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Abstract

Recent improvements in machine-reading
technologies attracted much attention to au-
tomation problems and their possibilities. In
this context, WNUT 2020 introduces a Name
Entity Recognition (NER) task based on wet
laboratory procedures. In this paper, we
present a 3-step method based on deep neural
language models that reported the best overall
exact match F1-score (77.99%) of the compe-
tition. By fine-tuning 10 times, 10 different
pretrained language models, this work shows
the advantage of having more models in an en-
semble based on a majority of votes strategy.
On top of that, having 100 different models
allowed us to analyse the combinations of en-
semble that demonstrated the impact of having
multiple pretrained models versus fine-tuning
a pretrained model multiple times.

1 Introduction

The last decades have seen both the amount and the
complexity of biological experiments grow. Cou-
pling this phenomenon with the improvement in
machine-reading technologies seem to have led
researchers to look for ways to automate wet lab-
oratory procedures. Such technologies should al-
low reproducibility while reducing human errors
in the process. However, as current protocols are
usually written in a natural language, a collec-
tion of wet laboratory protocols annotated with
entities and relations would help assess current
machine-reading performances in this specific set-
ting (Kulkarni et al., 2018).

In this context, WNUT (Workshop on Noisy
User-generated Text1) 2020 (Tabassum et al., 2020)
proposes two tasks, a Named Entity Recognition
(NER) task and a Relation Extraction (RE) task. In
this paper, we present a 3-step method we used
for the NER task. Our approach is essentially

1http://noisy-text.github.io/2020/
wlp-task.html

based on a deep neural language models supported
by transformer-like architectures (Vaswani et al.,
2017). First, we fine-tuned 10 different pretrained
language models on the downstream task. Then, we
generated 10 instances of those pretrained models,
each time with a new random initialization of the
last layer, namely the classifier. Finally, we used
an ensemble strategy based on a majority of votes.
Our approach achieves the exact-match F1-score of
77.99% that ranks first in the shared task.

2 Related work

Deep learning approaches trained on large unstruc-
tured data have shown considerable success in NLP
problems, including NER (Devlin et al., 2019; Liu
et al., 2019; Lample et al., 2016; Beltagy et al.,
2019; Jin et al., 2019). These models use the
learned representations over the large data and
reuse them in a supervised setting for a downstream
task. For domain-specific tasks, the models that are
trained on large general text can be further trained
on domain specific large data and then adapted for
a downstream task (Lee et al., 2019; Gururangan
et al., 2020; Alsentzer et al., 2019) or the mod-
els can be trained only on domain-specific data
and then adapted for a specific task (Beltagy et al.,
2019).

3 Data

The data provided for this task is a subset of Kulka-
rni et al.’s corpus (Kulkarni et al., 2018). The
dataset consists of 615 unique protocols annotated
with 17 types of entities and action (an example is
shown in Figure 1).

The organizers provided a set of protocols for
training, development, and test. They further re-
leased a final set of unlabelled protocols for test
during the competition (called test 2020). Table
1 shows the way the dataset has been split into a

http://noisy-text.github.io/2020/wlp-task.html
http://noisy-text.github.io/2020/wlp-task.html
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Figure 1: An example of the data.

Split # of protocols
Train 370
Dev 123
Test 123
Test 2020 111
Total 727

Table 1: Number of protocols in WNUT-NER dataset.

Entity
Train Dev Test Test 2020

Count % Count % Count % Count %
Action 12,355 25.91 4,011 25.49 4,138 25.32 5,346 23.04
Amount 3,432 7.20 1,090 6.93 1,190 7.28 1,223 5.27
Concentration 1,330 2.79 422 2.68 535 3.27 701 3.02
Device 1,752 3.67 616 3.92 468 2.86 888 3.83
Generic-Measure 484 1.02 132 0.84 143 0.87 173 0.75
Location 3,921 8.23 1,396 8.87 1,326 8.11 1,657 7.14
Measure-Type 857 1.79 324 2.06 272 1.66 720 3.10
Mention 257 0.54 83 0.53 56 0.34 142 0.61
Method 1,597 3.36 538 3.43 581 3.56 1,059 4.56
Modifier 4,588 9.62 1,547 9.83 1,601 9.79 3,416 14.72
Numerical 832 1.75 259 1.65 231 1.41 513 2.21
Reagent 11,121 23.33 3,594 22.93 3,995 24.44 5,012 21.60
Seal 210 0.44 92 0.58 64 0.39 119 0.51
Size 262 0.55 123 0.78 113 0.69 232 1.00
Speed 626 1.31 239 1.52 167 1.02 238 1.03
Temperature 1,592 3.34 486 3.09 532 3.25 744 3.21
Time 2,396 5.02 745 4.74 870 5.32 951 4.10
pH 67 0.14 37 0.23 62 0.38 66 0.28
Total 47,679 15,734 16,344 23,200

