
Proceedings of the 5th Conference on Machine Translation (WMT), pages 387–392
Online, November 19–20, 2020. c©2020 Association for Computational Linguistics

387

Attention Transformer Model for Translation of Similar Languages

Farhan
National University of Computer and
Emerging Sciences, Karachi Campus

k180900@nu.edu.pk

Muhammad Rafi
National University of Computer and
Emerging Sciences, Karachi Campus
muhammad.rafi@nu.edu.pk

Abstract

This paper illustrates our approach to the
shared task on similar language translation in
the fifth conference on machine translation
(WMT-20). Our motivation comes from the
latest state of the art neural machine transla-
tion in which Transformers and Recurrent At-
tention models are effectively used. A typi-
cal sequence-sequence architecture consists of
an encoder and a decoder Recurrent Neural
Network (RNN). The encoder recursively pro-
cesses a source sequence and reduces it into a
fixed-length vector (context), and the decoder
generates a target sequence, token by token,
conditioned on the same context. In contrast,
the advantage of transformers is to reduce the
training time by offering a higher degree of
parallelism at the cost of freedom for sequen-
tial order. With the introduction of Recurrent
Attention, it allows the decoder to focus effec-
tively on order of the source sequence at dif-
ferent decoding steps. In our approach, we
have combined the recurrence based layered
encoder-decoder model with the Transformer
model. Our Attention Transformer model en-
joys the benefits of both Recurrent Attention
and Transformer to quickly learn the most
probable sequence for decoding in the target
language. The architecture is especially suited
for similar languages (languages coming from
the same family). We have submitted our sys-
tem for both Indo-Aryan Language forward
(Hindi to Marathi) and reverse (Marathi to
Hindi) pair. Our system trains on the paral-
lel corpus of the training dataset provided by
the organizers and achieved an average BLEU
point of 3.68 with 97.64 TER score for the
Hindi-Marathi, along with 9.02 BLEU point
and 88.6 TER score for Marathi-Hindi testing
set.

1 Introduction

This paper focuses on establishing a neural ma-
chine translation model using Encoder-Decoder ar-

chitecture to translate between Hindi-Marathi sen-
tence pairs. We are utilizing an attention mecha-
nism approach by employing the combination of re-
currence based RNN Encoder-Decoder layers (Cho
and et al., 2014) and latest machine translation tech-
nique the Transformers (Vaswani et al., 2017) to ad-
dress the complexity of WMT-20 similar language
data-set (Hindi-Marathi). The motivation behind
combining RNN and Transformer architecture is
taken from the paper (Huang et al., 2020) to utilize
the benefits of both. The formulated machine trans-
lation system has numerous applications. It can be
used in advertising campaigns to reach native users.
The media industry can employ this technology for
generating subtitles and broadcasting multilingual
news to cover a wide range of native subscribers
of a region. Moreover, these systems can provide
native vernaculars in social media to increase the
activities of indigenous individuals of a native lan-
guage. Additionally, Search engines can also adopt
this method to display relevant results to clients in
their region-specific native language.

The paper is composed of three further sections.
The second section will display our proposed ap-
proach to solve the problem of Hindi-Marathi trans-
lation, followed by a discussion on designed exper-
iments for training the model and mechanism for
generating the results. Lastly, we will illustrate
contributions and future work.

2 Methodology

The paper proposes a novel approach called At-
tention Transformer shown in Fig. 1 to translate
between Hindi and Marathi text. In the figure, two
encoder and decoder layers are illustrated. The ini-
tial N Encoder-Decoder layers contain RNN units
in the form of LSTMs, which get stacked on top of
each other. First, the initial encoder layer processes
the tokenized input and generates a context vec-



388

tor. The initial decoder layer consumes the context
vector generated by the neighboring encoder layer.
Plus, it takes the target output as its input while
training by utilizing the concept of teacher force
training (Goyal and et al., 2016). Next, the pro-
cessed outputs of both the initial Encoder-Decoder
layer gets presented as input to the transformer
model.

