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Abstract

Model-complete text comprehension aims at
interpreting a natural language text with re-
spect to a semantic domain model describing
the classes and their properties relevant for the
domain in question. Solving this task can be
approached as a structured prediction problem,
consisting in inferring the most probable in-
stance of the semantic model given the text.
In this work, we focus on the challenging sub-
problem of cardinality prediction that consists
in predicting the number of distinct individu-
als of each class in the semantic model. We
show that cardinality prediction can success-
fully be approached by modeling the overall
task as a joint inference problem, predicting
the number of individuals of certain classes
while at the same time extracting their proper-
ties. We approach this task with probabilistic
graphical models computing the maximum-a-
posteriori instance of the semantic model. Our
main contribution lies on the empirical inves-
tigation and analysis of different approxima-
tive inference strategies based on Gibbs sam-
pling. We present and evaluate our models on
the task of extracting key parameters from sci-
entific full text articles describing pre-clinical
studies in the domain of spinal cord injury.

1 Introduction

While there has been significant progress on in-
formation extraction tasks with a comparably low
level of structural complexity such as entity recog-
nition (Goulart et al., 2011; Nadeau and Sekine,
2007), relation extraction (Zhou et al., 2014; Ku-
mar, 2017), and co-reference resolution (Soon et al.,
2001; Ferracane et al., 2016), there is not much
progress on capturing the comprehensive meaning
of a text with respect to a given semantic model in
terms of a given vocabulary of classes and proper-
ties. We refer to this task as model-complete text
comprehension (MCTC) which requires to put all

the above mentioned classical NLP-tasks into a
larger context. The goal of MCTC is to capture all
the information in the text that is expressible with
respect to the semantic model, while ignoring those
meaning aspects which are not. This can be framed
as a structured prediction problem consisting in in-
ferring the most plausible instance of the semantic
model.

One challenging problem in MCTC lies in the
prediction of the correct number of individuals
for each class, hereinafter referred to as cardinal-
ity prediction, that is answering the question(s):
“How many (and which) individuals of a class are
mentioned in the text?”. In essence, this can be
approached by grouping mentions of known real-
world entities into equivalence classes, which has
widely been addressed under the heading of co-
reference resolution (He, 2007; Singh et al., 2013).
However, in many problem domains, we need to
identify equivalence classes of entities that are prio-
rily unknown (in terms of not referring to a specific
real-world entity). Thus, explicit mentions in text
such as naming variations etc. can not be directly
mapped to a set of existing entities. To the con-
trary, such entities are only distinguishable on the
basis of their describing properties. Take the case
of scientific publications concerning pre-clinical
studies containing a variable number of experimen-
tal groups each of which is described by an injury
model, an animal species, treatments etc. Here,
mentions of experimental groups do not refer to
existing real-world entities and they need to be
inferred/grouped on the basis of their identifying
properties that are mentioned in the text. We refer
to the prediction of how many distinct individuals1

of a particular class are (indirectly) mentioned in
a text as cardinality prediction and solve it jointly

1We refer to mentions of entities in a text as entities and to
the denotation of such entities in a given model of the text as
individuals
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with the prediction of the properties of each in-
dividual. We model this joint task as the task of
predicting a (logical) model of the text, which in-
volves making choices as to which individuals exist
for each class.

Towards capturing the dependence of class car-
dinalities and properties, we propose a joint infer-
ence approach that infers equivalence classes of
entities in a text while at the same time predicting
the properties of each equivalence class. We model
this task as a statistical inference problem, relying
on a factorized posterior conditional distribution
p(~y | ~x) as implemented in CRFs to approximate
the true distribution over possible instantiations
~y ∈ Y of the semantic model given a text ~x. Ap-
plying maximum-a-posteriori inference, we infer
the most likely instance of the model that captures
the whole meaning of the text as expressible by
the semantic model. This includes the determina-
tion of the number of distinct equivalence classes
(thus solving cardinality prediction) as well as pre-
dicting the properties for each equivalence class.
Our approach is evaluated on text comprehension
of research articles describing pre-clinical studies
in the domain of spinal cord injury. Capturing
correct key-parameters of the study protocol can
be modeled as an MCTC problem as it requires
a comprehensive understanding of the text rather
than extracting single binary relations only. In this
domain, we focus in particular on the extraction
of experimental groups and their properties as de-
scribed in Section 4.1. The data set2 and the source
code 3 are public available.

