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Abstract
As the COVID-19 outbreak continues to
spread throughout the world, more and more
information about the pandemic has been
shared publicly on social media. For exam-
ple, there are a huge number of COVID-19 En-
glish Tweets daily on Twitter. However, the
majority of those Tweets are uninformative,
and hence it is important to be able to auto-
matically select only the informative ones for
downstream applications. In this short paper,
we present our participation in the W-NUT
2020 Shared Task 2: Identification of Infor-
mative COVID-19 English Tweets. Inspired
by the recent advances in pretrained Trans-
former language models, we propose a simple
yet effective baseline for the task. Despite its
simplicity, our proposed approach shows very
competitive results in the leaderboard as we
ranked 8 over 55 teams participated in total.

1 Introduction

The COVID-19 pandemic has been spreading
rapidly across the globe and has infected more than
20 millions men and women. As a result, more
and more people have been sharing a wide variety
of information related to COVID-19 publicly on
social media. For example, there are a huge num-
ber of COVID-19 English Tweets daily on Twitter.
However, the majority of those Tweets are unin-
formative and do not contain useful information,
therefore, systems which can automatically filter
out uninformative tweets are needed by the commu-
nity. Tweets are generally different from traditional
written-text such as Wikipedia or news articles due
to its short length and informal use of words and
grammars (e.g abbreviations, hashtags, marker).
These special characteristics of Tweets may pose
a challenge for many NLP techniques that focus
solely on formally written texts.

In this paper, we present our participation in
the W-NUT 2020 Shared Task 2: Identification of

category #training #valid #test
informative 3303 472 944
uninformative 3697 528 1056

Table 1: Statistics of Shared task 2 dataset. “#training”,
“#valid” and “#test” denote the size of the training, val-
idation and test sets, listed by categories, respectively.

Informative COVID-19 English Tweets (Nguyen
et al., 2020b). Inspired by the recent success of
Transformer-based pre-trained language models in
many NLP tasks (Devlin et al., 2019; Lai et al.,
2019; Chen et al., 2019; Nguyen and Nguyen, 2020;
Lai et al., 2020), we propose a simple yet effective
baseline for the task. Despite its simplicity, our
proposed approach shows very competitive results.

In the following sections, we first describe the
task definitions in Section 2 and proposed methods
in Section 3. We then describe the experiments
and their results in Section 4. Finally, in Section 5,
we conclude this work and discuss potential future
research directions.

2 Task Definitions

The goal of Shared task 2 is to identify whether
a COVID 19 English Tweet is informative or not.
Such informative Tweet provides information about
recovered, suspected, confirmed and death cases
as well as location and history of each case. The
dataset introduced in this Shared task consists of
10K COVID 19 English Tweets. Dataset statistics
can be found in Table 1

3 Method

3.1 Baseline Model

The task is formulated as a binary classification of
Tweets into informative or uninformative classes.
Figure 1 gives a high-level overview of our pro-
posed approach. Given a Tweet consisting of n
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Figure 1: A high level overview of our proposed model for the task.

tokens x = {x1, x2, ..., xn}, we first form a con-
textualized representation for each token using a
Transformer-based encoder such as BERT (Devlin
et al., 2019). Following common conventions, we
append special tokens to the beginning and end
of the input Tweet before feeding it to the Trans-
former model. For example, if we use BERT, x1
will be the special [CLS] token and xn will be the
special [SEP] token. Let H = {h1,h2, ...,hn}
denote the contextualized representations produced
by the Transformer model. We then use h1 as an
aggregate representation of the original input and
feed it to a linear layer to calculate the final output:

y = σ(Wh1 + b) ∈ R (1)

where the transformation matrix W and the bias
term b are model parameters. σ denotes the sig-
moid function. It squashes the score to a probability
between 0 and 1. y is the predicted probability of
the input Tweet being informative.

In this work, we experiment with various
state-of-the-art Transformer models including
BERTweet (Nguyen et al., 2020a), XLM-RoBERTa
(Conneau et al., 2020), RoBERTa (Liu et al., 2019),
and ELECTRA (Clark et al., 2020). In the fol-
lowing subsections, we will briefly describe these
Transformer models.

3.1.1 RoBERTa
RoBERTa (Liu et al., 2019) improved over BERT
(Devlin et al., 2019) by leveraging different training
objectives which leads to more robust optimization
i.e removing next sentence prediction and using
dynamic masking for masked language modelling.

Liu et al. (2019) also shows that training the lan-
guage model longer and with more data hugely
benefits the performance on downstream tasks.

3.1.2 XLM-RoBERTa
Inspired by the success of multilingual language
model (Devlin et al., 2019; Lample and Conneau,
2019), XLM-RoBERTa (Conneau et al., 2020)
significantly scaled up the amount of multilin-
gual training data used in unsupervised MLM pre-
training compares to previous work (Lample and
Conneau, 2019) and achieved state-of-the-art per-
formance in both monolingual and cross-lingual
benchmarks.

