/
4https://www.wired.com/story/ai-fueled-dungeon-game-

got-much-darker/
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goals are contained in a story script. By elaborately
design the plot goals, the difficulty of game and the
freedom of players to create could be manipulated.
The game supports multiplayer, scripts are created
both by the game developers and by the players
themselves. Because in the gaming process, the
player seems to be maninulating the puppet of the
character, we figuratively call this game KuiLeiXi,
which refers to the puppetry in the Song Dynasty.

Deploying a neural text generation model for
many players is quite expensive. So we adopted
a range of methods to reduce the cost, including
layer drop and knowledge distillation. In addition,
we implemented a highly optimized transformer in
CUDA for inference. After applying these methods,
the inference speed of the model is increased by
10 times, the throughput is increased by 20 times,
greatly reducing the deployment cost.

KuiLeiXi has been launched as a part of Yu Jian
Love. Yu Jian Love is a mobile romance simulation
game where players can role play as a girl that lives
in the era of Northern Song Dynasty and develop ro-
mantic relationship with different handsome male
characters. Since launched, it received a lot of posi-
tive feedbacks from players and industry. We hope
KuiLeiXi could inspire fellow game developers and
NLP researchers to bring more NLP capabilities
into games and make game content more dynamic
and personalized.

2 Architecture

In this section, we will describe the implementa-
tion and optimization of KuiLeiXi in detail. As
seen in Figure 1, the system consists of three com-
ponents: Input Processor, Story Generator and
Candidates Ranker. As both the Story Genera-
tor and Candidates Ranker are based on our in-
house pre-trained language model, we will firstly
describe the pre-training details. Then we will
present the implementation details of the three com-
ponents in order. Finally, we will introduce the
optimization details for deployment.

2.1 Pre-training

Our in-house pre-trained language model for story
generation is based on GPT-2 large. It has 36 layers,
1280 hidden size, 20 self-attention heads, and 725
million parameters. It is pre-trained on a dataset
consisted of around 30 gigabytes of Chinese web-
novels collected online. The vocabulary size is
13762 and the context length is 1024. In addition,

we pre-trained a Roberta-large(Liu et al., 2019)
based bidirectional transformer model(Vaswani
et al., 2017) on the same dataset. It has 24 layers,
1024 hidden size, 16 self-attention heads and 317
million parameters. We used fairseq5 for training
of the models.

2.2 Input Processor
The input text of a player will firstly be checked
by a toxicity detection service6 to avoid potential
risks. It is then processed by a semantic similar-
ity detection model to determine if it is too se-
mantically close to the plot goal. This is to avoid
making it too easy for players to reach the plot
goal. The semantic similarity detection model is
based on Sentence-Bert(Reimers and Gurevych,
2019), trained on the combination of several Chi-
nese NLI datasets(Bowman et al., 2015; Williams
et al., 2018; Hu et al., 2020). The virtual adversar-
ial training(Zhu et al., 2020) is also adopted. This
approach improves the generalization of the model
by adding small perturbations to the input embed-
dings. For every plot goal, at least three textual
descriptions of that goal should be prepared. The
input text will be compared with all the textual
descriptions of current plot goal. If any of the simi-
larity scores is above a certain threshold, the player
will receive a message telling the player to input
again. After the input text has passed the toxicity
detection and semantic similarity detection, it will
be concatenated to the context to form the input for
story generation.

2.3 Story Generator
The story generator is in charge of generating con-
sistent and fluent story contents based on the con-
text and player input. In below we will describe in
detail how the story generator is implemented.

2.3.1 Finetuning
Because KuiLeiXi is supposed to be launched as
a part of Yujian Love, the generated text needs to
be consistent with the original stories of the game
in terms of language style and backdrop. There-
fore, the game’s existing story scripts are critical
for finetuning. However, these scripts only con-
tain approximately 2 million tokens, barely enough
for effective finetuning. So we carefully selected
10 online novels with similar language styles and
backdrops to form an augmented dataset along with

5https://github.com/pytorch/fairseq
6https://dun.163.com/locale/en
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Figure 1: Architecture of KuiLeiXi. The user input is first passed through the input processor module, which
detects whether it contains toxic content and whether it is too semantically similar to the current plot goal; after the
processing, the user input is concatenated to the existing context and truncated to ensure that the length is within
the context length of the story generation model; the story generation model generates a series of candidate stories
that are then sent to the candidate ranker for ranking; the ranker contains a filter that removes inappropriate stories
based on multiple rules, and the remaining candidate stories are ranked based on their overlapping with the context
and how smoothly they connect to the plot goal, with the highest ranked being output to the player as the final
result.

in-game story scripts. For scripts from the game,
we assign every line a label indicating if it is dia-
logue or narrative content, as seen in Figure 2. It
is easy because the dialogues and narratives are
naturally separated in different lines in the scripts
and the dialogues are with double quotation marks.
This allows the finetuned model to control the gen-
erate subsequent story contents to be dialogue or
narrative content. In addition, the label can guide
the model to generate more consistent content with
the story’s background similar to (Keskar et al.,
2019).