In this work, we answer the following research
questions:

1) What is the advantage of jointly predicting the
cardinality of classes and their properties over
an isolated approach and how much does the
prediction of the cardinality profit from the
joint modelling?

2) What approximative inference strategies work
best on this complex inference problem? We
examine i) a vanilla Gibbs-based inference
strategy ii) an inference strategy that is seeded
with cardinality values based on a preceding
clustering step., and iii) a parallel multi-chain

2http://psink.techfak.uni-bielefeld.
de/spnlp-2020/mctc-spnlp2020.zip

3https://github.com/ag-sc/
SCIOExtraction

inference strategy in which one chain is con-
structed for each potential cardinality value.

2 Related Work

There are a number of traditional natural language
processing tasks related to model-complete text
comprehension. In this section, we briefly discuss
each task and provide some pointers to systems
addressing the corresponding task, focusing on the
bio-medical domain.

Entity Recognition and Linking (NER+L) de-
scribes the task of finding entity mentions in a text
and linking them to unique concepts in some knowl-
edge base. The task originated in the context of
information extraction, consisting of identifying
persons, company names etc. (Nadeau and Sekine,
2007) but has also received prominent attention
in the biomedical field focusing on entities such
as genes, diseases, treatments, etc. (Goulart et al.,
2011). NER+L is an important preliminary step in
many downstream applications as it identifies core
informational units that are needed for more com-
plex analysis levels including relation extraction,
slot filling, and MCTC.

Relation Extraction (RE) describes the task of
detecting relations between entities mentioned in
a text (Giuliano et al., 2007). While many mod-
els rely on a pipeline architecture predicting enti-
ties first and then predicting relations, more recent
works model both tasks jointly (Luo et al., 2015).
Although there has been notable progress on RE in
the last years, the task has been typically restricted
to extracting binary relations within single sentence
boundaries only (Zhou et al., 2014). With our work,
we strive to go beyond such simplifications towards
document-level text interpretation with respect to a
more complex model.

Co-reference resolution (CRR) describes origi-
nally the task of finding nouns and pronouns that
refer to the same underlying entity (Soon et al.,
2001). When applying CRR to the medical field,
the task shifts towards the resolution of mentions
of diseases, tests, compounds, groups, treatments,
etc. (He, 2007). Cardinality prediction in isola-
tion can be modeled as a CRR problem, where the
number of distinct non co-referring entities need
to be found. With regard to the goal of compre-
hensive text understanding, classical co-reference
resolution is clearly not enough, as also the prop-
erties of each entity need to be extracted. While
Singh et al. (Singh et al., 2013) have attempted

http://psink.techfak.uni-bielefeld.de/spnlp-2020/mctc-spnlp2020.zip
http://psink.techfak.uni-bielefeld.de/spnlp-2020/mctc-spnlp2020.zip
https://github.com/ag-sc/SCIOExtraction
https://github.com/ag-sc/SCIOExtraction
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to model the tasks of entity recognition, relation
extraction and co-reference resolution jointly, in
their approach the interaction between relation ex-
traction and co-reference resolution is not mod-
elled directly, only via entity tags. In our approach
we model the joint interaction between inducing
equivalence classes (resolving co-references) while
extracting the properties of entities/individuals as
a basis to inform the decision about whether two
individuals are the same (thus co-refer) given their
properties. Durret et al. (Durrett et al., 2013) pro-
pose a global inference entity-level modeling for
classical co-reference resolution based on a rich
factor graph. In the unrolled factor graph, each
factor refers to one entity property defined on a
semantic or syntactic linguistic basis. In contrast to
this work where properties of an individual/entity
are pre-defined by the semantic model. Thus, our
focus lies in their joint exploration while learning
their interplay during inference in order to decide
whether the properties belong to the same individ-
ual or not. Haghighi et al. (Haghighi and Klein,
2010) propose an unsupervised generative model
incorporating several linguistic properties of the
entity and its mention. In contrast, our work does
not rely on entities that are explicitly mentioned
in text. Instead, our model follows the schema of
a semantic model to reason about the existence
of individuals that can be inferred from the text
and groups these individuals into groups by way of
inferring the properties of these individuals.