Table 2: Entity distribution across the dataset (based on
the Standoff format).

training set, a development set,2 a test set, and the
competition test (test 2020).

In Table 2, we see the distribution of all the
entities by each subset. As we can see, we have 18
entities and only two of them (Action and Reagent)
represent about 50% of annotations. This table also
shows us that entities’ proportions are fairly similar
across all the subsets.

4 Method

Our models essentially focused on transformers-
like (Vaswani et al., 2017) language models that
we fine-tuned on the NER task by adding a fully

2Protocol 621 (in the development set) is a duplicate of
protocol 570 (in the train set), but their labels do not totally
match.

connected layer on top of the token representations.
The models include BERT (cased) (Devlin et al.,
2019), BioBERT (BERT trained on PubMed ab-
stracts and PMC full-text articles) (Lee et al., 2019),
Bio+ClinicalBERT (BioBERT trained on notes in
the MIMIC-III v1.4 database) (Alsentzer et al.,
2019), PubMedBERT (Gu et al., 2020), RoBERTa
(Liu et al., 2019), BioMed RoBERTa (Gururangan
et al., 2020), and XLNet (Yang et al., 2019).

Our method has been driven in 3 steps. First, we
chose 10 different pretrained models and fine-tuned
them on the downstream task. Then, using a voting
strategy, we created ensemble models. Finally, we
fine-tuned 9 more times each model, each time with
a new random initialization of the fully connected
layer, to see if sampling ensemble models from this
set of models would improve the results even more.

4.1 Transformers with a fully connected
layer on top of the token representations

In order to use transformers as a NER model, the
only preprocessing we had to do was to break each
protocol into sentences. Those sentences will then
be the sequences that are fed into our model. As
there were no overlapping entities in the text, we
used a softmax function which allowed us to clas-
sify each token to only one entity.

As transformers usually use tokenizers that work
on word bits (or sub-tokens), we had to deal with it
by assigning a dummy entity to each sub-token that
was part of a word. In such cases, at training time,
we only assign the true entity to the first sub-token.
This allowed us to build back the original text quite
easily. Indeed, during prediction, a word will get
the highest probable entity label among all the sub-
tokens’ predictions of that word. In other words,
the highest probable entity label will be assigned to
all the sub-tokens of the word and the sub-tokens
will be merged to build back the original word with
the respective assigned label. Finally, in a given
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Pretrained Models Corpus type # Parameters

BERT (Devlin et al., 2019)
base

General
110M

large 340M
BioBERT (Lee et al., 2019) Bio 110M
Bio+ClinicalBERT (Alsentzer et al., 2019) Bio 110M
PubMedBERT (Gu et al., 2020) Bio 110M

RoBERTa (Liu et al., 2019)
base

General
110M

large 340M
BioMed RoBERTa (Gururangan et al., 2020) Bio 110M

XLNet (Yang et al., 2019)
base

General
110M

large 340M

Table 3: Pretrained models features

sequence, if two adjacent words were given the
same entity prediction, we would consider the two
words as a passage related to that entity.

