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Abstract

Identifying a user’s location can be useful for recommendation systems, demographic analyses,
and disaster outbreak monitoring. Although Twitter allows users to voluntarily reveal their lo-
cation, such information isn’t universally available. Analyzing a tweet can provide a general
estimation of a tweet location while giving insight into the dialect of the user and other linguistic
markers. Such linguistic attributes can be used to provide a regional approximation of tweet ori-
gins. In this paper, we present a neural regression model that can identify the linguistic intricacies
of a tweet to predict the location of the user. The final model identifies the dialect embedded in
the tweet and predicts the location of the tweet.

1 Introduction

Social media platforms are useful sources for doing data analysis on linguistic patterns. Twitter is one
such platform and allows access to tweets posted by the users via APIs. While the metadata of a tweet
is accessible, only 3% of tweets include geotagging information (Jurgens et al., 2015). This severely
limits the use of a metadata-based approach for location identification. Even if a geolocation model
performs well with such metadata, it will fail in the absence of such information. Since tweets are rich
in information, a model that relies only on the textual content of tweets will have a better chance of
performing consistently.

The location prediction task can be addressed either as a classification problem or a regression prob-
lem. The former can be implemented in two ways; by treating known locations as classes or by dividing
the entire region at hand into a grid and using the center of the sub-regions as classes. A regression ap-
proach can be seen as a simple double regression task where a model predicts the latitude and longitude
of a tweet separately, based on its features. Previous studies have shown that tweets, along with their
metadata, can be used to predict a user’s location (Han et al., 2014). Neural models have been used to
better utilize the metadata, along with the tweets (Thomas and Hennig, 2017).

This paper presents an approach to predict the location of a user using a neural model trained solely
on the tweets’ text content, without any external knowledge sources. This allows the model to generalize
more easily to new domains and languages. This paper intends to get justifiable results at a low cost and
with limited resources.

The remainder of this paper is organized as follows: The first section provides an overview of related
works on location prediction. Section 3 described the datasets used. Section 4 describes the details of
the neural network architecture. Results on the validation set are shown in Section 5. Finally, Section 6
concludes the paper with possible future work.

2 Related Work

One of the earliest works on text-based geotagging (Ding et al., 2000) used named entities such as cities,
states, etc. mentioned in the text to identify the geographic scope of the web pages in a classification
setup. Later, rule-based methods were employed to identify the locations (Bilhaut et al., 2003), while
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others used named entity recognition in combination with various machine learning techniques (Qin et
al., 2010). All these approaches rely on the fact that there is a mention of some location in the text
which may not always be the case. Other approaches include supervised classification (Kinsella et al.,
2011; Wing and Baldridge, 2011) using words as features and unsupervised learning, where clustering
techniques are employed based on topic modeling (Ahmed et al., 2013; Hong et al., 2012).

Some of the previous research has focused on leveraging the metadata associated with the tweet
to improve the performance. Many results submitted in the Workshop on Noisy User-generated Text
(WNUT2016) (Han et al., 2014) used such metadata heavily. Models were built that focused on user-
declared locations, timezone values, and user self-descriptions in addition to the content of the tweet
itself (Miura et al., 2016). As part of feature pre-processing, tweet-level geo coordinates were repalced
with geo coordinates of the corresponding tweet cities using several mapping services such as GeoN-
ames and time zone boundaries. Finally, neural networks were trained using the FastText n-gram model
(Joulin et al., 2017) on posted text, user location, user descriptions, and user timezones.

Ensemble methods are also common, often relying on several information resources like text, user
location text, user time zone information, messenger source, and reverse country look-ups for URL
mentions. Jayasinghe et al. (2016) relies on specific URL mentions and screened website metadata for
geographic coordinates.

Multinomial naı̈ve Bayes methods have been employed that focused on the use of textual features
(i.e., location indicative words, GeoNames gazetteers, user mentions, and hashtags) (Chi et al., 2016).
Since the authors are using location indicative words, city/country names, hashtags and @mentions as
a combined feature set, even though it relies on textual data more than the metadata, dialect related
information isn’t covered.

Related work to date covers a wide range of languages and dialects including Dutch (Wieling et al.,
2011), British (Szmrecsanyi, 2008), American English (Huang et al., 2015; Eisenstein et al., 2010) and
African American Vernacular English (Jones, 2015).

3 Data Set

We use the data provided for SMG sub-task (Ljubešić et al., 2016) (Hovy and Purschke, 2018) of the
VarDial 2020 shared task is used for the training and testing purpose of the model (Găman et al., 2020).
Using data from social media platforms like Twitter and Jodel, three language areas are covered. Each
language has a training, a validation, and a test file. Each file contains entries separated by newlines and
each entry contains a latitude, a longitude, and a text tuple, separated by tabs.

• Standard German Jodels (DE-AT): Jodel conversations initiated in Germany and Austria, which are
written in standard German but commonly contain regional and dialectal forms.

• Swiss German Jodels (CH): Jodel conversations from Switzerland, in Swiss German dialects.

• BCMS Tweets (BCMS): Geo-located tweets published in the area of Croatia, Bosnia and Herze-
govina, Montenegro, and Serbia.

The distribution of all three datasets across latitudes and longitudes are shown in Figure 1, Figure 2,
and Figure 3 below.

