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Abstract 

We present in this paper our mining 
system for shared task WebNLG 
Challenge 2020. The general idea of the 
system is that we generate the semantic 
template of the output reference from the 
input RDF XML structure. In the training 
process, we perform the following 
subtasks: (i) extract the core information 
from input RDF; (ii) generate semantic 
templates from corresponding references. 
With new RDF XML data, we detect the 
core information, in turn add the new 
template into the warehouse and determine 
the output semantic template. We will 
evaluate the output natural language 
references in two processes: automatic and 
human evaluations. The results of the first 
tested process show that our system 
generates the high quality English 
descriptions from testing RDF XML 
structures and has a good contribution to 
the NLG state-of-the-art. 

1 Introduction 

Natural Language Generation (NLG) plays a 
critical role in the modern era. Researchers 
proposed different approaches to generate high-
quality text from input structured data in different 
domains (Gatt and Krahmer, 2018; Laha et al., 
2019; Moryossef et al., 2019; Shimorina and 
Gardent, 2018; Trisedya et al., 2018; Nguyen and 
Tran, 2018, 2020; Moussallem et al. 2018; 
Jagfeld et al., 2018; Dušek et al., 2018, 2020; 
Ferreira et al., 2019). Especially, with the 
growing need in the Semantic Web (SW) 
communities, there are the requirements for NLG 
works to provide a natural means for presenting 

this data in an organized, coherent and accessible 
way. 

In the first major task of WebNLG 2020 1 
shared task, the Organizer provided English 
dataset for training which comprises data-text 
pairs for 16 distinct DBpedia2  categories. Each 
entry in the dataset comprises a Resource 
Description Framework3 (RDF) triple set paired 
with several natural language (NL) references. We 
illustrated an example of an English entry in the 
training data1 in Table 1. The aim of this major 
task is to generate the appropriate NL reference 
for each input triple set. 

 

RDF XML 

<entry category="Airport" size="3"> 
<modifiedtripleset> 
  <mtriple>Aarhus_Airport | 

location | Tirstrup</mtriple> 
  <mtriple>Tirstrup | country | 

Denmark</mtriple> 
  <mtriple>Denmark | language | 

Danish_language</mtriple> 
</modifiedtripleset> 

</entry> 

References 

• Aarhus Airport is located in Tirstrup, 
Denmark; where the language is Danish. 

• Aarhus Airport is located in Tirstrup, 
Denmark where the language spoken is 
Danish. 

• Aarhus Airport is located in Tirstrup, 
Denmark where the Danish language is 
spoken. 

Table 1:  Sample of <RDF triple set – NL 
references>. 

The primary purpose of this article is to present 
our system in RDF-to-text generation task. 
Developing from the ideas in (Nguyen and Tran, 

 
1 https://webnlg-challenge.loria.fr/challenge_2020/  
2 https://wiki.dbpedia.org/
3 https://www.w3.org/TR/rdf11-concepts/  
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2018, 2020), we propose the mining approach that 
creates the intermediate semantic template from 
input RDF data. We represent the general 
architecture of our system in Fig.1 with the 
following main components: (i) information 
extraction in which we detect the core contents 

and classify into groups; (ii) template mining in 
which we analyze the above groups and input 
references to form the semantic template; (iii) 
augmentation in which we analyze the new RDF 
data without references to define the new template 
and augment to the warehouse. 

 
Figure 1: The general architecture of semantic template mining system. 

 
The rest of article is separated as follows. We 
clarify the background knowledge in Section 2 
and describe our generation system in Section 3. 
Section 4 details the evaluation from the 
Organizers and analyzes the results. We offer 
conclusions in Section 5. 

2 Background Knowledge 

The main content of this section is to clarify the 
background knowledge that we apply in the 
research. The first part is to present Flat Triple 
Meaning Representation (MR) which is an 
intermediate structure to express core information 
from input RDF XML data. The second part is to 
present Jaro-Winkler Similarity, which is used to 
find the phrases which have the similarity content 
and then we determine which one should be 
selected to form the templates. The third part is to 
present aliased parameters and semantic template 
which are the core information in our system. 