Using the above setup, we fine-tuned 10 pre-
trained transformers for 10 epochs using an Adam
optimizer (Kingma and Ba, 2014), a learning rate
of 3e−5, a batch size of 24 and a maximum se-
quence length of 256 tokens. We used 1x T4 GPU
for all base models and 2x T4 GPUs for the large
ones. For a given model, it took in average roughly
16 minutes per epoch to train, thus about 2.67 hours
for the 10 epochs. After each epoch, we predicted
the development set, computed the F1-score and
saved the model if it improved the previous epoch
score. Table 3 shows more information about all
the pretrained models that we fine-tuned on the
NER task. Indeed, 4 models out of 10 were trained
on Biomedical corpus, such as PubMed and/or
BioMed whereas the others were trained on general
corpora, such as Wikipedia. Another key difference
is the model type which defines the way a given
model has been trained. This includes the train-
ing task (e.g., MLM, next sentence prediction, . . . ),
the tokenizer algorithm, the optimizer and more.
We used 5 different kinds of BERT-based, 3 of
RoBERTa-based and 2 of XLNet-based models.
For more details regarding the specifics of the ar-
chitectures, please refer directly to their respective
papers.

4.2 An ensemble based on a voting strategy
As implemented in (Copara et al., 2020b,a), our
ensemble model strategy is based on a majority of
votes. This means that for a given ensemble model
composition, each composing model has the right
to vote. In other words, for a given protocol and
a given sequence, each model will return its pre-
dictions which can be interpreted as passage/entity
combinations. Once we collected all models’ pre-
dictions, we then counted all the passage/entity
combinations and validated only those that had
cast a majority of votes.

4.3 Sampling

Once we had all the models trained and ready, we
were wondering if we could improve efficiency by
adding more voters. The idea is to repeat the first
step where each time we have a new random ini-
tialization on the fully connected layer. We ended
up with 100 different models, corresponding to 10
different pretrained models fine-tuned 10 times.

With only a few models to choose from, we
would have been able to predict all the possible
model compositions; however, as using 50 mod-
els out of 100 would have resulted in about 1029

possible ensembles, we had to sample randomly
ensemble model compositions. For each number
of models taken into account in a given ensemble,
we took a sample size of 1000 combinations. This
will later allow us to show the results distribution
of our ensemble models and examine how it will
behave in certain circumstances.

The ensemble model we chose to use for the sub-
mission was the one that gave us the best F1-score
on the test set. It is a composition of 14 models that
were fine-tuned on the task. It contained the follow-
ing pretrained models: 2× BioBERT (BioBERT
models with two different random initializations or
seeds), 2× BioClinicalBERT (2 random seeds), 3×
PubMedBERT (3 random seeds), 2× RoBERTabase
(2 random seeds), 1× RoBERTalarge 1× BioMed
RoBERTa and 3× XLNetlarge (3 random seeds).

5 Results and Discussions

In Table 4, we see the F1-score for all the 10 mod-
els we fine-tuned across all the 18 entities. The
reported baseline is the CRF baseline3 that was
provided for the shared task. First, we can see that
the ensemble model outperforms the baseline by far.
When comparing all the models (ensemble apart),
we also notice that PubMedBERT is quite consis-
tent as it often outperforms all the other models,
including the ensemble for a few entities, namely
Mention, Seal, Temperature and pH. Additionally,
when compared to its peers, it clearly shows the
best micro and macro F1-scores.

However, when looking at Speed, it seems that
the transformers-based models we used are not able
to do a better job than the baseline. A closer look
at the errors should be done in order to see what
caused such a difference with the baseline (see
Section 5.4).

3https://github.com/jeniyat/WNUT_2020_
NER/tree/master/code/baseline_CRF

https://github.com/jeniyat/WNUT_2020_NER/tree/master/code/baseline_CRF
https://github.com/jeniyat/WNUT_2020_NER/tree/master/code/baseline_CRF
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Entity BERT (cased) BioClinical
BERT BioBERT RoBERTa BioMed