Language Training Set Validation Set Test Set

DE-AT 336983 46582 48239
CH 22600 3068 3097
BCMS 320042 39750 39723

Table 1: Number of data points per set per language
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Figure 1: Dataset distribution of DE-AT Jodels across latitudes and longitudes

Figure 2: Dataset distribution of CH Jodels across latitudes and longitudes

Figure 3: Dataset distribution of BCMS Tweets across latitudes and longitudes

4 Architecture

To identify the location of a given tweet, a double regression approach has been taken. The model
will identify the latitude and longitude separately for a given text and the distance between the actual
and predicted location will be used to measure its performance. For this purpose, we are using two
bidirectional LSTM models.

For text pre-processing, we use a tweet tokenizer as part of the cleanup, to remove unwanted punctu-
ation and lower-case conversion. We use a list of German stopwords to further clean the DE-AT dataset.
We decided to keep the stopwords for Swiss German due to the smaller size of the dataset. For BCMS,
stopwords from multiple languages are needed which are not as consistent as German, so those are in-
cluded in the dataset as well. Using TF-IDF weighting allows us to focus on the highly relevant tokens
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in the text. Using this new set of relevant tokens, the tweets are updated so that irrelevant tokens are
removed. A FastText model is trained on this new, modified training set, unsupervised. This trained
FastText model is used to produce an embedding matrix. The unsupervised training allows the overall
model to be implemented in a similar fashion for all 3 languages.

A neural model is created with a trainable embedding layer, an embedding matrix from the FastText
model is used for obtaining embeddings, and two bidirectional LSTM layers are used, one for latitude
training and one for longitude. Using a trainable embedding layer with the embedding matrix reduces the
training epochs required for the model to converge. Since both LSTM layers share a common embedding
layer, both have to rely on the same set of embeddings for learning. Two dense layers are added before
the output layer. This allows the model to adjust the weights better for a gradual change. A visual
representation of the architecture is presented in Fig. 4.

Figure 4: Neural model architecture

Because the evaluation metric for this task is the median distance loss over the test data, Quantile
function with 0.5 as alpha is used as the loss function. While a neural model with MSE or MAE as the loss
function predicts better for individual tweets, the distance loss over the entire set becomes greater than the
quantile function. On the other hand quantile function takes into account the distribution of the dataset
while training and, with alpha set to 0.5, it estimates the median instead of mean. For regularization,
since L1 brings weights of unimportant features to zero, only contributing features remain. This helps in
better feature selection. We use ReLU as activation functions and Adagrad as the optimizer for adaptive
updates of frequently and infrequently occurring feature parameters.

5 Results

The performance of the model on validation and test data is shown in Table 2. Median loss (distance in
km) has been used as the metric.

Language Validation Set Test Set

DE-AT 174.049 183.99
CH 27.39 27.31
BCMS 95.318 85.70

Table 2: Median distance (in kilometers) over the dataset.
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Language Min Latitude Max Latitude Min Longitude Max Longitude
DE-AT 46.53 54.84 5.92 16.72

CH 46.29 47.75 7.23 9.87
BCMS 41.88730403 46.52582591 13.49204277 22.8606

Table 3: Ranges of latitudes and longitudes with respect to the dataset

Rank Team Median distance Mean distance

1 helsinki-ljubljana 159.59 183.97
2 This work 183.99 204.93
3 CUBoulder-UBC 198.27 218.51
4 ZHAW 205.81 230.78
5 SUKI 243.12 266.85

Table 4: The best results of each team participating on the SMG 2020 shared task DEAT track.

Rank Team Median distance Mean distance

1 ZHAW 15.93 25.06
2 helsinki-ljubljana 17.66 26.21
3 CUBoulder-UBC 19.49 27.63
4 SUKI 23.96 34.59
5 UnibucKernel 25.57 30.52
6 The lingustadors 26.70 31.21
7 This work 27.31 33.20

Table 5: The best results of each team participating on the SMG 2020 shared task Swiss German track.

Rank Team Median distance Mean distance

1 helsinki-ljubljana 48.99 86.83
2 ZHAW 57.24 100.42
3 SUKI 61.01 105.11
4 CUBoulder-UBC 64.76 106.67
5 This work 85.70 112.65
6 The lingustadors 97.16 141.88

Table 6: The best results of each team participating on the SMG 2020 shared task BCMS track.

It can be observed that the deviation of validation and test result is not more than 10km for DE-AT and
BCMS dataset and much smaller for the CH dataset. The marginal deviation on the CH dataset can be
attributed to the small size of the dataset. Another factor responsible for the scale of deviation for DE-AT
and BCMS vs CH is the range of latitudes and longitudes. Below is the range of latitudes and longitudes
for all 3 datasets.

From Table 2, it can be observed that, with minimal configuration and constrained training, the model
is performing equally well or even better for test data than the validation data. In constrained submissions,
our model gave the second-best result for the DE-AT dataset. The performance of all the participating
teams for the SMG shared task is shown in Table 4, Table 5, and Table 6.

6 Conclusion and Future Work

We have presented a neural network architecture that addresses the tweet location prediction as a dual
regression task. No custom processing of the text was done besides a generic tweet tokenization. As part
of the cleanup, stopwords were removed from the Standard German dataset only. No pre-trained model
or embedding was used which made the model generic enough to be used for any dataset. The model
was trained on Google colab with limited GPU access with a maximum training time was around 8hrs.
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In the future, we aim to use the distance between the predicted and actual locations as the main
loss parameter to train the model. This should give a better insight into the usage of quantile function
since this task focused on median distance loss as the performance metric. We will also analyze the
performance of our model against a classification model where the known tweet-emission locations are
used as a constrained set of labels.
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Mihaela Găman, Dirk Hovy, Radu Tudor Ionescu, Heidi Jauhiainen, Tommi Jauhiainen, Krister Lindén, Nikola
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