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Abstract

Explanation generation introduced as the
WorldTree corpus (Jansen et al., 2018) is an
emerging NLP task involving multi-hop in-
ference for explaining the correct answer in
multiple-choice QA. It is a challenging task ev-
idenced by low state-of-the-art performances
(below 60% in F-score) demonstrated on the
task. Of the state-of-the-art approaches, fine-
tuned transformer-based (Vaswani et al., 2017)
BERT models have shown great promise to-
ward continued system performance improve-
ments compared with approaches relying on
surface-level cues alone that demonstrate per-
formance saturation. In this work, we take
a novel direction by addressing a particular
linguistic characteristic of the data—we intro-
duce a novel and lightweight focus feature in
the transformer-based model and examine task
improvements. Our evaluations reveal a signif-
icantly positive impact of this lightweight fo-
cus feature achieving highest scores, second
only to a significantly computationally inten-
sive system.

1 Introduction
Multi-hop Inference for Explanation Regener-

ation (MIER) is an emerging task in NLP that
concerns aggregating facts to justify the correct
answer choice in multiple-choice question answer-
ing settings. The WorldTree corpus (Jansen et al.,
2018) that introduced this as a community shared
task (Jansen and Ustalov, 2019), was dedicated to
finding systems that generate explanations for an-
swers to elementary science questions based on the
MIER paradigm.

The core task essentially entails two main steps:
identification of relevant explanation facts from a
given knowledge base, followed by ranking the

This work is licensed under a Creative Commons Attri-
bution 4.0 International License. License details: http:
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a	tree	is	a	kind	of	a	plant

Which	of	the	following	helps	the	leaves	break	down	after	

Answer	:	decomposers

they	have	fallen		off	the	tree	?		

a	leaf	is	a	part	of	a	tree

a	plant	is	a	kind	of	a	organism

if	a	leaf	falls	off	of	a	tree	then	that	leaf	is	dead

decomposition	is	when	a	decomposer	breaks	down	dead
organisms

Figure 1: A elementary science question, its correct an-
swer, and the ordered set of justification facts for the
answer in the WorldTree corpus (Jansen et al., 2018)
depicted as a subgraph of lexical matches.

selected facts as a logically coherent paragraph.
Figure 1 shows an example data instance from the
WorldTree corpus (Jansen et al., 2018) that defines
this task. It is basically a question, its correct an-
swer, and a set of ordered facts that justify the
correct answer choice. Depicted in the figure, as
a subgraph, is a crucial characteristic feature of
the data: that there are lexical overlaps between
the question, the correct answer, and the explana-
tion facts. In this respect, however, there are two
notable caveats: 1) distractors—the lexical over-
laps can also exist with irrelevant facts to the QA.
E.g., given the KB fact: a decomposer is usually
a bacterium or fungus, it has a lexical match to
the answer, but it is not relevant to the explanation.
Similarly, at least 13 other such matching irrelevant
facts can be found in the WorldTree corpus (2018)
knowledge base. And 2) multi-hop inference of
valid explanation facts—not all the relevant expla-
nation facts have a direct lexical match to the QA
pair, some of the facts are lexically connected to the
other valid explanation facts. E.g., the fact a plant
is a kind of an organism has no lexical relation to
the question or to the answer, but it does to the
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first explanation fact, hence this entails multihop
inference from the QA to the explanation fact to
another explanation fact. As such, selecting the set
of relevant explanation facts, demands extra effort
beyond direct lexical matches with the QA.

In light of these caveats in the data, the
task presents itself as a fairly complex inference
task, where traditional methods for QA that are
based on simple fact matching have proved inad-
equate (Clark et al., 2013; Jansen et al., 2016).
Given the lexical match characteristic of the
data, a slightly adapted application of tf-idf algo-
rithm (Chia et al., 2019), unsurprisingly demon-
strates high performance near that of state-of-the-
art neural models.

The MIER task defined in the WorldTree cor-
pus (Jansen et al., 2018) was introduced for the first
time as a shared task at TextGraph-13 (Jansen and
Ustalov, 2019). The state-of-the-art system (Das
et al., 2019) employed a fine-tuned BERT-based
model in an extended computationally intensive
architecture. Generally, the performance of these
fine-tuned transformer models depends on how re-
lated the data is to the original pretraining data
and how best the input representation can be en-
coded. To this end, in this work, concentrating ex-
clusively on enhancing the lexical match between
a question, answer, and explanation, we encode a
novel lightweight feature based on the psycholin-
guistic concept of focus words that has been de-
fined by Brysbaert et al. Loosely, a focus word can
be defined as a word which is not too tangible to
be experienced directly by the five natural senses
(i.e., smell, touch, sight, taste, and hearing), while
as well not too abstract (e.g., acquirable) that the
meaning may not be illustrated without using other
words. From Figure 1, as an example, the focus
words are break down, fall, decompose, organism,
dead. Inspired by (Jansen et al., 2017), we demon-
strate for the first time the application of focus
words in the context of contemporary neural-based
transformer models for the task of explanation gen-
eration. We observe that employing focus words in
neural-based models enhances the lexical attention
capability within transformer-based BERT models
and demonstrates an improvement on vanilla BERT
models. In fact, among all systems for the task, we
obtain the highest scores, second only to the compu-
tationally intensive system by Das et al. Thus, our
successful application of focus words in elemen-
tary science explanation generation demonstrates

a poignant application of a vital psycholinguistic
feature in the context of a contemporary problem
in Artificial Intelligence.