RoBERTa
PubMed
BERT

XLNet Ensemble Baselinebase large base large base large

Action 88.980.2 88.510.2 88.870.2 89.060.2 88.780.3 88.750.2 88.700.2 89.290.3 89.320.1 89.110.3 90.00 (0.68↑) 84.40
Amount 85.730.2 85.140.3 85.210.4 85.960.5 85.590.3 85.530.7 85.990.4 85.660.2 85.000.3 84.470.6 86.41 (0.42↑) 84.19
Concentration 82.610.7 81.830.7 82.310.6 83.140.4 82.680.5 82.141.0 83.340.5 83.810.4 82.250.7 82.401.1 84.64 (0.83↑) 78.49
Device 62.961.1 62.180.8 63.570.6 64.241.2 63.390.8 64.211.0 63.440.9 64.171.0 63.270.9 63.651.2 67.11 (2.87↑) 58.67
Generic-Measure 30.441.6 29.731.9 26.371.8 30.401.7 32.121.1 32.232.0 30.541.7 31.571.8 30.331.3 31.102.1 33.17 (0.94↑) 29.88
Location 75.530.4 75.050.4 75.540.3 76.060.7 75.850.5 76.100.6 75.320.6 76.240.3 75.620.3 75.531.0 77.50 (1.26↑) 69.17
Measure-Type 52.751.4 53.321.4 52.421.7 54.231.1 53.891.6 52.621.1 53.610.9 52.470.6 54.611.3 55.352.0 55.36 (0.01↑) 48.93
Mention 71.003.0 67.152.5 68.401.9 68.181.7 68.701.0 70.352.2 68.442.1 72.350.9 68.662.8 63.0211.1 71.79 (0.56↓) 60.18
Method 48.701.3 48.401.0 47.220.8 47.011.3 49.641.6 48.861.1 47.851.5 47.581.9 49.891.4 49.891.0 53.19 (3.30↑) 43.63
Modifier 58.830.8 57.930.7 58.800.6 59.070.6 58.680.8 59.560.8 58.450.6 59.720.6 59.470.6 58.441.2 60.27 (0.55↑) 53.94
Numerical 62.563.6 64.732.2 63.102.7 61.404.5 59.882.6 62.513.2 61.532.7 64.834.0 63.413.8 63.053.7 66.98 (2.15↑) 56.96
Reagent 80.380.2 80.340.3 80.600.2 80.940.2 80.510.3 80.840.2 80.350.2 81.240.3 81.190.1 80.680.3 82.59 (1.35↑) 74.98
Seal 65.565.1 59.901.9 62.462.7 63.072.6 64.132.8 66.423.4 63.952.7 69.513.9 62.653.3 62.833.7 69.42 (0.09↓) 67.72
Size 58.361.8 60.160.9 60.071.8 61.651.5 59.791.8 56.472.1 59.302.1 62.482.1 61.121.3 59.633.0 62.56 (0.08↑) 57.14
Speed 83.920.8 83.641.0 82.210.8 83.060.8 84.710.7 83.671.0 84.330.6 84.131.0 84.450.7 83.432.3 84.24 (0.47↓) 85.46
Temperature 91.470.5 90.200.6 91.360.5 90.840.8 91.320.6 90.700.6 91.390.7 92.200.5 91.490.5 90.201.4 92.11 (0.09↓) 91.76
Time 88.750.3 88.920.7 88.780.4 88.850.5 88.700.6 89.020.7 89.280.4 88.490.6 88.870.4 88.201.5 89.49 (0.21↑) 88.64
pH 72.562.3 67.073.0 72.471.4 72.412.3 71.272.8 66.782.2 72.504.1 78.041.7 69.352.8 70.772.9 77.59 (0.45↓) 65.49

micro F1-score 78.380.2 77.940.2 78.270.1 78.560.2 78.420.2 78.520.2 78.310.1 79.000.2 78.760.1 78.340.3 80.42 (1.42↑) 74.39
macro F1-score 70.060.7 69.120.3 69.430.3 69.980.5 69.980.4 69.820.3 69.910.3 71.320.3 70.050.4 69.540.8 72.47 (1.15↑) 66.65

Table 4: F1-score by model on the test set. We reported averages across the 10 random seeds for all the pretrained
model results, for those, subscripts represents the standard deviations. The improvements of the ensemble model
over the best performing transformer model is shown in parentheses in the ensemble column.

When comparing the micro to the macro F1-
score standard deviations across all the models,
we can see that the macro F1-score standard devi-
ations are systematically higher. This is probably
due to the fact that some entities, namely Generic-
Measure, Mention, Seal, Size and pH, which ac-
count for less than 1% of the test set each (see Table
2), seem to have a relatively high F1-score standard
deviations level. The same applies to Measure-
Type, Numerical and Speed that are less than 2%
of the test set each. This is in line with the results
reported by Dodge et al. (2020) which shows that
results can vary a lot across the seeds when a small
amount of data is available. Indeed, as these enti-
ties are quite rare, a simple misclassification can
have a high impact on the macro F1-score. That be-
ing said, the micro F1-scores seem relatively stable
across all the pretrained models.