The task of slot-filling (SF) was first introduced
in the Message Understanding Conference (Grish-
man and Sundheim, 1996). It is concerned with
predicting an entity-centric structure having a set
of relations to other entities as it can be found e.g.
in ontology-based information extraction (Sanchez-
Cisneros and Aparicio Gali, 2013; Buitelaar et al.,
2006) or extracting info-boxes from Wikipedia arti-
cles (Lange et al., 2010). Contrary to MCTC, clas-
sical slot-filling requires the prediction of a single
structure per document only, which heavily reduces
relational complexity and does not include nested
individuals. There are many approaches to SF rang-
ing from relying on distant supervision as described
by Surdeanu et al. (Surdeanu et al., 2010) to, more
recently, neural approaches as described by Zhang
et al. (Zhang et al., 2017). Finally, SF can be seen
as an upstream process for (cold-start) knowledge
base population as described by ter Horst et al. (ter
Horst et al., 2018).

Our work is highly related to information ex-
traction systems in the (bio-) medical field. When
it comes e.g. to the prediction of key parameters
of clinical studies, most work focuses on the ex-
traction of PICO-concepts: Patient/Problem (P),
Intervention (I), Comparison (C) and Outcome (O).
Summerscales et al. (Summerscales et al., 2009)
have applied conditional random fields to extract
key parameters from abstracts of clinical studies
including treatments, experimental groups, and out-
comes. Contrary to our approach, the task is de-
fined as an NER+L problem, not aiming at cap-
turing the semantic relations and concepts. Trenta
et al. (Trenta et al., 2015) have proposed to rely
on a maximum entropy classifier jointly extract-
ing fine grained PICO elements from abstracts.
Brujin et al. (De Bruijn et al., 2008) combined
an SVM-based text classifier with regular expres-
sions to extract PICO elements. Further, Ferra-
cane et al. (Ferracane et al., 2016) aim to leverage
co-reference resolution to identify experimental
groups (patients) from medical abstracts. However,
none of these works aims at deeper extraction of
arms/experimental groups and their properties. In
general, most approaches in the literature focus on
sentence extraction and classification only (Mayer
et al., 2018; Zhao et al., 2012; Wallace et al., 2016)
rather than on predicting a semantic structure.

3 Method

Structured prediction describes a variety of tasks
with the goal of predicting a pre-defined target
structure that is extracted from an unstructured in-
put text (Smith, 2011). We formulate the MCTC
problem as a structured prediction task, where the
structure to be predicted is an instance of the se-
mantic model capturing the meaning of a text. This
involves the task of predicting the number of in-
dividuals of each class (cardinality prediction) as
well as predicting the values of the key properties
of each individual. Our proposed method relies
on probabilistic graphical models i.e. conditional
random fields (CRFs; (Lafferty et al., 2001; Sutton
et al., 2012)) as their application is well established
in many structured prediction tasks in the context
of NLP.

Encoding Semantic Models: An instance of the
semantic model is encoded as a nested vector ~y
containing as many elements as there are classes
and properties in the model. Thus, given a set of
classes {C1, . . . , Cn} and a set of properties P =
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Figure 1: Schematized factor graph unrolled over the
previously shown example. We introduce unary prop-
erty factors connected to a single property of a single
individual and pairwise property factors, connected to
two properties of one or two individuals. Both factors
are additionally connected to the cardinality variables
jointly modelling the properties and cardinalities. For
clarity, we omit the observed variables in this example.

{P1, . . . , Pm}, ~y can be written as {~vC1 , ..., ~vCn}
where each ~vCi has the form [|Ci|, ~Ii1, . . . , ~Iim].
|Ci| represents the cardinality of class Ci, i.e. the
number of individuals of class Ci mentioned in the
text. Iij ⊆ P is a vector describing an individual of
class Ci in terms of its properties.

Example: Consider a semantic model consist-
ing of two classes C1 and C2 where individuals
of class C1 have properties hasA, hasB, hasC,
and individuals of class C2 have proper-
ties hasD, hasE. One specific instance of
the semantic model would be represented as:
[[2, [a1, b1, c1], [a1, b1, c2]], [1, [d1, e2]]]. The first
component of the first tuple shows that there are
two individuals of class C1. The first individual
has the property values a1, b1, c1 for properties
hasA, hasB, hasC, respectively. The second in-
dividual of class C1 has property values a1, b1, c2

for the above mentioned properties. The second
tuple shows that there is one individual of class
C2 which has property values d1, e2 for properties
hasD, hasE, respectively.