2.3.2 Inference
Input Truncation: At inference, the generation
model receives a concatenation of the player input
and the previous context as the input. As game
continues, the input length will easily exceed the
context length 1024. So we need to design a trun-
cation strategy. Naively keeping the latest story
context is not feasible in this application, as the
pre-written story beginning corresponding to the
current plot goal is neccessary to keep the story
unfold without straying too far from the current
plot goal. Therefore, we keep the pre-written story
beginning corresponding to the current plot goal
along with the latest story context as the input.
Decoding Strategy: We use the top-k sam-
pling(Fan et al., 2018) for decoding. Sampling
temperature and k are set to 0.8 and 8 respectively.
We observed that the model tend to copy from the

input. To alleviate this issue, we adopt the penal-
ized sampling technique(Keskar et al., 2019; See
et al., 2019). In general, penalty sampling penal-
izes words that occur throughout the context by
default, reducing their sampling probability. How-
ever, we argue that this is inappropriate, especially
for penalizing words that are far from the decod-
ing position. The reasons are twofold. Firstly we
observed that, the model tends to copy from words
closer to the decoding position, rather than a very
distant context, like contents with more than 200
words away from the decoding position. Secondly,
we conducted statistics in the webnovel corpus, and
the probability of the next word appearing in the
previous 800 words reached 75%, indicating that
copying from context is also common in real world
texts. In summary, if the probability of words oc-
curring in very distant contexts is also penalized
at inference, the distribution of the generated text
will be significantly different from the real world
text distribution, which may reduce the generation
performance. Therefore, we only penalize the prob-
ability of words that have appeared in previous 200
words prior to the decoding position.

Given the input tokens G[1, 2, .., t] and the con-
text window size c, the probability distribution pi
for the next token is defined as:

pi =
exp(xi/(I(i ∈ g[(t− c) : t]))∑
j(exp(xj/(I(j ∈ g[(t− c) : t])))

(1)

I(e) = θ if e is True else 1 (2)
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Figure 2: A story fragment from the preprocessed story dataset.

We set θ to 1.2, which makes a balance between
generated text quality and elimination of duplica-
tion.

2.4 Candidates Ranker

For each player input, we generate 5 candidate
stories for re-ranking. The candidate stories are
then sent to the ranker to select the best one to
return to the user.

To ensure the quality, we developed a series of
filtering rules to remove inappropriate candidates
in the stories. Firstly, if a candidate story contains
a character name that does not appear in Yujian
Love, the story will be moved out of the candidates.
Secondly, candidate stories that contain a lot of con-
tent copied from context will be removed. Thirdly,
stories with inappropriate content detected by tox-
icity detection service will be removed. Fourthly,
if a character described in a story behaves incon-
sistently with his or her gender, that story will also
be removed. We trained a discriminator model to
detect whether a character in the story behaves in-
consistently with his/her gender. The training data
is generated automatically. We use the original text
as a positive sample and the text after the charac-
ter name replacement as a negative sample. When
replacing character names, a character is replaced
with the name of a character having the other gen-
der.

For the remaining stories, we rank them based
on the weighted sum of two metrics. The first is the
overlapping score, which is calculated based on the
overlapping of tokens in the generated story and
context. Generally, when the overlapping score is
higher, repetition is heavier and will hurt the text
quality. The second is the goal matching score,
which measures how likely a story entails the cur-

rent plot goal. Given the list of context tokens C,
the list of generated story tokens G and the length
l of G, the overlapping score is defined below:

Scoreoverlap =

∑
i I(i ∈ G)

l
(3)

I(i) = 1 if i in G else 0 (4)

