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Abstract

We propose an open-world knowledge graph completion model that can be combined with com-
mon closed-world approaches (such as ComplEx) and enhance them to exploit text-based rep-
resentations for entities unseen in training. Our model learns relation-specific transformation
functions from text-based embedding space to graph-based embedding space, where the closed-
world link prediction model can be applied. We demonstrate state-of-the-art results on common
open-world benchmarks and show that our approach benefits from relation-specific transforma-
tion functions (RST), giving substantial improvements over a relation-agnostic approach.

1 Introduction

Knowledge graphs are an interesting source of information that can be exploited by retrieval (Dong et
al., 2014) and question answering systems (Ferrucci et al., 2010). They are, however, known to be
inherently sparse (Paulheim, 2017). To overcome this problem, knowledge graph completion (KGC)
enriches graphs with new triples. While most existing approaches require all entities to be part of the
training graph, for many applications it is of interest to infer knowledge about entities not present in the
graph i.e. open-world entities. Here, approaches usually assume some text describing the target entity to
be given, from which an entity representations can be inferred, for example via text embeddings (Mikolov
et al., 2013; Devlin et al., 2018). To the best of our knowledge, only a few such open-world KGC
approaches have been proposed so far (Xie et al., 2016; Shi and Weninger, 2017a; Shah et al., 2019).

We suggest a simple yet effective approach towards open-world KGC1: Similar to Shah et al. (2019)’s
OWE model, our approach enables existing KGC models to perform open-world prediction: Given an
open-world entity, its name and description are aggregated into a text-based entity representation, and
a transformation from text-based embedding space to graph-based embedding space is learned, where
the closed-world KGC model can be applied. However, while OWE’s transformation only takes the
open-world entity into account, our approach also utilizes the target triple’s relation, such that specific
mappings are learned for different relations such as birthplace, spouse, or located in (see Figure 1).
We demonstrate that this extension comes with strong improvements, yielding state-of-the-art results on
common open-world datasets.

2 Related Work

Interest in KGC has increased recently, with most of the work focusing on embedding-based approaches.
Earlier approaches (Nickel et al., 2016) have recently been complemented by other models such as
DistMult (Yang et al., 2014), TransR (Lin et al., 2015), ComplEx (Trouillon et al., 2016), ProjE (Shi
and Weninger, 2017b) and RotatE (Sun et al., 2019). The above models estimate the probability of
triples (head, rel, tail) using a scoring function φ(uhead, urel, utail), where ux denotes the embedding
of entity/relation x and is a real-valued or complex-valued vector. φ depends on the model and varies
from simple translation (Bordes et al., 2013) over bilinear forms (Yang et al., 2014) to complex-valued

1We make our code available under https://github.com/haseebs/RST-OWE
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: Our approach first trains a KGC model on the graph without using textual information (bottom
left). For every annotated entity, we extract a text-based embedding v by aggregating the word embed-
dings for tokens in the entity’s name and description (top left). A transformation Ψ is trained to map v
to the space of graph-based embeddings (center). The learned mapping can then be applied to unknown
entities, thus allowing the trained KGC model to be applied (right).

forms (Trouillon et al., 2016). Training happens by learning to discriminate real triples from perturbed
ones, typically by negative sampling (Nickel et al., 2016).

While the knowledge graph completion models described above leverage only the structure of the
graph, some approaches combine text with graph information, typically using embeddings that represent
terms, sentences or documents (Goldberg, 2016). Embeddings are usually derived from language models,
either in static form (Mikolov et al., 2013) or by contextualized models (Devlin et al., 2018). KGC
models can employ such textual information for entities scarcely linked in the graph (Gesese et al., 2019).
Most approaches combine a textual embedding with structural KGC approaches, either by initializing
structural embeddings from text (Socher et al., 2013; Wang and Li, 2016), interpolating between textual
and structural embeddings (Xu et al., 2017), sometimes with a joined loss (Toutanova and Chen, 2015)
and gating mechanisms (Kristiadi et al., 2019). Others perform a fine-tuning for KGC based on textual
labels of the entities and relations (Yao et al., 2019).

Only few other works have addressed open-world KGC so far. Xie et al. (2016) proposed DKRL with
a joint training of graph-based embeddings (TransE) and text-based embeddings while regularizing both
types of embeddings to be aligned using an additional loss. ConMask (Shi and Weninger, 2017a) is a
text-centric approach where text-based embeddings for entities and relations are derived by an attention
model over names and descriptions. Closest to our work is OWE (Shah et al., 2019), which trains graph
and text embeddings independently and then learns a mapping between the two embedding spaces (more
details are provided in Section 3). While OWE’s mapping only take entities into account, our extended
model’s mapping is learned given both the entity and relation when predicting a triple. Orthogonal to
our work, WOWE (Zhou et al., 2020) extends the OWE approach by replacing the averaging aggregator
with a weighted attention mechanism and can be combined with our approach.