3.1 CRF-based Modelling

Let Y be the set of all possible (nested) vectors
over a given vocabulary of classes and properties
as exemplified above. Intuitively, this is the set of
all possible instantiations of the semantic model.
With ~x being the set of observed input variables
corresponding to the list of tokens of the input text,
the conditional probability of a specific instance
of the semantic model ~y ∈ Y is p(~y|~x; θ), with
θ being a learned model parameter vector. The
best value assignment to the set of target variables,
denoted as ~̂y, is found by maximum a-posteriori

(MAP) inference as shown in Equation (1):

~̂y = argmax
~y∈Y

p(~y|~x; θ) (1)

As inference in high dimensional vector spaces is
often intractable, conditional random fields decom-
pose the joint probability into individual factors.
The set of factors and their operating scope is de-
fined by a factor graph (Kschischang et al., 2001;
Koller and Friedman, 2009). A factor graph is a
bipartite undirected graph G = (V, F ) consisting
of a set of factors F and a set of variables V de-
fined as the union of the observed input and the
target output variables V = ~y ∪ ~x. A factor Ψ ∈ F
is a non-negative real-valued exponential function
Ψ : V → R≥0 that computes a scalar score based
on a subset ω ⊆ V of random variables defining
its operating scope Ψ(ω) = exp(〈f(ω), θΨ〉), with
f(·) representing a feature vector based on a set of
indicator functions, and θΨ referring to the set of
model weights that are shared between factors of
the same type.

In our approach, it is crucial to capture dependen-
cies between multiple target variables, in particular
between the variables representing the cardinali-
ties of classes and variables representing the indi-
viduals’ properties. For this reason, we introduce
factors that model the interaction between all pairs
of property variables while having access to the
cardinalities. We schematize our factor graph in
Figure 1, unrolled over the previously given exam-
ple. Let ~C denote the vector of the cardinalities of
all classes and |Ci| ∈ ~C the cardinality of class Ci.
The decomposition of the conditional probability
p(~y | ~x; θ) can be written as shown in Equation (2):

1

Z

∏
yi∈~y

[
Ψ′(~C, yi, ~x)

∏
yj∈~y\{yi}

Ψ′′(~C, yi, yj , ~x)
]
(2)

where Z denotes the partition function and Ψ′(·),
Ψ′′(·) denote factors defined for single and pairs of
output variables while having access to the cardi-
nalities ~C.

The unrolling of factors over the input is per-
formed using imperatively defined factor graphs
as proposed by McCallum et al. (McCallum et al.,
2009). For approximative inference of the poste-
rior distribution, we rely on the state-based Markov
Chain Monte Carlo sampling paradigm. Proposal
states are computed and sampled via Gibbs sam-
pling (Casella and George, 1992). While training,
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the model parameters θ are updated with SampleR-
ank (Wick et al., 2009) that is computing parameter
update gradients based on an objective comparison
of two states, usually between the current state and
the selected successor state (cf. next sections for
proposed variations). In our approach the objective
is to maximize the F1 score to the ground truth.

3.2 State-based Inference Strategies
In the following, we propose our inference strate-
gies to MCTC with a focus towards cardinality
prediction. In state-based inference, a state st is
defined as one specific variable assignment to the
target structure ~y at a specific time point t. While
inference proceeds, in each step a set of proposal
states St+1 is computed based on a list of prede-
fined atomic change rules that are applied to the
current state, e.g. changing cardinalities of classes
or the properties of individuals. The successor state
st+1 ∈ St+1 is sampled from the generated set of
proposal states.