Figure 1: This Figure shows bird’s-eye view of the pro-
posed Attention Transformer Model

In the Transformer model, we can observe the
second Encoder and Decoder layer stacked on the
top of positional input-output embedding layers. In
the Transformer, the positional input-output em-
bedding layer receives the output of the initial
Encoder-Decoder layer as its input. The role of
the positional embedding layer is first to convert
its input, which comes from the previous RNN
based Encoder-Decoder layer into d-dimensional
space where d is the output size of the embedding
layer and add a positional encoding vector to it.
As a result, all similar words relative to their po-
sitions in the training sentences will get cluster
together. The working of the positional encoding
vector is presented in the paper (Vaswani et al.,
2017). Next, the outputs of the positional embed-
ding layer get passed to Encoder-Decoder layers
of Transformer. An individual Encoder-Decoder
layer of Transformer contains a multi-head atten-
tion mechanism followed by a feed-forward layer,

and a Transformer can have N number of such
layers. The multi-head attention mechanism and
feed-forward layer works, as illustrated in the pa-
per (Vaswani et al., 2017), and their outputs are
normalized. To train the model, we can apply the
teacher forcing mechanism while during testing, a
start token is initially required for the decoder to
start the decoding process. After that, we can let
the decoder to generate the output tokens in a loop
by utilizing its current output as input to the next
time frame until it produces the end token.

3 Experimental Studies

We have used Two human-level translation evalua-
tion criteria, which are BLEU (Papineni and et al.,
2002) and TER (Snover and et al.) scores and
two general evaluation metrics that are Sparse Cat-
egorical Accuracy and Mean Loss. This section
will first discuss the preparation of training data-
set and baseline models, followed by training pro-
cedures plus their outcomes. And then, we will
move towards explaining the results of the testing
procedure. It is important to note that all experi-
ments given below are performed using TPU with
180 TFlops, and 64 GB High Bandwidth Memory
(HBM) provided by Google Colab, plus an imple-
mentation of the experiment is located in the Colab
notebook (implementation).

3.1 Data-set

Initially, we have a Hindi-Marathi parallel training
corpus of 44,685 sentence pairs. We have applied
a simple rule to filter out all sentence pairs having
the length higher than 24 words. After using this
filtering rule on the data-set, we are left with 35,215
sentence pairs on which we have applied 80%-20%
split to extract out training and development data.
We have separated 100 records from the dev-set,
and treat it as unseen data to perform a comparison
with the baseline models. The table 1 shows the
division of the data-set.

The reason for the maximum length based fil-
tration of the data-set is with an increase in the
maximum length of a sentence in the data-set, the
complexity of the model increases, hence the train-
ing time increases. Although vocabulary size and
hyper-parameters of the model also play a signifi-
cant role in the training time per Epoch. Plus, we
are motivated to keep our model simple as much
as possible because the quality of the predicted
translation gets affected, and it becomes difficult to



389

DATA-SET CONTENTS
Data-set total sentence pairs 44,685
Filtered data-set sentence pairs 35,215
Training set sentence pairs 28,172
Development set sentence pairs 6,943
Records for comparison with baseline
models

100

Hindi vocabulary size in filtered data 31,417
Marathi vocabulary size in filtered data 53,639

Table 1: The table shows the division of the data-set

debug the model as it grows more complex.

3.2 Baseline Models

We have selected the Bahdanau (Bahdanau and
et al., 2014) and Transformer (Vaswani et al., 2017)
model as a baseline model to compare the perfor-
mance of our model. We have used their Tensor-
Flow implementation officially given at (Tensor-
Flow, a) and (TensorFlow, b). In our experiment,
we have extracted 100 records from the dev-data,
which serves as unseen data and helps us to com-
pare the goodness of our proposed model with
the selected baseline models. We have trained the
model on the Marathi-Hindi dataset, with the men-
tioned parameters in TensorFlow documentation,
and recorded that the Bahadanau model gets an
average BLEU score of 0.13, while the transformer
gets an average BLEU score of 20.