2.1 Flat Triple Meaning Representation 

Following forming Flat MR structure in the E2E 
Challenge 2017 (Dušek et al., 2018, 2020), we 
define a new structure called Flat Triple Meaning 
Representation (MR) which is the plaintext form 
of RDF XML. This form is like the representation 
of relationships between predicates of Flat MR 
structure from (Nguyen and Tran, 2018, 2020). 

We define a Flat Triple MR: 
• We transform each triple of RDF XML into a 

list of predicates of Flat Triple MR. 
• Each predicate comprises: (i) the name of 

predicate, which is the relationship between 
two items; (ii) the subject parameter, which 
expresses the first item; (iii) the object 
parameter, which expresses the second item. 

 
As an example, we can transform the RDF 

XML in Table 1 into Flat Triple MR: 
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location[Aarhus_Airport | Tirstrup]; 
country[Tirstrup | Denmark]; language[Denmark 
| Danish_language]; 

 
In Fig.2, we illustrate the relationships between 
parameters and predicates in the above Flat Triple 
MR: 

 
Figure 2: The relationship between each predicate and 

its parameters. 

2.2 Jaro-Winkler Similarity 

Jaro Similarity (Jaro, 1989, 1995; Winkler, 1990, 
2006; Cohen et al., 2003) is the measure of 
similarity between two strings. We calculate the 
value of Jaro distance in the range [0, 1]. From 
this range, the value 1 means the strings are equal 
and the value 0 means these two strings do not 
have similarity at all. 

The Jaro Similarity (Wikipedia, 2020) is 
calculated with the following formula: 

 
𝐽𝑎𝑟𝑜_𝑠𝑖𝑚(𝑠1, 𝑠2)

= {

0, 𝑖𝑓 𝑚 = 0
1

3
(
𝑚

|𝑠1|
+
𝑚

|𝑠2|
+
𝑚 − 𝑡

𝑚
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
In the above formula: (i) |si| is the length of si;  (ii) 
m is the number of “matching characters”; (ii) t is 
the number of “transpositions”. 

The characters of s1 and s2 respectively, are 
considered matching only if they are the same and 
not farther than: 

 

⌊
max (|𝑠1|, |𝑠2|)

2
⌋ − 1 

 
Winkler (1990) introduced the Jaro-Winkler 
similarity5, which is a modification of the Jaro 

similarity. The author placed more weight on 
matching the first i characters. If l is the largest 
number such that the first l characters of s1 match 
those of s2, then the Jaro-Winkler similarity is 
defined as: 
 
𝑆𝑖𝑚𝐽𝑊(𝑠1, 𝑠2) = 𝑆𝑖𝑚𝐽(𝑠1, 𝑠2) + 𝑙𝑝[1 − 𝑆𝑖𝑚𝐽(𝑠1, 𝑠2)] 

 
In the above formula, p is a constant scaling factor 
for how much the score is adjusted upwards for 
having common prefixes. 
We apply the Jaro-Winkler similarity at the 
following actions: 
• Determine the rate of similarity between 

corresponding references of each Flat Triple 
MR. We then keep only the most frequent 
references. 

• Determine the groups of words that express 
each predicate and corresponding parameters. 

• Determine the phrases that have the similar 
meaning when handling new Flat Triple MR. 

2.3 Semantic Template and Aliased 
Parameters 

Developing from ideas in (Nguyen and Tran, 
2018, 2020; Gardent et al. 2017; Ferreira et al. 
2019) about generating intermediate templates 
from input structured-data, we define special 
semantic templates for this research. These 
templates take the role is the intermediate 
structures of the final references.  

To reduce the dependence on vocabulary, 
especially when handling cross domains, we 
define new aliases for parameters in each Flat 
Triple MR. The idea to determine new aliases is 
described as follows: 
• Analyzing each Flat Triple MR paired with 

corresponding NL references, we found that 
there is one item taking the central role. Other 
items have relationships with this one and 
with each other in some levels. 

• The item taking the central role will have the 
alias AGENT. 

• The other items will have the alias 
PATIEN_X, with X = [1, n], n < total number 
of items. 

As an example, the Flat Triple MR in Fig.2 can 
be transformed into a new one as follows: 
 
location[AGENT | PATIENT_1]; country[PATIENT_1 
| PATIENT_2]; language[PATIENT_2 | PATIENT_3]; 
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Figure 3: The relationship between each predicate and 

its aliased parameters. 
 