Vanilla Inference: The vanilla inference is
based on traditional Gibbs sampling. The infer-
ence procedure is initialized with one empty state
s0 that is ~y = ∅ (no values are assigned) and it-
eratively updated with atomic change rules. Mod-
ifying the cardinality for a class Ci is defined as
either deleting an existing individual of index j
(~y ← ~y \ ~Iij ; |Ci| ← (|Ci| − 1)) or adding a new
individual with leading index |Ci| (~y ← ~y ∪ ~I i

|Ci|;
|Ci| ← (|Ci| + 1)). On the level of individuals,
an atomic change is defined as deleting, adding,
or changing a property value. The inference pro-
cedure terminates if the model parameter update
converges. The final state represents the most likely
instance of the semantic model.

Cardinality Seeded+ Inference: In the seeded+

inference (c.f. Figure 2), the first state s0 is initial-
ized with an a priori predicted cardinality value λCi

for each class Ci, which is re-sampled as inference
proceeds. For this, the system relies on the same
atomic change and termination rules as defined for
the vanilla inference.

Parallel Multi Chain Inference: The parallel
multi chain inference procedure (c.f. Figure 3)
is initialized with n independent Markov chains
S0 = [s0

1, s
0
2, . . . , s

0
n] that are explored in paral-

lel but independently from each other. Each state
s0
i ∈ S0 is initialized with a fixed number of in-

dividuals for each class type ranging between a

Figure 2: Schematized seeded+ inference. The input
is the seed parameter λ which is used to initialize the
cardinality of the first state. Within the proposal states,
λ can be altered. In each time step the model is updated
based on the current state and successor state.

pre-defined minimum αCi and maximum βCi . Con-
trary to the previous inference strategies, the car-
dinalities in each chain are not sampled over but
remain fixed. Only the property values of the in-
dividuals are sampled. The parallel sampling is
independent in the sense that for each chain the
computation of the set of proposal states and the
selection of the successor states is independent of
the other chains. The model parameters θ however
are shared throughout all chains and are thus up-
dated n times every time step; once for each pair of
current–successor state. This inference procedure
terminates if all chains converge. The final output
is selected based on the highest model probability
among the final states of all chains.

Parallel Multi Chain Inference+: The parallel
multi chain inference with cross-chain model up-
dates strategy builds on the previous inference strat-
egy in that it includes parallel inference chains with
fixed cardinality but integrates cross-chain model
update operations after each time step (bold trian-
gle in Figure 3). That is, in addition to the n model
updates, a set of state-pairs is computed by pair-
wise combining the selected successor states of the
chains for cross-over model updates. This gener-
ates n2+n

2 model parameter updates in each time
step. The motivation for this cross-chain model
updates is to force the model to learn to prefer the
correct cardinality values.

3.3 Features

Factors are defined in terms of indicator functions
that measure the compatibility of variable assign-
ments to the output structure ~y given the input doc-
ument ~x. In the following, we explain four types of
feature groups that we consider in our model. The
proposed features are intuitively designed to cap-
ture document-level semantics and finally selected
empirically based on an evaluation of a subset of
the training data.
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Figure 3: Schematized parallel multi chain+ inference.
For each value between the input α and β a Markov
chain is instantiated. In each time step the model is up-
dated between the current and successor states for each
chain. In the advanced version, additional model up-
date operations based on the successor states are added
(bold triangle).

Document-level: Document-level features mea-
sure the compatibility of property assignments of
individuals based on the textual content of the doc-
ument represented as 3-grams. For this, triples
are considered for plausibility, containing the prop-
erty type, the entity type of the property value, and
its textual representation as 3-grams. We further
measure the compatibility of pairwise assignments
of property values considering their sentential dis-
tance, assuming that values within the same prop-
erty (in case of multi value properties) or individual
(throughout multiple properties) are more likely
to appear closer together rather than being spread
across the document.

Document-structure: Document structure fea-
tures rely on a heuristic segmentation of the doc-
ument into the standard sections of a scientific ar-
ticle: abstract, introduction, method, results, dis-
cussion, references, and unknown. We compute
features that capture 3-grams mentioned in spe-
cific sections of the article as indicators for the
assignment of certain values to properties. By this,
we can model that certain content is expected in
certain sections and should override inconsistent
information appearing in other sections.

Cardinality: Aiming at cardinality prediction,
we measure the compatibility of cardinality val-
ues in dependence of other random variables in ~y.
For this, we make the choice of a cardinality depen-
dent on n-grams appearing in the surface forms of
property values.