3.1.3 BERTweet
BERTweet (Nguyen et al., 2020a) is a domain-
specific language model pre-trained on a large cor-
pus of English Tweets. Similar to the success of
BioBERT (Lee et al., 2019) in BioNLP domain and
the success of SciBERT (Beltagy et al., 2019) in
ScientificNLP domain, BERTweet achieved state-
of-the-art performance across many TweetNLP
tasks, outperformed its counterparts RoBERTa (Liu
et al., 2019) and XLM-RoBERTa (Conneau et al.,
2020).

3.1.4 ELECTRA
ELECTRA (Clark et al., 2020) proposed a new pre-
training objective which is different from Masked
Language Modelling (Devlin et al., 2019; Liu et al.,
2019). Instead of masking input tokens, ELEC-
TRA corrupts the tokens using a small generator
network to produces distribution over tokens, while
the discriminator tries to guess which tokens are
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actually corrupted by the generator. ELECTRA
achieved state-of-the-art results across many tasks
in the GLUE benchmark (Wang et al., 2019) while
using much less compute resources compared to
other pre-training methods (Devlin et al., 2019; Liu
et al., 2019).

3.2 Ensemble Learning

To further boost the performance of our baseline
models, we leverage ensemble learning technique.
We performed ensemble learning over all of the
Transformer models mentioned in the previous sec-
tion and employed two different ensemble schemes,
namely Unweighted Averaging and Majority Vot-
ing.

3.2.1 Unweighted Averaging
In this approach, the final prediction is estimated
from the unweighted average of the posterior
probability from all of our models. Thus, the final
prediction is given by:

p = argmax
c

1

M

M∑
n=1

pi, pi ∈ RC (2)

where C is the number of classed, M is the number
of models, and pi is the probability vector com-
puted using the softmax function of model i.

3.2.2 Majority Voting
Majority Voting counts the votes of all the models
and select the class with most votes as prediction.
Formally, the final prediction is given by:

vc =
M∑
n=1

Fi(c), p = argmax
c
vc (3)

where vc denotes the votes of class c from all dif-
ferent models, Fi is the binary decision of model i,
which is either 0 or 1.

4 Experiments

4.1 Finetuning

To fine-tune our baseline models, we employ
transformers library (Wolf et al., 2019). We
use AdamW optimizer (Loshchilov and Hutter,
2019) with a fixed batch size of 32 and learning
rates in the set {1e− 5, 2e− 5, 5e− 5}. We fine-
tune the models for 30 epochs and select the best
checkpoint based on performance of the model on
the validation set.

Model Dev F1
XLM-RoBERTa (base) 0.905
XLM-RoBERTa (large) 0.906
RoBERTa (base) 0.911
RoBERTa (large) 0.918
BERTweet 0.909
ELECTRA (base) 0.907
ELECTRA (large) 0.914
Ensemble (averaging) 0.927
Ensemble (voting) 0.922

Table 2: Performance of individual models as well as
ensemble models on the validation set.

Model Test F1
Ensemble (averaging) 0.8988
Ensemble (voting) 0.9008

Table 3: Performance of our system on the test set.

4.2 Performance of our baselines

Table 2 shows the overall results on the validation
set. The large version of RoBERTa achieves the
highest F1 score on the validation set (compared to
other individual models). To our surprise, we find
that BERTweet does not outperform the base ver-
sion of RoBERTa on the validation set, even though
BERTweet was trained on English Tweets using
the same training procedure of RoBERTa. Finally,
XLM-RoBERTa achieves lower F1 score than both
RoBERTa and ELECTRA, suggesting that using a
multilingual pretrained language models may not
improve the performance since the shared task is
mainly about English Tweets. We also evaluate the
performance of our ensemble models. The results
show that ensemble learning improves the F1 score
compare to each individual model and Unweighted
Averaging perform better than Majority Voting on
the validation set. We also submitted the predic-
tions of both ensemble scheme to the competition
and final results on the leaderboard are shown in
table 3. We notice that Majority Voting slightly
performs better than Unweighted Averaging on the
hidden test set.

5 Conclusion

In this paper, we introduce a simple but effective
approach for identifying informative COVID-19
English Tweets. Despite the simplicity of our ap-
proach, it achieves very competitive results in the
leaderboard as we ranked 8 over 56 teams partici-
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pated in total. In future work, we will conduct thor-
ough error analysis and apply visualization tech-
niques to gain more understandings of our models
(Murugesan et al., 2019). Furthermore, we will also
extend our approach to other languages. Finally,
we will investigate the use of advanced techniques
such as transfer learning, few-shot learning, and
self-training to improve the performance of our sys-
tem further (Pan et al., 2017; Huang et al., 2018;
Lai et al., 2018; Yoon et al., 2019; Xie et al., 2020).
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