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Abstract

Twitter is a valuable source of patient-generated data that has been used in various population
health studies. The first step in many of these studies is to identify and capture Twitter messages
(tweets) containing medication mentions. In this article, we describe our submission to Task 1
of the Social Media Mining for Health Applications (SMM4H) Shared Task 2020. This task
challenged participants to detect tweets that mention medications or dietary supplements in a
natural, highly imbalanced dataset. Our system combined a handcrafted preprocessing step with
an ensemble of 20 BERT-based classifiers generated by dividing the training dataset into subsets
using 10-fold cross validation and exploiting two BERT embedding models. Our system ranked
first in this task, and improved the average F1 score across all participating teams by 19.07%
with a precision, recall, and F1 on the test set of 83.75%, 87.01%, and 85.35% respectively.

1 Introduction

Social media platforms such as Twitter have been used in various public health studies. In these studies,
detecting tweets containing health-related words such as diseases, treatments and medications is a fun-
damental yet difficult step. These difficulties are exacerbated by the short length and informal nature of
tweets, which often contain non-standard grammar, frequent misspellings, many contractions, extensive
slang, and combined symbols (emojis/emoticons) to express emotion. Despite these difficulties, unique
insights can be gained from exploring Twitter data which motivates further research on this task.

Task 1 of SMM4H Shared Task 2020 (Klein et al., 2020) challenged participants to develop an auto-
matic classification system to identify tweets mentioning medications or dietary supplements. The task
was formulated as a binary classification task, in which given a set of tweets a system should predict
the label for each tweet. Organizers created the UPennHLP Twitter Pregnancy Corpus (Weissenbacher
et al., 2019a) and divided it into training, validation, and test sets. The training and validation datasets
contained tweets labeled with either positive or negative labels indicating whether or not they contain a
medication or dietary supplement mention. The test set contained tweets with labels removed, and was
withheld from participants until a short evaluation period during which participants predicted labels for
each tweet. Participants were evaluated based on their system’s performance (F1 score for the positive
class) at generating labels for the test set. The class distribution of the training, validation, and test sets
was highly imbalanced. Only about 0.26% of the tweets mention medications, which is typical for this
task and common in practice.

As a baseline the Shared Task organizers described the Kusuri classifier (Weissenbacher et al.,
2019a). Kusuri was trained in a combination of the training and validation datasets and achieved
good performance in detecting positive tweets in this test dataset at F1 score 78.79%. We sought to
improve upon Kusuri by developing a system that combines a rule-based preprocessing component,
a pre-filtering component, and an ensemble of BERT-based classifiers to predict the label of each tweet
(Figure 1). In our best performing system, we used 10-fold cross validation to divide the data into 10
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Figure 1: An overview of the system for automatic classification of tweets mentioning medications

subsets, then trained a Bio+Clinical BERT classifier and a BERT-Large Uncased classifier on each subset
to obtain 20 classifiers. These 20 classifiers were ensembled using the average of their predicted proba-
bilities to predict the final class labels. We further increased the performance of this system by training
it on additional data from SMM4H 2018 which consisted of a very similar task.

2 Methods

2.1 Preprocessing
Preprocessing removes noise from tweets and converts words to a form that is recognizable by the embed-
ding system. All tweets were pre-processed as follows: (1) Username, URL, Retweet abbreviation ‘rt’,
non-ASCII words and characters were removed; (2) Artifacts and upstream processing such as ‘&amp;’,
‘&lt;’, ’&gt;’ were standardized to ‘and’, ‘<’, and ‘>’ respectively; (3) Camel-cased expressions in
hashtags were split into their component words and the hash symbols were removed; (4) A space was
added between a word and a punctuation; (5) All characters were lowercased; (6) Contractions were
converted to their formal forms.