5.1 Ensemble results analysis

In this section, we will try to analyse the results
we observe when sampling on different ensemble
model compositions. These results are exclusively
computed on the test set. The idea behind this
experiment is to try to understand the behaviour of
some metrics when adding more models.

Figures 2 to 4 show the F1-score, the recall and
precision distributions with respect to the number
of models taken in a given ensemble, respectively.

The first thing we notice from Figures 2 to 4
is that the more the number of models taken into
account in an ensemble grows, the more the metrics
variance tends to be smaller and steadier.

When looking at Figure 3 and 4, we clearly see
that odd number of voters has a positive impact on

Figure 2: Micro F1-score distribution by number of
models used in an ensemble (sample size of 1000) on
the test set.

the recall while it looks like it has a negative impact
on the precision. For the moment, this is unclear to
us why this behaviour can be observed; however,
we think it could be linked to the majority rule we
introduced in our voting strategy where majority
is easier to reach in an odd system. When looking
closely at Figure 2, it appears that the ”odd/even
number effect” tends to cancel out when the num-
ber of voters increases and even number of voter
getting slightly better results.

In Figure 3, there is clearly a positive slope that
seems to flatten at the end, which means that the
more models we have in our ensemble, the higher
recall we should expect. Conversely, this trend
doesn’t seem that clear for precision (Figure 4)
where it looks like we have a positive relation with
odd numbers of voters, a negative one with even
number of voters which at the end seem to converge
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Figure 3: Micro recall distribution by number of mod-
els used in an ensemble (sample size of 1000) on the
test set.

into a flat trend for both of them. However, in
both figures, as already mentioned, the variance of
their respective metrics seems to get steadier and
smaller when adding more models in the ensemble
composition.

Figures 6 to 8 show the same metrics while try-
ing to isolate the effect of adding a new pretrained
model versus the effect of adding an already taken
pretrained model with a new random fully con-
nected layer initialization.

In order to understand the setting of this experi-
ment, we first build a matrix (see Figure 5) where
each column is a pretrained model and each row
is a fine-tuned version of it. We then compare
the performances of ensemble models based on
combinations of columns to those of the ensemble
models based on combinations of rows. In Figures
6 to 8, the x−axis represents the number of row or
columns taken into account.

For instance, the first two boxplots are comput-
ing metrics distributions of ensembles taking either
one row or one column as an ensemble, the follow-
ing two boxplots will take a combination of either
two rows or two columns as ensemble and so on
up to 9 rows/columns combinations.

More precisely, the first pink boxplot will com-
pose an ensemble taking one column of models,
namely, all the BERTbase models to begin with,
then all the BERTlarge models and so on until it
computes the metrics for an ensemble composed
with all the XLNetlarge models. Then, the sec-
ond pink boxplot will take the composition of 2
columns, for example, it will first compute an
ensemble with all the BERTbase models and all
the BERTlarge models, then another with all the

Figure 4: Micro precision distribution by number of
models used in an ensemble (sample size of 1000) on
the test set.


BERTbase1 BERTlarge1 ··· XLNetbase1 XLNetlarge1
BERTbase2 BERTlarge2 ··· XLNetbase2 XLNetlarge2

...
...

. . .
...

...
BERTbase9 BERTlarge9 ··· XLNetbase9 XLNetlarge9
BERTbase10 BERTlarge10 ··· XLNetbase10 XLNetlarge10


Figure 5: Matrix where each column represents a pre-
trained model and each row represents a fine-tuned
model with a new random initialization of the fully con-
nected layer.

BERTbase models and all XLNetbase models and
so on until it computes an ensemble containing all
the XLNetbase and XLNetlarge models.