In addition, we also consider features implement-
ing a prior for the cardinalities of classes as well as
for the number of different values for multi-value
properties. By this, the model is able to learn a
class/property-specific distribution of cardinality
values. For example, assuming that the cardinality

of a class Ĉ has a very high a priori likelihood for
a specific value λĈ throughout the training data,
this puts pressure on the model during inference to
prefer model instances where there are λĈ individ-
uals for the respective class, unless other features
provide strong evidence for the contrary.

Within- and Across-Individual Coherence:
Sometimes values of properties are shared across
individuals within the same class. Thus, we
measure the compatibility of value assignments
across properties within one individual, but also
how plausible it is that a certain value is shared
across individuals.

4 Experiments

Model-complete text comprehension aims at the
automatic instantiation of a semantic model based
on information extracted from a natural language
text. Such an instance contains information about
individuals of equivalence classes, their cardinal-
ity and their properties. Thus the overall task of
MCTC can be evaluated towards i) the correct pre-
diction of the number of individuals, and ii) the
prediction of properties for each individual. In the
following, we describe our use case application,
the experimental procedure and results.

4.1 Semantic Model and Data Set
We apply our approach to full text articles describ-
ing pre-clinical studies in the domain of spinal cord
injury. Our semantic model is an excerpt of the
Spinal Cord Injury Ontology (SCIO) (Brazda et al.,
2017) centered on the key concept of an experimen-
tal group. An experimental group represent an ani-
mal model to which a certain injury and treatment
is applied and is described by four key properties:
i) hasSpecies specifying the species that the ani-
mal model belongs to, ii) hasInjury specifying the
experimentally inflicted injury, ii) hasTreatment is
the list of treatments that were applied, and iv) has-
Name is a list of naming variations for that animal
group that are used throughout the document. Note
that, in accordance with domain experts, only the
first three properties are considered to be relevant
to describe the experimental group semantically
and thus are evaluated. However, the property has-
Name can be seen as an auxiliary property that is
not necessary to understand the study but provides
useful information, e.g. to detect co-references.

The data set contains full text articles that have
been annotated by three domain experts using the
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SANTO framework (Hartung et al., 2018). Anno-
tations are available on the full level of relevant
concepts of SCIO. Each document can be seen as a
data point that is annotated with an instance of the
semantic model containing a list of experimental
groups and their properties. While annotations for
the hasName property are linked to specific textual
phrases in the document, all other properties are
annotated in a distantly supervised fashion. In a
preliminary step, we apply a named entity recog-
nition heuristic based on automatically generated
regular expressions to compute a set of document-
based annotations for all classes and property val-
ues that exist in the semantic model. The names
of groups are additionally extracted with a stan-
dard CRF using standard token-level features. The
final data set contains 96 data points with an aver-
age length of approx. 273 sentences per document
and a total number of 345 experimental groups
(µ = 3.3, σ = 1.3, min = 2, max = 7).

4.2 Inference Parameter Estimation

Our proposed inference strategies rely on a prior
estimation of the number of individuals for initial-
ization. As described in Section 3.2 the seeded
inference strategy requires the seed variable λ. The
parallel multi chain inference requires a range of
cardinality values 0 ≤ α ≤ β. Details about their
estimation are briefly described below.

Seed Prior Cardinality Estimation λ The car-
dinality seeded(+) inference procedure requires the
estimation of the seed parameter λ for each class de-
termining the number of individuals (experimental
groups) the initial state begins with. λ is computed
by relying on the k-Means algorithm by clustering
group names based on textual features. The cluster
quality of k-Means depends on two main param-
eters. First, the determination of the number of
clusters, for which we rely on the residual sum of
squares (RSS) algorithm with an empirically deter-
mined penalization factor for large number of clus-
ters. Second, we rely on a function measuring the
distance between two data points, i.e. between two
group names. We compare three distance functions:
i) Levenshtein distance with a k-Medoid implemen-
tation of k-Means, ii) cosine distance of the aver-
aged sum of pre-trained Pubmed-based word em-
beddings induced with Word2vec (Mikolov et al.,
2013), and iii) a random forest classifier (Liaw
et al., 2002) with a correlation based feature se-
lection (resulting in Smith-Waterman and 3-gram

based Jaccard similarity as features).We evaluate
the performances based on the F1 score using a ref-
erence clustering as ground truth obtained from our
annotated data set. We define a true positive as a
group name that is in the correct cluster, a false pos-
itive if it is in a wrong cluster, and a false negative
if it is missing in its respective cluster. The Lev-
enshtein distance performed with F1 = 0.41, the
Word2Vec-based cosine distance performs slightly
better with F1 = 0.45, while the random forest
classifier reaches a value of F1 = 0.56. With the
random forest outperforming both other models,
we rely on this distance function in a k-Means clus-
tering for estimating λ.