3.3 Selecting Hyper-parameters

The first essential hyper-parameter is to decide the
maximum number of words a source or target sen-
tence can have in a single given instance of a train-
ing sentence. However, it’s a fantasy to develop
a model that handles infinite words in the train-
ing instance. But as a result, it leads to infinite
training time, which is undesirable. We have run
the attention transformer model with the top 1000
records after filtering the dev-set with the various
maximum number of words a source and target sen-
tence can have and recorded their training time as
shown in the chart below. In Fig 2, we can notice
that increment in the maximum number of words
a sentence can have produces a drastic impact on
training time. We have selected 24 as the maximum
number of words a sentence can have in our data-
set to achieve comparable performance in practical
training time.

After filtering the data-set based on the maxi-

Figure 2: The figure shows line graphs illustrating
the training time on filtered data-sets having different
lengths of maximum words in a sentence.

mum number of words, a sentence can have. The
next essential thing is to choose an appropriate
batch size for the model. We have executed the
Attention transformer model with different batch
sizes on dev-set and noted their impact on training
time per epoch. The Fig. 3 illustrates that the in-
crement in batch size helps to reduce training time
up to an extent after that it reduces the efficiency
of the model. We have selected 16 as batch size, as
it gives minimum training time per epoch for the
model.

Figure 3: The figure shows a line graph illustrating the
training time per epoch for different batch sizes.

In addition to that, to keep the training time of
Attention Transformer practical, with a TPU of
180 TFlops and 64 GB High Bandwidth Memory
(HBM). We have set the number of initial RNN
based Encoder-Decoder layers to one and the num-
ber of the second Transformer Encoder-Decoder
layer to two. Plus, the number of attention heads in
the multi-head attention layer of the Transformer
encoder-decoder layer is set to 8, and all other
hyper-parameters for transformer model are kept
as suggested in the paper (Vaswani et al., 2017).



390

3.4 Training the Model

In training, we have not augmented the original
form of the given sentences in the data-set. In the
pre-processing step, we have only removed punctu-
ation from the sentences and fed the filtered data to
the model, which sums up to 35,215 sentence pairs.
We have used the selected hyper-parameters from
previous subsections to train the model, which are
obtained by optimizing dev data. In addition to
that, to keep track of our models’ performance, we
have used the Sparse Categorical Cross Entropy
function as our loss function for evaluating train-
ing predictions, which is an integer version of the
Categorical Cross Entropy function the details can
be observed in the notebook (implementation)

3.5 Dealing with Over-Fitting and Unseen
Vocabulary at Test Time

To save the model from overfitting, we have kept
the training procedure straight-forward by applying
a simple rule to train the model until it provides a
BLEU score of 0.7 or the performance of BLEU
score asymptotes after ten epochs. While train-
ing, we have collected average BLEU scores, TER
score, Accuracy, and Mean Loss across batches
over an epoch to track the performance of the
model as shown in (implementation).

Moreover, to deal with new input vocabulary
at test time, we have employed a simple trick by
generating a miscellaneous token at the time of to-
kenization. The miscellaneous token gets included
in the vocabulary of the model at train time. And
the model learns to deal with this token based on its
neighbors. During test time, while tokenization, if
the input sentence contains any unseen vocabulary,
then we exchange that word with the miscellaneous
token.

3.6 Comparison With Baseline Model

We have trained the baseline models and our pro-
posed attention transformer model on the Marathi-
Hindi data-set at the end of each epoch, we have
recorded the training time. This per epoch train-
ing time will allow us to measure the quickness in
the model to finish a training epoch. Fig. 4 below
states the comparison of cumulative training time
of all three models. It can be seen clearly that the
Bahdanau model takes a huge amount of training
time as compared to the other two models. We
were able to run only 10 epochs for the Bahdanau
model in approximately 9 hours. On the other hand

Transformer and Attention, Transformer models
are very quick, it takes approximately 7 minutes to
train an epoch of both the models. However, over
the time it can be seen in the graph that the base-
line Transformer model is slightly quicker than our
proposed Attention Transformer model.