On the other hand, the blue boxplots will com-
pose ensembles with combination of rows. This
means that the first blue boxplot will first compute
an ensemble composed of the first row (BERTbase1 ,
BERTlarge1 , . . . , XLNetbase1 , XLNetlarge1), then
of the second row (BERTbase2 , BERTlarge2 , . . . ,
XLNetbase2 , XLNetlarge2) and so on until it com-
putes an ensemble with the last row (BERTbase10 ,
BERTlarge10 , . . . , XLNetbase10 , XLNetlarge10). In
the same manner, the second blue boxplot will com-
pute ensembles composed by the combinations of
two rows. First, all the models in the first and
second rows, then, all the models in the first and
third rows and so on until it computes an ensemble
composed with all the models of the last two rows.

In this setting, as the maximum number of pos-
sible combinations of row is 252 =

(
10
5

)
, we were

able to compute all the possible combinations in-
stead of sampling them. As we have the same num-
ber of pretrained models as fine-tuned versions,
we end up with the same number of possible com-
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Figure 6: Micro F1-score distribution using ensemble
composed of either 1 to 9 different pretrained models
(each time with 10 different fine-tuning) vs. 1 to 9 dif-
ferent fine-tuning using all the pretrained models.

binations of ensemble. That being said, for each
number of models taken into account in an ensem-
ble, this allows us to compare the pink boxplot with
the blue one in a more convenient manner.

It is worth noting that the more we increase the
number of columns and rows present in an ensem-
ble model, the more they share a certain number of
models. For example, at 9, the pink boxplot shows
the distribution of the metrics for all the possible
ensemble models containing 9 columns of mod-
els (90 models out of 100), while the blue boxplot
shows the same metrics for 9 rows of models (also
90 models out of 100). At this point, it is expected
to see both boxplots converging as they both share
64 models predictions out of 90.

Focusing on the left part of Figure 6, we clearly
see the benefits of using more pretrained models.
First, it shows better results with only an ensemble
of 10 different pretrained models. Then, it really
looks steadier as the F1-score distribution is much
narrower than the ensemble composed of multiple
fine-tuning of the same pretrained model.

When looking at Figure 7, we see that the ma-
jor difference between both distributions are the
variances of the recall distributions, indeed, taking
different pretrained models tends to retrieve impor-
tant passages more systematically. The trend of
both selection strategies seems to be increasing, in
other words, in both cases, the more we add models,
the more we retrieve important passages.

Finally, it is interesting to see in Figure 8 that the
precision begins quite high and tends to decrease
when we add more fine-tuned models. Conversely,
when taking more pretrained models, it seems the

Figure 7: Micro recall distribution using ensemble com-
posed of either 1 to 9 different pretrained models (each
time with 10 different fine-tuning) vs. 1 to 9 different
fine-tuning using all the pretrained models.

Figure 8: Micro precision distribution using ensemble
composed of either 1 to 9 different pretrained models
(each time with 10 different fine-tuning) vs. 1 to 9 dif-
ferent fine-tuning using all the pretrained models.

precision has a positive relation to the number of
models we use. As explained before, this relation
is also due to the fact that we share more and more
models in both ensemble selection strategies.

This analysis helped us to understand a bit more
about what was happening behind our majority
of votes strategy, it would be interesting to take
notes of some of the observed behaviours and try
to devise new strategies accordingly.

5.2 Official results
The official results in terms of Precision, Recall,
and F1 on the test 2020 set is shown in Table 5.
Each team was allowed to submit only one run. Our
submitted run was based on the ensemble model
described in sections 4.2 and 4.3. Our BiTeM team
achieved the highest precision score in both ex-
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Team Name Exact Match Partial Match
P R F1 P R F1

B-NLP 77.95 63.93 70.25 84.85 69.59 76.46
BIO-BIO 78.49 71.06 74.59 83.16 75.29 79.03
BiTeM 84.73 72.25 77.99 88.72 75.66 81.67
DSC-IITISM 64.20 57.07 60.42 68.52 60.90 64.49
Fancy Man 76.21 71.76 73.92 81.15 76.41 78.71
IBS 74.26 62.55 67.90 79.72 67.15 72.89
Kabir 78.79 72.20 75.35 83.73 76.73 80.08
KaushikAcharya 73.68 63.98 68.48 79.31 68.87 73.73
mahab 50.19 52.96 51.54 55.09 58.14 56.57
mgsohrab 83.69 70.62 76.60 87.95 74.22 80.50
PublishInCovid19 81.36 74.12 77.57 85.74 78.11 81.75
SudeshnaTCS 74.99 71.43 73.16 79.73 75.95 77.80
IITKGP 77.00 72.93 74.91 81.76 77.43 79.54

Table 5: Official results on Test 2020.

act match and partial match evaluation reaching
84.73% and 88.72%, respectively, and F1-score in
exact match evaluation reaching 77.99% among 13
teams. The F1-score of our model in partial match
(81.67%) was slightly lower than the best F1-score
(81.75%).