2.2 Pre-filtering
Next, the preprocessed tweets were pre-filtered to remove some negative tweets. Pre-filtering was ef-
fective at removing approximately 25% of the negative tweets, and the class ratio increased from 0.26%
positive class before pre-filtering to 0.34% positive class after pre-filtering. Pre-filtering consisted of a
Pattern Classifier and a Unified Medical Language System Metathesaurus (UMLS) Lexicon Classifier.
Tweets were labeled as Potential positive tweets if the requirements of either classifier were met. The
Pattern Classifier labeled tweets containing the words ‘drug’, ‘medication’ or ’med’ as Potential posi-
tive tweets based on the assumption that these tweets are likely to contain medication mentions. The
UMLS Lexicon Classifier selected tweets containing at least one concept from sections 0, 1, 2 and 9
of the UMLS 2017 AA release. Given a tweet, the UMLS Lexicon classifier identified entities in that
tweet and checked if those entities were linked to any concepts within a default threshold of 0.7. The
UMLS Lexicon classifier was implemented using the Name Entity Recognition (NER) model and Entity
Linking model of scispaCy en core sci lg package (Neumann et al., 2019). The scispaCy NER model
was trained from nine datasets covering a diversity of entities in several biomedical domains. The scis-
paCy Entity Linking model is capable of linking an entity to UMLS concepts and concept aliases which
include common names of drugs and alternative spellings.

2.3 Ensemble Learning
Lastly, to predict whether each tweet contained a medication or dietary supplement mention, we used an
ensemble of BERT-based linear classifiers. BERT (Devlin et al., 2018) is a pre-trained contextual word
representation encoder based on transformers and can be fine-tuned using task-specific layers in addition
to BERT for a specific task. BERT has been used in state-of-the-art systems for several Natural Language
Processing (NLP) tasks, including winning systems of the SMM4H 2019 Shared Task (Weissenbacher
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Model Bio+Clinical BERT BERT-Base BERT-Large

Method Single 10-fold ensemble Single 10-fold ensemble Single 10-fold ensemble

Average Hard Voting Average Hard Voting Average Hard Voting

F1 83.87 83.58 73.68 81.16 84.38 79.45 73.17 84.85 79.37
Precision 96.30 87.5 68.29 82.35 93.10 76.32 63.83 90.32 89.29

Recall 74.29 80.00 80.00 80.00 77.14 82.86 85.71 80.00 71.43

Table 1: Performance on SMM4H 2020 validation dataset of the single models and 10-fold ensemble
models using individual BERT models

Model Bio+Clinical BERT
and BERT-Base

Bio+Clinical BERT
and BERT-Large

BERT-Base
and BERT-Large

Bio+Clinical BERT,
BERT-Large and BERT-Base

F1 84.85 86.15 85.71 83.08
Precision 90.32 93.33 96.43 90.00

Recall 80.00 80.00 77.14 77.14

Table 2: Performance on SMM4H 2020 validation dataset of multiple combined-BERT models in addi-
tion to 10-fold ensemble

et al., 2019b) which focused on using machine learning techniques to detect tweets containing adverse
drug reactions (Task 1) or personal health mentions (Task 4).

Since the tweets in this shared task belong to the consumer health domain, they contain language
characteristic of the general English, clinical, and biomedical domains. We experimented with three dif-
ferent pre-trained BERT models: two from the general English domain, BERT-Base Uncased and BERT-
Large Uncased (Devlin et al., 2018), and one from the biomedical and clinical domains, Bio+Clinical
BERT (Alsentzer et al., 2019). Bio+Clinical BERT uses Bio-BERT (Lee et al., 2020) which is trained on
biomedical text, to initialize embeddings which are then trained on clinical texts. It was shown to outper-
form Bio-BERT and BERT-Base Uncased on three of five common Clinical NLP tasks (Alsentzer et al.,
2019). We fine-tuned each of these BERT models using a linear classification layer with AdamW opti-
mizer for four epochs with a batch size of 16 and a learning rate of 0.00001 in a 10-fold cross-validation
setup before starting the ensemble process.

For each pre-trained word embedding model, BERT-Base Uncased, BERT-Large Uncased and
Bio+Clinical BERT, we trained both a single model and 10-fold-ensemble model. In the single model,
the training dataset was split into training and validating subsets with ratio 90:10, and the trained model
was used to predict labels for tweets in the validation dataset. In the 10-fold-ensemble model, 10 differ-
ent models were created from the data splits of 10-fold cross-validation. Therefore each separate model
had its own training and validating subsets. We experimented with two ensemble methods to combine
the outputs of these systems: (1) Average, in which we take the mean of predicted probabilities of each
individual classifier and use argmax to obtain the class label, (2) Hard Voting, in which we select the
majority class of the class labels predicted by each individual classifier.