Parallel Multi Chain(+) Parameters α and β
The parallel multi chain(+) inference strategies re-
quire the estimation of a minimum (α) and a maxi-
mum (β) number of individuals assuming that the
correct cardinality lies between α and β. We esti-
mate both parameters in dependence of the average
cardinality of individuals in the training set. With
µ being the average cardinality and σ its standard
deviation, we set α = µ− σ and β = µ+ σ.

4.3 Evaluation Setting
Our experiments follow a randomized cross valida-
tion regime as usual for experiments on relatively
small data sets. We ran each experiment 10 times
with a random split into 80% training data (76 in
number) and 20% test data (20 in number). We pro-
vide evaluation results in terms of precision, recall,
and F1 macro averaged over all documents in three
configurations:

Cardinality Prediction (CP): We compare the
predicted cardinality pc to the ground truth car-
dinality gc where tp = min(pc, gc), fp =
max(0, (pc − gc)), and fn = max(0, (gc − pc))

Property Prediction (PP): We compare the pre-
dicted property values to the ground truth property
values where a true positive is a correctly assigned
property value, a false positive is a wrongly as-
signed property value and a false negative as a
missing property value of an individual.

Combined (Comb): We compute the harmonic
mean between the cardinality and property predic-
tion scores.

4.4 Experimental Results
Our experiments comprise the evaluation of four
models each of which is based on one of the de-
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scribed joint inference strategies predicting cardi-
nality and properties at the same time, as well as a
pure cardinality prediction baseline ignoring prop-
erty prediction. The joint inference models are:
RSS: the seeded inference with a fixed cardinality,
RSS+: the seeded inference that allows further sam-
pling of the cardinality as described in Section 3.2,
PAR: the parallel multi chain inference, and PAR+:
the parallel multi chain inference with chain-cross
over model updates. As cardinality baseline(s), we
provide Co-ref CRF, a CRF based method for clus-
tering group names without a joint prediction of
properties, relying on linguistic features only, and
RSS, the cardinality as predicted by the RSS based
k-Means as reported in the RSS-model. Note that
the cardinality in RSS is fixed and does not change
during inference so that it can be seen as a baseline
for predicting the cardinalities. The experimental
results of those models are reported in Table 1. In
Table 2, we compare the run time and the number
of generated states for the four inference methods.

4.5 Discussion
We analyze the results with respect to three dif-
ferent aspects: i) performance of the cardinality
prediction, ii) overall performance as measured by
the combined harmonic mean, and iii) performance
with respect to the run time and complexity.

Cardinality Prediction The performances of the
cardinality prediction can be seen in the first row
of Table 1. The CRF-based baseline already yields
a very strong F1-score of 0.79 which shows that
cardinality prediction with linguistic features ig-
noring property prediction provides already decent
results. The k-Means approach with an unsuper-
vised RSS cluster estimation yields a cardinality
F1-score of 0.64, performing worse than the CRF
baseline. When seeding our approximate inference
approach with prior cardinality values (RSS+), the
F1-score considerably improves by 19 %-points up
to 0.83, even outperforming the CRF baseline. The
cardinality prediction in PAR performs comparably
strong with an F1-score of 0.81. This score is fur-
ther outperformed when integrating the cross-chain
model update operation. PAR+ archives performs
best in predicting the cardinalities with an F1-score
of 0.84.