Figure 4: The figure shows comparison of cumulative
training time of Bahdanau, Transformer and Attention
Transformer model.

Figure 5: The figure shows comparison of progress in
Sparse Categorical Accuracy as we continue to train
the Bahdanau, Transformer and Attention Transformer
model.

Next, to measure the progress in translation per-
formance as we continue to train the model, we
have recorded average Sparse Categorical Accu-
racy, BLEU score, Sparse Categorical cross entropy
loss, and TER scores at the end of each epoch as
shown in Fig. (5, 6, 7, 8) respectively. This track
of per epoch training performance helps us to vi-
sualize the progress of the model in learning the
translation probability distribution, plus we can
also utilize this information to find out the most
active model that fits translation distribution in the
least number of epochs.

In the Fig. 5 and 6, we can notice that the Bah-



391

danau model is quickest to adapt translation proba-
bility distribution compared to other models as it
has shown approximately exponential increment in
accuracy and BLEU scores over the initial train-
ing epochs. The transformer model is following
a relatively linear path in learning the probability
distribution.

Figure 6: The figure shows comparison of progress
in BLEU score as we continue to train the Bahdanau,
Transformer and Attention Transformer model.

The reason behind the wining performance of the
Bahdanau model is it’s inherent recursive nature
to model the sequence to sequence tasks, which
helps it to learn the positional order of the given
sequence. The Transformer lacks this recursive
nature and uses a sinusoidal positional encoding
scheme to get the awareness of the position of a
word in a sentence, which is not as effective as Bah-
danau’s inherent recursive nature. But this recur-
sive nature hinders the Bahdanau model to exploit
parallelism due to this Bahdanau model takes more
time to finish a training epoch as compare to the
Transformer model.

The Attention Transformer takes the benefits
of both the Bahdanau and the Transformer model.
The initial layer of RNN helps the Attention Trans-
former to learn the positional order of the given
sequence, plus the stacked Transformer above it al-
lows the Attention Transformer to apply maximum
parallelism. In the Fig. 5 and 6, we can notice that
the Attention Transformer has given a relatively
intermediary performance as compare to the other
two models because we have kept the number of
RNN and Transformer layers almost equal. If we
increase the number of RNN layers in the Attention
Transformer model it will start behaving more like
the Bahdanau model likewise, if we increase the
number of transformer layers then it will act more

like the Transformer model.
Similarly, we can use the same argument to rea-

son about the displayed behavior of the perfor-
mance of the Bahdanau, Transformer, and Atten-
tion Transformer model in Fig. 7 and 8

Figure 7: The figure shows comparison of decrements
in loss as we continue to train the Bahdanau, Trans-
former and Attention Transformer model.

Figure 8: The figure shows comparison of decrements
in TER score as we continue to train the Bahdanau,
Transformer and Attention Transformer model.

Finally, we have utilized the trained Bahdanau,
Transformer, and Attention Transformer model to
translate 100 unseen records from Marathi to Hindi,
which we have initially separated from the dev data-
set. The Fig. 9 below displays the performance
of the trained models on the scale of 0-1 BLEU
points, the Bahdanau model fails to capture the
distribution of unseen data, while the Transformer
model performs relatively good. Attention Trans-
former gives comparatively better performance on
average as it shows high BLEU scores for many of
the instances.



392

Figure 9: The figure shows comparison of calculated
BLEU scores on the scale of 0-1 from the predictions
of Bahdanau, Transformer and Attention Transformer
model on the unseen 100 records which we have sepa-
rated from the development data.