3 Approach

Given a knowledge graph G ⊂E×R×E containing triples (h, r, t) (E andR denote finite sets of entities
and relations), KGC models can perform tail prediction as follows: Given a pair of head and relation
(h, r), the tail is estimated as

t∗ = arg max
t∈E

φ(uh, ur, ut) (1)

where uh, ur, ut are entity/relation embeddings and φ is a model-specific scoring function. Note that this
approach – and our extension – can be applied for head prediction accordingly.

We address an open-world setting, where the triple’s head is not a part of the knowledge graph, i.e.
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Test Entity vh Relation r Nearest Neighbors to Ψr(vh)

Sheila Walsh
(Scottish contemporary
vocalist and songwriter)

birthPlace
1. Nigel McGuiness (British)
2. Darren Burridge (British)
3. Kim Newman (British)

recordLabel
1. Picture this live (album)
2. Thick as a Brick (album)
3. Whiplash Smile (album)

Test Entity vh Relation r Nearest Neighbors to Ψr(vh)

Ferlyn Wong
(Singaporean singer,
dancer and actress)

occupation
1. Park Ji-yeon (singer)
2. Kim Sae-ron (actress)
3. Park Shin-hye (actress)

genre
1. Tony An (singer)
2. Exodus (album)
3. S.E.S. (band)

Table 1: Relation-specific transformations map entities to corresponding regions in embedding space:
When mapping Sheila Walsh with the birthplace relation, the resulting embedding lies in a cluster of
British people. When mapping with the recordLabel relation, the resulting embedding lies close to pop
albums (which also have a recordLabel relation).

h 6∈ E. However, h is assumed to come with a textual description. Our approach (Figure 1) trans-
forms this text into a token sequence Wh = (w1, w2, ..., wn), from which a sequence of embeddings
(vw1 , vw2 , ..., vwn) is derived using a textual embedding model pre-trained on a large text corpus. We ex-
perimented with BERT (Devlin et al., 2018) but did not achieve major improvements over static embed-
dings, likely because descriptions on KGC datasets tend to be short. Instead we use Wikipedia2Vec (Ya-
mada et al., 2016), which contains phrase embeddings for entity names like ”Sheila Walsh”. If no phrase
embedding is available, we use token-wise embeddings instead. If no embedding is available for a token,
we use a vector of zeros as an “unknown” token. The resulting sequence of embeddings is aggregated by
average pooling to obtain a single text-based embedding vector of the head entity vh ∈ Rd.

The key step of our approach is to learn transformation functions Ψr that align the text-based and
graph-based embedding spaces such that Ψr(vh)≈uh. When applying this mapping, the open-world
entity’s text-based embedding vh is transformed into a graph-based proxy embedding Ψr(vh). Triples
with h are scored by applying the KGC model from Equation 1 to Ψr(vh):

t∗ = arg max
t∈E

φ
(

Ψr(vh), ur, ut

)
(2)

Like OWE (Shah et al., 2019), we use an affine transformation Ψr(v) = Ar·v + br. Our focus of this
paper is to deal with relation specificity, for which we propose the following two strategies:

Relation Specific Transformation (RST) While the OWE model consists of a global transformation
function (Ψ), our proposed RST approach trains a separate transformation function per relation (Ψr): Our
hypothesis is that when predicting a tail (h, r, ?), including information on the relation r may be bene-
ficial. Have a look at Table 1, where the transformation ΨbirthP lace maps vShiela Walsh to a completely
different region in the graph embedding space than ΨrecordLabel.

Therefore, we learn a separate transformation Ψr for each relation r∈R, containing a separate learn-
able matrixAr and vector br. For a fair comparison with OWE, we use the ComplEx KGC model (Trouil-
lon et al., 2016) in our experiments and use separate parameters for the real and imaginary parts.

Relation Clustering Transformation (RCT) Our second approach – Relation Clustering Transfor-
mation (RCT) – aggregates relations to clusters and then learns a separate transformation ΨC for each
cluster C. We use an agglomerative clustering approach (pseudo-code in Figure 2), which first initializes
each cluster with a single relation r∈R and conducts η fusion steps, each joining “similar” clusters: Let
t(C) denote the set of tails attached to any relation r in C. Clusters C,C ′ are fused if the number of
shared tails, divided by size of the smaller cluster, exceeds a threshold S:

|t(C) ∩ t(C ′)|
min(|t(C)|, |t(C ′)|)

> S (3)

3.1 Training
Our text embeddings v and graph embeddings u are based on pretrained models, such that the only
parameters Θ to be learned are the relation matrices Ar and vectors br. First a KGC model is trained
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DBPedia50k FB15k-237-OWE FB20k
Model H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

Target Filtering Baseline† 4.5 9.7 23.0 11.0 6.4 14.2 23.3 12.7 17.5 32.1 41.2 27.2
DKRL† - - 40.0 23.0 - - - - - - - -
ConMask† 47.1 64.5 81.0 58.4 21.5 39.9 45.8 29.9 42.3 57.3 71.7 53.3
ComplEx-OWE-200† 49.0 62.3 73.6 57.7 29.1 41.0 52.7 37.3 44.2 55.9 68.2 52.3
ComplEx-OWE-300† 51.9 65.2 76.0 60.3 31.6 43.9 56.0 40.1 44.8 57.1 69.1 53.1
WOWE (Zhou et al., 2020) 52.7 66.5 76.9 61.2 31.9 44.1 56.4 40.4 45.2 58.3 70.0 54.1