Overall Score The performances of the overall
prediction can be seen in the second to last rows
in Table 1. With respect to the property prediction,
RSS performs best with a score of 0.57, mainly

due to the correct detection of TREATMENTS (0.67)
and SPECIES (0.62). With a low cardinality per-
formance, the overall score sums up to 0.63 in F1.
The strong increase in the performance of cardi-
nality prediction in RSS+, compared to the RSS
model comes at the cost of an inferior property
prediction quality. The combined score for RSS+

however shows slightly better results with an F1-
score of 0.65. The property prediction in PAR
shows similar results to the RSS+ for INJURY, a
slight decrease for TREATMENTS, and a huge in-
crease (10% points) for SPECIES. The PAR model
yields an overall score of 0.66. Activating cross-
chain model updates (PAR+), the property predic-
tion shows a performance increase by 8% points
for hasTreatment while for both other properties
the value is similar to PAR. The PAR+ model out-
performs all other models in the overall score, but
lacks 4%-points for property prediction in com-
parison to RSS. The results show that property
prediction works best when fixing the number of
individuals. With PAR+ model working best for
cardinality prediction, an interesting model com-
bination could be to use the cardinality output of
PAR+ as initialization to RSS. This however, is left
for future work.

Run Time Performance The run time as well
as the number of states for each inference method
is shown in Table 2. We report statistics on the
average time in seconds (s) that is needed to process
a document and depict the search space complexity
by providing the average number of generated and
evaluated states in thousands (k). All experiments
ran on an Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz with 16 cores and 120 GB of available
RAM. No GPU or further hardware acceleration
was used. The table shows that RSS has the lowest
complexity in terms of state generation, which is
due to the fixed cardinality and in consequence a
significantly reduced search space. In RSS+, we
notice a huge increase in the number of generated
states by a factor of around 7. At the same time,
we observe that the run time factor rises only by
a factor of 2.2 in training and 2.8 in test. It is
noticeable that the number of generated states and
the run time at test time decreases from PAR to
PAR+ which is probably due to a faster model
convergence, however training run time increases.
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Approach Co-ref CRF RSS RSS+ PAR PAR+

F1 P R F1 P R F1 P R F1 P R F1 P R

CP 0.79 0.99 0.65 0.64 0.48 0.97 0.83 0.89 0.78 0.81 0.70 0.96 0.84 0.75 0.96
Comb 0.63 0.53 0.77 0.65 0.68 0.63 0.66 0.60 0.73 0.69 0.64 0.75
PP 0.57 0.58 0.57 0.48 0.47 0.48 0.50 0.50 0.49 0.53 0.53 0.53

→Injury 0.35 0.35 0.35 0.46 0.46 0.46 0.47 0.47 0.47 0.48 0.48 0.48
→Species 0.62 0.62 0.62 0.50 0.50 0.50 0.60 0.60 0.60 0.61 0.61 0.61
→Treatments 0.67 0.68 0.66 0.46 0.45 0.48 0.42 0.44 0.41 0.50 0.51 0.49

Table 1: Results of the cardinality baseline(s) and of the inference strategies for joint cardinality and property
prediction. We provide macro-F1, precision, and recall averaged over 10 runs with random 80/20 splits.

Approach RSS RSS+ PAR PAR+

Avg. # states (k) 46 324 150 119
Avg. train time (s) 28.11 63.87 54.71 60.73
Avg. test time (s) 8.95 25.21 38.67 32.87

Table 2: Run time and complexity statistics of the in-
ference strategies. We provide the average number of
evaluated states in thousands (k), averaged training and
test time per document in seconds (s).

5 Conclusion

We have proposed an approach to the task of model-
complete text comprehension (MCTC) that relies
on a learned model of the posterior distribution of
instances of a semantic model given a text to infer
the most likely instance of a semantic model that
captures the meaning of the text best. We have
relied on CRFs to model the conditional distribu-
tion in a factorized way and empirically investi-
gated the impact of different approximate infer-
ences strategies on our problem. Our experiments
on the task of predicting the structure of experi-
mental groups from scientific full text articles de-
scribing pre-clinical studies in the field of spinal
cord injury show that modeling the MCTC task as
a joint inference problem, extracting the cardinality
in combination with predicting the properties of
the individuals, outperforms a number of reason-
able baselines predicting the cardinality alone. In
future work, we intend to investigate combinations
of our inference strategies, relying on the result
state produced by our PAR+ inference strategy to
seed the RSS inference method to re-sample the
property values, expecting to see an overall gain
in both cardinality prediction and entity property
prediction over both inference strategies.
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de Lima, and Clarissa Castellã Xavier. 2011. A
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