
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 83–88
Online, November 20, 2020. c©2020 Association for Computational Linguistics

83

Early Exiting BERT for Efficient Document Ranking

Ji Xin,1,2 Rodrigo Nogueira,1 Yaoliang Yu,1,2 and Jimmy Lin1,2

1 David R. Cheriton School of Computer Science, University of Waterloo
2 Vector Institute for Artificial Intelligence

Abstract

Pre-trained language models such as BERT
have shown their effectiveness in various tasks.
Despite their power, they are known to be
computationally intensive, which hinders real-
world applications. In this paper, we intro-
duce early exiting BERT for document rank-
ing. With a slight modification, BERT be-
comes a model with multiple output paths,
and each inference sample can exit early
from these paths. In this way, computa-
tion can be effectively allocated among sam-
ples, and overall system latency is significantly
reduced while the original quality is main-
tained. Our experiments on two document
ranking datasets demonstrate up to 2.5× in-
ference speedup with minimal quality degra-
dation. The source code of our implementa-
tion can be found at https://github.com/
castorini/earlyexiting-monobert.

1 Introduction

Large scale pre-trained language models such as
ELMo (Peters et al., 2018), GPT (Radford et al.,
2019), BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and ALBERT (Lan et al., 2019) have
brought impressive improvements to natural lan-
guage processing (NLP) and information retrieval
(IR) applications. However, these large-scale mod-
els bring to our community not only exciting re-
sults, but also concerns about intensive computa-
tion demands and high inference latency, especially
in real-world deployments.

In this paper, we study how to accelerate in-
ference of BERT-based IR models. We follow
the framework of MonoBERT (Nogueira and Cho,
2019), which performs binary classification on
query–document pairs into relevant/non-relevant.
To accelerate inference for BERT, we employ the
idea of early exiting as in DeeBERT (Xin et al.,
2020). In DeeBERT, extra classification layers
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Figure 1: Overview of early exiting BERT for docu-
ment ranking. Blue blocks are transformer layers and
orange blocks are classifiers.

are attached to transformer layers of a pre-trained
BERT model (Figure 1). The model is then fine-
tuned on the downstream training dataset. At in-
ference time, a sample is sequentially processed
by transformer layers and classifiers. If a clas-
sifier is confident of its prediction, it returns the
result and inference ends early; otherwise, the next
transformer layer proceeds with the computation.
Different from DeeBERT, which treats all classes
equally, we use asymmetric early exiting for doc-
ument ranking: the exiting threshold for positive
predictions is higher than for negative ones, since
the two classes in document ranking are intrinsi-
cally different, and it is natural to allocate more
computational resources for positive samples.

We conduct experiments on BERTBASE with
two document ranking datasets, MS MARCO
passage (Bajaj et al., 2016) and ASNQ (Garg
et al., 2019). We compare against Cascade Trans-
former (Soldaini and Moschitti, 2020), a recently
proposed technique to accelerate inference in
BERT-based document ranking. Results show that
our method can reduce inference latency by up to
2.5× with minimal effectiveness degradation.

https://github.com/castorini/earlyexiting-monobert
https://github.com/castorini/earlyexiting-monobert
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2 Related Work

Neural document ranking models have brought sig-
nificant improvements to IR tasks. Throughout
this paper, we refer to candidates to be retrieved
as documents, although they may actually be pas-
sages, answers to a question, etc. Representative
neural ranking models include DRMM (Guo et al.,
2016), DUET (Mitra et al., 2017), KNRM (Xiong
et al., 2017), Co-PACRR (Hui et al., 2018) — just
to name a few. In recent years, large-scale pre-
trained language models, especially those based on
the transformer architecture (Vaswani et al., 2017),
have been applied to IR tasks and have pushed the
state of the art even further (Nogueira and Cho,
2019; Dai and Callan, 2019; Yilmaz et al., 2019;
Li et al., 2020).

The idea of early exiting for neural networks
originates from BranchyNet (Teerapittayanon et al.,
2017), and is also applied to NLP tasks in several
papers (Xin et al., 2020; Schwartz et al., 2020;
Liu et al., 2020; Zhou et al., 2020). Our work
differs from them by using an early exiting strategy
that specializes for document ranking. Another
related work that focuses on retrieval is Cascade
Transformer (Soldaini and Moschitti, 2020), where
a fixed proportion of samples are dropped after
each layer. In contrast, our work drops samples
based on their scores, and empirically we are able
to achieve higher inference speedups.

3 Early Exiting for Document Ranking

The task of concern is document re-ranking, i.e., to
rank among a small candidate document set, which
is generated by a “bag of words” IR technique
such as BM25. We assume in this paper that the
candidate set is provided as input.

3.1 MonoBERT
We first briefly describe MonoBERT (Nogueira and
Cho, 2019), the neural ranking model on which our
early exiting model is built.

The input to MonoBERT is a query–document
pair, which is organized as one input sequence in
the following format:

[CLS] Q [SEP] D [SEP]

Here, Q and D are the query and the document, and
[CLS] and [SEP] are special tokens for marking
the beginning of input and separating the query and
document sequences. Details can be found in the
BERT paper (Devlin et al., 2019).