ComplEx-RCT (η : 6,S : 0.8) 54.2 68.6 79.1 63.1 33.0 45.7 58.2 41.7 46.4 59.4 71.0 55.0
ComplEx-RST 55.7 69.1 80.1 64.3 33.2 46.0 58.8 42.0 49.8 63.5 75.5 58.7

Table 2: Comparison with other open-world KGC models on tail prediction. The Relation Specific
Transformation (ComplEx-RST) performs best, particularly on the DBPedia50K and FB20K datasets
with long textual descriptions († results reported by Shah et al. (2019)).

on the full graph G, obtaining graph-based entity embeddings u1, ..., un. We then choose the subset Et

of all entities in the graph with textual descriptions, and define Gt := G ∩ (Et×R×E) as all triplets
containing heads with text. We then minimize the following loss:

L(Θ) =
∑

(h,r,t)∈Gt
dist
(

Ψr(vh), uh

)
(4)

with dist() referring either to Euclidean or cosine distance between the graph- and text-based head em-
beddings. As we use ComplEx, where embeddings uh contain real and imaginary parts, the above loss
is summed for both parts. Since the number of entities in the datasets used is limited and overfitting is
expected to be an issue, we neither fine-tune into the graph nor the text-embeddings.

4 Evaluation

We evaluate our model on FB20k (Xie et al., 2016), DBPedia50k (Shi and Weninger, 2017a) and FB15k-
237-OWE (Shah et al., 2019) and compare our model with the state of the art on the task in open-world
tail prediction. Results are illustrated in Table 2. Due to the lack of an open-world validation set on
FB20k, we remove random 10% of the test triples and use them as a validation set. Hyperparameters
were optimized using a grid search (details in the appendix). We use the same evaluation criteria as
Shah et al. (2019), and evaluate our results only on ComplEx to provide a fair comparison with the OWE
models. For training the closed-world KGC models, we utilize OpenKE (Han et al., 2018). Additionally,
we use the target filtering approach (Shi and Weninger, 2017a) on any results reported. The Target
Filtering Baseline is evaluated by assigning random scores to all targets that pass the target filtering
criterion.

Results We observe that the ComplEx-RST outperforms all other approaches – including OWE – by
a margin on all metrics except Hits@10 on DBPedia50k. ComplEx-RCT (relation clusters) performs
competitively with the ComplEx-RST (one mapping per relation), while the number of transformation
functions is reduced from 351 to 279 in case of DBPedia50k, from 235 to 114 in case of FB15k-237-
OWE and from 1341 to 522 in case of FB20k. The values of η and S were optimized to achieve the
greatest reduction in number of clusters at a negligible negative impact on accuracy. We also note that
the improvement achieved by utilizing the relation information is higher in DBPedia50k and FB20k,
both of which use very long descriptions compared to FB15k-237-OWE. We believe that this is because
the longer descriptions often have more pieces of information relevant to the relation, which the relation-
specific transformations are able to extract and utilize.

Finally, in Figure 2 (right) we investigate which relations benefit strongest from relation-specific map-
pings: Each point represents a relation in FB15k-237-OWE. We observe that points to the left (rare
relations) tend to benefit stronger from learning a transformation of their own (RST). Those scarce rela-
tions seem to be underrepresented in the training data and – accordingly – in the global mapping.
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Input: Training set G, similarity factor
S ∈ R, iterations η ∈ Z

Output: Clusters C = {c1, c2, . . . , cm}
for i← 1 . . . |R| do

ci ← {ri}
Procedure make clusters(C, η)

if η = 0 then
return C

for i← 1 . . . |C| do
t(ci)← get tails(ci, G)
for j = i+1 . . . |C| do

t(cj)← get tails(cj , G)

if |t(ci)∩t(cj)|
min(|t(ci)|,|t(cj)|)

> S then
ci ← ci ∪ cj
delete cj from C
break

make clusters(C, η − 1)
end
make clusters({c1 . . . c|R|}, η)
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Figure 2: The algorithm (left) outlines our implementation of the RCT approach in pseudo code. The
plot (right) visualizes the improvement in MRR of ComplEx-RST compared to ComplEx-OWE on the
y-axis. Each point is a relation in FB15k-237-OWE. The size of the point represents the number of test
triples containing the relation. The x-axis shows the number of training triples containing the relation.
We see that this improvement tends to be higher for scarce relations (left on the x-axis).

5 Conclusion

We have proposed a simple approach to incorporate relation-specific information into open-world knowl-
edge graph completion. Our approach achieves state-of-the-art results on common open-source bench-
marks and offers strong improvements over relation-agnostic state-of-the-art methods. An interesting
direction for future work will be to adapt our model to longer textual inputs, e.g. by using attention to
enable the model to select relevant passages (similar to ConMask (Shi and Weninger, 2017a)).
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