In our system, the semantic templates are the core 
information, which represents the structured form 
of the output NL references. Each semantic 
template comprises three principal components: 
• Aliased parameters from Flat Triple MR. 
• Groups of words that express predicates from 

Flat Triple MR. 
• Linking words that connect phrases in the 

output text. 
As an example, the references in Table 1 have 

the following semantic templates with aliased 
parameters from Table 3: 
 
• AGENT is located in PATIENT_1, PATIENT_2; 

where the language is PATIENT_3. 
• AGENT is located in PATIENT_1, PATIENT_2 

where the language spoken is PATIENT_3. 
• AGENT is located in PATIENT_1, PATIENT_2 

where the PATIENT_3 is spoken. 

 

3 Semantic Template Mining System 

We present in this section the principal 
components of our system. As illustrated in the 
general architecture in Fig. 1, there are two 
processes to perform:  
• In the training process, we (i) extract the 

information from Flat Triple MR, and (ii) 
build the warehouse that contains the 
semantic templates from the mining 
component. 

• When analyzing new RDF data, we (i) extract 
the information from Flat Triple MR, (ii) 
determine the semantic template, or (iii)
create the new semantic template and 
augment to the warehouse. 

3.1 Information Extraction Component 

The first phase for realizing this step is to 
determine which item in all predicates should take 
the alias AGENT. We handle this phase through 
following steps: 
• Step 1. Determine the frequency of each item 

in all predicates from left to right. 
• Step 2. Determine the items that have the 

highest frequency. 
• Step 3. Determine the first item taking the 

alias AGENT which satisfies: (i) has the 
highest frequency; (ii) has the highest number 
of times taking subject parameter position. 

To determine the alias PATIEN_X for other items, 
we perform two steps: 
• Step 1. Consider each item from left to right 

that is not AGENT. 
• Step 2. Set the alias PATIEN_X for this item 

and increase X. 
As an example, the Flat Triple MR with aliased 
parameters illustrated in Fig. 3 results from 
applying the above method for the original Flat 
Triple MR in Fig. 2. 
In the second phase of this component, we 
classify predicates into distinct groups. The reason 
for performing this phase is to better understand 
the grammatical structures of references. 
Therefore, when analyzing new RDF data in 
unknown domains, we could define the 
appropriate new semantic templates. 

In this study, we define four groups of 
predicates. With each group, we clarify the 
general English grammatical structure for all 
predicates. 
• Group 1. The predicates in this group 

show the situations in which the AGENT 
takes the object role of the action 
performed by the PATIENT_X. 

As an example, we have Flat Triple MR 
“operatingOrganisation[AGENT | PATIENT_1]”. The 
predicate “operatingOrganisation” indicates that 
AGENT takes the object role and PATIENT_1 takes 
the subject role of the action. One semantic 
template for this Flat Triple MR is “AGENT is 

operated by PATIENT_1.”. 
• Group 2. The predicates in this group 

show the situations in which the 
PATIENT_X is the property / location / 
career of the AGENT. 

As an example, we have Flat Triple MR 
“location[AGENT | PATIENT_1]”. The predicate
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“location” indicates that PATIENT_1 is the location 
of AGENT. One semantic template for this Flat 
Triple MR is “AGENT is located in PATIENT_1.”. 
• Group 3. The predicates in this group 

show the situations in which the 
PATIENT_X is the date time. 

As an example, we have Flat Triple MR 
“birthDate[AGENT | PATIENT_1]”. The predicate 
“birthDate” indicates that PATIENT_1 is the date 
time. One semantic template for this Flat Triple 
MR is “AGENT was born on PATIENT_1.”. 
• Group 4. The remaining predicates should 

be in this group. 
As an example, we have Flat Triple MR 
“almaMater[AGENT | PATIENT_1]”. One semantic 
template for this Flat Triple MR is “AGENT was 

graduated from the PATIENT_1.”. 