The task of MonoBERT is binary classifica-
tion: it produces a probability distribution over two
classes, relevant and non-relevant.

MonoBERT is initialized with a pre-trained
BERT model (or other models with a similar ar-
chitecture such as RoBERTa). A classifier, which
is typically a single-layer fully-connected network,
is attached to the last transformer layer of the BERT
model; concretely, the classifier takes as input the
last layer hidden state corresponding to the [CLS]
token, and outputs the binary prediction. For fine-
tuning, the model is updated with binary label su-
pervision. For inference, a query–document pair’s
relevance score is the predicted probability of the
document being relevant, and this score is used for
subsequent re-ranking of the candidates.

3.2 Fine-Tuning Early Exiting MonoBERT
Our model, early exiting MonoBERT, is a multi-
output variant of BERT which enables early exiting.
Similar to MonoBERT, we start with a pre-trained
BERTBASE model with n transformer layers and
attach n classifiers to it (Figure 1).

Our fine-tuning method is different from Dee-
BERT (Xin et al., 2020), where a two-stage fine-
tuning method is employed. Instead, we fine-tune
the model by simply minimizing the sum of loss
functions of all classifiers. The rationale is that
with abundant training data, as in our case, this sim-
ple fine-tuning method yields comparable or even
better results and is also faster. The loss function
of the ith classifier is

Li(x, y; θ) = H(y, fi(x; θ)), (1)

where x is the input query–document pair, y the
binary label of whether the pair is relevant, θ the
collection of all parameters, H the cross-entropy
loss function, and fi the binary probability distri-
bution returned by the ith classifier. The network is
fine-tuned with the following objective:

min
θ

∑
(x,y)∈D

∑
i

Li(x, y; θ), (2)

where D is the fine-tuning dataset.

3.3 Asymmetric Early Exiting
After the multi-output model is fine-tuned, it is
used for inference with early exiting. When an
inference sample is fed into the model, it is pro-
cessed sequentially by each transformer layer and
classifier. If the ith layer classifier is confident of
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Algorithm 1: Asymmetric Early Exiting
for i = 1 to n do
probi = fi(x; θ)
if probposi > τp or probnegi > τn then

return probposi

end if
end for
return probposn

the prediction fi(x; θ), early exiting is performed
and subsequent transformer layers are skipped. We
define the confidence of fi(x; θ) as the higher prob-
ability of the two classes. Finally, documents are
ranked with respect to their predicted probability
of the positive class (relevant).

In previous early exiting BERT for NLP papers,
symmetric early exiting is used, i.e., if the model’s
confidence exceeds a threshold, the sample exits.
The early exiting algorithm is therefore symmetric
with respect to all classes. In the case of early exit-
ing for document ranking, however, there are two
fundamental differences from NLP applications.
Firstly, the two classes (relevant and non-relevant)
are clearly not symmetric: we only care about rele-
vant documents, and the more relevant they are, the
more computation resources should be allocated to
them. Secondly, for positive samples, confidence
is not only the criterion for early exiting, but also
the score for subsequent re-ranking.

To bridge the differences mentioned above, we
propose to use asymmetric early exiting for docu-
ment ranking. Concretely, we define two thresh-
olds for confidence, τp and τn, for positive (rele-
vant) and negative (non-relevant) predictions, re-
spectively. We will show by experiments that we
should choose a higher positive confidence thresh-
old than the negative one, i.e., if a document is
likely to be non-relevant, then we can stop its in-
ference earlier, but if it is expected to be relevant,
we should be prudent and use more layers to obtain
accurate scores. Details are shown in Algorithm 1.

4 Experimental Setup

We apply early exiting on BERTBASE and conduct
experiments on two datasets for document rank-
ing, MS MARCO passage (Bajaj et al., 2016) and
ASNQ (Garg et al., 2019).

Model and Implementation. We start from a
pre-trained BERTBASE model. The implementation

is adapted from the HuggingFace Transformers Li-
brary (Wolf et al., 2019). We fine-tune the model
on 4 NVIDIA Tesla V100 GPUs, with a batch size
of 60. For other hyperparameters such as learn-
ing rate and maximum sequence length, we fol-
low MonoBERT (Nogueira and Cho, 2019) for MS
MARCO passage and Cascade Transformer (Sol-
daini and Moschitti, 2020) for ASNQ.

Dataset Details. MS MARCO passage provides
a small version of the training set,1 from which
we build our training set by selecting tuples with
unique pairs of query–relevant document, yield-
ing a dataset of 832k query–document pairs, half
relevant and half non-relevant. We fine-tune the
model for 4 epochs. Its development set has 6.9k
queries, and for each query there are 1k candidate
documents, among which there is approximately 1
relevant document.

ASNQ’s training set2 has 20M query–document
pairs. Similar to MS MARCO passage, we se-
lect only unique pairs of query–relevant document,
and then complement the dataset with the same
amount of query–non-relevant document pairs to
yield a training set of 114k pairs. We fine-tune for
2 epochs. Its development set has 1.3k queries, and
each query has, on average, 400 candidate docu-
ments and 3 relevant ones.