In our experiments, we examine two main re-
search questions. The first assesses the optimal
training experimental setting of the WorldTree cor-
pus (2018). Specifically, RQ1: how does the pro-
portion of negative training examples impact fine-
tuning model performance? The second directly
assesses the impact of our focus word feature. RQ2:
what is the impact of the novel focus word feature
on explanation generation in an optimal fine-tuned
model? The rest of the paper is structured as fol-
lows. We define our problem in Section 2, followed
by a description of the related work in Section 3.
Section 4 discusses our approach, with evaluation
results presented in Section 5. We conclude in
Section 6.

2 Problem Definition
Given a question q = {w1, w2, .., w|q|}, its

correct answer a = {w1, w2, ..., w|a|}, and a set
of explanation facts E s.t. every e ∈ E =
{w1, w2, ..., w|e|} where wi are words ∈ V for
some vocabulary V . Following the definition for
the TextGraphs-13 MIER task (Jansen and Ustalov,
2019), the aim is to obtain, for every question and
its correct answer, an ordered list of a set of facts
that are coherent in discourse from a knowledge
base of facts. By definition, for a question-correct
answer pair (q, a), there exists a set of ordered
explanation facts Rq,a ⊆ E called the relevant
set. For each (q, a) pair, the task aims to gener-
ate an ordered list of all the explanation facts in
the knowledge base Eo such that ∀eo, e ∈ E : eo ∈
Rq,a ∧ e /∈ Rq,a , rank(eo, Eo) < rank(e, Eo).
We define, for any given (q, a) pair the ordered list
as Eoq,a = Reorder({(ek, γk) | ek ∈ E}) where
γk is an associated relevance score obtained by
predicting a proximity value Φ(q, a, ek, θ). The
Reorder function therefore ranks the values ek us-
ing the proximity score γk, where the result is a
ranked list of all explanations in which the facts
with higher γk scores are ranked higher. Φ is a re-
gression function and θ represents the transformer
model hyperparameters.

As alluded to in the Introduction, we induce
novel focus word features from both the question
and the answer, and the explanation facts. Adapted
from Brysbaert et al., we deem as focus words
v ∈ V a word with an annotated psycholinguistic
concreteness score between 3.0 and 4.2, i.e. one
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relegated as somewhere in between an abstract and
concrete concept word which is relevant in elemen-
tary science since they often discuss phenomenon
such as “evaporation,” “dead,” “break down,” etc.

3 Related Work
(Jansen et al., 2017) attempted to jointly solve

question answering as a consequence of explana-
tion generation. They first identified the question
focus words using a predetermined range of psy-
cholinguistic concreteness scores (Brysbaert et al.,
2014). Then they generate answer justifications
by aggregating multiple facts from external knowl-
edge sources (via constructs called text aggregation
graphs). We leverage these concreteness scores,
specifically the range between 3.0 and 4.2 that
define focus words, as feature labels for the ele-
mentary science QA focus words in a transformer
BERT model.

The TextGraph-13 MIER Shared Task saw two
flavors of approaches to the task. The traditional
approach of using hand-crafted linguistic features
in an SVM ranker (D’Souza et al., 2019) and with
reranking rules to correct obvious prediction errors.
And, on the other hand, the most recent BERT-
based rerankers over heuristically ranked data in a
first stage. Banerjee tested initial ranking using two
different transformer models: BERT (Devlin et al.,
2018) and XLNet (Yang et al., 2019), and observe
that including parts of gold explanations with ques-
tion text when training for relevance as additional
context offers performance improvement. Their
approach included reranking the top 15 ranked
facts via cosine similarity. Chia et al. explore
an iterative tf-idf to recursively refine the results
and achieve significant improvements on a baseline
non-optimized tf-idf. In addition, they employ the
results of this process in a BERT-based re-ranker
to rank the top 64 candidates. The top-ranked sys-
tem by Das et al. used fine-tuned BERT both for
the initial step and the reranking. Where the first
BERT model is fine-tuned on the whole set of facts
in the knowledge base, the second BERT model is
fine-tuned as a path ranking model. In this latter
case, a BERT model is trained with chains of valid
multi-hop facts from the top 25 candidates. Com-
puting chains of multi-hop facts was a brute-force
computationally exhaustive process which is not
practically viable as noted by the authors. We also
include results for a BERT model trained purely on
just the focus words of the question/answer pairs,
and the explanations. This model obtains no signals

at all from the data, an indication that focus words
are best used as extra signals to the data as opposed
to being utilized as standalone data by themselves.