3.2 Template Mining Component 

We build the warehouse of semantic templates
and dictionary of corpora in this component. The 
crucial question here is: How to determine the 
strings (groups of words) that express the 
information of each parameter or predicate? To 
answer this question, we perform the following 
sub-tasks: 
During the first sub-task, we analyze the 
parameter with the following steps: 
• Step 1. Split the parameter into a set of 

separated tokens. 
• Step 2. Adding the prepositions to the suitable 

position in the above set. We handle this step 
according to training references and common 
English communications. We then create the 
new string from the set of token in each 
situation. We will add the new string into the 
dictionary. 

• Step 3. We determine the number of tokens in 
each string. We then sort the list of strings 
according to the number of tokens from 
highest to lowest. 

As an example, with parameter 
“Jones_County,_Texas”, we can have strings: “Jones 

County Texas” or “Jones County, Texas”. 
During the second sub-task, we determine the 
strings in reference that have the similarity with 
each string in the list from the above first task, 
which expresses the current considering 
parameter. We perform this task through the 
following steps: 
• Step 1. We build the list of n-grams from the 

considering reference. Here, n is the number 

of tokens of each string from the list in the 
above first sub-task. We then create the string 
for each n-gram. 

• Step 2. We browse each string from Step 1 
and consider two situations: 
▪ Step 2.1. If the current string is normal 

type. We apply the Jaro-Winkler 
similarity5 to compare with the 
considering string from the list in the 
above first sub-task. If the similarity is 
higher than the threshold is 0.9, then we 
(i) add into the dictionary and (ii) replace 
by the alias of current considering 
parameter. 

▪ Step 2.2. If the current string is date type. 
We transform this string and the 
considering string from the list in the 
above first sub-task into date format. We 
then check if these two dates are the same 
or not. If they are the same dates, then we 
(i) add into the dictionary and (ii) replace 
by the alias of current considering 
parameter. 

As an example, with the above defined strings, we 
determine some strings from training references: 
“Jones County in Texas”. Another example is 
parameter “1913-05-05”, we determine the string 
that expressed the same date is “May 5th 1913” or 
“May 5, 1913”. 
During the third sub-task, we detect the groups 
of words that express each predicate with the 
same idea as in the above first and second sub-
task. 
• Step 1. We analyze the current predicate. We 

create a string that contains all tokens 
extracted from this predicate. 

• Step 2. We build three lists of n-grams from 
the considering reference. Here n is in turn 
one of three numbers: (i) number of the above 
tokens – 1; (ii) number of the above tokens; 
(iii) number of the above tokens + 1. We then 
create the string for each n-gram. 

• Step 3. We apply the Jaro-Winkler similarity5 
to compare with the string from Step 1. If the 
similarity is higher than the threshold is 0.8, 
then we (i) add into the dictionary and (ii) 
replace by the alias of current considering 
parameter. 

As an example, with predicate “cityServed”, we 
have some similar strings: “city is served by” or 
“serves the city”. 
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3.3 Augmentation Component 

We realize this step through two main phases: 
• Phase 1. We assign alias AGENT and 

PATIENT_X for each parameter and classify 
predicates into groups. 

As an example, consider Flat Triple MR 
“producer[English_Without_Tears | Anatole_de_Grunwald]” 
in the surprise domain. We have the alias Flat 
Triple MR “producer[AGENT | PATIENT_1]”. The 
predicate “producer” is classified into Group 2, as 
mentioned in Section 3.1. 
• Phase 2. Based on the information from 

Phase 1, we define the new semantic 
templates for input Flat Triple MR having 1 
to 7 predicates. 

As an example, with the above Flat Triple MR, 
we the find the new semantic templates: (i) “The 

producer of AGENT is PATIENT_1.”; (ii) “AGENT was 

produced by PATIENT_1.”. 
The key ideas for handling phase 2 are: 
• As mentioned in Section 3.1, with each group 

of predicate, we have the similar English 
grammatical structures. 

• We see that the complex semantic templates 
in warehouse, which are the output of Flat 
Triple MR having more than one predicate, 
are actually different grammatical structures 
to express the combination between other 
semantic templates, which are the output of 
Flat Triple MR having less number of 
predicates. We define the new complex 
structures based on this observation and 
common English communication. 