To balance out the individual weaknesses of the three pre-trained BERT models, we also performed
four more experiments which combined Bio+Clinical BERT, BERT-Base Uncased, and BERT-Large
Uncased ensemble models into a single ensemble. We experimented by combining each pair, and all
three models using the average ensemble method to combine their predictions.

2.4 Additional Training Data

After training our initial model, we performed an error analysis on the validation set to find reasons
for false negative predictions. We found that although each false negative sample included a word or
a phrase related to medications, their predicted positive probability was low. These samples typically
contained either (1) medication-related words or phrases that were either unseen or rarely seen in the
training dataset, or (2) contained medication-related words or phrases which were inconsistently labeled
within the training dataset. To correct for these errors, we added data from the SMM4H Shared Task
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Model Bio+Clinical BERT BERT-Base BERT-Large Bio-Clinical-BERT,
BERT-Base

Bio-Clinical-BERT,
BERT-Large

BERT-Base,
BERT-Large

Bio-Clinical-BERT,
BERT-Large, BERT-Base

F1 84.06 84.93 83.33 89.55 89.55 84.51 86.96
Precision 85.29 81.58 81.08 93.75 93.75 83.33 88.24

Recall 82.86 88.57 85.71 85.71 85.71 85.71 85.71

Table 3: Performance on SMM4H 2020 validation dataset of individual and combined-BERT models in
addition to 10-fold ensemble using additional training data

2018 on classifying tweets mentioning drug names or dietary supplement (Weissenbacher et al., 2018)
to the training set. This dataset contained labeled samples for most of the false-negatives predictions our
system made and contained 4,975 positive and 4,647 negative tweets.

3 Results

3.1 System Development
Table 1 compares performance of the single models and 10-fold ensemble models on the SMM4H 2020
validation dataset using each pre-trained BERT model. For all 10-fold ensemble models, the F1 score of
the average method was higher than that of the hard voting method, and the average method was either
very similar to or higher than the single, non-ensemble model. Table 1 also shows that BERT-Large
Uncased 10-fold-ensemble model achieved the highest F1 score at 84.85%, indicating it is the most
efficient model using single BERT model. However, we found that combining multiple BERT models
increased performance. Table 2 shows that when combining 10-fold ensemble models, the combination
of Bio+Clinical BERT and BERT-Large Uncased performs the best with F1 score at 86.15%.

Tables 1 and 2 show performance when using only the SMM4H 2020 training data. Table 3 shows
the performance of multiple average ensemble models using both the SMM4H 2020 and 2018 data for
training. Both Bio+Clinical BERT and BERT-Large Uncased ensemble model and Bio+Clinical BERT
and BERT-Base Uncased ensemble model achieved the highest F1 score at 89.55%. This performance
increased by 3.4% compared to the best Bio+Clinical BERT and BERT-Large Uncased ensemble model
without additional data in Table 2. This shows that including related training data improved performance.

3.2 System Submissions
We made three system submissions for test dataset evaluation. Each of these systems used the best
configuration indicated by our validation set experiments, and consisted of an ensemble of 20 BERT-
Large Uncased and Bio+Clinical BERT classifiers using the average ensemble method. Each system
was trained on a combination of the training and validation datasets from SMM4H 2020, and the training
dataset of SMM4H 2018. The submissions differed in their use of the pre-filtering phase. The first
submission used pre-filtering for training and evaluation. The second submission did not use pre-filtering
for training, but used it for evaluation. The third submission did not use pre-filtering at all. The third
submission obtained the highest F1 score on the test dataset of Shared Task 2020 at 85.35%, followed by
the second variant and the first variant with F1 score at 85% and 83% respectively. These results indicate
that pre-filtering does not help the system classify tweets on the test dataset. The third submission is
the highest performing system in Task 1 of the SMM4H Shared Task 2020. In addition, its F1 score
outperformed that of the baseline system Kusuri by 6.56%.

4 Conclusion

In this work, we developed an ensemble tweet classifier based on BERT combined with pre-processing
and pre-filtering steps. The system was evaluated on a natural, highly imbalanced dataset, achieved the
highest F1 score in Task 1 of the SMM4H Shared Task 2020. We found that the best system config-
uration consisted of an ensemble of 20 BERT-based classifiers built using BERT-Large Uncased and
Bio+Clinical BERT ensembled using an average method. We also found that including related training
data improved performance, and that the pre-filtering step did not improve performance. For future work,
we plan to experiment with different neural network classification layers in addition to BERT outputs.
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