4 Our Approach
Our approach is illustrated in Figure 2 and is

described next.

4.1 Our Novel Focus Words Feature
Word concreteness ratings coming from research

in psycholinguistics (Brysbaert et al., 2014) forms
a good source of information to identify whether
a word in a sentence reflects an abstract or a con-
crete real-world concept. In prior work, Jansen
et al. were the first to employ the word concrete-
ness scores to identify focus words in elementary
science QA as a linking signal with relevant ex-
planation facts. In their work, the focus words
were employed to help aggregate related explana-
tion facts, whereby the identified focus words were
considered highly relevant in finding the answer to
a question, hence significant for connecting justifi-
cation sentences together. We borrow this insight
and apply concreteness scores during finetuning
BERT which we employ as a reranker (described
in the next subsection). The raw annotated data
with the concreteness scores is a list of 40,000
lemmas from common English.1 As mentioned
earlier, focus words are those with concreteness
scores between 3.0 and 4.2 a range defined in (Be-
rant and Liang, 2014) which reflect the degree to
which a word is a focus word with abstract words
and concrete words being on the extreme ends of
the words spectrum. In the context of our problem
domain, i.e. elementary science, we have identi-
fied that the most relevant content terms fall in the
conceptual spectrum of focus words. For example
the focus words measure/measurement, eat/eating,
evaporate/evaporation are words that describe the
relevant concepts in elementary science.

We preprocess the text using the spaCy2 NLP
toolkit for tokenization and lemmatization before
retrieving concreteness scores (Brysbaert et al.,
2014) for the words from the dictionary.

4.2 Finetuning BERT Ranker with Focus
Words

We utilize the pretrained BERT (Devlin et al.,
2018) model and fine tune it on the sentence pair
scoring task with a regression function to obtain

1http://crr.ugent.be/archives/1330
2Available from https://spacy.io/

http://crr.ugent.be/archives/1330
https://spacy.io/
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q	:	Which	of	the	following	helps	the	leaves	break	down	after	they	have		fallen

a	:	decomposers

Tokenizer Lemmatizer Focus Filter

break down fall decompose decomposition break down dead
organism
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break down fall decompose
.   .  .

part

+

+

+

fall	dead
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2

3

Linguistic Analysis
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Figure 2: Fine-tuning of Transformers with Focus Word Features. Approach: The q, a are paired with each
explanation in the set. This is then passed through the Focus word extractor that identifies the focus words based
on concreteness scores. Input representation layers: 1) Position Embeddings; 2) Segment Embeddings; and 3)
Word Embeddings.

ranking scores. Our input to the BERT model is
encoded as follows: the special [CLS] token is
appended to the beginning of every data instance;
a special token [SEP ] is used to separate the (q, a)
pair from the explanation fact and is appended to
the end of the explanation fact as well; additionally,
to encode our focus word feature, we introduce
a new special token [FOC]. Focus words are
identified from the (q, a) and explanation facts,
and they are listed following the text with the
[FOC] separator. As an example of our input, con-
sider [CLS] Which of the following helps

leaves break down after they have fallen

off a tree decomposers [FOC] break fall

decompose [SEP] decomposition is when

a decomposer breaks down dead organisms

[FOC] decomposition decompose break down

organism [SEP].
This is then used as input to the model which

learns representations for both the (q, a) and ex-
planation fact text fragments, and the focus word
tokens. Our model architecture in Figure 2 depicts
how the input is handled at the embeddings layer.
For instance, to obtain a representation for a focus
word at position i in the input, from the (q, a) side:
the word embedding Eqai - layer 3, segment em-
beddingEQA - layer 2, and the position embedding
Eposi - layer 1, are summed up into a single em-
bedding vector. This output is then passed to the
bidirectional transformer layer and finally through
a regression layer to produce the score γ for the
input explanation fact. Finally, all facts are sorted
by γ scores in descending order.

4.2.1 Training and Hyperparameters
Our BERT model is initialized using publicly

available weights from the pretrained BERTBASE

model available in the Python package Pytorch-
Transformers3. We use the default learning rate of
2e-5, a batch size of 32 and maximum sequence
length of 512. The batch size and sequence length
are unchanged for training and testing. The model
was fine-tuned for 3 epochs using the Adam opti-
mizer (Kingma and Ba, 2014).

5 Evaluation and Results
To develop and evaluate our approach, we use

the TextGraphs-13 MIER Shared Task (Jansen and
Ustalov, 2019) dataset and evaluation scripts, re-
spectively.