3.7 Testing Results

We have developed two instance models of Atten-
tion Transformer using the procedure mentioned
above for both predicting Marathi sentences when
Hindi sentences are given as input and predicting
Hindi sentences when Marathi sentences are pro-
vided as input. We have achieved BLEU points
of 3.68 and a TER score of 97.64 for the Hindi-
Marathi test pair. Plus, BLEU points of 9.02 and
the TER score of 88.68 for the Marathi-Hindi test
data-set.

4 Conclusion

This paper has presented a supervised deep neural
translation-based approach called Attention Trans-
former as a tool to perform translation between
similar pair of languages (Hindi-Marathi). We
have developed a novel Neural Translation method
called Attention Transformer to transmute from
Hindi source to Marathi and vice-versa by combin-
ing the classical recurrence based encoder-decoder
approach and Transformers working mechanisms.
All supervised translation approaches need paral-
lel corpora as their data-set to learn the probabil-
ity function of generating translation from source
to target. We have solely utilized the WMT-20
Hindi-Marathi parallel corpus as the training data-
set for the Attention Transformer model having
44,685 sentence pairs and used two human-level
evaluation criteria, BLEU plus TER scores, to eval-
uate the Attention Transformer model. We have
achieved BLEU points of 3.68 and a TER score of
97.64 for the Hindi-Marathi test pair. And, BLEU
points of 9.02 with the TER score of 88.68 for the
Marathi-Hindi test data-set. The future work under

this domain includes applying stochastic optimiza-
tions like a genetic algorithm to find the best pos-
sible combinations of hyper-parameter to model
the probability distribution of source to the tar-
get language. Furthermore, we can also stack a
reinforcement learning paradigm on a developed
supervised neural translation model to create a self-
autonomous personalized environment for learning
the probability function, which continuously gets
updated by taking real-time feedback from the user.

References
Dzmitry Bahdanau and et al. 2014. Neural machine

translation by jointly learning to align and translate.
Cite arxiv:1409.0473Comment: Accepted at ICLR
2015 as oral presentation.

Kyunghyun Cho and et al. 2014. Learning phrase rep-
resentations using RNN encoder-decoder for statis-
tical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1724–1734. ACL.

Anirudh Goyal and et al. 2016. Professor forcing:
A new algorithm for training recurrent networks.
In Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 4601–4609.

Zhiheng Huang, Peng Xu, and et al. 2020. TRANS-
BLSTM: transformer with bidirectional LSTM for
language understanding. CoRR, abs/2003.07000.

TEAM implementation. Attention transformer hindi-
marathi machine translation.

Kishore Papineni and Roukos et al. 2002. Bleu: a
method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.

Matthew Snover and Bonnie Dorr et al. A study of
translation error rate with targeted human annotation.
In In Proceedings of the Association for Machine
Transaltion in the Americas (AMTA 2006.

TensorFlow. a. Tensorflow implementation for bah-
danau model online page, accessed: 14.08.2020.

TensorFlow. b. Tensorflow implementation for trans-
former model online page, accessed: 14.08.2020.

Ashish Vaswani, Shazeer, and et al. 2017. Attention is
all you need. In I. Guyon and R. Garnett, editors,
Advances in Neural Information Processing Systems
30, pages 5998–6008. Curran Associates, Inc.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks
http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks
http://arxiv.org/abs/2003.07000
http://arxiv.org/abs/2003.07000
http://arxiv.org/abs/2003.07000
https://github.com/FarhanDhanani/WMT-20-Submission-Shared-Task-Similar-Language-Translation/blob/main/WMT_20_SUBMISSION_Similar_Language_Translation.ipynb
https://github.com/FarhanDhanani/WMT-20-Submission-Shared-Task-Similar-Language-Translation/blob/main/WMT_20_SUBMISSION_Similar_Language_Translation.ipynb
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf
https://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf
https://www.tensorflow.org/tutorials/text/nmt_with_attention
https://www.tensorflow.org/tutorials/text/nmt_with_attention
https://www.tensorflow.org/tutorials/text/transformer
https://www.tensorflow.org/tutorials/text/transformer
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