4 Experiment and Evaluation 

The Organizer provided the testing data with three 
types of characteristics: (i) all the entities and 
categories of RDF triples/texts existed in the 
training data; (ii) only categories of RDF 
triples/texts existed in the training data and not the 
entities; (iii) surprise domains in which the 
categories do not exist in the training data. The 
total amount of testing data can be classified into 
categories as in Table 2: 

 
Categories Surprise 

Domain 
Number 
Entries 

Percentage 
on Total 
Entries 

Airport  95 5.34% 
Artist  109 6.13% 
Astronaut  82 4.61% 
Athlete  50 2.81% 
Building  46 2.59% 
Celestial Body  49 2.75% 
City  83 4.65% 
Comics Character  30 1.69% 
Company  66 3.71% 
Film X 264 14.84% 
Food  46 2.59% 
Mean Of 
Transportation 

 58 3.26% 

Monument  46 2.59% 
Musical Work X 290 16.30% 
Politician  29 1.63% 
Scientist X 259 14.56% 
Sports Team  44 2.47% 
University  90 5.06% 
Written Work  43 2.42% 

Table 2:  Brief analysis of testing data. 

4.1 Automatic Evaluation 

According to the WebNLG 2020 Challenge, to 
measure the scores, the Organizer used five main 
metrics: BLEU (Papineni et al. 2002),  METEOR 
(Lavie and Agarwal 2007), chrF++ (Popović, 
2015, 2017), TER (Snover et al. 2006), and 
BERT-Score (Zhang et al. 2020). There are total 
33 guess systems, including 2 baseline systems 
for the comparison. According to the results, our 
system ranks 9th when ordered by METEOR 
metric, which means our system gets better 
METEOR than 24 other submissions, including 2 
baseline systems. Besides, when comparing with 
2 baseline systems, our system gets better points 
in most of the metrics. 

In Table 3, we show the results of the top ten 
systems according to the automatic evaluation 
results4 and two baseline systems (take the rank 
15 and 18 respectively). 
 

 
SYSTEM 
ID 

BLEU BLEU 
NLTK 

METEOR CHRF++ TER BERT 
PRECISION 

BERT 
RECALL 

BERT 
F1 

BLEURT 

id18 53.98 0.535 0.417 0.690 0.406 0.960 0.957 0.958 0.62 
id30 53.54 0.532 0.414 0.688 0.416 0.958 0.955 0.956 0.61 
id30_1 52.07 0.518 0.413 0.685 0.444 0.955 0.954 0.954 0.58 
id34* 52.67 0.523 0.413 0.686 0.423 0.957 0.955 0.956 0.6 
id5 51.74 0.517 0.411 0.679 0.435 0.955 0.954 0.954 0.6 
id35* 51.59 0.512 0.409 0.681 0.431 0.956 0.954 0.954 0.59 
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id23 51.74 0.514 0.403 0.669 0.417 0.959 0.954 0.956 0.61 
id2 50.34 0.500 0.398 0.666 0.435 0.954 0.950 0.951 0.57 
id15 40.73 0.405 0.393 0.646 0.511 0.940 0.946 0.943 0.45 
id28 44.56 0.432 0.387 0.637 0.479 0.949 0.949 0.948 0.54 
…. 
Baseline 40.57 0.396 0.373 0.621 0.517 0.946 0.941 0.943 0.47 
…. 
baseline_2 37.89 0.371 0.364 0.606 0.553 0.933 0.935 0.930 0.42 

Table 3:  Results of automatic evaluation: top ten systems and two baseline systems. 

 
The full results of automatic evaluation are 
showed at the final WebNLG 2020 website4. 

4.2 Human Evaluation 

For human evaluation, the Organizer assesses the 
system outputs according to the following criteria 
by native speakers recruited on crowdsourcing 
platforms: (i) Data Coverage – how much 
information from the data has been covered. The 
text will be evaluated if it fully covers all 
predicates shown in the data; (ii) Relevance – this 
criterion evaluates if the text contains any non-
presented predicates. The text will be evaluated if 
it mentions/describes only predicates which are in 
the input; (iii) Correctness – the text will be 
evaluated if it describes predicates (which are 
both in data and text, e.g. relevant predicates) with 
correct objects. Also, the subject has to be 
described correctly; (iv) Text Structure – the text 
will be evaluated if it is grammatical and well-
structured, which means the 
structural/grammatical quality, written in good 
English; (v) Fluency – the text will be evaluated 
if it progresses naturally and sounds like a 
coherent whole, which means the “naturalness”. 