5.1 Experimental Setup
Dataset. The TextGraph-13 MIER task used the
WorldTree corpus (Jansen et al., 2018) consisting
of 1,190, 264, and 1,247 training, development,
and test set QA instances additionally annotated
with explanations, comprising anywhere between 1
to 23 facts. The QA part of the dataset is a multiple-
choice dataset, therefore, each question has upto
5 answer choices of which the correct answer is
already known. A set of 4,789 candidate facts was
additionally provided as the knowledge base.

Evaluation Metrics. The shared task evalua-
tion script employed the mean Average Precision
(mAP ) metric.

5.2 Results and Discussion
To address RQ1, we perform experiments with

different numbers of negative examples in the train-
ing set, starting with the whole dataset contain-
ing ∼4,770 negative explanation facts per (q, a).

3Accessible at https://github.com/
huggingface/transformers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Approach mAP
Dev Test

BERT Re-ranker + inference chains (Das et al., 2019) 58.5 56.3
BERT Re-ranker + Iterated TF-IDF (Chia et al., 2019) 50.9 47.7
Iterated TF-IDF (Chia et al., 2019) 49.7 45.8
Optimized TF-IDF (Chia et al., 2019) 45.8 42.7
BERT iterative re-ranker (Banerjee, 2019) 42.3 41.3
Rules + Feature-rich SVMRank (D’Souza et al., 2019) 44.4 39.4
Generic Feature-rich SVMRank (D’Souza et al., 2019) 37.1 34.1
TF-IDF Baseline + SVMRank (Jansen and Ustalov, 2019) – 29.6
TF-IDF Baseline 24.4 24.8
BERT + Only Focus Words + Optimized Neg Facts 0.019 0.083
BERT + Optimized Neg Facts (Ours) 54.1 52.6
BERT + Focus Words + Optimized Neg Facts (Ours) 55.6 53.8

Table 1: Mean Average Precision (mAP ) percentage scores for the Elementary Science Explanation Regeneration
comparing our approach (last two rows) with nine reference systems

#Neg. Examples Dev mAP Test mAP
∼ 4770 43.21 40.11
1000 53.12 50.42
900 54.14 52.57
800 54.88 52.26
600 54.88 52.26

Table 2: Mean Average Precision (mAP) percentage
scores of finetuning BERT over varying negative train-
ing examples

Note, by the whole dataset, we mean all the ex-
planation facts in the knowledge base that are not
annotated as valid facts for a given (q, a) instance.
Table 2 shows that too many negative examples for
training had a negative impact. The configuration
with (∼4770) refers to the Vanilla BERT model
trained on each question-answer (q, a) paired with
all the explanation facts. We reached an equilib-
rium between 600 and 900 negative explanation
facts per (q, a). Thus, RQ1 investigated obtaining
an optimally trained model given the WorldTree
corpus (2018) as input which we found at 900 ex-
planation facts.

Table 1 shows the performance of our optimally
trained BERT model with and without focus words
for the MIER task. Addressing RQ2, we find that
the focus tokens induces a performance improve-
ment above 1% mAP . Overall, our model outper-
forms eight of the nine reference systems. It is
second only to a more computationally intensive
model (Das et al., 2019) where comparatively ours
is significantly simpler, thereby practically viable.
Separately, a model trained only on focus words

from the (q, a) and explanation facts, themselves,
do not provide any substantial signals to train a
useful model (see row “BERT + Pure Focus Words
+ Optimised Neg Facts” row). This affirms that
the original sentence provide necessary training
signals which can be further accentuated with the
focus word features.

6 Conclusions
In this paper, we empirically determine that the

number of negative examples in training has an im-
pact on the fine-tuning process for the explanation
regeneration task. We have presented a lightweight,
nonetheless, effective solution to the problem of
explanation regeneration in elementary science QA.
Staying on course with the current trend of investi-
gating neural models, we implement a BERT-based
model with an additional linguistic focus words fea-
ture. Thereby with our new feature we tap deeper
into the nature of data in terms of its linguistic
match characteristic. We obtained a considerable
improvement in task performance. Subsequently,
since focus words have proven effective in our
experiments, by their nature we hypothesize that
attention-based models are a promising future di-
rection for this task. In this work, we developed our
system based on the MIER TextGraph-13 Shared
Task (Jansen and Ustalov, 2019) definition for ex-
planation generation, in the context of which we
utilize only the correct answer for ranking explana-
tion facts. Toward an end-to-end model, as a first
step, we plan to explore the training of an optimal
model with all answer choices; following which,
we plan to jointly model the question answering
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process together with explanation generation in a
feedback loop such that both tasks mutually im-
prove each other (Pirtoaca et al., 2019), except we
will test our system for elementary science QA.
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