5 Experimental Results

We show the trade-offs between model quality and
computation of early exiting in Tables 1 and 2 for
MS MARCO passage and ANSQ, respectively. Dif-
ferent trade-offs are achieved by setting various
negative confidence threshold τn, while τp is al-
ways set to 1; we will provide detailed analyses
of these thresholds later. Inference efficiency is
quantified by the average exit layer of inference
samples; this metric is, according to our experi-
ments, proportional to actual wall-clock runtime,
while being invariant across multiple runs.

We can see that in both datasets, early exiting is
able to accelerate inference by ∼2.5× while main-
taining the original model effectiveness. It is worth
noting that in Cascade Transformer (CT) (Soldaini
and Moschitti, 2020), only a part of the develop-
ment set is used for evaluation, and therefore the
scores are not directly comparable. However, in

1https://msmarco.blob.core.windows.
net/msmarcoranking/triples.train.small.
tar.gz

2https://github.com/alexa/wqa_tanda

https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz
https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz
https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz
https://github.com/alexa/wqa_tanda
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Method
MRR
@10

τn Speedup

MB 0.347 1.0×

eeMB

0.343 1.00 1.0×
0.343 (−0%) 0.95 2.6×
0.340 (−1%) 0.90 2.9×
0.336 (−2%) 0.85 3.2×
0.327 (−5%) 0.80 3.5×
0.312 (−9%) 0.75 3.9×
0.290 (−15%) 0.70 4.3×

Table 1: MS MARCO passage development set results.
MB: MonoBERT; eeMB: early exiting MonoBERT.

Method
nDCG
@10

MRR τn Speedup

CT

0.661 0.654 1.0×
0.653 0.653 1.6×
0.650 0.648 1.8×
0.650 0.645 2.0×

eeMB

0.650 0.633 1.00 1.0×
0.650 0.633 0.99 2.5×
0.648 0.632 0.95 3.2×
0.646 0.632 0.90 3.6×
0.638 0.627 0.80 4.1×

Table 2: ASNQ development set results. CT: Cascade
Transformer; eeMB: early exiting MonoBERT. Abso-
lute values of scores of CT and eeMB are not directly
comparable due to dataset differences.

terms of relative performance, our model appears
to achieve a bit higher inference speedup with a
comparable score degradation.

We also compare confidence-based early exiting
trade-offs with layer-wise scores of the model in
Figures 2 and 3. The layer-wise score of the ith

layer is obtained by forcing all inference samples
to exit through the classifier at the ith layer. It
provide a series of baselines: if we want to save
50% inference computation for a 12-layer model, a
straightforward way is to use the 6th layer’s classi-
fier for all samples. The first two layers are omitted
from the layer-wise score curves since their scores
are too low to be useful. The figures show that
the early exiting idea significantly outperforms the
naı̈ve baselines.

To analyze the effect of different confidence
thresholds, we plot in Figure 4 the comparison
of confidence thresholds τp and τn using the MS
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Figure 2: Comparison between layer-wise scores and
early exiting trade-offs, on the MS MARCO passage
development set.
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Figure 3: Comparison between layer-wise scores and
early exiting trade-offs, on the ASNQ development set.

MARCO passage dataset. Results from ASNQ are
very similar and therefore omitted. Each curve cor-
responds to one τp value, and points within a curve
are plotted by choosing different τn values.3

We notice that the trade-off performance is
monotonic with respect to the positive confidence
threshold: the higher τp is, the better the trade-offs
are. We speculate the reason is that while smaller
τp improves efficiency by allowing more samples
to exit earlier, the quality of predictions from ear-
lier layers of relevant samples degrades drastically.
Considering the fact that relevant samples consti-
tute only a tiny fraction of all candidates in both
datasets, setting τp = 1, i.e., using as many trans-
former layers as we can on positive samples, is the
optimal choice. It is worth noting that for other
datasets with higher relevant candidate proportions,
the optimal τp may be smaller than 1.

Within one curve (a fixed τp), τn controls the
3Points on each curve, from left to right, correspond to τn

values in Table 1, from bottom to top.



87

4 6 8 10 12
Avg. Exit Layer

0.225

0.250

0.275

0.300

0.325

M
R

R
@

10
Positive Confidence τp on MS MARCO

τp

1.0

0.95

0.9

0.8

Figure 4: Comparison between different values of τp
(curves) and τn (points on a curve).

trade-offs between efficiency and quality: lower τn
allows more negative samples to exit earlier, thus
improving efficiency with relatively small quality
degradation. Such asymmetry demonstrates the
necessity of using two confidence thresholds in-
stead of one: while we can safely perform early
exiting on negative samples and save computation,
we should allocate far more resources to positive
samples for the most accurate predictions.

6 Conclusion

We propose asymmetric early exiting BERT for
document ranking, an effective method to improve
model efficiency in IR tasks. Computation re-
sources are allocated to samples according to their
needs. Experiments show that our method is able to
achieve different quality–latency trade-offs by set-
ting different thresholds, and also improves model
efficiency over baselines.
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