5.3 Results of the ensemble model on test
2020 data

The precision, recall, and F1-score results of all
entities and Action on the test 2020 in the exact
match evaluation is represented in Table 6. The
best F1-score was achieved for pH. Size was the
most difficult entity for detection.

5.4 Error analysis
Figure 9 shows the normalized confusion matrix
for the predictions (exact match) of the ensemble
model on the test 2020 data. As we can see, more
than 78% of Size predictions are mislabelled as
Amount. This can be due to the few number of
training instances of Size entity. As we can see in
the following examples, 50 mL can refer to both
Size and Amount depending on the context. In the
first example, 50 mL refers to Amount and in the
second example, it refers to Size.

Example 5.4.1 Add more NEB –no
β−mercaptoethanol to final volume of 50
mL.

Example 5.4.2 Transfer the aqueous phase to
a.new 50 mL Falcon tube.

About 17% of the Device predictions are mis-
labelled as Location that can be due to the incon-
sistencies in the annotation process, for example
magnetic rack is annotated as Device in a few proto-
cols (protocol 0680, protocol 0683, protocol 0685),
and as Location in others (protocol 32148, protocol

Entity Precision Recall F1

Action 90.09 82.29 86.01
Amount 77.09 89.47 82.82
Concentration 86.76 88.16 87.45
Device 80.38 56.00 66.01
Generic-Measure 55.65 37.87 45.07
Location 69.59 68.98 69.28
Measure-Type 73.87 46.00 56.70
Mention 67.32 74.10 70.55
Method 61.49 35.77 45.23
Modifier 83.02 42.66 56.36
Numerical 65.32 38.49 48.44
Reagent 82.58 82.54 82.56
Seal 81.58 78.15 79.83
Size 63.64 17.80 27.81
Speed 86.38 86.38 86.38
Temperature 91.68 83.27 87.27
Time 92.58 87.66 90.05
pH 96.72 90.77 93.65

Table 6: The precision, recall, and F1-score of the en-
semble model for all the entities and action on the test
2020.

33630). Here are two examples of magnetic rack
annotated as Location and Device, respectively.

Example 5.4.3 Place samples on magnetic rack,
and incubate for 5 mins on the rack. Remove su-
pernatant.

Example 5.4.4 Place the tube on a magnetic rack.

Similarly freezer is annotated interchangeably as
Location and Device. Generic-Measure is mostly
confused with Concentration label (20.4%), and
Method is mostly confused by Action. About 12%
of Numerical is annotated as Concentration.

6 Conclusion

With almost no preprocessing, we have seen that
current pretrained language models seem to be
quite efficient in any NER task (Copara et al.,
2020a,b). By analysing our voting strategy, we
have also demonstrated the strengths as well as the
weaknesses of such ensemble models. For instance,
it looks like the more models we use, the more the
performances tend to be high and stable, however,
it appears that new pretrained model brings more in-
formation than fine-tuning again a pretrained model
with a new fully connected weights random initial-
ization.
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Figure 9: Normalized Confusion matrix for the ensemble model on the test 2020 data.

With this voting strategy, our submission
achieved the best exact match overall F1-score of
the competition. This clearly shows the power of
such models. With almost no knowledge on the
topic of wet laboratory protocols required, we think
that those models open opportunity to out-of-field
researchers.

In future work, it would be interesting to improve
the number of pretrained models selection and ex-
plore bootstrapping instead of fine-tuning multiple
times the same pretrained model. It would also
be interesting to see if some preprocessing tweaks
could help us to improve the detection performance
of Speed where our models were outperformed by
the baseline.
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