Each criterion has been rated with a single 
number in the range from “0” (completely 
disagree) to “100” (completely agree). The scores 
as they appear for each criterion have been 
normalised (z-scores) and clustered into groups 
among which there are no statistically significant 
differences according to the Wilcoxon rank-sum 
significant test. 
According to the results of human evaluation, 
there are total 17 systems, including 2 baseline 
systems, which were evaluated in this phase. Our 
system ranks 1st in the first three criteria (Data 
Coverage, Relevance, Correctness), ranks 3rd in
Text Structure criterion and ranks 4th in Fluency 
criterion. In Table 4, we show the results of our 
system (DANGNT-SGU) compared with two 

 
4 https://beng.dice-research.org/gerbil/   

baseline systems as well as five other systems 
which rank 1st in at least three criteria, according 
to human evaluation phase. The results are 
ordered alphabetically. The full  results can be 
viewed at the final WebNLG 2020 website4. 

As can be seen in Table 4, our system gets 
better scores in most of the criteria than two 
baseline systems, especially in the first three 
criteria (Data Coverage, Relevance, Correctness). 
Besides, there are two systems, which are 
AmazonAI and OSU_Neural_NLG, rank 1st in all 
criteria. 

The  testing  results  show  that  our  system 
generates good quality references from RDF 
structures in WebNLG 2020 Challenge 
experiment sections. Based on cursory checks, 
our system  was  able  to create long,  
grammatical, meaningful,  multi-sentence  output,  
as illustrated by the following example:  

 
Flat Triple 
MR 

populationDensity[Ciudad_Ayala | 1604.0];  
leaderTitle[Ciudad_Ayala | Governator];  
country[Ciudad_Ayala | Mexico];  
elevationAboveTheSeaLevel[Ciudad_Ayala | 
1147.0];  
timeZone[Ciudad_Ayala | Pacific_Daylight_Time]; 
 

Reference Ciudad Ayala, which is in the time zone of Pacific 
Daylight Time, is led by the Governator in Mexico. It 
has a population density of 1604.0 and an elevation 
of 1147.0 above sea level. 
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System Data Coverage Relevance Correctness Text Structure Fluency 

 Rank Avg. Z Rank Avg. Z Rank Avg. Z Rank Avg. Z Rank Avg. Z 
AmazonAI 1 0.207 1 0.193 1 0.216 1 0.24 1 0.31 
BASELINE 2 0.143 2 0.097 2 0.131 2 0.047 3 0.022 
BASELINE2017 2 0.096 1 0.193 3 0.079 2 0.028 3 -0.082 
bt5 2 0.06 1 0.134 1 0.146 1 0.177 2 0.13 
DANGNT-SGU 1 0.228 1 0.153 1 0.136 3 -0.153 4 -0.162 
NUIG-DSI 2 0.082 1 0.113 1 0.18 1 0.221 1 0.2 
OSU_Neural_NLG 1 0.215 1 0.11 1 0.18 1 0.238 1 0.229 
RALI 1 0.268 1 0.153 1 0.179 3 -0.211 4 -0.156 
REF 2 0.173 1 0.112 1 0.181 1 0.162 2 0.181 

Table 4:  Results of human evaluation: our system and two baseline systems. 

 

5 Conclusion 

We have presented our mining system for 
generating English natural language references 
from XML RDF structure. Our approach has three 
most important sub-tasks: (i) extract the core 
information from input RDF; (ii) detect the group 
for each relationship and aliases for its parameters 
and generate semantic template; (iii) determine  
new information and augment to the warehouse. 
The evaluation results show that our approach 
overcomes the requirements: (i) references have 
lexical richness, syntactic variation, and discourse 
phenomena; (ii) references cover whole contents 
from the input RDF structure. 

In future works, we intend to apply techniques 
in Deep Learning and knowledge in linguistic 
theories to improve the quality and naturalness of 
generated texts. Besides, we expand our approach 
to other datasets for a broader comparison. 
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