Determining whether a story contains a speci-
fied plot is a typical textual entailment problem.
However. because players can create story scripts
and submit them to the game community, it is in-
tractable to create a dataset dealing with numerous
possible plot goals. So we had to approach the
problem from a different angle. We argue that it
is easier to solve this problem by transforming it
into a problem similar to Next Sentence Prediction
(NSP), i.e., determining whether a plot goal can
be coherently connected to a generated story. It is
well known that the original NSP task proposed in
BERT(Devlin et al., 2019) is too easy, many lat-
est pre-trained language models have abandoned
it(Liu et al., 2019; Lan et al., 2019). We argue
that discriminating the randomly sampled negative
examples is relatively easy so we adopt a novel
strategy to enhance the difficulty of NSP. When
generating the training dataset, in addition to the
randomly sampled sentences, we also take the next
sentence of next sentence as a negative sample with
a certain probability. We finetuned the pre-trained
Roberta-large based model as described in Section
2.1 on this generated dataset. The finetuned model
is then used as a discriminator to detect whether
the plot goal can be smoothly connected to the
generated story.
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(a) Script selection interface (b) Character selection interface

Figure 3: The script and character selection interfaces

(a) (b)

Figure 4: The screenshot at the beginning of the game. The right figure is the English translation of the left figure.
Text in the orange box shows the story background. Text in red box shows the current plot goal. Text in the white
boxes are the players’ inputs. Text in the purple boxes are the generated stories.
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(a) (b)

Figure 5: The screenshot when a plot goal is reached. The right figure is the English translation of the left figure.

2.5 Optimization

Our original story generation model is of 36 layers
and 725 millions of parameters. It takes around
10 seconds to generate a piece of story with one
RTX 2080ti, which is totally unacceptable. To im-
prove the inference speed, we need to compress the
original model. We firstly adopted the layerdrop
technique(Fan et al., 2020), reducing the number
of layers to 20. We then used the knowledge dis-
tillation technique(Hinton et al., 2015) to distill
this 20-layer model. Finally, we finetuned the dis-
tilled model over the story dataset.Our experiments
showed that combining layerdrop and knowledge
distillation performs better than directly perform-
ing knowledge distillation.

In addition, we optimized the incremental de-
coding implementation in fairseq to reduce com-
putation overhead. We developed custom CUDA
kernels for better support of long sequence and
large hidden size. We also developed an inference
server supporting dynamic batching and variable
input length. After applying these methods, the in-
ference speed is increased by 10 times, the through-
put is increased by 20 times. We have integrated
these optimization techniques into a python library
named as Easy and Efficient Transformer(?). It has
been opensourced at https://github.com/NetEase-
FuXi/EET.

3 Demonstration

In this section, we demonstrate how to play
KuiLeiXi.

First, we demonstrate how to start a game. After
entering the game, if there is no ready game for
joining, you can click the create stage button to
start a new game. You then need to pick a story
script from the candidates, as demonstrated in Fig-
ure 3a. The scripts are both created by game de-
velopers and players. Scripts submitted by players
will be voted by all players and the winners be-
come playable. After picking the script, you need
to choose the character you want to play, as demon-
strated in Figure 3b. The playable characters in
each script are different. Wait for other players
joining your game until the number of players ex-
ceeds the minimum player limit. Then you could
either start the game or wait for other players join-
ing as additional characters or audience.

After the game starts, all players can see the story
background as well as the first plot goal. Players
will play in order. The order is randomly decided
at the start of the game and does not change during
the game. When it is your turn to play, you can
choose to write a dialogue with your character or
describe a narration. Figure 4a shows the situation
at the beginning of the game. Overall, you need to
consider the development of the current story, the
persona of the character you play and the plot goal.
After completing the input, the AI will generate the
corresponding story to unfold based on the input,
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so on and so forth until the current plot goal is
reached. Once the current plot goal is reached, the
AI will show a pre-written storyline, as well as a
new plot goal, as seen in the Figure 5a. Usually a
script has multiple plot goals. When the final plot
goal is reached, players win and are rewarded with
game props. The whole process of playing will be
saved in the database, and players can share it with
their friends or make it public on social networks.

4 Conclusion

In this paper, we demonstrate KuiLeiXi, an open-
ended text adventure game in Chinese. In order
for it to be released as part of a commercial game,
we have made many innovations based on AI Dun-
geon. We believe that the current advances in NLP
technology can not only reduce the cost of game
content development to a certain extent, but also
make the game world more dynamic and person-
alized. We hope our work will be of interest to
fellow game developers and NLP researchers. In
future work, we will further explore the genera-
tion of game quests and ambient dialogues with
up-to-date NLP techniques.
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5 Appendices

In the figures below, we present a complete game-
play record of KuiLeiXi.

Figure 6: The first part of the game play.
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Figure 7: The second part of the game play. Figure 8: The third part of the game play.
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Figure 9: The fourth part of the game play.
Figure 10: The fifth part of the game play.


